Numerical Methods for Stochastic Volatility:
Fourier Methods, PDEs and Monte Carlo
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Outline

Introduction to FX options: vanillas and liquid exotics
Heston’s stochastic volatility model in FX

Developing market intuition about Heston

Fast semianalytic techniques: characteristic functions
Basic calibration of the model to the market smile
Pricing using Monte Carlo

Pricing using numerical finite differences in 2D
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Introduction: liquid FX exotics and deviation from B-S prices

Short dated FX options (out to 3Y or so):
~90% vanillas
~9% binaries/barriers [continuously monitored]
~1% other complex exotics

Vanillas
Almost solely OTC — not exchange traded
European, not American style. Value depends only on S;

Binaries/Barriers:

Common criticism of options is that they appear quite expensive to
the buyer. Leads to demand for cheaper alternatives —
e.g. knock-out options.
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Vanillas in FX

B-S inadequate — a single o will not match all vanillas in market
Structural deviation from B-S prices: volatility smile

Benchmark FX instruments: 5 strikes per tenor

10-delta put strike K chosen so that A, =-0.10
25-delta put strike K chosen so that A, =-0.25
ATM option either” ATMF (K=F) or D-N (A,+A.=0)
25-delta call strike K chosen so that A, = +0.25
10 delta call strike K chosen so that A, = +0.10

Smiles are generally (JPY and EMs aside) reasonably symmetric

* depends on market convention.

Reference: Malz, Allan M. (1997), Estimating the Probability Distribution of the Future
Exchange Rate from Option Prices, J. Derivatives, 18-36.
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Barriers in FX

Introducing path dependency can make a vanilla option
substantially cheaper

European call: VT — (Sr — K)+
= (Sr - K):I-{STzK}

My and M denote the minimum and maximum (resp.) of S over
the time interval [0, T]
Cheaper alternatives:

Regular KO VT — (Sr - <)1{STzK}1{mr>L}
Reverse KO VT — (Sr _ <):I-{stK}:I-{|\/|T<u}
Double KO VT — (Sr _ <)1{STZK}:I-{mT>L}1{MT<U}
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Binaries in FX

Distant OTs (TV < 20%) typically trade above TV
Nearer OTs typically trade below TV
Structural deviation from B-S prices: binary moustache
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Flow exotics — depend on which processes?

All the flow exotics have value functions V; which depend at most
on three of the following processes:

Product Sr myr M+
European vanilla YES

OT or NT [downside] YES

OT or NT [upside] YES
Kl or KO [downside] YES YES

Kl or KO [upside] YES YES
DNT or DT YES YES
DKI or DKO YES YES YES

Ideally obtain market implied joint pdf of { S; my M}
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Heston’s Stochastic Volatility Model in FX

In practice: seek a model that accurately describes (a) volatility

smile, (b) binary moustaches [i.e. marginals for Sy, My and M+]
and (c) DNT prices.
The Heston model is a model for stochastic variance

dS = S dt+0,SAW®, p=ry -
dV, = k(m-V,)dt +a N, dW®, g, =V,
<dVVt @) W(2)> ot
What intuition should we attach to the model parameters?

Reference: Heston, S.L. (1993), A Closed-Form Solution for Options with Stochastic
Volatility with Applications to Bond and Currency Options, Rev. Financ. Stud., 6 (2),

327-343.
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Stochastic volatility and vol convexity

All stochastic volatility/variance models generate smiles, by
correctly pricing in vol convexity

Hull/White analysis: if processes driving spot and variance are
uncorrelated

PV :jO“Tv - To(v) v

— T
where f\7 (V) is the pdf of average variance V' = 1/T jo Ofdu

over time interval [0,T] and TV/|; is the Black-Scholes price with

constant volatility O.

