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Motivation

We can help tackle climate change by a more effective use of renewable
energy sources. [he goal of my research is to improve existing methods of
stochastic modelling and statistical inference to quantify risk and uncertainty
of renewable energy sources in a more reliable way.

The arithmetic model for spot prices

Let (2, F, {F:}icr, P) be a probability space, where the filtration {F;}:icr
satisfies the 'usual conditions’. Let S(t) be the spot price. Following [2],
| proposed the arithmetic model

S(t) = A(t) + Z(t) + Y(t),

where A(t) + Z(t) is the long-term factor, while Y(t) describes the
short-term behaviour, which includes the impact of renewables.

Wind farm.

Model terms

— A(t) — a deterministic seasonality/trend function.
Electricity features Z(t) — a Lévy process with zero mean (under the physical measure).

Y(t) = f_too g(t — s)os_dLs with a kernel g(t — s) such that
im g(t—s)=0.
—00

Since electricity is generally traded for consumption, it is considered a X

commodity. However, in contrast to other types of commodities, it has some Here o, is a cadldg stochastic process describing the volatility of Y(t).
unique features ([1]). Similarly to [3], | defined it as

Non-storability (supply and demand must always match). o

Seasonality (higher demand in winter months due to the need of heating and Ot = /Oof(t —5)dVs,

onger use of lights). where j is a deterministic, positive function and V/(t) — a Lévy subordinator.

Periodic behaviour (higher demand in the peak time, i.e., Monday to Friday | assumed that o, is independent from the driving Lévy process L(t).

between 8 am and 8 pm).

Mean reversion (over time the electricity prices will tend to their average).

Large and heteroscedastic volatility.

The arithmetic model for futures prices

Empirical data By the no-arbitrage arguments, one can define the price of a futures contract
with maturity T as

f(t, T) = Eq[S(T)[Fd,

| work with a set of German data consisting of daily prices of spot and where 0 < t < T < oo and Q is a risk neutral probability measure (see eg.
futures contracts over about 10 years. 2]).

In the arithmetic case the forward price at the time t equals

Electricity spot prices .
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The most important step is to fit the proposed model to the empirical data
Front month futures _ _ _
= in order to find the most appropriate form of A(t), Z(t) and Y(t). | am
— especially interested in the impact of renewables on electricity prices.
Futhermore, | am going to compare the results to an alternative approach, in

= which one models futures prices directly using ambit processes (see eg. [4]).
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Data for German electricity spot and futures prices.
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