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Back to Riemann sums

Consider the Riemann integral
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[t6 vs. Stratonovich
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W01y, 0m € I'TR"
m X Brownian motion, a.s. non-differentiable: must integrate;
m But X a.s. not bounded variation: Riemann-Stieljes sums a.s.
do not converge;
m Luckily, convergence does hold in probability...
. but the result depends on the evaluation point!
Plim Y Hy(X,— X,) = / HdX  (Ito)
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P71r1|1—r>10[2 Hs+t (Xt — Xs) = /HodX (Stratonovich)
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In stochastic analysis there are many different inequivalent
integration theories;

Rough paths: a rigorous, general description of what an
integration theory might look like;

Idea: postulate the values of the (otherwise undefined)

ViV o VL. 0
X = / dxr - dxr
s<ur<...<unp<t

and use these to define more general integrals - and thus
differential equations - via Taylor-type expansions;

X must satisfy: (i) regularity, (ii) additivity, and optionally
(iii) integration by parts;

Rough path theory gives meaning to [ - dX for many
processes X beyond Brownian motion (Gaussian, Markov,...),
and in doing so separates probability and analysis (solution
map X — Y is continuous).
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Rough paths on smooth manifolds

My research: transfer the theory to the curved setting;
If we drop (iii) weird things happen: df(X) = f/(X)dX no
longer holds!

m This causes problems: dY* = Vwk(Y)dX7 no longer
coordinate-invariant;

m Extrinsic viewpoint: if V,, // M C R%, Y no longer stays on M

Wi Stat
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Rough paths on smooth manifolds Il

m Change of variable formula for 1/3 < a-Holder
non-geometric rough paths:

AF(X) = 0, f(X)AX + 005 (X)AX
X0 — xaxh - ng—ng

(It calculus: X = [X] quadratic variation);
m Transfer principle: given a connection V

1 ~
dy X7 =dX"7 + (X)dX(@H)

2@5

transforms like a vector;

m Use this to develop rough version of classical differential
geometry: path integrals, differential equations, parallel
transport and Cartan development (which require a connection
on TTM).
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Rough paths on smooth manifolds Il

Cartan development of a 2D Brownian path on a sphere
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Branched rough paths on Hopf algebras

m 1/3 > «a-Holder non-geometric rough paths are defined on the
Connes-Kreimer Hopf algebra of non-planar rooted trees;

m Without integration by parts, Taylor expansions must involve
more terms, e.g.

2&; ¢ t
X5 e=" / ( / dx2dx/ > : ( / dXQ)de;
s uv<w<t u

m The coproduct A: H — H ® H is defined in terms of cuts, e.g.
g v gv B v 5 5 .,
A a =1® a +e5 & VOL + é Z & Ioz + IB (9 Ia

d 1 v
S LY,
+ o0 Rea + ea Key + a ®1

and is used to express additivity: X7, = (A7, X, @ Xys).
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A transfer principle for branched rough paths

m What does a transfer principle for branched rough paths dy X
look like?

m Bracket extension X (17) needed for change of variable

formula, e.g.
B v a

3
g — (381 NL NG V—Im Len—Les) X)

m Given V torsion-free, define local tensors th_”ﬁn e TTM®™
by V., =0, and

1 .-
vﬁlv 7ﬁn _v 1.”v5
617 7671 0 m>mn
m—1
ViBipn = VoLV .8, T VB ® Vg (5 2<m=n

n

and Christoffel symbols V7! o = T30 0y, @ -+ @ Oa,,
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A transfer principle for branched rough paths Il

Theorem (Transfer principle for branched rough integrals)

The differential

dv_/X\Otl’““am — I‘gll 172‘: (X)dd/X.\/Bl’”Bn

transforms as a tensor, and dv X" can be used to define the path
integral [ f(X)dyX for a one-form f. Moreover, the following
change of variable formula holds:

1t N
f(Xs) — f(Xe) = m/‘ Vorr oo F(X)dy X 70

m The above transfer principle gives meaning to
vaY — V(K X)dv]\/IX

when X is quasi-geometric.
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