Linking Probabilistic Numerics to Causal Inference: Theoretical and Methodological Connections

Harrison Zhu

Probabilistic Numerics

 Model the conditional average treatment effect (CATE):

$$au(x) = \mathbb{E}[Y^{(1)} - Y^{(0)}|x]$$

where $Y^{(Z)}$ is the response for a treatment group Z

• Use a nonparametric framework:

where
$$Y = f(X,Z) + \epsilon$$

$$Y = Y^{(1)}Z + (1-Z)Y^{(0)}$$

 This is fundamentally a missing data problem and selection bias often occurs when setting up experiments

"I'M AFRAID WE DISAGREE ON THE DEFINITION OF RANDOM."

Probabilistic Numerics

• We want to integration some function f over some measure Π :

$$\Pi[f]=\int fd\Pi$$

• Given some dataset (X, y), some stochastic process g(x, w) as a prior for f, find the posterior distribution $\Pi[g]|X,y$

With point estimates $\ \hat{\Pi}_{BPNI}[f] = \Pi[\mathbb{E}[g|X,y]]$

 Goals: Study the error rates for different classes of functions, adaptive algorithms (sampling new points), uncertainty quantification etc...

Causal Inference Probabili

Probabilistic Numerics

• Average Treatment Effect (ATE), the average effect of the treatment on a population with distribution Π :

$$\Pi[au]=\int au d\Pi$$

 Conducts different stages of clinical trials: within the control group → larger set of individuals → county → countrywide etc...

 Whether the new trials improve or consolidate the previous results? ullet Perform numerical integration on the function au

• Adaptive/active learning to improve the estimate of both au and $\Pi[au]$

 Theoretical error or contraction rates and the subsequent experimental error rates

Potential Applications and Work

 Integrate the theory of probabilistic numerics into the study of average treatment effects

 Borrow methods from probabilistic numerics for causal inference, and vice versa!

- Understanding vaccine effectiveness on different groups of individuals
- Understanding effectiveness of interventions to reduce overall emissions

Thank you!

Any questions?