Reference: Hull, J.C. and A. White (1987), The Pricing of Options on Assets with
Stochastic Volatilities, J. Finance, 42, 281-300.
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Intuition: implied ATM vol structure

|

TV of the ATMF option is 'V =040+VT = 0-4‘\/ V]
Consider a driftless stochastic variance process.
In that case the expectation of \/ s just V0
Concavity of square root function means that PV decreases as the
volatility becomes increasingly dispersed around VO
ATMF price under a driftless 14 </ARIANCE DISPERSIOI\>
stochastic variance process 1.2 -
decreases as volatility of 0; :{/ e
variance increases. 0.6 - ae®

. . 0.4 - wed
Implied ATMF vol is 0 0o -
adjusted downwards for this 0 . . . .

0 0.005 0.01 0.015 0.02

vovariance effect _
average variance
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Intuition: implied wing structure

I
ATMF options are linear in volatility but wing options are convex.
Hence increasing vovariance increases the implied smile
—=—10-d-P —6— 25-d-P ¢ ATMF —— 25-d-C ——10-d-C
6% -
ATMF: Vol linearity
5 3% -
ing options:
00  — | Vol colnvexny
5% volatility 10% 15%
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Intuition: effects of Heston model parameters

Five parameters have quite different effects on the shape of implied
volatility surface generated

Parameter Effect
Initial variance V, Fixes overall level of implied ATM vol
Vovariance a Generates volatility smile as @ increases

Spot/Variance correlation o Generates volatility skew for nonzero p

Mean reversion rate K Combined effect: increasing «, term
. structure of implied ATM vol shifts in
Mean reversion level m 1/2

direction of M~ & smile flattens
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Risk neutral pricing

Let asset have price process dS = (r, —r,)Sdt + 0, SdW,
Black-Scholes formula for European call option
take discounted expectation of payout under domestic RN measure
use Girsanov to change from domestic RN to foreign RN measure

C(S,T)=e'E°
— e—rdTEd

— e—rdT E d

(S —K)']
(Sr - K)l{STzK}]

(S s sy ]~ KETE[L g Ly]

=S€ " E s iy ] ~KeTE[Lg . ]
=Se"'P[S =2 K]-Ke PSS = K]
=Se "' N(d,) - Ke™ N(d,)
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Risk neutral pricing

Express in terms of asset log-returns X, =In(§)
S constrained to [0, «) but X; defined on (-, )

X in BS world follows an ABM and has normally distributed
marginals (easier to compute characteristic functions)

Call price is given by

C(S,T) =e ' E“[(exp(X;) = K)1x .x;]
=Se"'P'[X; 2InK]-Ke™ P X; 2InK]
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Pricing in Fourier space

Denote pdfs in foreign and domestic risk-neutral measures by f;T (X)
and foT (X) respectively. h(X) is the payout function.

Ed;f[h(XT)]:j h(x) f (x)dx

.

'

aninner productin L2(—oo,oo)

Parseval’s theorem: inner products preserved under Fourier transforms

charactemstic

" | function of X;
RCICT R
o P ') = [e]
?Jn%%?]m j el¢>< f d; f(X) dx
271[ " h(x) &1 ()dx= [ h() T () dg par ot Xy
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Pricing in Fourier space

Clearly, expectations can be computed in ¢— space

EC'[h(X)]=%] M@ (9 de
Now we can calculate the cdf's — which take the form
Pd;f[XT =InK] = E [l{xTzan}]

The Fourier transform of h(x) =1, is given by

x=In K}

00

A % . < ixg
h(g) = e €0dx= [ dx=E
D= Lo mjK 7

In K
Issues:

The limitas X — © of € isn’t formally defined
Complex pole at the origin (= 0)
No major impediment
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Pricing in Fourier space

Fourier inversion formula results (Heston; Bates; Bakshi et al.)

Pd;f[x ZInK]:i_l_ R .I:df(qa)exp(—lqoan) d(ﬂ
T 2 Xt

d; f
Need to compute the c.f. fxT (@ of the log-return asset process.

