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Background
Recent approaches to cyber security involve building statistical mod-
els of computer network data, where the connections between two
nodes in the network can be viewed as events of a point process.

The aim of this project is to develop methods that correctly distin-
guish between automated event times and those that are caused by
human behaviour, with the purpose of building separate models that
can be analysed using anomaly detection methods.

Identifying periodic subsequences
Periodicity is a common feature of automated signal traffic, a primary
example being periodic activity to keep long term connections open.
The approach used here to detect periodicity, described in detail in
Heard[2014], is to conduct a Fourier analysis of the event times of
each point process associated with the network.

This work seeks to break up the entire sequence of event times into
strongly periodic subsequences separated by more random periods of
inactivity. Let tb be the number of successive periods with 0 events
before the bth periodic subsequence of events commences. we model
as a geometric random variable with parameter q ∈ (0, 1).

For a hypothetical periodicity P , and for each period of length P
within a periodic subsequence, we may observe 0 events, (in the case
of missing data) 1 event, or multiple events. An example of one such
subsequence is shown in Figure 1. A cross indicates an observed
event and a square indicates a period of missing data.
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Figure 1: Point process of a subsequence of periodic event times with
period P .

Let ni be the number of events observed in the ith period where{
P(ni = 0) = p,

P(ni = k) = (1− p)(1− r)k−1r, k ∈ N/{0}.

Futhermore for the ith period, let yi = (yi,1, . . . , yi,ni) be the (possi-
bly empty) vector of ordered event times such that

yi,j = P

(
i +

θi,j
2π

)
, θi,j ∈ [0, 2π), θi,1 ≤ . . . ≤ θi,n.

We model θi,j
i.i.d∼ M (µ(B(i)), κ), where B(i) is the unobserved dis-

crete time counting process denoting the corresponding subsequence
number. M(µ, κ) is the von Mises distribution with mean direction µ
and precision κ and has density

f (θ | µ, κ) = exp(κ cos(θ − µ))
2πI0(κ)

, θ ∈ [0, 2π),

where I0(κ) is the modified Bessel function of order 0. The von Mises
distribution is an approximation of a Normal distribution wrapped
onto a circle, where µ and κ are analogous to the mean and precision
of the Normal distribution respectively.

Change point methodology
This work looks to find change points, τ = (τ0, . . . τm), represent-
ing the end of a subsequence of periodic events. Following PELT
[Killick, 2012], we seek to find change points by minimizing

m∑
i=1

[C(yτi−1+1:τi) + β],

where C is a cost function that is inversely related to the strength of
periodicity in the subsequence yτi−1+1:τi and β is a penalty to guard
against over fitting. Note that change points correspond to event
times in the unobserved process B.

For the purposes of this work, the cost function is chosen to be twice
the negative log likelihood of the model above and β = ρ log(n),
where ρ is the number of additional parameters introduced to the
model by adding a change point.

An example of logon event data from Los Alamos National Labora-
tory is shown below, where the histogram plots the deviation from the
angular mean of events within periodic sequences. A fitted density
of M(0, κ) is also shown.
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Figure 2: Circular histogram of logon event data.

In the model above, we assume only the value of µ varies between
subsequences, and all other parameters are fixed. Our prior assump-
tions attribute a U [0, 2π) prior for µ, separate beta priors to the values
of p, q and r, while for κ we use the conjugate prior given by

g(κ) ∝ {I0(κ)}−c exp{κR0 cos(µ− µ0)}.

After each iteration of our change point analysis, the fixed param-
eters are updated using their posteriors given the data and the esti-
mated change points. We repeat this process until the change points
converge.

Application to real data
We applied the method above to the logon data from Los Alamos Na-
tional Laboratory above. Figure 3 shows all logon event data over a
54 day period for a single user connecting from one specific computer
to another. From our change point analysis, the circles in the diagram
indicate the start of periodic subsequences. The figure seems to iden-
tify meaningful subsequences of periodic event times, and is robust
to missing event data, as seen between days 35 and 40.
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Figure 3: Logon event times from Los Alamos National Laboratory.

Future Work
Building a hierarchical model so that events within the same period
are dependant on each other. This might most easily be done with a
mixture of wrapped double exponentials.


