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Introduction
•Over the past two decades, a number of volatility

models have been proposed to try to understand the
dynamics of the implied volatility.

•Continuous stochastic volatility models (driven by
Brownian motion) effectively fit the market smiles
for larger maturities. Problem: the small-maturity
smile is much more flattened compared with the
market data, which has the well-observed ’small-
time explosion’ feature [3].

•To model this feature, researchers suggest refine-
ments to existing models, including:
i. Adding jumps (exponential Lévy models for ex-

ample). Drawback: an explosion rate (|t log t|)
larger than market observations; calibration com-
plexity.

ii. Introducing fractional Brownian motion. Draw-
back: increase of computational cost.

Figure 1 Calibrate standard Heston to SPXW data on
Sep 20th, 2016. The Heston fits well except for the
first graph.

Our method Initial randomisation: assume that the
starting point of the variance process is a random vari-
able, denoted by V .

Goal
•Capture the small-time explosion feature of the im-

plied volatility (denoted by σt(x));
•Derive small- and large-time asymptotic results of

the option price and the implied volatility.

Model description

Assume that the log-price process X (with zero inter-
est rates) satisfies:

dXt =−1
2
Vtdt +

√
Vt

(
ρ dW (1)

t +ρ dW (2)
t

)
, X0 = 0,

dVt = κ(θ −Vt)dt +ξ
√

VtdW (1)
t , V0

(Law)
= V ,

(1)
where ρ ∈ [−1,1], ρ :=

√
1−ρ2, and κ,θ ,ξ are

strictly positive. The random variable V satisfies:
•V ⊥ (Ft)t≥0;
•V is supported on (v−,v+) with 0 ≤ v− < v+ ≤ ∞;
•m := sup

{
u ∈ R : E(euV )< ∞

}
is in (0,∞].

Remark 0.1.
•Compared with the standard Heston, for any t > 0,

the variance of Vt is increased by e−2κtV(V ).
•The variable V can be categorised into three

classes:
i. Bounded support: v+ is finite (then m is infi-

nite). Example: uniform distribution;
ii. ’Thin-tail’: m = v+ = ∞. Examples: folded-

Gaussian distribution, Rayleigh distribution;
iii. ’Fat-tail’: m< v+=∞. Examples: Gamma dis-

tribution, non-central χ-squared distribution.

Notation For a process (Yt)t≥0 satisfying a large devi-
ations principle as t ↓ 0 with speed g(t) and good rate
function Λ∗

Y we denote Y ∼ LDP0(g(t),Λ∗
Y).

Main results

Define Λ(u) := ξ−1u(ρcot(ξ ρu/2)−ρ)−1, where u
is in (u−,u+) with constants u± precisely defined
in [2] satisfying u− < 0 < u+.

Case 1: bounded support
Theorem 0.2. If v+ < ∞, define Λ∗

v+
(x) :=

sup
u∈(u−,u+)

{xu−v+Λ(u)} = xu∗(x) − v+Λ(u∗(x)).

then X ∼ LDP0(t,Λ∗
v+
). Moreover, for any x ̸= 0,

lim
t↓0

σ 2
t (x) =

x2

2Λ∗
v+
(x)

.

Uniform randomisation: full asymptotics

Theorem 0.3. If V
(Law)
= U (v−,v+), then for x ̸= 0,

E
(
eXt − ex)+ = (1− ex)+

+ exp

(
−

Λ∗
v+
(x)

t

)
A(x)t5/2(1+O(t))√
2π(v+−v−)Λ(u∗(x))

,

A(·) is the same as in the standard Heston [2].

Case 2: thin-tail randomisation
Theorem 0.4. If m = v+ = ∞, assume that V
has the density f satisfying − log f (v) ∼ l1vl2

with (l1, l2) ∈ R∗
+ × (1,∞), as v ↑ ∞. Then X ∼

LDP0(tγ,Λ∗) with Λ∗(x) := Cx2γ, γ = l2
1+l2

and

C = (2l1l2)
1

1+l2(1+ l2)/(2l2). For any x ̸= 0,

lim
t↓0

t1−γσ 2
t (x) =

1
2C

x2(1−γ).

For the fat-tail case more assumptions on the mgf
of V are needed (see [4] for detail). These assump-
tions are mild enough to include various common dis-
tributions, and an explosion rate of

√
t is captured:

Case 3: fat-tail randomisation
Theorem 0.5. Define Λ∗(x) :=

√
2m|x| for x ∈ R.

If m < v+ = ∞, then X ∼ LDP0(
√

t,Λ∗), and for
any x ̸= 0,

lim
t↓0

t1/2σ 2
t (x) =

|x|
2
√

2m
.

Proof. large deviations techniques, results of regular
variations, Fourier Transform method.

Large-time asymptotics Same as the standard He-
ston, see [1, 4] for detail.

Numerical examples

Figure 2 Volatility surfaces of standard (coloured)
and randomised Heston, V

(Law)
= U (0,0.135). Theo-

rem 0.2 suggests the absence of an explosion factor;
however, the small-time volatility smile is still much
steeper compared with the standard Heston.

Figure 3 Uniform randomisation with (v−,v+) =

(0,0.135). On the left: true implied volatility (trian-
gles) versus leading (squares)- and second (circles)-
order asymptotics of the implied volatility, derived
from Theorem 0.3. Time to maturity is half-month.
On the right: the at-the-money curvature increases as
the time to maturity tends to zero.

Figure 4 The Gamma randomisation Γ(0.4,3.868).
Blue and cyan squares are first- and second- order
asymptotics. Triangles are the true implied volatil-
ity. Time to maturity is 3 days, one week, two weeks
and one month.

Figure 5 Calibrate standard and randomised Heston
to the USD/JPY FX data on Jan 20th, 2017. Blue tri-
angles are market data. The table below summarises
the RMSEs of two different schemes (×10−3).

Maturity standard randomised
≤ 1 month 11.356 5.568
≤ 1 year 8.260 5.239
≤ 5 years 6.894 4.655

Conclusion
•The randomised Heston model provides a much

steeper small-time volatility smile that is in accor-
dance with market observations; the effect fades
away as the maturity increases.

•Any explosion rate tγ with γ ∈ [0,1/2] can be
achieved by a suitable choice of V .
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