This is where things get interesting because it can be calculated
analytically — e.g. for spot processes driven by Heston stochastic
volatility process.

First, we work through Black-Scholes case, then look at Heston.

References: Bates, D.S. (1996), Jumps and Stochastic Volatility: Exchange Rate
Processes Implicit in Deutsche Mark Options, Rev. Financ. Stud., 9, 69-107.

Bakshi, G., Cao, C. and Z. Chen (1997), Empirical Performance of Alternative Option
Pricing Models, J. Finance, 52, 2003-2049.
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Pricing in Fourier space — Black-Scholes case

Assume volatility constant. Spot follows dS = (r, —r,)Sdt + oS dW,
and the log-returns therefore follow

dX, =(r, =r, —10%)dt + odW,
X, = Xo + (1, =1, ~107)t + OW

This is normal with mean X, + (ry — T, —%02)'[ and variance O/t

with solution

v\ 2
For a N(0?) r.v., with pdf fy (X) == exp( ) )
the c.f. is given by (complete the square)

fo(@) =2 [ " expfitl)dx = exp(ugp-10°¢)
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Pricing in Fourier space — Black-Scholes case

We now have all we need to price any European option using Fourier
integration in Black-Scholes. For example, a call is priced at

C(ST)=Se"'P'[X; 2InK]-Ke ™ PY[X; =InK]
where

P“ [ X, =In

b3 [ RTE (@ e dg
For Black-Scholes: realintegrand
f)?Tf (@) =expl[(ry -1, £50 T+ X, lo- aquﬂz)

Questions: What do the integrands look like?
For stochastic volatility models, how might we obtain the
required characteristic functions?
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Examination of integrands — Black-Scholes case

ATMF: S,=1, o=10%, r,=0, r=0, K=1, T=1

0.006 -

0.004 +

0.002

0

d, > 0soN(d,)) >3

Y/

—foreign
—domestic

(

-0.002 1

-0.004 +

-0.006 -

\ d, < 0soN(d,) <3

LRelg

The symmetry reminds us of d, = -d, for the ATMF case

A member of Allianz @)

19

Dresdner Kleinwort



Examination of integrands — Black-Scholes case

Market: §=1, o=10%, r4=0, r=0

T™: K=0.8 T=1 OTM: K=1.2 T=1
0.25 - 0.05 -
02 — foreign )
— (lomestic
015 20 5 30 3B
-0.05 A
0.1 1
-0.1 1
0.05 1
-0.15 1 —foreign
0 T T ~N~—__ T ———T T 1 _domestlc
! 80 B o2 B W B 0.2

RN probabilities of exceeding 1.2 at

RN probabilities of exceeding 0.8 at _ _
expiry < 0.5 : integrals are negative

expiry > 0.5 : integrals are positive
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Examination of integrands — Black-Scholes case

|
ATMS: K=1, T=1, 80:1
Market: 0=10%, r,=8%, r;=8% Market: o=10%, r,=8%, r;=0%
4006 ol — foreign
- 0.08
0.004 - —foreign 0,07 - — domestic
—domestic '
0,002 0.06 1
0.05
0 ‘ 0.04
0.03 1
20021 % ey
0.01
-0.004A 0 | | | | | | |
0,006 - 0 5 10 15 N % N B
Unaffected by changes in rates Affected by changes in IR differential
which maintain same IR differential forward rate moves, affects RN

probs.
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Examination of integrands — Black-Scholes case

Following is a sensible choice: @ =Q/(g~T)
Makes sense as Uﬁ Is dimensionless.
In fact you can see this analytically from

PUIXy 2InK] =444 [ R (9 22550 dg

realintegrand

T (@) = expll(ry -1, +10°)T + X ]p-10°T¢)

R _ —1 2 _
R 7 (0 22i] = FHETTED sesin(((, -1, 30°)T + X, -9

-~
envelope

Choice of Q — somewhere between 2 and 5 is generally sufficient

Simple trapezoidal integration on [0, ¢,..] IS OK in practice.
Backtest against exact Black-Scholes price to make sure integration is OK

