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Introduction

The Langlands programme is
one of the hottest reseach
areas of modern number
theory.
It relates Galois represen-
tations (algebraic objects)
and automorphic
representations (analytic
objects) of reductive
algebraic groups.
On this poster you can catch a glimpse on
some of the wonders and mysteries of the
subject, you do NOT have to know what
any of the objects from the previous
sentence mean.

Automorphic side

Adeles
I The field of real numbers R is the completion of Q with respect to the usual absolute value | · |∞.
I The field of p-adic numbers Qp is the completion of Q w.r.t. the p-adic absolute value | · |p: For

a,b ∈ Z let m (resp. n) denote the highest power of p that divides a (resp.b), then |ab|p := pn−m.
So e.g. |15|3 = 1/3. The unit ball B(0,1) := {x ∈ Zp : |x |p ≤ 1} ⊂ Qp is called Zp. It is a ring
which is isomorphic to the projective limit lim←−n Z/p

nZ. Qp and R are so called local fields, in
contrast to the global field Q.

I A :=
∏′

p Qp × R := {x ∈
∏

p Qp × R : x ∈ Zp for all but finitely many p} is a locally compact
topological ring called the Adeles. Ax is called the Ideles. Q embeds diagonally into A.

I The Product Formula:
∀x ∈ Q× : |x | :=

∏
p
|x |p × |x |∞ = 1

Define A1 = {x ∈ A| |x | = 1}. So Q× ⊂ A1 and Q×\A1 ∼=
∏

p Zp
I There is an isomorphism

Q×\A× ∼= Q×\A1 × R>0
which allows one to identify the characters of GL1(Q)\GL1(A) = Q×\A× that have finite image
with the characters of Q×\A1. These characters are examples of automorphic forms of GL1/Q.

Reciprocity

Theorem 1

Q×\A1 ∼= Gal(Q/Q)ab

This follows from the Theorem of Kronecker–Weber which
says that

Gal(Q/Q)ab ∼= Gal(Q(ζ∞)/Q),

where Q(ζ∞) is the field extension of Q obtained by
adjoining all n-th roots of unity for all n. In particular

Gal(Q/Q)ab ∼= lim←−
n

Z/nZ ∼=
∏
p

Zp.

Theorem 1 allows us to identify the one dimensional
representations of GL1(Q)\GL1(A) that factor through
Q×\A1 with one-dimensional Galois representations.

Galois side

The absolute Galois group of the rationals
GQ := Gal(Q/Q) is

I a profinite group or equivalently a compact Hausdorff totally
disconnected group,

I one of the most mysterious groups in mathematics.
We hope to understand it better by understanding its continuous
representations

ρ : GQ→ GLn(C) or more generally ρ : GQ→ GLn(Qp).

We call these representations Galois representations.
Start with the one-dimensional representations. As C× and Qp are
abelian these will factor through the maximal abelian quotient
Gal(Q/Q)ab of GQ.

GL1/Q

Automorphic side: Cusp Forms ⊂ Automorphic Forms for GL2/Q

I Let H := {z ∈ C : Im(z) > 0} be the upper half plane and

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) : c = 0,a = d = 1 mod N

}
⊂ SL2(Z).

Γ1(N) acts on H by Moebius transformations: z 7→ az+b
cz+d . Note Γ1(1) = SL2(Z).

I A holomorphic function f : H→ C is called a cusp form of weight k and level N if f satisfies

f
(

az + b
cz + d

)
= (cz + d)k f (z),

for all
(

a b
c d

)
∈ Γ1(N) and some technical growth conditions. These conditions imply that f has a Fourier

expansion of the form
f (z) =

∑
n≥1

ane2πinz.

I The space of cusp forms of weight k and level N is a finite dimensional complex vector space which we denote
by Sk(Γ1(N)). For each p there is a so called Hecke operator Tp acting on Sk(Γ1(N)). There exist cusp forms f
that are eigenvectors for all the Tp simultanously. We call them Hecke eigenforms. After suitable normalization
Tp(f ) = apf .

I Example: S12(SL2(Z)) is one dimensional and spanned by

∆(q) = q
∞∏

n=1

(1− qn)24, where q = e2πiz.

Reciprocity via Modular Curves

Γ1(N) also acts on P1(Q). The quotient

XN := Γ1(N)\H× P1(Q)

is called a modular curve. It is a
compact Riemann surface. Even better:
One can prove that there exists a variety
X1(N)/Q such that

X1(N)(C) ∼= XN .

One can now use the theory of étale cohomology of these varieties to attach Galois
representations to eigenforms:

Theorem 2 (Deligne, Serre)
Let f be a Hecke eigenform of weight k and level N. Then there exists
a Galois representation

ρf : GQ→ GL2(Qp)

unramified outside pN such that Tr (ρf (Frobl)) = al for all l - pN .
AMAZING!

Galois side

Fixing embeddings Q ↪→ Qp gives (via restriction) embeddings GQp ↪→ GQ.

I Gal(Fp/Fp) is a cyclic group. Pick a generator Frobp. Any lift of Frobp under
the surjection

GQp → Gal(Fp/Fp)

will be called a Frobenius element and denoted by Frobp. The kernel Ip of
the above surjection is called the Inertia subgroup.

I A Galois representation ρ is called unramified at a prime p, if
Ip ⊂ ker (ρ)|GQp

. For an unramified representation ρ(Frobp) makes sense
and we define

Tr (ρ(Frobp)) =: ap
I Example: Let E/Q be an elliptic curve. For each n > 0 the Galois group GQ

acts on the group E [pn] ∼= (Z/pnZ)2 of pn-torsion points and on the Tate
module Tp(E) := lim←−E [pn] ∼= Z2

p. So we get Galois representations

ρE ,p : GQ→ GL2(Zp) ⊂ GL2(Qp)

They are unramified outside pNE where NE is the conductor of E .

GL2/Q

Automorphic side

I Assume F = Q. In this general setting one studies certain representations of the G(A), called automorphic representations. Certain
cusp forms will give rise to such representations in the case of G/F = GL2/Q.. All automorphic represenations are of the following form

π =
⊗

p
πp ⊗ π∞,

where πp is a represenation of G(Qp) and π∞ is a representation of the Lie algebra g and of K∞ ⊂ G(R) a maximal compact subgroup.
I A lot of representation theoretic research is centered around questions adressing the interplay between these local represenations πp

and the global ones π.
I If one starts with two groups G.G′ that are related in certain ways, e.g. if one embeds into the other like GL1 ×GL2 into GL3, one can

ask whether the automorphic representations are related. These questions have only been answered in specific cases. There is an
extremely powerful analytic machine, the Arthur-Selberg Trace formula, that can be used to explore these relationships.

?
?
?

Galois side

I A good source for Galois representations is algebraic geometry, more precisely the étale cohomology of varieties (actually the example
above involving elliptic curves belong to this class of representations. A lot of reseach is concerned with classifying those Galois
representation that come from geometry.

I For topological reasons the restriction of ρ : GQ→ GLn(Qp) to GQp is much more interesting but also much more complicated than the
restriction to GQl

for l 6= p. There is a lot of research trying to understand these local representations better. There is a huge amount of
interesting unsolved questions waiting to be tackled.

G/F connected reductive linear algebraic group over a number field F , e.g. GLn, SLn, unitary groups, symplectic groups,
orthogonal groups


