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Introduction
Deep learning’s empirical success contrasts with its limited theoretical
foundation, especially regarding why neural networks generalize
effectively without explicit regularization, despite predictions from
classical statistical learning theory.

Learning Setting
• (Z,FZ, µZ) data space:
– Z = X × Y , X feature and Y label spaces.
– µZ unknown data-generating distribution.

• Training data: S = {z1, . . . , zn} ∼ µ⊗n
Z

• Loss function: ℓ : Rd ×Z → R+, measures
quality of our parametric approximation.

• Aim to minimize the empirical risk:

R̂(w, S) :=
1

n

n∑
i=1

ℓ(w, zi).

• Use optimization algorithms, e.g. Stochastic
Gradient Descent (SGD).

• Performance in unseen data measured by
population risk: R(w) := Ez[ℓ(w, z)]

Definition 1.Generalization Gap:

G(S,w) := |R(w)− R̂(S,w)|.

Fractal Dimension
• Fractals are self-similar shapes arising in real
world-data.

• Their key defining point is their non-integer
fractal dimension, a notion of their
roughness.

Figure 1: Evolution of the Sierpinski triangle in five iterations. Its fractal dimension isD = log2 3

Fractal Structure in Optimization
Trajectories
• Given the recursive nature of optimization
algorithms, several authors have proposed a
random fractal structure for neural network
optimization trajectories.

• Bounds for the generalization gap have been
established with respect to various fractal
dimensions.

• Experimental validation is based on an
observed correlation between generalization
gap and fractal dimension.

Experimental Design
• Train the model using SGD until 100%
training accuracy.

• Run 5000 additional iterations to obtain
weights near the local minimum and
compute two notions of fractal dimension.

Statistically Grounded
Correlation Analysis
Correlation Analysis
How does the correlation between the
generalization gap and fractal dimension
compare to correlations with other common
hyperparameters?
• ρ: Spearman’s rank correlation coefficient;
• Ψ: mean granulated Kendall rank correlation coefficient;
• τ : standard Kendall rank correlation coefficient.

Table 1: Correlation coefficients with generalization error for different hyperparameters and models.

Model & Data Coeff. Measure
Dim 1 Dim 2 Norm Step size LB ratio

FCN-5
&

CHD

ρ -0.688 -0.762 -0.910 -0.623 -0.287
Ψ -0.382 -0.559 -0.769 -0.360 -0.106
τ -0.501 -0.604 -0.767 -0.460 -0.203

FCN-7
&

CHD

ρ -0.434 -0.668 -0.866 -0.528 -0.149
Ψ -0.156 -0.500 -0.740 -0.389 -0.032
τ -0.304 -0.701 -0.378 -0.378 -0.103

FCN-5
&

MNIST

ρ 0.649 0.752 -0.898 0.200 -0.929
Ψ 0.601 0.614 -0.579 0.090 -0.690
τ 0.473 0.561 -0.725 0.116 -0.779

FCN-7
&

MNIST

ρ 0.759 0.850 -0.916 0.491 -0.959
Ψ 0.654 0.661 -0.539 0.256 -0.749
τ 0.567 0.660 -0.744 0.355 -0.832

AlexNet
&

CIFAR-10

ρ 0.851 -0.311 -0.977 0.741 -0.982
Ψ 0.850 -0.0722 -0.944 0.450 -0.944
τ 0.689 -0.140 -0.906 0.539 -0.910

We observe a stronger correlation with
the norm, and significant correlationswith
other hyperparameters.

Partial Correlation
Is the correlation observed between fractal
dimension and generalization gap a product of
a correlation with a third variable?
• Compute regressions of generalization error
and fractal dimensions with learning rate.

• Calculate correlation between the marginals
of both regressions; a low coefficient implies
potential influence from shared correlation
with learning rate.

• Conduct non-parametric permutation tests
for statistical significance.

We find that in most cases the partial cor-
relation with learning rate is statistically
significant.

Conditional Independence
Is there a causal relation between changes in
the hyperparameter and changes in the
generalization and fractal dimension?

Compute Conditional Mutual Information
conditioned on the hyperparameters and
simulate the null-distribution (conditional
independence) using local permutations.

Figure 2: Above (H0): there exists no causal link between fractal dimensions and generalization, both are explained by
hyperparameters; Below (H1): causal link between PH dimensions, generalization can be fully explained by fractal dimen-
sions.

Weconclude that forMNIST, fractal dimen-
sion and generalization are conditionally
independent; for CHD, they are condition-
ally dependent.

Fractal Dimension Fails to
Predict Generalization
Adversarial Initialization
Table 2: Spearman’s and Kendall rank correlation coefficients between PH dimensions and generalization given standard
or adversarial initialization.

AlexNet & CIFAR-10 CNN&CIFAR-100 CFN-5 &MNIST

Initialization Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2

Spearman’s rank coefficients

Standard 0.321 0.261 0.237 0.249 0.709 0.455
Adversarial -0.418 -0.733 -0.212 0.127 0.588 0.552

Kendall rank coefficients

Standard 0.244 0.200 0.225 0.225 0.467 0.333
Adversarial -0.289 -0.600 -0.156 0.0667 0.422 0.467
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Figure 3: Mean accuracy gap, mean test accuracy and fractal dimensions computed for two seeds of the “standard CNN”.
The x-axis corresponds to the width multiplier from the architecture design.
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