. Vo
oscillatory term

22 Dresdner Kleinwort



Examination of integrands — Black-Scholes case

How oscillatory can these integrals get?
Difficult cases: K={0.5, 0.66, 0.75},§=1, o= 3%, r~0, r=0,

T=1/12
0.8 -
—dom, K=0.50
o4 | dom, K=0.67
----dom, K=0.75

0.4 4

Deeply OTM options with smabﬁ

024\
. are hard to handle — but they’re not worth much

— -
O “ B /\\_y/\j,\é//\ \Q;r‘"’ o ‘ﬂ"—‘ .
\\/ Y@ ~—

0 20 40 60 80 Re[¢] 100
_02 _
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Computing price with just one Fourier integral

Wanted to show how the domestic and foreign risk-neutral
probabilities can be calculated using Fourier methods and related

back to N(d,) and N(d,). Easy to visualise.
In fact, for European calls and puts, the computation can be

performed using a single Fourier integral along a contour in the
complex plane — see Lewis, p.37 for details

This is more efficient as only one integral to compute.
Need to use inversion formula (2.5) in Lewis.

Recommend starting with the 2 integral technique, then implement
the single integral technique as a companion scheme.
Ensure results agree.

Reference: Lewis, A.L. (2000), Option Valuation Under Stochastic Volatility with
Mathematica Code, Finance Press.

Out of print but Chapters 1 and 2 available at www.optioncity.net
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Computing price with just one Fourier integral

Integrals are less singular for Europeans using the 1-integral technique
Difficult cases again: =1, o= 3%, r=0,r=0, T=1/12.
Horizontal axis is log(@ — hence integral on positive half-line OK

15 - —K=1.00 —K=1.02
——K=1.05 - K=1.10
1+ —_— K=1.20

256

log(Re[d)

-1.5 -

Single integration should recover Black-Scholes price accurately
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Pricing in Fourier space — Heston stochastic volatility model
I

This seems like a lot of extra work when we can just go directly to Black-
Scholes closed form formulae. What's the point?

Key point: this method extends to stochastic volatility models.

How? Go back to the definition of characteristic function
foi (@ =% [e* |= [~ em 13" (nx
Following Section 2.2.2 of Zhu (2000), compute in risk neutral measures
f (@) =E°[e*]
]E‘XfT () = ol —rd)TEd[%ei@(T] — (1 T)T %o d [e(iwl)XT]

References: Zhu, J. (2000), Modular Pricing of Options: An Application of Fourier
Analysis, Springer, Berlin-Heidelberg.

Schdbel, R. & Zhu, J. (1999), Stochastic Volatility with an Ornstein-Uhlenbeck
Process: An Extension, Eur. Fin. Rev. 3, 23-46.
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Pricing in Fourier space — Heston stochastic volatility model

Clearly we need to compute  E“[e!'?*V*7], j {01}

Consider by way of example the Heston model.

—_ @
dS = 4Sdt +,V,Sdw, (AW, W @) = o
dV, = k(m-V,)dt + a,V, dw,?

Log-returns:
dX, = (U =3V,)dt + |V, dw®

Integrate the log-return process to get

X, = x0+yT—%jJ\/tdt+jJ\/\7td\Nt<l>
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Pricing in Fourier space — Heston stochastic volatility model
I

A few pages to show how Girsanov works here. Substituting XT in:
o o T T
df Qi@+ ) X1 T = Qli@+ ) (Xp+uT)=d 1 €y
E¢[e!r ] = el N DE [exp(-4 [ Vdt+ [ NV dwW®)]
Several terms cancel out, leaving the c.f.s (J=0 for d, =1 for f)

o (@ = e e fexpl(ig+ 1)(-2] Vit + [ \Viaw)} ]

correlatio...

