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Asymptotic behaviour of randomised fractional volatility models

Introduction Model description

m Large deviations are widely used in Physics as well as in Mathematics to
model the exponential decay of probability measures of rare events.

m [his set of techniques and results have recently been adopted to study
small-time or tail behaviours of some variables of interest.

m [hese asymptotics have provided a deeper understanding of the behaviour of
models, and, ultimately, allow for better calibration of real data.

s We wish to prove small-time and tail behaviour of option prices,
and implied volatilities, when the underlying stock price follows
an extension of Stein-Stein stochastic volatility model.

m [he extensions considered:

(i) Randomised model: the SDE driving the instantaneous volatility process is
started from a random distribution;
ex.: allows to understand the ST behaviour of the so-called forward
volatility, simpler distributions also possible.

(ii) Fractional model: the volatility is driven by a fractional Brownian motion

(with Hurst exponent H € (0, 1));

(iii) Extended model: allow for a more general dependence of the stock price

on the instantaneous volatility process.

Fractional Brownian Motion

m Fractional stochastic volatility models have recently been extended to the
case H < 1/2 and have become the go-to types of models for estimation
and calibration.

m A fractional Brownian motion (fBm) W is a continuous centered Gaussian [EIUEURSHIERERT T il

process, starting from zero, with Hurst parameter H € (0, 1) and covariance

matrix ]
(WH W) = (e + 1P = e = sP*)

2
for any 0 < s, t.

m Volterra representation of the fractional Brownian motion: for all t € [0, T,

t
Wl = / K"(t,s)dB;,
0

where B is a standard Brownian motion generating the same filtration

as W" and K" is the Volterra kernel.
1

m In this paper, we are interested in the case H € (0, 5).
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Figure: Simulation of a trajectory of a fractional Brownian motion with H = 0.2.

We study a generalised version of the fractional Stein-Stein model

[ 1
dX, = —EU(YT)QdT +0(Y,)(pdB, + pdB), Xo =0,

(0.1)
AY. = (A +8Y,)dr + &dwf, Yy ~ O,

where © is a random variable, W" is a fractional Brownian motion, with
Hurst parameter H € (0,1), (B, B) is an independent two-dimensional standard

Brownian motion, 8 < 0, A\,£ >0, p:= /1 — p? with p € (=1, 1) the
correlation between W' and B.
Assumptions:

m 02 is Lipschitz continuous, such that |0%(x)| < C(1 + |x|) for x € R,
derivable with its derivative locally Holder continuous.

m o satisfies ‘generalised homogeneity’ properties:
36 : R —R:3b>0:Vx € R,ePo(x/eP) = &(x), for £ small
enough.

n AD: 3b>0: Iimisoup h.log P(¢’® > 1) = —o0.

Tails asymptotics

m Rescaling: for b,e > 0, X := e2bX and Y := by,
m Model: for b,e >0, 7 € [0, T],

y

1
= —=5(Y7)dr +e°5(Y7)(pd B, + pdB;), X5 =0,
Y5 ~ PO,

dxe

2 , p (0.2)
| dYS = (ePA + BYS) dr + ePEdW,

m Rescaling: for b > 0and 7 € [0, T], X := 2+2b=1X, and Y? =PV,
m Model: for b,e >0, 7 € [0, T],

( 82H+1
dXE = —

5 G(YE)?dr + "5 (YE) (pd B, + pdBL), X5 =0,
LAY = (ePTPN 4 Be?YE) dr + 27HPed W),

(0.3)

Large deviations principle

m The sequence (X®).~ is said to satisfy a Large Deviations Principle on
C([0, T],R") as € tends to 0, with rate function / and speed h., if for any
Borel subset A C C([0, T],R"), the following inequalities hold:

y

-~ in [(p) < Iimignf h.log P(X° € A),
 lim sup he log P(X® € A) < —inf /(). (04)
el0 A
\

s We will denote X ~ LDP(h., /).

m In particular, if the rate function / is continuous on A then the liminf and
lim sup coincide and

Iig)\ h-logP(X® € A) =

— ir)\fl(qb).

m Tail asymptotics
For any H € (0,1) and b > % such that the Assumptions hold,

X¢ ~ LDP(e%%, M),
with A defined by,
A@) = inf{ls(x) | ¢ = 1(o, 0 - ¥), x = (¢,%),% € BV}.

~

The good rate function N\ is known explicitly.

= Small-time asymptotics
For any H € (0,1) and b > % — 2H such that the Assumptions hold,

X¢ ~ LDP(e*M+2P, 1),
with I defined by
I(x) = inf { (¢, ¥) s ¢~ = X, ¥ € BV].

The good rate function I is known explicitly.

Applications to Implied Volatility Asymptotics

(i) Large-strike implied volatility asymptotics
For any H € (0,1), any b > 1/2, and any t € T, we have

jim 22Kt % (inf '/K(y)) _1.

k1 oo k y>1

(i) Small-time Implied volatility asymptotics
For any H € (0,1), any b > 1/2 — 2H, and any k # 0, we have

1/2—H—b k* (. -
(¢ k)z(y”;‘;“y)) -

= The implied volatility explodes with rate t=°.

lim t°Y2
t10

Conclusion

We extend [1] and [4] by
m considering an fO-U process for the volatility;

m allowing for random initial value in the volatility process, which is, in
manifold ways, natural to financial modelling setups: uncertain volatility, etc.
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