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Introduction Motivations

Motivations
Many applications involve multiscale differential problems, like
convection-diffusion systems

Convection-Diffusion Equations

∂tU + ∂xF (U) = ∂x(K(U)∂xU), x ∈ R,

or hyperbolic balance laws with source terms of the form

Conservation Laws with Relaxation

∂tU + ∂xF (U) =
1

ε
R(U), x ∈ R,

where U = U(x, t) ∈ RN , and ε > 0 is called relaxation parameter. Several kinetic
equations have the same structure with U = F (U) = f(x, v, t) ≥ 0, v ∈ R.

I The numerical discretization of such systems may be challenging in presence of
multiple scales, typically when the diffusion or the source terms are stiff.
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Introduction Numerical approaches

Numerical approaches

Method of lines (MOL) approach

Discretize all spatial operators

Obtain a system of ODEs

U ′ = F(U) + G(U)

with F non stiff and G a stiff term.

Integrate ODEs system in time

Advantages

Spatial discretization and time integration are treated separately

Spatial discretization: easy to combine different schemes

Time integration: free to choose suitable method (Runge-Kutta, multi-step,
etc.)
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Introduction Numerical approaches

Numerical approaches

Fully explicit methods

Non stiff term: ∆t ≤ ρ(∇uF )∆x (CFL condition)

Stiff term: ∆t ≤ D−1(∆x)2 or ∆t ≤ Cε.
Stability will require very small step-sizes for stiff sources, diffusion or
relaxation terms (ε small).

Fully implicit methods

For problems with shocks or steep gradients, implicit methods are not much
better than explicit ones (spurious shocks and wrong wave propagation speed
when the CFL is violated).

For convection discretizations with slope limiters, the implicit relations are
hard (expensive) to solve even for linear problems.

I Thus it is desirable to develop schemes which are Implicit in G(U) and Explicit
in F(U) (IMEX).
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Introduction Requirements on IMEX

Requirements on IMEX

The combination of the implicit and explicit method should satisfy suitable order
conditions. For linear multistep methods (LMM) if both methods are of order p
then the IMEX scheme has order p. For Runge-Kutta (RK) schemes we need to
satisfy additional mixed compatibility conditions.

Explicit method

The stability region should be the largest possible.

Monotonicity requirements

‖Un+1‖ ≤ ‖Un‖, ∆t ≤ ∆t∗

Strong Stability Preserving (SSP) property1.

Implicit method

Stable for stiff systems, and good damping properties.

The method should be Asymptotic Preserving (AP) namely it should be
consistent with the model reduction that may occur in very stiff regimes 2.

1S.Gottlieb, C-W.Shu, E.Tadmor ’01, R.Spiteri, S.Ruth, ’02
2S.Jin ’99
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Introduction The asymptotic-preserving (AP) property

A toy example
Consider the singularly perturbed problem3

Singularly perturbed problem

P ε :

{
u′(t) = f(u, v),
εv′(t) = g(u, v), ε > 0.

As ε→ 0 we get the index 1 differential algebraic equation (DAE)

u′(t) = f(u, v), 0 = g(u, v).

Assuming that g(u, v) = 0⇔ v = E(u) we obtain

P 0 : u′(t) = f(u,E(u)).

Explicit methods: restricted to ∆t ∼ ε.
Implicit methods: require the numerical inversion of f(u, v) and g(u, v), and as
ε→ 0 must satisfy the algebraic condition g(u, v) = 0⇔ v = E(u).

3E.Hairer, C.Lubich, M.Roche ’89
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Introduction The asymptotic-preserving (AP) property

The AP diagram

P ε

P ε
∆t

∆t→ 0 ∆t→ 0

ε→ 0

ε→ 0

6

-

P 0

P 0
∆t

6

-

In the diagram P ε is the original singular perturbation problem and P ε∆t its
numerical approximation characterized by a discretization parameter ∆t.
The asymptotic-preserving (AP) property corresponds to the request that P ε∆t is a
consistent discretization of P 0 as ε→ 0 independently of ∆t.
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Introduction Space discretizations

Space discretizations

Consider the case of the single hyperbolic equation

Conservation Law

Ut + ∂xF (U) = 0.