Apply Cholesky decomposition
1) — 2) . = ~2 — _ 2
dW® = pdW® + pdW™  p=41-p

to obtain

= Lexel(igw (-2 [ v+ o] @+ pf ] Vow )}
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Pricing in Fourier space — Heston stochastic volatility model
I

This can be simplified by some Girsanov sleight of hand

Ed[exp{(iga+ j)(—%jOTtht +IojoT \/\TthVt(z) _,_ﬁjOT \/\ZdVVfZ))}]
=Ee o (i9+1) PV W™ e(in)(-%IJ Vidt+pfg Ve dvvt(2’>]

[o AW 1[5 A2dlt

We can find a Radon-Nikodym derivative
soput A, =(l@+ |)p
=Ee o AW 3 ATt oo B1G At (i (=3 g Vedlt+pfg (M dV\/t(Z))]

de

_ Ed*[e%(IWj)zﬁzngtdt (i<o+j)(—%fgvtdthJNdVW”)]

p(ig+ i)V dw® ]

e

—E [e[l(lcﬂﬂ) pr-3lierDovit
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Pricing in Fourier space — Heston stochastic volatility model
I

Integrating the Heston process we obtain
T T
— 2
V. =V, +kmT —Kjo V. dt +a"fO JVdw@
So obviously
T V. =V,—kml K T
(2) — T 0 +
[JVawe =¥ 2 v
We obtain
Ed[ 391 p* =g DlIg Vit

P19+ D)o Vv ]
_ Ed[ 39D P -4l Draxialio it (o(ioH])(vy —vo—KmT)/a]
and by suitably defining terms Sl(j) Séj) (given on next slide) we obtain

8t () = €% el (v, + kmiT) s ) E [exp{ s [ Vet + 0V, ﬂ
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Pricing in Fourier space — Heston stochastic volatility model
I

Zhu (2000) computes this expectation, obtaining the following
characteristic functions (J=0 for d, J=1 for f) — note | use (/="Tr4- I';

£ (@) = expligd X, + 4T] ~ (V, + 4kmT)si Jexpl A0V, +C )
where

sV =—(ig+ -1+ 2+ 1+ )1-p?)

sV =(ip+ j)pla

y :\/Kz + 2025

YA = 2)/AD exp(—yl“)T)+ (K+ yh —azsg”)(l—exp(—yf”T))

AL) = M”s§”(1+exp(—yl“)T))—(1—exp(—y1<”T))(25f” +KS§]))J/y§J')

CY =2xma In{Zyl“) exp(%(K—yfj))T)/y;”J
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Examination of integrands — stochastic volatility models

ATMF: K=1.0,5=1, o= 10%, r4=0, r=0,T=1
Heston with vovol a= 5%, 10%or 20%

0.006 - —for: BS
—— for; Heston, vovar=5%
0.005 ~ — — for: Heston, vovar=10%

— for: Heston, vovar=20%
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Examination of integrands — stochastic volatility models

Wings: K=0.94,5~=1, o= 10%, r~=0, r~=0, T=1
Heston with vovol a= 5%, 10%or 20%

0.08 - —for; BS
—— for; Heston, vovar=5%
0.07 1 — — for; Heston, vovar=10%
0.06 ~ ——for; Heston, vovar=20%
0.05 7 RN prob of exceeding 0.94 at T is
0.04 - greater as vovariance increases.
0.03 - Narrow shoulders.
0.02 A
0.01 ~
O I I I I I
0 5 10 15 20 25

A member of l-\llianz@ 33 DreSd ner K|EiI1WOI't



Examination of integrands — stochastic volatility models

Distant wings: K=0.80,5~=1, o= 10%, r =0, r,=0, T=1
Heston with vovol a= 5%, 10%or 20%

