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Introduction

e Over the past two decades, a number of volatility
models have been proposed to try to understand the
dynamics of the implied volatility.

e Continuous stochastic volatility models (driven by
Brownian motion) effectively fit the market smiles
for larger maturities. Problem: the small-maturity
smile 1s much more flattened compared with the
market data, which has the well-observed ’small-
time explosion’ feature [3].

e To model this feature, researchers suggest refine-
ments to existing models, including:

1. Adding jumps (exponential Lévy models for ex-
ample). Drawback: an explosion rate (|tlogt|)
larger than market observations; calibration com-
plexity.

11. Introducing fractional Brownian motion. Draw-
back: increase of computational cost.
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Figure 1 Calibrate standard Heston to SPXW data on

Sep 20th, 2016. The Heston fits well except for the
first graph.

Our method Initial randomisation: assume that the
starting point of the variance process 1s arandom vari-

able, denoted by 7.
Goal

e Capture the small-time explosion feature of the 1im-
plied volatility (denoted by o;(x));

e Derive small- and large-time asymptotic results of
the option price and the implied volatility.

Model description

Assume that the log-price process X (with zero inter-
est rates) satisfies:

1
aX, = —>Vidt + (pawV+paw?),  X=0,

Law)

th — K(G _‘/t)dt—l_ &\/thvvt(l)a VO( — /77

(1)
where p € [-1,1], p := \/1—p?, and k,0,& are
strictly positive. The random variable ¥ satisfies:
oV L (gt)tZO;

e ¥ is supported on (v_,0 ) with0 < v_ < v, < oo;
em:=sup{ucR:E(e”) <eo} isin (0,00].
Remark 0.1.

e Compared with the standard Heston, for any ¢ > 0,
the variance of V, is increased by e 2<"V (7).

e The variable ¥ can be categorised into three

classes: |
1. Bounded support: v, 1s finite (then m 1s infi-

nite). Example: uniform distribution;

11. "Thin-tail’: m = v, = . Examples: folded-
Gaussian distribution, Rayleigh distribution;
111. Fat-tail’: m < v, = oo, Examples: Gamma dis-
tribution, non-central y-squared distribution.

Notation For a process (Y;);>¢ satisfying a large devi-
ations principle as ¢ | O with speed g(¢) and good rate
function A} we denote Y ~ LDPy(g(7),A}).

Main results

Define A(u) := & 'u(pcot (Epu/2) —p)~!, where u
is in (u#_,u,) with constants u, precisely defined
in [2] satisfying u_ < 0 < u,.

Case 1: bounded support

Theorem 0.2.[f v, < oo, define Aj (x) :=
sup {xu—v,A(u)} = xu(x) — v Au’(x)).

uc(u—_,uy)

then X ~ LDPy(t,A;, ). Moreover, for any x # 0,

2 X’
limo = .
imo; (x) 2A; (%)
Uniform randomisation: full asymptotics

Theorem 0.3. If v 2 gy (0_,0,), then for x # 0,

E (e’ — ex)Jr (1—e")*

+ex A:+(x) A (14 0(1))
P i ) V2m(o, — 0 AW (x)

’
\.

A(-) is the same as in the standard Heston [2].

H \.

Case 2: thin-tail randomisation

Theorem 0.4.1f m = v, = o, assume that V
has the density f satisfying —logf(v) ~ I}v?
with (I1,1,) € R% x (1,00), as v 1 o. Then X ~

LDPy(t",A") with A*(x) := Cx*, y = %212 and

1
C = (2[1[2)%(1 —I—ZQ)/(ZZQ) For any x 7é O,

N 1 5o
limr' =762 (x) = —=x*17Y),

t10 B fx

For the fat-tail case more assumptions on the mgt
of 7 are needed (see [4] for detail). These assump-
tions are mild enough to include various common dis-

tributions, and an explosion rate of /7 is captured:
Case 3: fat-tail randomisation

Theorem 0.5. Define A*(x) := /2m|x| for x € R.
If m < v, = oo, then X ~ LDP((\/t,A*), and for
any x # 0,

lims!/262(x) = il

t}0 B 24 om

Proof. large deviations techniques, results of regular
variations, Fourier Transform method.

Large-time asymptotics Same as the standard He-
ston, see [[1, 4] for detail.

Numerical examples

Figure 2 Volatility surfaces of standard (coloured)

and randomised Heston, ¥ "= % (0,0.135). Theo-

rem (.2 suggests the absence of an explosion factor;
however, the small-time volatility smile 1s still much
steeper compared with the standard Heston.
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Figure 3 Uniform randomisation with (v_,0,) =
(0,0.135). On the left: true implied volatility (trian-
gles) versus leading (squares)- and second (circles)-
order asymptotics of the implied volatility, derived
from Theorem (0.3. Time to maturity 1s half-month.
On the right: the at-the-money curvature increases as
the time to maturity tends to zero.
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Figure 4 The Gamma randomisation I'(0.4,3.868).
Blue and cyan squares are first- and second- order
asymptotics. Triangles are the true implied volatil-
ity. Time to maturity 1s 3 days, one week, two weeks
and one month.

Figure 5 Calibrate standard and randomised Heston
to the USD/JPY FX data on Jan 20th, 2017. Blue tri-
angles are market data. The table below summarises
the RMSE:s of two different schemes (x 1072).

Maturity standard randomised
< 1 month 11.356 5.568
<lyear 8.260 5.239
<Syears 6.894 4.655

Conclusion

e The randomised Heston model provides a much
steeper small-time volatility smile that 1s 1n accor-
dance with market observations; the effect fades
away as the maturity increases.

e Any explosion rate t¥ with y € [0,1/2] can be
achieved by a suitable choice of 7.
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