
Measures of Systemic Risk: Analysing CoVaR
Eric Schaanning1 and Georg Mainik2

1Imperial College London, UK;2ETH Zurich, Switzerland.

Systemic Risk and Bank Capital Regulation

•Motivation: Account for the dependence structure between banks in the com-
putation of their respective regulatory capitals;

• In 2008, Adrian and Brunnermeier introduced CoVaR – Conditional-Value-at-
Risk – as a dependence adjusted version of VaR. Girardi and Ergün introduced
a modified definition of CoVaR in an M-GARCH setting;

•Goal of this study: Compare the performance of these two different defini-
tions in measuring systemic risk.

From VaR to CoVaR
• Let L ∼ FL, continuous. VaRα(L) := F−1

L (α).

Figure 1: Loss distribution of a univariate ran-
dom variable L. Losses are given by positive num-
bers, gains by negative ones. The95%-VaR-level,
VaR0.95(L), is the loss, such that on average only
5% of the losses will be bigger than this. Credits
McNeil et al. [2005].

Framework and Analysis

•Stochastic framework: Bivariate model(X,Y)∼ FXY(x,y), where the random
variablesX,Y model the losses of two respective financial institutions.

•The main goal of CoVaR is to quantify:What happens to Y, given that X is
”in a bad state”, i.e. under financial stress.

Original definition:

CoVaR=α,β := F−1
Y|X=VaRα(X)(β ).

Modified definition:

CoVaRα,β := F−1
Y|X≥VaRα(X)(β ).

•How much of a difference does conditioning on the bad state ”X≥VaRα(X)”
instead of ”X=VaRα(X)” make?
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Figure 2: CoVaR= seems, as opposed toCoVaR, not to be a monotonically
increasing function of the dependence parameter. Capital requirements linked
to this could lead to regulatory arbitrage.

Proofs

Non-monotonicity of CoVaR=

•Combining a few well known explicit formulas for the Gaussian distribution
one can compute that:

CoVaR=α ,β(Y|X) = µY+σY

(

ρΦ−1(α)+Φ−1(β )
√

1−ρ2
)

.

•Differentiate with respect toρ and non-monotonicity follows immediately:

∂ρ CoVaR=α ,β(Y|X) = σY

(

Φ−1(α)−
ρΦ−1(β )
√

1−ρ2

)

.

Monotonicity of CoVaR

A bivariate random vector(X,Y) is elliptically distributedE (µ ,Σ,R) if

(X,Y)⊤
d
= µ⊤+RAW⊤

,where

•W = (W1,W2) is a uniformly distributed r.v. on the unit sphere
{x∈ R

2 : ‖x‖2 = 1};
•R is a non-negative random variable independent ofW, called theradial part;
•The covariance matrix of(X,Y) is defined if and only ifER2 < ∞ and can

always be written as:

•Σ′ =

(

σ2
X σXσYρ ′

σXσYρ ′ σ2
Y

)

.

Proposition [M. and S., 2012]. Let FXY andFX′Y′ have elliptical copulas with
equal radial parts and dependence parametersρ andρ ′, respectively. IfFX and
FX′ are continuous andFY(y)≥ FY′(y) for all y∈ R, thenρ ≤ ρ ′ implies

∀α,β ∈ (0,1) CoVaRα ,β(Y|X)≤ CoVaRα ,β(Y
′|X′).

The modified definition of CoVaR is hence consistent with the so-calledcon-
cordance orderingof the underlying distributions and well-known results can
readily be applied to a multitude of different distributions. Hence, at all confi-
dence levels, CoVaR is an increasing function of the dependence between the
components.

Results
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Figure 3: The proba-
bility of observing joint
extremes, i.e. points
falling into the upper
right-hand corner, in-
creases with stronger
dependence (higherρ
here).

Backtesting

Bound ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.7 ρ = 0.9
CoVaR=0.95,0.95(Y|X) 0.0503 0.0601 0.0857 0.12290.2520
CoVaR0.95,0.95(Y|X) 0.0503 0.0500 0.0503 0.04950.0499
CoVaR=0.99,0.99(Y|X) 0.0099 0.0124 0.0189 0.02920.0875
CoVaR0.99,0.99(Y|X) 0.0099 0.0101 0.0104 0.00990.0098

Table 1: Violation rates in the bivariate normal case. Monte Carlo backtesting
with n= 107 andα,β ∈ {0.95,0.99}.

•CoVaR= fails to pick up risk when it is most pronounced and achieves atoo
high violation rate.

•CoVaR=’s confidence levelβ can be misleading: For high-dependence sce-
narios, e.g.ρ = 0.9,β = 0.95, the level is exceeded over25%of the instances,
whereas one would expect a violation rate of 1−β ≈ 5%.

•By construction,CoVaRkeeps a violation rate of1−β .

Conclusions

•CoVaR= (and extensions of it using CoVaR= as building block) can lead to
regulatory arbitrage, as they provide explicit incentivesfor banks to become
more dependent on each other. In terms of regulatory capitalone would con-
clude:

–CoVaR=: The moreY depends onX, thelesscapitalY requires.
–CoVaR: The moreY depends onX, themorecapitalY requires.

•The results are even worse for non-Gaussian distributions.

• In general, dependence consistency seems to be a reasonableproperty to ex-
pect from systemic risk measures, and multivariate stochastic orders seem to
provide a natural framework in which to analyse the behaviour of these.

•Open question: Is systemic risk measurable from market dataat all? This is
an important underlying assumption of the CoVaR approach.
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