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What is Homotopy Theory?

In homotopy theory, we study topological spaces, but only ’up to homotopy’. That is we
consider two spaces the same, and we say that they have the same ’homotopy type’ if they
can be continuously deformed into one another.

Example of homotopy (non-)equivalences

The tools of algebraic topology are very important - invariants like singular/simplicial
homology Hn(X ,Z), which counts n-dimensional holes in X , and the fundamental group
π1(X ), which classifies loops in X (i.e. maps S1 → X ), depend only on the underlying
’homotopy type’ of the topological space.

Addition in homotopy groups

We can also define higher ’fundamental’ groups πn(X ) by looking at maps Sn → X from higher
dimensional spheres. The sequence of groups {πn(X )}n tells us a lot about the homotopy
type of X . This is because a lot of the spaces we care about are built up from spheres (such
spaces are called CW complexes or cell complexes), and if we know how spheres map into X ,
then we know how spaces built from spheres map into X .

What is Diophantine Geometry?

Diophantine geometry is the study of integer and/or rational solutions to polynomial equations.
For example we might want to consider solutions (x , y) to equations like x4 + y4 = 1 where
x , y ∈ Q - this is a case of Fermat’s last theorem. Diophantine problems can be very difficult
to solve!

For example, if we look at the curve y2 = x3 − x + 1 in the plane R2, then we get lots of
rational points (in fact, infinitely many).

An elliptic curve with infinitely many rational points

But Fermat’s last theorem (in this special case proved by Euler) tells us that for x4 + y4 = 1,
the only rational points are the four obvious ones.

A Fermat curve with finitely many rational points

In general, we consider ’algebraic’ subsets V ⊂ Cn - these are subsets cut out by polynomial
equations pi ∈ C[x1, . . . , xn].

V = {(x1, . . . , xn) ∈ Cn | p1(x1, . . . , xn) = . . . = pm(x1, . . . , xn) = 0}
If these polynomial equations pi have rational coefficients, then we can ask about the set V (Q)

of rational points in V - i.e. those elements of V whose co-ordinates are rational numbers .

Typical ’Diophantine’ questions are:

I How may rational solutions are there? Zero? Finitely many? Infinitely many?
I Are the rational points ’dense’ in V?
I Is there an algorithm that produces rational points?

What can topology tell us about arithmetic?

If we look at a polynomial equation p(x , y) = 0 in two variables, with rational coefficients, then the set of complex solutions forms a surface inside C2 ∼= R4. There is a natural way to ’complete’ this
surface, and we end up with a multi-holed torus.

g = 0
g = 1 g = 2

g = 3

Thus associated to our equation p(x , y) = 0, we have a ’homotopy type’, which is determined by it’s number of holes, g, called the genus. This can give us arithmetical information.

Theorem. (Faltings, 1983) If g ≥ 2 then there are only finitely many rational solutions to p(x , y) = 0.

Idea of Proof: We can perform the above ’completion’ operation algebraically, to give a smooth curve C inside P2(Q̄). We can then use the theory of abelian varieties to study such curves via their
Jacobians - the result follows from the fact that there are only finitely many isomorphism classes of abelian varieties over Q with certain properties. This is what Faltings proves, and he does so by
studying the fundamental groups of abelian varieties. �

Galois actions

In the above situation, the fact that our polynomial p(x , y) has rational coefficients ensures
that the associated homotopy type has an extra, very rich structure - it comes with an action
of the absolute Galois group Gal(Q̄/Q) of Q. This structure is far from being just dependent on
g, and can give us very deep arithmetical information - it is the study of this Galois action on
the fundamental group that is the key ingredient in Faltings’ proof. Indeed, assuming certain
conjectures about this Galois action, one can produce an algorithm that computes rational
points.

σ∈Gal(Q̄/Q)−→

Galois action on the fundamental group

More generally, given any collection of polynomial equations with rational coefficients, one can
use the set of complex solutions to obtain a homotopy type. This homotopy type will come
with a ’rational structure’, i.e. an action of Gal(Q̄/Q), and we can use this to study the
Diophantine properties of our system of equations.

My research

Instead of looking at polynomial equations over Q, I look at polynomial equations over other
fields, like for instance the finite field Fp or the ’function field’ Fp(T ) whose elements are ratios
p(t)/q(t) of polynomials over Fp. In this situation, since there is no embedding into C, we can’t
use complex solutions to define homotopy types. The sort of questions I look at are the
following:

I Can we still define homotopy types in this situation?
I What sort of structure do these homotopy types have?
I Can we use this additional structures to study rational points?

For example, in the case of a smooth, complete curve over Fp(T ), the fundamental group has
the structure of something called an ’overconvergent F -isocrystal’, which is an analogue of a
Galois action. I am hoping that a study of this F -isocrystal structure might lead to information
about rational points.

F -D†
P̂1

V

(†D) y π1(C)⇒ #C(Fp(T )) <∞?