We can use any finite difference/volume or spectral method to approximate
the spatial derivative, and use the standard (linear) stability analysis.

In presence of shocks and discontinuities this stability analysis is not sufficient
(nonlinear problems can develop discontinuous solutions in finite time even
starting from a smooth solution).

Build spatial discretizations which capture the shock structure and that
satisfy some nonlinear stability properties. These methods include total
variation diminishing (TVD) schemes and essentially non-oscillatory (ENO)
or weighted ENO (WENO) schemes4.

4A. Harten ’87, T.Chan, X-D.Liu, S.Osher ’94, G-S.Jang, C-W.Shu ’95
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Implicit-explicit methods Splitting methods

Implicit-explicit methods
Splitting methods

We consider the system of stiff ODE’s

System of stiff ODEs

U ′ = F(U) + G(U)

where F is non stiff and G is a stiff term.
Splitting methods

Solve separately the advection problem and the stiff source problem

U ′ = F(U), t ∈ [0, T ] U ′ = G(U), t ∈ [0, T ].

Although it is only first order accurate (even if the two steps are exact, unless
the operators commute), it is very popular due to its simple concept and the
freedom in choosing different solvers for advection and sources.

Higher order splitting (ex. Strang splitting) can be constructed but may
present a loss of accuracy when the source term is highly stiff.
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Implicit-explicit methods IMEX Runge-Kutta methods

IMEX Runge-Kutta methods5

IMEX Runge-Kutta

Ui = Un + ∆t

i−1∑
j=1

ãijF(t0 + c̃j∆t, Uj) + ∆t

ν∑
j=1

aijG(t0 + cj∆t, Uj),

Un+1 = Un + ∆t

ν∑
i=1

w̃iF(t0 + c̃i∆t, Ui) + ∆t

ν∑
i=1

wiG(t0 + ci∆t, Ui).

Ã = (ãij), ãij = 0, j ≥ i and A = (aij): ν × ν matrices.
The coefficient vectors are c̃ = (c̃1, . . . , c̃ν)T , w̃ = (w̃1, . . . , w̃ν)T ,
c = (c1, . . . , cν)T , w = (w1, . . . , wν)T .
I We restrict to diagonally implicit (DIRK) scheme, aij = 0, j > i since they
guarantee that F is evaluated explicitly.

5U.Ascher, S.Ruth, R.Spiteri ’97, L.P., G.Russo ’00
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Implicit-explicit methods IMEX Runge-Kutta methods

Order conditions

If wi = w̃i and ci = c̃i mixed conditions are automatically satisfied. This is
not true for higher that third order accuracy

IMEX-RK schemes are a particular case of additive Runge-Kutta (ARK)
methods. Higher order conditions can be derived using a generalization of
Butcher 1-trees to 2-trees.

The number of coupling conditions increase dramatically with the order of
the schemes6.

IMEX-RK Number of coupling conditions
Order General case w̃i = wi c̃ = c c̃ = c and w̃i = wi

1 0 0 0 0
2 2 0 0 0
3 12 3 2 0
4 56 21 12 2
5 252 110 54 15
6 1128 528 218 78

6M.Carpenter, C.Kennedy, ’03
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Implicit-explicit methods IMEX Runge-Kutta methods

Design of IMEX-RK
Start with a p-order explicit SSP method and find the p-order DIRK method that
matches the order conditions with good damping properties (L-stability).

