Measures of Systemic Risk: Analysing CoVaR

Eric Schaanning¹ and Georg Mainik²

¹Imperial College London, UK; ²ETH Zurich, Switzerland.

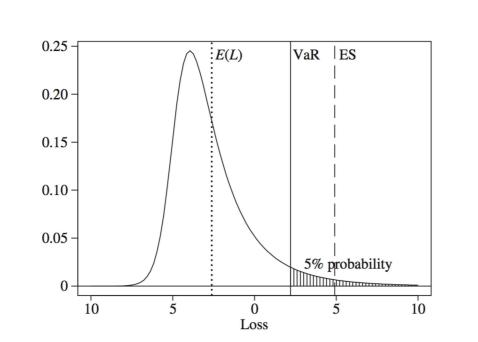
Systemic Risk and Bank Capital Regulation

- Motivation: Account for the dependence structure between banks in the computation of their respective regulatory capitals;
- In 2008, Adrian and Brunnermeier introduced CoVaR Conditional-Value-at-Risk as a dependence adjusted version of VaR. Girardi and Ergün introduced a modified definition of CoVaR in an M-GARCH setting;
- Goal of this study: Compare the performance of these two different definitions in measuring systemic risk.

From VaR to CoVaR

• Let $L \sim F_L$, continuous. Va $R_{\alpha}(L) := F_L^{-1}(\alpha)$.

Figure 1: Loss distribution of a univariate random variable L. Losses are given by positive numbers, gains by negative ones. The 95%-VaR-level, VaR_{0.95}(L), is the loss, such that on average only 5% of the losses will be bigger than this. Credits McNeil et al. [2005].



Framework and Analysis

- Stochastic framework: Bivariate model $(X,Y) \sim F_{XY}(x,y)$, where the random variables X,Y model the losses of two respective financial institutions.
- The main goal of CoVaR is to quantify: What happens to Y, given that X is "in a bad state", i.e. under financial stress.

Original definition:

$$\operatorname{CoVaR}_{\alpha,\beta}^{=} := F_{Y|X=\operatorname{VaR}_{\alpha}(X)}^{-1}(\beta).$$

Modified definition:

$$\operatorname{CoVaR}_{\alpha,\beta} := F_{Y|X \geq \operatorname{VaR}_{\alpha}(X)}^{-1}(\beta).$$

• How much of a difference does conditioning on the bad state " $X \ge \text{VaR}_{\alpha}(X)$ " instead of " $X = \text{VaR}_{\alpha}(X)$ " make?

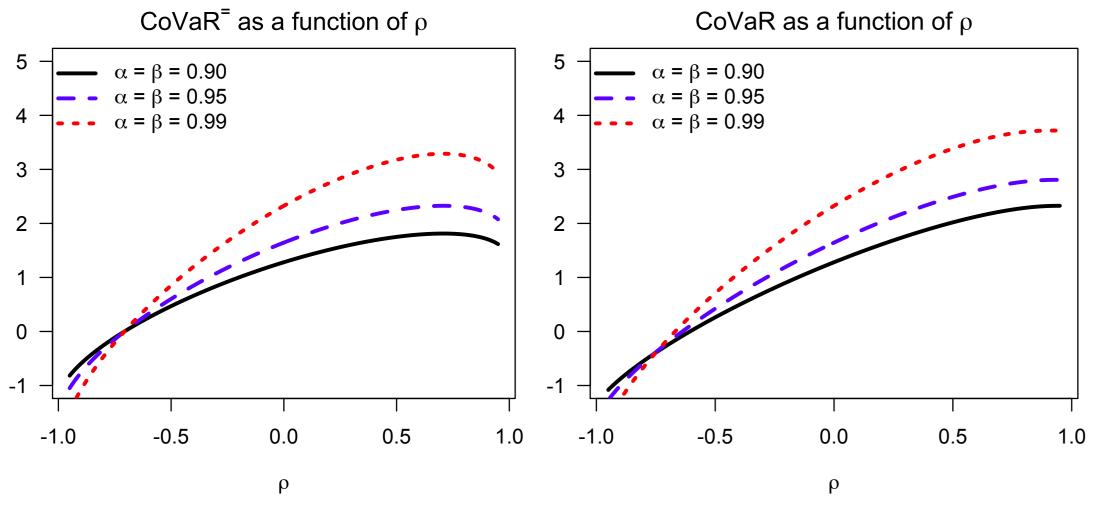


Figure 2: CoVaR⁼ seems, as opposed to CoVaR, not to be a monotonically increasing function of the dependence parameter. Capital requirements linked to this could lead to regulatory arbitrage.

