IMPERIAL

Nonlinear Dynamics of Active Filaments

Motivation

Active filaments are thin, elastic, slender rods that are commonly observed in nature. Driven by motor protein activity, active filaments play a crucial role in cellular processes such as **fluid transport**, **mixing**, and **swimming**, among many others.

- Molecular motors exert compressive forces on the filament and create a slip-flow over filament surface.
- Discretise the filament into self-locomoting segments.
- Solve the equations in the Stokes limit¹: velocity and forces are linearly related!
- Model the squirming effect (effect of motor proteins) as a nonlinear forcing and solve for the velocity using Faxén's Laws.²

Our goal is to analyse **filament dynamics in biological settings** using our numerical model, identify self-sustaining states (limit cycles), detect transitions between these states (bifurcations), and compute the stability of these states.

The Model and Methods

Table 1: Bifurcations of the squirming filament, with b_1 values given in the bottom row. DH: double Hopf bifurcation, PB: pitchfor bifurcation, HB: Hopf bifurcation.

- *b*¹ measures **motor protein activity**.
- Analyse recurrent patterns in the dynamics using Poincaré maps.
- Use a Jacobian-free Newton-Krylov (JFNK) method to obtain accurate representations of periodic states and compute their Floquet stability.
- Track each solution branch to find the bifurcations.

• **Robust dynamics** to changes in motor protein activity b_1 . QP2 does not transition to chaos!

¹Schoeller et al. JCP, 2020. ²Clarke, B. PhD Thesis. ³[http://ladyofhats.](http://ladyofhats.com/) [com/](http://ladyofhats.com/) ⁴<https://www.sciencephoto.com/>

analysis of the upright, whirling, and beating states: instability growth rate (λ) vs. motor protein activity (b_1)

Figure 1: Illustration of a microfilament in a eukaryotic cell's flagella. Adapted from online illustrations of Mariana Ruiz Villarreal³ and Kateryna Kon⁴

iatic of the modelling approach employed to describe the motor protein activity and resulting filament dynamic The filament is discretised into self-locomoting squirmers. a is the radius of the filament's cross-section, L is the length of the filament, K_B is filament stiffness, and ν is fluid viscosity.

• Data-driven analysis of the dynamics to explain the hydrodynamic interactions leading to the observed filament behaviours.

Extending the current framework to investigate collective dynamics of multiple filaments.

Results

We identify five distinct states: **upright**, **whirling**, **beating**, **QP1**, and **QP2**. Upright is steady; whirling and beating are periodic orbits; QP1 and QP2 are quasi-periodic states.

-
-
-
-
-
-
-

• **Double Hopf** bifurcation: a dynamic instability with two distinct eigenmodes. The phase difference between the modes determines the state: beating $(\Delta \phi = 0)$, and whirling ($\Delta \phi =$ *π*) .

2 • **Bistability** of whirling and beating in the range *b*¹ *∈* [80*.*8*,* 90*.*8].

• **Modal decomposition** of QP1 into whirling and beating: $u_{QP1}(t) \approx c_W u_W(t) + c_B u_B(t + \phi)$, displaying both characteristics.

• At high actuation, transition to QP2 – a coiled filament with changing winding direction.

References

Future Work

-
-

Affiliations * Department of Mathematics, ** Department of Aeronautics, Imperial College London

Imperial College London Keaveny Group