Second order SSP IMEX-RK

U1 = Un + γ∆tG(U1)

U2 = Un + ∆tF(Un) + (1− 2γ)∆tG(U1) + γ∆tG(U2)

Un+1 = Un +
1

2
∆t(F(Un) + F(U1)) +

1

2
∆t(G(U1) + G(U2)),

with γ = (1−
√

2)/2.
Third order SSP IMEX-RK

U1 = Un + γ∆tG(U1)

U2 = Un + ∆tF(Un) + (1− 2γ)∆tG(U1) + γ∆tG(U2)

U3 = Un +
1

4
∆t(F(Un) + F(U1)) + (1/2− γ)∆tG(U1) + γ∆tG(U3)

Un+1 = Un +
1

6
∆t(F(Un) + F(U1) + 4F(U2)) +

1

6
∆t(G(U1) + G(U2) + 4G(U3)),

with γ = (1−
√

2)/2.
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Implicit-explicit methods Application to hyperbolic relaxation systems

Application to hyperbolic relaxation systems
Consider the case of hyperbolic relaxation systems7

Hyperbolic system with relaxation (Full model)

∂tU + ∂xF (U) =
1

ε
R(U), x ∈ R.

R : RN → RN is a relaxation operator if there exists a n×N matrix Q with
rank(Q) = n < N s.t. QR(U) = 0 ∀ U ∈ RN .
This gives n conserved quantities u = QU that uniquely determine a local equilibrium
U = E(u), s.t. R(E(u)) = 0, and satisfy

∂t(QU) + ∂x(QF (U)) = 0.

As ε→ 0 ⇒ R(U) = 0 ⇒ U = E(u) ⇒ (subcharacteristic condition on on f(u))

Equilibrium system (Reduced model)

∂tu+ ∂xf(u) = 0, f(u) = QF (E(u)).

7G.Chen, D.Levermore, T.P.Liu, ’94
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Implicit-explicit methods Application to hyperbolic relaxation systems

A simple example

A simple prototype example of relaxation system is given by8

Jin-Xin relaxation system{
∂tu+ ∂xv = 0,

∂tv + ∂xau = − 1

ε
(v − f(u)),

where u = u(x, t), v = v(x, t), (x, t) ∈ R× R+.
For small values of ε we get the local equilibrium

v = f(u)

and (subcharacteristic condition a > f ′(u)2) we obtain at O(ε)

∂tu+ ∂xf(u) = ε∂x((a− f ′(u)2)∂xu).

8S.Jin, Z.Xin ’95
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Implicit-explicit methods Application to hyperbolic relaxation systems

AP schemes

Definition
An IMEX scheme for an hyperbolic system with relaxation is asymptotic preserving
(AP) if in the limit ε→ 0 the scheme becomes a consistent discretization of the limit
system of conservation laws. We use the notation APk if the scheme is of order k in
the limit ε→ 0.

We can prove9

Theorem
If detA 6= 0 then in the limit ε→ 0, the IMEX scheme applied to an hyperbolic system
with relaxation becomes the explicit RK scheme characterized by (Ã, w̃, c̃) applied to
the limit system of conservation laws.

The theorem guarantees that in the stiff limit the IMEX scheme becomes the
explicit RK scheme applied to the equilibrium system.

To satisfy detA 6= 0 it is necessary that c 6= c̃. The corresponding scheme may be
inaccurate if the initial condition is not “well prepared” (initial layer).

9L.P., G.Russo, ’04
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Implicit-explicit methods Stability

Stability

To study the A-stability of a IMEX-RK scheme, one may consider the problem10

Test problem

u′ = λu+ µu, u(0) = 1, λ, µ ∈ C.

This test problem characterizes the stability properties also for linear systems

U ′ = AU +B U, U(0) = U0

with U ∈ Rm, and A,B ∈ Rm×m if A and B are normal, commuting matrices.
In general the two matrices do not share the same eigenvectors, and can not be
diagonalized simultaneously. This makes the stability analysis for systems
extremely difficult. Only available results are for the case m = 2.

