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Introduction

� Large deviations are widely used in Physics as well as in Mathematics to
model the exponential decay of probability measures of rare events.

� This set of techniques and results have recently been adopted to study
small-time or tail behaviours of some variables of interest.

� These asymptotics have provided a deeper understanding of the behaviour of
models, and, ultimately, allow for better calibration of real data.

Goal

� We wish to prove small-time and tail behaviour of option prices,
and implied volatilities, when the underlying stock price follows
an extension of Stein-Stein stochastic volatility model.

� The extensions considered:

(i) Randomised model: the SDE driving the instantaneous volatility process is
started from a random distribution;
ex.: allows to understand the ST behaviour of the so-called forward
volatility, simpler distributions also possible.

(ii) Fractional model: the volatility is driven by a fractional Brownian motion
(with Hurst exponent H ∈ (0, 1));

(iii) Extended model: allow for a more general dependence of the stock price
on the instantaneous volatility process.

Fractional Brownian Motion

� Fractional stochastic volatility models have recently been extended to the
case H < 1/2 and have become the go-to types of models for estimation
and calibration.

� A fractional Brownian motion (fBm) W H is a continuous centered Gaussian
process, starting from zero, with Hurst parameter H ∈ (0, 1) and covariance
matrix 〈

W H
t ,W

H
s

〉
=

1

2

(
|t|2H + |s|2H − |t − s|2H

)
,

for any 0 ≤ s, t.

� Volterra representation of the fractional Brownian motion: for all t ∈ [0,T ],

W H
t =

∫ t

0

KH(t, s)dBs,

where B is a standard Brownian motion generating the same filtration
as W H , and KH is the Volterra kernel.

� In this paper, we are interested in the case H ∈ (0, 1
2).
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Figure: Simulation of a trajectory of a fractional Brownian motion with H = 0.2.

Model description

We study a generalised version of the fractional Stein-Stein modeldXτ = −1

2
σ(Yτ)2dτ + σ(Yτ)(ρdBτ + ρ̄dB⊥τ ), X0 = 0,

dYτ = (λ + βYτ)dτ + ξdW H
τ , Y0 ∼ Θ,

(0.1)

where Θ is a random variable, W H is a fractional Brownian motion, with
Hurst parameter H ∈ (0, 1), (B ,B⊥) is an independent two-dimensional standard
Brownian motion, β < 0, λ, ξ > 0, ρ̄ :=

√
1− ρ2 with ρ ∈ (−1, 1) the

correlation between W H and B .

Assumptions:

� σ2 is Lipschitz continuous, such that |σ2(x)| ≤ C (1 + |x |) for x ∈ R,
derivable with its derivative locally Hölder continuous.

� σ satisfies ‘generalised homogeneity’ properties:
∃σ̃ : R→ R : ∃b > 0 : ∀x ∈ R, εbσ(x/εb) = σ̃(x), for ε small
enough.

� AΘ
b : ∃b > 0 : lim sup

ε↓0
hε log P(εbΘ > 1) = −∞.

Tails asymptotics

� Rescaling: for b, ε > 0, X ε := ε2bX , and Y ε := εbY .

� Model: for b, ε > 0, τ ∈ [0,T ], dX ε
τ = −1

2
σ̃(Y ε

τ )2dτ + εbσ̃(Y ε
τ )(ρdBτ + ρ̄dB⊥τ ), X ε

0 = 0,

dY ε
τ =

(
εbλ + βY ε

τ

)
dτ + εbξdW H

τ , Y ε
0 ∼ εbΘ.

(0.2)

Small-time asymptotics

� Rescaling: for b > 0 and τ ∈ [0,T ], X ε
τ := ε2H+2b−1Xε2τ and Y ε

τ := εbYε2τ .

� Model: for b, ε > 0, τ ∈ [0,T ], dX ε
τ = −ε

2H+1

2
σ̃(Y ε

τ )2dτ + ε2H+bσ̃(Y ε
τ )(ρdBτ + ρ̄dB⊥τ ), X ε

0 = 0,

dY ε
τ =

(
εb+2λ + βε2Y ε

τ

)
dτ + ε2H+bξdW H

τ , Y ε
0 ∼ εbΘ.

(0.3)

Large deviations principle

� The sequence (X ε)ε>0 is said to satisfy a Large Deviations Principle on
C([0,T ],Rn) as ε tends to 0, with rate function I and speed hε, if for any
Borel subset A ⊂ C([0,T ],Rn), the following inequalities hold:

− inf
Ao

I (φ) ≤ lim inf
ε↓0

hε logP(X ε ∈ A),

lim sup
ε↓0

hε logP(X ε ∈ A) ≤ − inf
A
I (φ).

(0.4)

� We will denote X ε ∼ LDP(hε, I ).

� In particular, if the rate function I is continuous on A, then the lim inf and
lim sup coincide and

lim
ε↓0

hε logP(X ε ∈ A) = − inf
A
I (φ).

Main results

� Tail asymptotics
For any H ∈ (0, 1) and b ≥ 1

2, such that the Assumptions hold,

X ε ∼ LDP(ε2b, Λ̃),

with Λ̃ defined by,

Λ̃(φ) := inf{I6(χ) | φ = I (ϕ, ϕ · ψ), χ = (ϕ, ψ), ψ ∈ BV}.

The good rate function Λ̃ is known explicitly.

� Small-time asymptotics
For any H ∈ (0, 1) and b ≥ 1

2 − 2H such that the Assumptions hold,

X ε ∼ LDP(ε4H+2b, I),

with I defined by

I(χ) := inf
{
Ĩ5(ϕ, ψ) : ϕ · ψ = χ, ψ ∈ BV

}
.

The good rate function I is known explicitly.

Applications to Implied Volatility Asymptotics

(i) Large-strike implied volatility asymptotics
For any H ∈ (0, 1), any b ≥ 1/2, and any t ∈ T , we have

lim
k↑∞

Σ2
t (k)t

k
=

1

2

(
inf
y≥1

Λ̃(y)

)−1

.

(ii) Small-time Implied volatility asymptotics
For any H ∈ (0, 1), any b ≥ 1/2− 2H , and any k 6= 0, we have

lim
t↓0

tbΣ2
t

(
t1/2−H−bk

)
=

k2

2

(
inf
y≥k

I(y)

)−1

.

⇒ The implied volatility explodes with rate t−b.

Conclusion

We extend [1] and [4] by

� considering an fO-U process for the volatility;

� allowing for random initial value in the volatility process, which is, in
manifold ways, natural to financial modelling setups: uncertain volatility, etc.
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