
Figure 4: Fibonnacci Tiling.

The projection of a slice of Z
2 to a line of gradient 1/τ,

where τ = (1 +
√

5)/2 is the golden ratio. The points

chosen lie within the region in orange, which is the region

defined by translating a unit square along the line. The

tiling on the line is known as the Fibonnacci tiling.

Expand

Expand

Expand

R

eplace

R

eplace

R

eplace Expand

Expand

R

eplace

R

eplace

Canonical Substitution Tilings
Substitution Rules and Tilings E O HARRISS and J S W LAMB Canonical Projection Tilings

Like substitution rules, the canonical projection method is a way of generating non-periodic tilings. This
considers the projection of a slice of a lattice in R

n to a subspace as follows.
Consider Z

n and R
n = R ⊕ W ⊕ V , where V ∩ Z

n = 0 and W ∩ Z
n = 0. Also R ∩ Z

n and V + W ∩ Z
n are

lattice of rank equal to the dimension of the space. A canonical projection point set is the set of points:

ΠV((V + H + t) ∩ Z
n)

where ΠV is projection down W + R onto V and t ∈ R
n is some translation vector. In R

n the points in
(V + H + t) ∩ Z

n may be linked up by the m dimensional facets of the lattice (where m is the dimension of
V). If the projections of these facets do not intersect, the the canonical projection point set may be linked
together to form a canonical projection tiling.

The example of the Fibonnacci tiling is shown in Figure 4. The lattice is Z
2 ⊂ R

2. The unit square in the
lattice is moved along a line of gradient 1/τ giving the orange region. The points in the orange region are
projected to the line. This produces a non-periodic set of points as 1/τ is irrational. The intervals between
the points are the projections of the standard lattice generators. In R

2 these form a staircase linking the
points in the orange region. Considering the projection of these line segments gives the tiling on the line.

Substitution rules are an important method way of constructing non-periodic tilings.  An example is 
the Penrose substitution rule shown in Figure 3 above.  A substitution rule has two parts.  First a 
tiling, or patch of tiles is expanded by multiplication by a uniform constant.  For each prototile there is 
then a replacement rule, which replaces the expanded tile with a patch of the original tiles. We 
require that the replacement rule act in such a way that no holes are created in the tiling and does 
not give overlapping tiles.

Iterating a substitution rule on the original tiles gives arbitarily large patches of tiles.  For every 
substitution rule we may therefore consider full tilings of the plane which can be generated by that 
substitution rule.  These tilings are non-periodic under certain conditions.  For example if the scaling 
is an irrational number (as is the case for the tilings in this poster) then the tiling is non-periodic.

Figure 3: The Penrose Substitution Rule.
This figure shows the action of the substitution 

rule.  The tiles are first expanded, then the 
expanded tiles are replaced by copies of the 

original tiles.

Tilings of the Plane

A tiling of the plane is the division of the plane into regions or
tiles. In this poster we will consider the special case where the
tiles are polygons.

We consider a finite number of distinct polygons. These poly-
gons are called prototile s. A tiling is made up of translations of
these tiles so that:

Every point in the plane is covered by a tile.

No two tiles intersect beyond their boundary.

A patch of a tiling is a bounded subset of the tiling.
The simplest tilings that cover the plane are the periodic tilings.

For example the tilings shown in Figure 1. These tilings have a
patch that fits next to itself. One may therefore use copies of the
patch to cover the entire plane, as shown in Figure 2.

Tilings which are not periodic are harder to construct. In this
poster we consider two methods of constructing aperiodic tilings
and the links between them.

Figure 1: Periodic tilings of the plane.

Figure 2: Constructing a periodic tiling

Figure 6: A substitution rule with matrix:








3 2 0 2

1 1 −1 0

0 −2 3 2

1 0 1 1









Replacement Rule

Multiply by M

Replace Tiles

Figure 5: The Fibonnacci substitution rule.
The tiling shown in Figure 4 admits a substitution rule. In this figure we show how the action of this sub-
stitution rule is related to the matrix M. M has two linear eigenspaces V and W. The eigenvalues are
τ = (1 +

√
5)/2 on V and −τ−1 = (1 −

√
5)/2 on W.

Consider a section of the staircase for the Fibonnacci tiling on the left. Applying the matrix M gives a new
stretched staircase with vertices in Z

2, as M is an integer matrix. Applying the replacement rule shown on
the right gives a longer section of Fibonnacci tiling staircase.

If we consider V we start with the projection of the staircase, as section of tiling. Applying M multiplies
this by τ. The replacement rule on the staircase then induces a replacement rule on V. We therefore have a
substitution rule on V.

Example: The Ammann Tiling
The Ammann substitution rule and tiling was

discovered by Beenker following the work of
De Bruijn [Bee82] and independantly by Am-
mann, considering substitution rules (later pub-
lished in [AGS92]).

The matrix for this substitution rule is N. This
has two eigenspaces, V and W, which are or-
thogonal in R

4. On V, N acts as multiplication

by λ = 1 +
√

2, and on W it acts as multiplica-
tion by −λ−1.

Figure 7 shows the projection of the unit hy-
percube H to W and the projection of NH. By
considering Z

4 ∩ (V + H) we may construct
the canonical projection tiling T . We may also
construct a tiling using Z

4 ∩ (V + NH), this
turns out to be λT , as N acts as multiplication
by λ on V. As ΠW(NH) ⊂ H the vertices of
λT will be a subset of the vertices of T . We
may now apply a replacement rule to regain
the tiling T .

N =









1 1 0 −1

1 1 1 0

0 1 1 1

−1 0 1 1









Figure 7: The plane W for the
Ammann Tiling The projection of
the unit hypercube H to the plane
W for the Ammann tiling is shown

in orange and the projection of
NH is shown in yellow. The

projections of the other edges are
also shown.

Figure 8: The Ammann Tiling and Substitution rule.
On the right is a patch of T using coloured tiles. The edges of the tiling

λT are shown on top as black lines.
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In 1981 De Bruijn discovered [dB81] that the beautiful aperiodic substitution tilings of Penrose [Gar77] can be constructed
from the projection of a slice of a five dimensional lattice. This led to the development of the canonical projection method,
which has been studied in great detail [BM00].

We may pose the following general question:

[Q] What canonical projection tilings admit substitution rules?
Interestingly, despite the elementary nature of the question, and the amount of research in the area, [Q] has received
relatively little attention. Recently, EOH and JSWL have given a characterisation of the substitution tilings which admit a
substitution rule [Har03].

[Har03], shows that all canonical substitution rules are related to quadratic expans ion matrices. These are integer matrices
which act on three spaces V, W and R. The space R must be rational, that is R ∩ Z

n is a lattice of rank equal to the
dimension of R. On V and W the matrix must act as multiplication by λ and ±λ−1, where λ is a quadratic algebraic unit, that
is λ2 + qλ ± 1 = 0, where q is an integer. The following result is obtained:

THEOREM 1 A canonical projection tiling is a canonical substitution tiling if and only if the spaces V, W and R of the canonical
projection are the eigenspaces V, W and R of a quadratic expansion matrix.

The role of the matrix in describing the substitution is illustrated in Figure 6. An example of a substitution tiling found using
this theorem is shown in Figure 7.
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