0.25 - —for; BS
—— for; Heston, vovar=5%
0.2 - — — for; Heston, vovar=10%
—— for; Heston, vovar=20%
0.15 : :
RN prob of exceeding 0.8 at T is
0.1 less as vovariance increases.
RN prob of being below 0.8 at expiry
0.05 A greater as vovariance gets higher.
Fat tails.
0 ! !
( 1 1 2 2
0.05 0 5 0 5 0 5
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Examination of implied pdfs — stochastic volatility models
I

Implied pdfs behave as expected — chart generated by pricing up a
strip of Arrow-Debrue securities — see Lewis, p. 37 for details

S=1, o0=10%, r=0, r=0, T=1

0.5 —BS
/‘\ ------- Heston, vovar=5%
/o !

0.4 - 7N, ~ ~ Heston, vovar=10%

0.3 1

0.2 1

0.1 1

0.0 +
0.7 0.8 0.9 1 11 1.2 1.3
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Examination of integrands — stochastic volatility models

|
Heston implied pdfs [vovar=10%] become skewed with correlation

S=1, o0=10%, r=0, r=0, T=1

0.5 —BS
0.4 -
0.3

0.2 1

0.1 1

0.0 ="
07 08 09 1 11 12 13
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Examination of implied smiles — stochastic volatility models
1

It is quite clear that smiles are generated by increasing vovariance
S=1, o0=10%, r=0, r=0, T=1

14% ~ —BS

13%4 Heston, vovar=5%, corr=0

- =100 —
120 N < Heston, vovar=10% corr=0

~
11%_\__\_. \\ //

10%
9% -

8% I I I I I I
0.7 0.8 0.9 1 1.1 1.2 1.3
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Examination of implied smiles — stochastic volatility models
1

Skews are generated by nonzero values for the correlation between spot
and variance

14% - —BS
13% 4. Heston, vovar=10%, corr=-0.25
— — Heston r=10% corr=+0.25 -
1204 eston, vovar=10% -
///
11% > < /
8% I I I I I I
0.7 0.8 0.9 1 1.1 1.2 1.3
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Basic calibration of the model to market smile

Heston model has no problem generating smiles and skews

SV calibration is a fairly simple optimisation exercise using semianalytic
methods discussed in this talk.

Terminal calibration: take as inputs the volatilities at three strikes
(25-d-P, ATM, 25-d-C), at one expiry time T. Lock down K and m.
Attempt to minimise objective function which measures the sum of squares

of the errors in the vol by varying V,,, 0, @. The objective function calculates
Heston prices using the characteristic function method and backs out
implied volatilities.

Term structure calibration: With suitably chosen mean reversion

parameters K and IM, possible to generate upward sloping or downward
sloping ATM volatility surfaces. Increasing mean reversion causes smiles to
flatten and diminish as the mean reversion of variance takes effect.
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Pricing in Heston using Monte Carlo

Monte Carlo is always a useful check for testing other algorithms against.

Draw samples AW from a standardised 2D bivariate normal distribution
at timepoints {0, At, 2At, ... T-At}

Compute drift vector (4 and volatility vector § at time ; (see below)

Integrate the factor from its initial value X,=(109(S,), V) out to time T
Xioa = X + 4D+ (Z, AW )V
M = (rg =T _%Vt’K[m_Vt])

Z :_ \/tl/Z O
t a,p\/tl/Z a 1_102\/,[1/2

Evaluate payoff (function of X;) at time T. Integrate over all simulations.

40 Dresdner Kleinwort



Numerical solution of the Heston PDE by finite differences
|
Characteristic function technique can be used for any option that

has value at T as a function of S;. Europeans, digitals, etc...

Rules out all path dependent options (barriers and binaries) and
early exercisable options.

