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The more we jump – the more we get – if not more
quality, then at least more variety. J. Gleick, Faster

Aim and Approach

In recent years Lévy processes have become increasingly
popular in the mathematical finance world since the
introduction of jumps in the modelling of asset prices
has led to many tractable and attractive models that
perform significantly better than earlier models. Dis-
cretization schemes for stochastic processes lie at the
heart of computational finance too. The aim of this
work is to introduce a discretization scheme based on a
continuous-time Markov chain for a class of Lévy pro-
cesses, and we investigate the convergence properties of
this scheme for one dimensional distributions.

Existing results: the diffusion case.

The problem of introducing a discretization scheme
based on a continuous-time Markov chain for the Black-
Scholes diffusion process has been widely studied. In
the seminal paper [1] the authors established binomial
trees as the paradigm for the constructive understand-
ing of pricing theory. The key issue of the rate of con-
vergence of the discrete option price to its continuous
limit is studied in [3]. Furthermore, in [6] it is proved
that the probability kernel Ph

t (x, y) of the discretized
process converges at the rate O(h2) to the probability
density function pt(x, y) of the diffusion process. Note
that this convergence is uniform in the state variables x
and y and that the rate of convergence is optimal. How-
ever, lattice models for jump processes are more subtle
to implement than the analogous models for diffusions.
If the underlying process has jumps, the hopping range
is not limited to the nearest neighbours, and it doesn’t
suffice to match drift and volatility.

Introduction

Suppose that we are given a probability space
(Ω,F ,P). A Lévy process (Yt) taking values in Rd is
essentially a stochastic process having stationary and
independent increments. Any Lévy process has a spe-
cific form for its characteristic function; more precisely,
for all t ≥ 0, u ∈ Rd, we have

E[ei(u,Y (t))] = etη(u)

where η is the Lévy symbol of (Yt), whose precise form
is given by the Lévy-Khintchine formula:

η(u) = i(b, u)− 1
2
(u, au) +

+
w

Rd\{0}
[ei(u,y) − 1− i(u, y)χ{|y|<1}] ν(dy).

The measure on Rd\{0} appearing in the characteristic
exponent is called the Lévy measure. On an intuitive
level, ν((a, b]) represents the expected number of jumps
of size a < x ≤ b.

Infinitesimal Generator

The infinitesimal generator L of Yt is the operator de-
fined by

Lf (x) = lim
t→0

Ex[f (Yt)]− f (x)
t

where Ex[·] denotes the expectation of Yt under the
condition Y0 = x. The set of all functions f : R→ R,
such that the limit exists for all x ∈ R, is the domain
of the generator, and is denoted by D(L). It is a well
known fact that the infinitesimal generator L of the
Lévy process can be calculated in terms of the Lévy
symbol: if we denote by S(Rd) the Schwartz space of
rapidly decreasing functions, then for f ∈ S(Rd) we
have

(Lf )(x) = (2π)−
d
2

w

Rd

ei(u,x)η(u)f̂ (u) du.

The resemblance to the definition of a pseudo-
differential operator is not coincidental . . .

Setup

Now consider the R-valued process defined by
Yt = Y0 + µt + σWt + Xt

where (Wt) is a Wiener process and (Xt) is a compound
Poisson process independent of (Wt). Since this Lévy
process has a non-zero Gaussian component, it admits
at t > 0 a density for Yt = y, given Y0 = x, given by

pt(x, y) = 1
2π

w

R
e

iµp−σ2p2
2 +

r
R\{0}(e

ipx−1) ν(dx)
 t
eip(x−y) dp,

where ν is the Lévy measure.

Hypothesis on the Lévy measure

Assume that the Lévy measure is absolutely contin-
uous with respect to the Lebesgue measure, with

ν(dx) = f (x)dx.
Furthermore, f is bounded in a neighborhood of the
origin, is twice differentiable, and has an integrable
second derivative.

The approximating stochastic process (Y h
t ) is a

continuous-time Markov chain that will be specified in
terms of its infinitesimal generator. Define the opera-
tors ∇h,∆h : l2(hZ)→ l2(hZ) in the following way:

(∇hφ)(x) := φ(x + h)− φ(x− h)
2h

(∆hφ)(x) := φ(x + h) + φ(x− h)− 2φ(x)
h2

where x ∈ hZ. Also, set
Λh(x, y) := f (h(m− n))h

where y = hm, x = hn. The mapping

Lh := µ∇h + σ2

2
∆h + Λh

is a densely defined unbounded operator. The oper-
ator Lh is a genuine Markov generator which defines
the continuous-time Markov chain (Y h

t ). In fact, (Y h
t )

turns out to be a Lévy process itself!

Spectral Representation

Take Fh to be the semi-discrete Fourier transform. We
have the following spectral representation
FhLhF−1

h (Φ)(p) = FLh(p)Φ(p), Φ ∈ L2([−π
h
,
π

h
])

where FLh is a complex function of the real variable p.
For t > 0, set Ph

t := exp(tLh), and for any elements
x, y ∈ hZ, set

Ph
t (x, y) :=

Ph
t (δy)

 (x).
Ph
t (x, y), also known as the probability kernel, is equal

to the conditional probability P(Y h
t = y|Y h

0 = x).
Note that some difficulties arise when one is to define
exp(tLh), since Lh is a (densely defined) unbounded
operator. Some calculations lead to the formula

Ph
t (x, y) = h

2π

π
hw

−π
h

eFLh(p)t eip(x−y) dp,

where dp is the Lebesgue measure on R.

Theorem: Convergence Estimate
Let t > 0, then, under the previous assumptions,
the following estimate holds

∣∣∣∣∣∣∣∣∣∣∣∣
pt(x, y)− 1

h
Ph
t (x, y)

∣∣∣∣∣∣∣∣∣∣∣∣
= O(h2) h→ 0

and the error term is independent of x and y.
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