10L.P., G.Russo ’00, L.P. G.Russo ’08
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Implicit-explicit methods Numerical examples

Numerical examples

Broadwell model

∂tρ+ ∂xm = 0,

∂tm+ ∂xz = 0,

∂tz + ∂xm =
1

ε
(ρ2 +m2 − 2ρz),

with ε is the mean free path. The dynamical variables ρ and m are the density and the
momentum respectively, while z represents the flux of momentum.
In the relaxation limit ε→ 0 we obtain

∂tρ+ ∂xm = 0

∂tm+
1

2
∂x

(
ρ+

m2

ρ

)
= 0

(1) Accuracy test for IMEX-RK schemes with smooth initial data and periodic b.c.
(2) Shock test for IMEX-RK schemes.
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Implicit-explicit methods Numerical examples

Convergence rates ε = 1
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Relative error for different second and third order IMEX-RK schemes for the Broadwell

equations with ε = 1. Left: no initial layer. Right: initial layer.
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Implicit-explicit methods Numerical examples

Convergence rates ε = 10−3
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Implicit-explicit methods Numerical examples

Convergence rates ε = 10−6
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Implicit-explicit methods Numerical examples

Shock test ε = 1
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Numerical solution for second and third order SSP IMEX-RK schemes for the Broadwell

equations with ε = 1
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Implicit-explicit methods Numerical examples

Shock test ε = 10−3
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Implicit-explicit methods Numerical examples

Shock test ε = 10−6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x

ρ
(x

,t
),

 m
(x

,t
),

 z
(x

,t
)

IMEX−SSP2−WENO, ε=10
−8

, t=0.5, N=200

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x

ρ
(x

,t
),

 m
(x

,t
),

 z
(x

,t
)

IMEX−SSP3−WENO, ε=10
−8

, t=0.5, N=200

Numerical solution for second and third order SSP IMEX-RK schemes for the Broadwell

equations with ε = 10−6

Lorenzo Pareschi (University of Ferrara) Numerical methods for kinetic equations #5 Imperial College, October 2-9, 2015 24 / 32



Implicit-explicit methods Penalized IMEX Runge-Kutta for the Boltzmann equation

Design principles for kinetic equations

AP schemes avoiding the implicit solution of the collision term Q(f, f)

Boltzmann-like equations

∂tf + ∂xf =
1

ε
Q(f, f), x ∈ R,

where f = f(x, v, t) and Q(f, f) = 0 implies f = M [f ] the local Maxwellian.

When f ≈M [f ] the collision operator is well approximated by its linear
counterpart Q(M,f) or directly by a BGK relaxation operator µ(M [f ]− f).

If we denote by LP (f) the linear approximating operator we can write 11

Penalized setting

Q(f, f) = G(f)︸ ︷︷ ︸
explicit

+ LP (f)︸ ︷︷ ︸
implicit

, G(f) = Q(f, f)−LP (f).

11S.Jin, F.Filbet ’11
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Implicit-explicit methods Penalized IMEX Runge-Kutta for the Boltzmann equation

Penalized IMEX Runge-Kutta methods

In the sequel we assume LP (f) = µ(M [f ]− f), µ > 0. The IMEX-RK scheme
take the form 12

Penalized IMEX-RK for Boltzmann

F = fn e+ ∆t Ã

(
1

ε
G(F )− v · ∇xF

)
+
µ∆t

ε
A(M [F ]− F )

fn+1 = fn + ∆t w̃T
(

1

ε
G(F )− v · ∇xF

)
+
µ∆t

ε
wT (M [F ]− F ).

Clearly the scheme being implicit only in the linear part, which can be easily
inverted and computed, can be implemented explicitly.

Note however that here the problem is stiff as a whole. The hope is that
applying the same design principles we used for hyperbolic systems with
relaxation we get an AP-scheme for the full Boltzmann model.

