Imperial College London

Harmonic Analysis on Groups

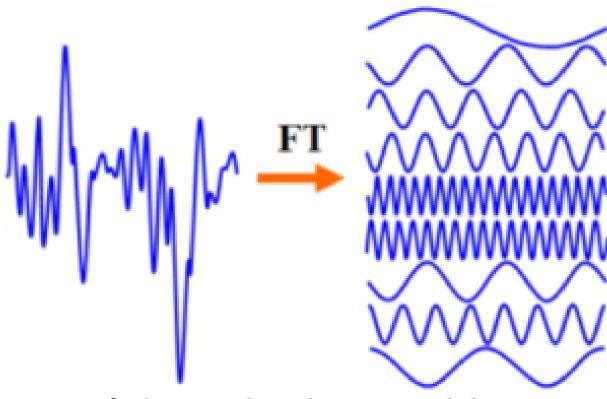
Massimiliano Esposito & Chiara Taranto Imperial College London.

Objectives

- The abstract objective is to present the main ideas to extend classical Harmonic
 Analysis to the more abstract setting of locally-compact groups.
- To illustrate the ideas we apply them to a remarkable example of a locally yet not globally compact group, that is, the **Heisenberg Group** \mathbb{H}_n .

Classical Harmonic Analysis

Harmonic Analysis is a branch of mathematics concerned with the representation of a function as a superposition of simpler functions, based on the study of the notion of Fourier transform.



This is a powerful method to tackle many problems from applied sciences, such as engineering, neurovision and image/sound processing. The main tool in this theory is the concept of Fourier transform: let $f \in L^2(\mathbb{R}^d)$, then the Fourier transform of f is the function $\hat{f}: \mathbb{R}^d \to \mathbb{C}$ such that $\forall \xi \in \mathbb{R}^d$ we have:

$$\hat{f}(\xi) = \int_{\mathbb{R}^d} e^{-ix\cdot\xi} f(x) dx. \tag{1}$$

Furthermore, under suitable hypotheses on f, it is possible to represent it in terms of its Fourier transform:

$$f(x) = \int_{\mathbb{R}^d} e^{ix\cdot\xi} \hat{f}(\xi) d\xi,$$

and the following Plancherel formula holds:

$$\|f\|_{L^2(\mathbb{R})} = \|\widehat{f}\|_{L^2(\mathbb{R})}.$$

The trigonometric polynomials $\{e_{\xi} := e^{ix \cdot \xi}\}_{\xi \in \mathbb{R}^d}$ appearing in (1) are the 'simpler functions' that allow us to obtain the desired representation.

Generalisation to a group G

Requirements

- We want to replace \mathbb{R}^d with a suitable group G.
- We want to integrate over the chosen group G, therefore we need a measure on it. It has to satisfy an analogue of the translation invariance of the Lebesgue measure dx, that is

$$|A+x|=|A|, \quad \forall A \subset \mathbb{R}^d$$

• We want to find an analogue of the trigonometric functions

$$e_{\xi}: \mathbb{R}^d \to \mathbb{C} \sim \mathcal{U}(\mathbb{C}),$$

such that

$$e_{\xi}(x+y) = e_{\xi}(x)e_{\xi}(y), \quad \forall x, y \in \mathbb{R}^d.$$

Note that we are associating to \mathbb{R}^d a new space $\widehat{\mathbb{R}^d} = \{e_{\xi} \mid \xi \in \mathbb{R}^d\} \sim \mathbb{R}^d$.

Ingredients

- We choose (G, \cdot) to be a locally compact group.
- It is possible to show that on every locally compact group, there is a left-invariant measure $d\mu$, called Haar measure [2].
- Let \mathcal{H}_{π} be a Hilbert space of any dimension d_{π} . Then consider the unitary representation π of G on \mathcal{H}_{π} , that is, the homomorphism

$$\pi: G \to \mathcal{U}(\mathcal{H}_{\pi}).$$

A subset $V \subset \mathcal{H}_{\pi}$ is said to be invariant for a representation π if $\pi(x)V \subset V$ for all $x \in G$. We look for irreducible representations, i.e., those for which the only invariant spaces are $\{0\}$ and \mathcal{H}_{π} . Then we can define the unitary dual of G to be $\widehat{G} = \{ [\pi] \mid \pi \text{ is a unitary, irreducible rep. of } G \}$.