Heston model can be solved using 2D PDE for these products with
suitable boundary conditions

Approximate spatial & temporal differences with mesh differences

2 2 2
Lys 0U 4 povs TU, 158, 0
2 0S 0oV 2 oV
oU oU oU
+(r, —r S—+Km V]-A ru+ =0
(s =1)S 73 {kKIm-V]- }av WU+ ==

[1 A denotes the market price of volatility risk
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Black-Scholes volatility (constant)

I
Imagine a solution diffusing through the gaps in the following uniform
mesh
Note: not a representation of a finite difference mesh.
Schematic illustration of diffusion. Source solution e.gs(- K)*

B-S solution obtained by diffusing the source
solution backwards on the mesh

Analogous to tree methods
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Stochastic volatility (or variance)

Stochastic volatility: extend from one “spatial” to two “spatial” dimensions
Source solution diffuses more rapidly where volatility/variance is larger

Source solution e.d{- K)*

More diffusion through gap independent oY/
in mesh wheré&/ is large

orJ J 1 1 17
| | -

iy y iy 1 g I 7 I

aJe iy 7 J I 7 ]

Iy
VYN N

11 N
Inin Il

Iy
IINNN

Less diffusion

t through gaps in
mesh wher&/ is
k}\a small
S 4

Diffusion independent o5
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Solution of 2D Heston PDE using finite differences

Easiest to start with a 2D explicit PDE scheme. Simple to code up.
However this will be far too slow for anything except development
2D EFD prices should converge (slowly) to Fourier & MC prices

The standard method for these problems is the ADI [alternating
direction implicit] scheme. References given below.

Quite useful to set up PDE engines so that the mesh can be output
to files — makes it quite easy to see when there are problems with
boundary conditions, or stability.

Also helps to compare with output from 1D PDE engines (B-S)

References: Clewlow, L. and C. Strickland (1996), Implementing Derivatives Models,
Wiley, Berlin-Heidelberg.

Craig, 1.J.D. & A. D. Sneyd (1988), An Alternating Direction Implicit Scheme for
Parabolic Equations with Mixed Derivatives, Comput. Math. App. 16 (4), 341-350.
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PDE implementation

Standard PDE schemes:
1D: (i) fully explicit, (i) fully implicit, (iii) Crank-Nicolson

2D: (i) fully explicit, (ii) ADI

Consider dimensionless pde'

—_ZA‘ Oxax Zb—+ '

]

transform Heston pde (slide 43) to log-spot X=l0g(S) and read off
convection & diffusion coefficients

mwo: U =AU _+bU, + fU

Apply X and T discretisation U iJ =U (XI , Tj )
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PDE implementation

- ) |
Time derivative is given by: oJ _ U™ -u;
or AT

(Central) spatial derivatives can either be taken at T j

ou Ul -Ul, U Ul -2ul+Ul,

t X 2/ ox* AX?
..oratT. . . .
Toau_u-uly U _UMT-UHUY
X  2/X ox’ AX?

...or in between

ou _ Q[Uij:il ‘Uij-+11] +@- 6’)[Uij+1 B ij—1]
00 21X

0°U _ gU/5 -0 U+ Q-9)U ), -0 +UL]
x> DX
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PDE implementation

...leading to the fully explicit scheme

U'jﬂ:U'jJrAAr[U'j bAT
! Y VG

20X [Uij+1 _Uij—1]+ AV VN

_2Uij +Uij—1]+

.. the fully implicit scheme

AAT

Uit - [Ulj-l-;_l 2U i+ Uj_-;-l] bAT[U.El Uij_-zl]_fAz.Uijﬂ:Uij

...or the Crank-Nicolson scheme (6= 1/2)

AAT f

Uij+1 [Ulj'l'-;_l 2UJ+1+UIj-;-1] bAT[U,ﬂl Uij_zl]_EATUijﬂ
:Uij+£zz-[uij+l_ J+Uljl] bAZ'[UJ —UJ_1]+;AZ'UJ
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Handling boundary conditions

Extinguishing options (NT, DNT, KO, DKO) are easily handled by
placing a Dirichlet boundary condition at the barrier level.