Proofs

Non-monotonicity of CoVaR=

• Combining a few well known explicit formulas for the Gaussian distribution one can compute that:

$$\operatorname{CoVaR}_{\alpha,\beta}^{=}(Y|X) = \mu_Y + \sigma_Y \left(\rho \Phi^{-1}(\alpha) + \Phi^{-1}(\beta) \sqrt{1 - \rho^2} \right).$$

• Differentiate with respect to ρ and non-monotonicity follows immediately:

$$\partial \rho \operatorname{CoVaR}_{\alpha,\beta}^{=}(Y|X) = \sigma_{Y} \left(\Phi^{-1}(\alpha) - \frac{\rho \Phi^{-1}(\beta)}{\sqrt{1-\rho^{2}}} \right)$$

Monotonicity of CoVaR

A bivariate random vector (X,Y) is *elliptically distributed* $\mathcal{E}(\mu,\Sigma,R)$ if

$$(X,Y)^{\top} \stackrel{\mathrm{d}}{=} \mu^{\top} + RAW^{\top}$$
, where

- $W = (W_1, W_2)$ is a uniformly distributed r.v. on the unit sphere $\{x \in \mathbb{R}^2 : ||x||_2 = 1\};$
- R is a non-negative random variable independent of W, called the *radial* part;
- The covariance matrix of (X,Y) is defined if and only if $\mathbb{E}R^2 < \infty$ and can always be written as:

$$ullet \Sigma' = \left(egin{array}{cc} oldsymbol{\sigma}_X^2 & oldsymbol{\sigma}_X oldsymbol{\sigma}_Y oldsymbol{
ho}' \ oldsymbol{\sigma}_X oldsymbol{\sigma}_Y oldsymbol{
ho}' & oldsymbol{\sigma}_Y^2 \end{array}
ight).$$

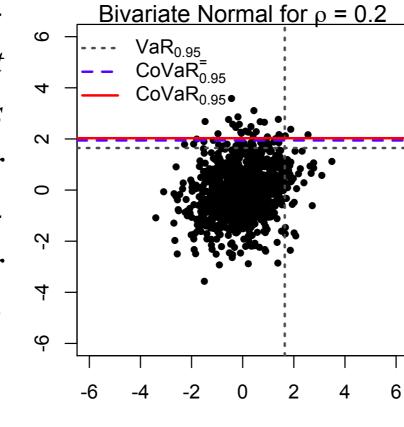
Proposition [M. and S., 2012]. Let F_{XY} and $F_{X'Y'}$ have elliptical copulas with equal radial parts and dependence parameters ρ and ρ' , respectively. If F_X and $F_{X'}$ are continuous and $F_Y(y) \ge F_{Y'}(y)$ for all $y \in \mathbb{R}$, then $\rho \le \rho'$ implies

$$\forall \alpha, \beta \in (0,1) \quad \text{CoVaR}_{\alpha,\beta}(Y|X) \leq \text{CoVaR}_{\alpha,\beta}(Y'|X').$$

The modified definition of CoVaR is hence consistent with the so-called *concordance ordering* of the underlying distributions and well-known results can readily be applied to a multitude of different distributions. Hence, at all confidence levels, CoVaR is an increasing function of the dependence between the components.

Results

Figure 3: The probability of observing joint extremes, i.e. points falling into the upper right-hand corner, increases with stronger dependence (higher ρ here).





Imperial College London

Backtesting

Bound	$\rho = 0$	$\rho = 0.2$	$\rho = 0.5$	$\rho = 0.7$	$\rho = 0.9$
$CoVaR_{0.95,0.95}^{=}(Y X)$	0.0503	0.0601	0.0857	0.1229	0.2520
$CoVaR_{0.95,0.95}(Y X)$					
$CoVaR_{0.99,0.99}^{=}(Y X)$	0.0099	0.0124	0.0189	0.0292	0.0875
$CoVaR_{0.99,0.99}(Y X)$	0.0099	0.0101	0.0104	0.0099	0.0098

Table 1: *Violation rates in the bivariate normal case. Monte Carlo backtesting* with $n = 10^7$ and $\alpha, \beta \in \{0.95, 0.99\}$.

- CoVaR⁼ fails to pick up risk when it is most pronounced and achieves a too high violation rate.
- CoVaR⁼'s confidence level β can be misleading: For high-dependence scenarios, e.g. $\rho = 0.9, \beta = 0.95$, the level is exceeded over 25% of the instances, whereas one would expect a violation rate of $1 \beta \approx 5\%$.
- By construction, CoVaR keeps a violation rate of 1β .

Conclusions

- CoVaR⁼ (and extensions of it using CoVaR⁼ as building block) can lead to regulatory arbitrage, as they provide explicit incentives for banks to become more dependent on each other. In terms of regulatory capital one would conclude:
- $-\text{CoVaR}^{=}$: The more Y depends on X, the less capital Y requires.
- -CoVaR: The more Y depends on X, the more capital Y requires.
- The results are even worse for non-Gaussian distributions.
- In general, dependence consistency seems to be a reasonable property to expect from systemic risk measures, and multivariate stochastic orders seem to provide a natural framework in which to analyse the behaviour of these.
- Open question: Is systemic risk measurable from market data at all? This is an important underlying assumption of the CoVaR approach.

References

- T. Adrian and M.K. Brunnermeier. CoVaR. *Preprint*, 2010. URL http://www.princeton.edu/~markus/research/papers/CoVaR.
- G. Girardi and T. Ergün. Systemic risk measurement: Multivariate garch estimation of covar. *Preprint*, 2012. URL http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1783958.
- G. Mainik and E. Schaanning. On dependence consistency of CoVaR and some other systemic risk measures. *To appear: Statistics and Risk Modeling*, 2013.
- A.J. McNeil, R. Frey, and P. Embrechts. *Quantitative Risk Management: Concepts, Techniques and Tools*. Princeton University Press, 2005.