Group Fourier Transform on \mathbb{H}_n

We define the group Fourier transform on \mathbb{H}_n as an operator-valued function: for a function $f \in L^1(\mathbb{H}_n)$ the associated Fourier transform is a family of operators acting on the Hilbert space $L^2(\mathbb{R}^n)$. More precisely, for every $\lambda \in \mathbb{R} \setminus \{0\}$, the group Fourier transform at π_{λ} is given by

$$\hat{f}(\pi_{\lambda})\varphi(u) = \int_{\mathbb{H}_n} f(x, y, t) e^{i\lambda(t + \frac{1}{2}xy + uy)} \varphi(u + x) dx dy dt.$$

for every $\varphi \in L^2(\mathbb{R}^n)$ and $u \in \mathbb{R}^n$. We also have the analogue to the Euclidean case:

$$||f||_{L^{2}(\mathbb{H}_{n})}^{2} = \int_{\mathbb{R}} ||\pi_{\lambda}(f)||_{HS}^{2} \frac{|\lambda|^{n} d\lambda}{(2\pi)^{n+1}} = ||\hat{f}||_{L^{2}(\widehat{\mathbb{H}}_{n})}^{2}.$$

Applications & Open Questions

- The Heisenberg group is one of the most important structures studied in sub-Riemannian geometry. The latter is a valuable tool to study neurovision problems [1].
- Moreover, considering reductive groups, one finds that abstract harmonic analysis has applications in number theory, e.g., to prove analytic continuation of the Selberg zeta-function [2].
- We have used this theory to study analogues of Gevrey spaces on groups with hypo-elliptic operators. On the Heisenberg group we have a characterisation equivalent to the Euclidean case. The case on a general group is still open.

Group Fourier Transform

Given $f \in L^2(G)$ for every $[\pi] \in \widehat{G}$ we can define the operator $\widehat{f}(\pi) : \mathcal{H}_{\pi} \to \mathcal{H}_{\pi}$ where \mathcal{H}_{π} is the Hilbert space associated to π :

$$\widehat{f}(\pi) := \int_{G} \pi^*(x) f(x) d\mu.$$

More precisely, for every $v_1, v_2 \in \mathcal{H}_{\pi}$ we can write:

$$\left(\widehat{f}(\pi)v_1,v_2\right)_{\mathcal{H}_{\pi}}=\int_G\left(\pi^*(x)v_1,v_2\right)_{\mathcal{H}_{\pi}}f(x)dx.$$

The Heisenberg group

Let us now consider an example of a non-compact, locally compact group, that is, the Heisenberg group:

$$G = \mathbb{H}_n \sim \mathbb{R}^{2n+1},$$

endowed with the non-commutative group law:

$$(x, y, t)(x', y', t') := (x + x', y + y', t + t' + \frac{1}{2}(xy' - x'y)).$$

The Haar measure of \mathbb{H}_n coincides with the Lebesgue measure of \mathbb{R}^{2n+1} . All the unitary, irreducible representations of \mathbb{H}_n are given by

$$\pi_{\lambda}: \mathbb{H}_n \to \mathcal{U}(L^2(\mathbb{R}^n)),$$

where

$$\pi_{\lambda}(x, y, t)\phi(u) = [\pi_1(x, \lambda y, \lambda t)](u) = e^{i\lambda(t + \frac{1}{2}xy + yu)}\phi(u + x),$$

for $\lambda \in \mathbb{R}/\{0\}$. These π_{λ} are called Schrödinger representations, and $\widehat{\mathbb{H}}_n = \{[\pi_{\lambda}] \mid \lambda \in \mathbb{R} \setminus \{0\}\}$.

References

- [1] G. Citti, A. Sarti, Neuromathematics of Vision, Springer, 2014.
- [2] A. Deitmar, S. Echterhoff, *Principles of Harmonic Analysis*, Springer, 2009.
- [3] E. M. Stein, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993.
- [4] https://1millionmonkeystyping.files.wordpress.com/2014/07/fourier5.jpg