Without KO barriers (e.g. Europeans without barriers), common
technique is to assume 2" derivative vanishes on the boundaries.
Hence solution is linear.

Suffices therefore to use one-sided differences (neglect
diffusion terms), to time-step the solution on the boundary

This is for explicit finite differences; use |+ 1 for IFD

Ul _Uj-ug U] _Uuj-u)y
10)4 2A\X 104 2AX

X:XO,T:TJ' X:XN ,T:Tj

Reference: Tavella, D. and C. Randall. (2000) Pricing Financial Instruments: The
Finite Difference Method, Wiley, New York.
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Example: 1D PDE scheme

Black-Scholes (Crank-Nicolson)
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PDE implementation

I
Algebra of Crank-Nicolson can be simplified introducing a node at half-time

f

Ui+ - [szl 2Uj+1 szl] bAZ'[U,ﬂ U'jzl]__Az.U'j+1:U'j+1/2
i i+ i i > | |

20%2 e

f

AAT[UJ ~2u) +U) |+ bAT[UJ —U‘_1]+2ATU‘

Can be seen as equivalent to an explicit step over time interval (7;,7,,,,)
followed by an implicit step over time interval (7 ,y/5,7;)-

The ADI [alternating direction implicit] scheme, which we use for problems
with two spatial variables, works similarly by applying an explicit step in one
spatial direction, followed by an implicit step in the other spatial direction.

Since each diffusion & convection term is only applied over half of the time
stepping, we have to double the effective contribution of these terms when
they are in fact applied. Correlation handled in the explicit steps.

Boundary conditions handled similarly tolD PDEs (no variance barriers).
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PDE implementation

In 2D (correlation neglected) with discretisation U — U (XI yJ , Tk)

:A11U><><+A22Uyy+blux+b2uy+ fU

Explicit in X, then implicit in Y

ki1 AOLATT ks K+ K+ AT ks K+ f K+l _y g k+1/
Ui,jl AZ [U 111 2Ui, "+ +U; 151] [U 111 Ui,jil]_EATUi,jl_Ui,jlz
y
K+1/2 _y 1 K AiAT k K blAT K f K
Ui,jlz_Ui,j [U.+1, U/ +U, 11] [U.+1, Ui—l,j]+EATUi,j

...then explicit in Y, and implicit in X

i+1] i+1]

Uik+2 A& AT [U k+2 2Uik+2 Ulk-;_zj] blﬂl' [U k+2 Ui':z,-]—iATUikfz — Uik;rs/z
) ) ) 2 ) )

f

Uik;rslz :Uik;-l AzzAT [U K+1 2Uik+1 Uukﬁl] b AT [U k+1 Ulkﬁl]"' AU k+1
, : : 2

i,j+1 i,j+1
Ay J J
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2D algorithm: best-of-call & BlackScholes

= Best-of 2 call option

Explicit X e/

/

ADI cycles between
X and Y directions

/Explicit y

* Implicit X .2
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2D algorithm: European call under Heston dynamics

X direction is log-spot
Y direction is variance

Solution has diffused out most where
variance is large
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Examination of binary moustache — Heston model

The binary moustache generated by Heston model broadly exhibits
correct qualitative features (priced using 2D ADI)

Model: $§=1, V,=0.01, r=0, r=0, strip of binaries with T=1

vovol a= 5%
0.5% A

-50% -30%

.U70 | | |

-10% 109 30% 50%
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Summary

Heston stochastic volatility model:
capable of generating realistic smiles and skews for vanillas
generates sensible deviations from B-S prices for binaries
able to admit very fast calibration scheme via semianalytic pricing

Monte Carlo is easy to implement and provides useful “reality
check” for other pricing algorithms

When 2D finite difference engine such as ADI implemented, fast
pricing of flow exotics in FX is quite straightforward

pricing requres solution of 2D convection-diffusion problem where
diffusion is anisotropic in variance direction

compare with 2-factor Black-Scholes: isotropic in both log-spots
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