12G.Dimarco, L.P. ’13
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Implicit-explicit methods Penalized IMEX Runge-Kutta for the Boltzmann equation

AP-property
First let us point out that since the linear operator enjoys the same conservation
property of the full Boltzmann operator we have the same associated moment
scheme characterized by (Ã, w̃) of the explicit method∫

R3

Fφ(v) dv =

∫
R3

fn eφ(v) dv −∆tÃ

∫
R3

v · ∇xFφ(v) dv∫
R3

fn+1φ(v) dv =

∫
R3

fnφ(v) dv −∆t w̃T
∫
R3

v · ∇xFφ(v) dv.

Consider now an invertible matrix A and solve the IMEX scheme for (M [F ]− F )

∆t(M [F ]− F ) =
ε

µ
A−1

[
F − fn e+ ∆tÃ

(
v · ∇xF −

1

ε
G(F )

)]
Again as ε→ 0 we get

F (i) = M [F (i)], i = 1, . . . , ν.

In fact Ã is lower triangular with ãii = 0 and we have a hierarchy of equations

G(F (i)) = Q(F (i), F (i))− µ(M [F (i)]− F (i)) = 0, i = 1, .., ν.
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Implicit-explicit methods Penalized IMEX Runge-Kutta for the Boltzmann equation

Further requirements
As opposite to the case of hyperbolic systems with relaxation, now the last level
still depends on ε. After some manipulations it reads

fn+1 = fn
(
1− wTA−1e

)
−∆t w̃T

(
v · ∇xF −

1

ε
G(F )

)
+ ∆t wTA−1Ã

(
v · ∇xF −

1

ε
G(F )

)
+ wTA−1F.

For small values of ε the scheme turns out to be unstable since fn+1 is not
bounded. A remedy, is to consider globally stiffly accurate schemes for which

fn+1 = F (ν),

and so as ε→ 0
F (ν) = M [F (ν)]⇒ fn+1 = M [fn+1].

I For the Boltzmann case the stiffly accurate property is required to have a stable
AP and asymptotically accurate scheme.
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Implicit-explicit methods Penalized IMEX Runge-Kutta for the Boltzmann equation

Mixing regimes problem
Collision term approximated by the Fast Fourier-Galerkin method 13. Second and
third order WENO is used in space 14
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Knudsen number value for the mixed regime test with ε0 = 10−4{
ε = ε0 + 1

2 (tanh(16− 20x) + tanh(−4 + 20x)), x ≤ 0.7
ε = ε0, x > 0.7

13L.P., B.Perthame ’96, C.Mouhot, L.P. ’06
14C-W.Shu ’97
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Implicit-explicit methods Penalized IMEX Runge-Kutta for the Boltzmann equation

Mixing regimes: third order scheme
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Density (left) and temperature (right) profiles for the mixing regime problem. Time

t = 0.5, Nx = 100 using third order WENO. Reference solution computed using a third

order Runge-Kutta. Here ∆tIMEX/∆tRK = 7.
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Mixing regimes: second vs third order
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Density (left) and temperature (right) profiles for the mixing regime problem at t = 0.5

for x ∈ [0.7, 0.8].
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Remarks and further reading

IMEX schemes represent a powerful tool for the time discretization of partial
differential equations where convection and stiff sources/diffusion are present.

However they are not a universal cure for all problems. It is not difficult to
imagine a situation where a fully explicit (or implicit) method is preferable.

The most critical case is the application to (nonlinear) PDEs where the stiff
scales originate a model reduction. In such cases AP methods are essential in
order to capture the correct physical behavior.

Further surveys on AP schemes can be found in

I S. Jin, ‘Asymptotic preserving (AP) schemes for multiscale kinetic and
hyperbolic equations: a review.’, Riv. Mat. Univ. Parma 3, (2012), 177–216.

I P. Degond, ‘Asymptotic-preserving schemes for fluid models of plasmas’,
Panoramas et Syntheses, (2014).
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