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Introduction

Introduction
We give a short overview of semi-Lagrangian method for kinetic transport
equation. The methods are based on a fixed computational grid but take into
account the Lagrangian nature of the transport process.

For their structure semi-Lagrangian methods apply naturally to the linear
transport part of kinetic equations, the full equation being often solved by
splitting techniques.

These methods can be designed in order to possess many desired properties
for a numerical scheme for kinetic equations, namely positivity, physical
conservations and robustness when dealing with large velocities.

These restrictions often prevent a straightforward application of the usual
schemes for hyperbolic conservation laws.

Several approaches can be used to solve efficiently the transport process in
kinetic equations, ranging from particle in cell methods1 and flux-balance
methods 2 to WENO schemes 3 and Discontinuous-Galerkin methods 4.

1C. Birdsall, A. Langdon ’91
2J. Boris, D. Book ’73
3J.A. Carrillo, F. Vecil’07
4J.-M. Qiu, C.-W. Shu ’11; B. Ayuso, J.A. Carrillo, C.-W. Shu ’11; R. Heath,

I. Gamba, P. Morrison, C. Michler ’12
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Introduction Semi-Lagrangian methods

Transport equations
Let us consider the one dimensional linear advection equation

Linear advection
∂f

∂t
+ v

∂f

∂x
= 0, x ∈ R

here f = f(x, t), v ∈ R, with initial datum f(x, 0) = f0(x). The exact solution is

f(x, t) = f0(x− vt).

The Semi-Lagrangian methods use the knowledge of the exact solution which is
explicitly represented in terms of the initial datum to construct a numerical
approximation of the transport equation. In particular, we have

f(xj , t
n+1) = f0(xj − vtn+1) = f0(xj − v∆t− vtn) = f(xj − v∆t, tn)

where we introduced a uniform grid xj = j∆x, j ∈ Z and discrete time steps
tn = n∆t. The points in space used to compute the solution are the points that
within a single time step are transported by the flow onto the mesh. These points
do not lie in the general case on the grid.

Lorenzo Pareschi (University of Ferrara) Numerical methods for kinetic equations #2 Imperial College, October 2-9, 2015 4 / 26



Introduction Semi-Lagrangian methods

Semi-Lagrangian methods
The backward semi-Lagrangian scheme can then be obtained as

fn+1
j = fn

j−v ∆t
∆x

= fnj−k−α, k + α = v
∆t

∆x
, k =

[
v

∆t

∆x

]
,

where [ · ] denotes the integer part and α ∈ (0, 1) is a non integer index unless the
time and space grid satisfy v∆t = k∆x in which case α = 0.

tn

tn+1

t fn+1
j

fnj−k−α

xxjxj − v∆t

v > 0 v < 0

Figure: Sketch of the semi-Lagrangian approach for v > 0.
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Introduction Semi-Lagrangian methods

Semi-Lagrangian methods
The type and the degree of interpolation defines then the type of semi-Lagrangian
scheme. As an example we consider a simple linear interpolation

fn+1
j = αfnj−k−1 + (1− α)fnj−k.

If v∆t/∆x < 1 one gets k = 0, α = v∆t/∆x and the resulting method is nothing
else but the well-known upwind method.
In contrast with standard upwind, the scheme holds for any value of v∆t/∆x.
Since the values of the solution at the time level n+ 1 are obtained by linear
interpolation of the values at time level n with nonnegative coefficients, a discrete
maximum principle holds. No stability conditions are needed and the scheme is
well-suited to deal with arbitrary large values of v.
Note also that the exact solution admits the formulation

f(xj + v∆t, tn+1) = f(xj , t
n),

which gives the equivalent forward semi-Lagrangian scheme

fn+1
j+k+α = fnj , k + α = v

∆t

∆x
, k =

[
v

∆t

∆x

]
.
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Introduction Multi-dimensional case

Multi-dimensional case
The semi-Lagrangian method can be generalized to the multidimensional case by
replacing one dimensional interpolation with multidimensional interpolation
techniques. For a space and time dependent velocity field V (x, t) ∈ Rd we have

Multidimensional transport equation
∂f

∂t
+ V (x, t) · ∇xf = 0, x ∈ Rd.

Under Lipschitz continuity assumptions on the velocity field, the characteristic
curves exist. These are defined as the solutions X( · ; t, x) of the ordinary
differential equations

d

ds
X(s; t, x) = V (X(s; t, x), s)

with initial data X(t; t, x) = x. It is then possible to show that

f(x, t) = f(X(s; t, x), s) = f0(X(0; t, x)).

The solution at point x and time t is the initial datum at the foot of the
characteristic indicated by X(0;x, t) which passes in x at time t.
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Introduction Multi-dimensional case

Multidimensional semi-Lagrangian methods

Using the formula for the exact solution then a semi-Lagrangian method for the
approximation of the multidimensional advection equation can be derive in two
steps:

1 At a given time level n compute for each mesh point x an approximate
solution of the system of ODEs to determine an estimate of the characteristic
X∗(tn; tn+1, x) which passes at time tn+1 at position x.

2 Compute an approximation of the exact solution by interpolating the mesh
point values at time level n at the points X∗(tn; tn+1, x).

This implies that the solution of the PDE is reduced to the solution of a large set
ODEs combined with multidimensional interpolation. The most common
reconstruction techniques found in literature are cubic splines, Hermite or
Lagrange polynomials. More recently WENO techniques and DG methods have
also been used succesfully5.

5X-T.Liu, S.Osher, T.Chan ’94; C.-W. Shu ’09; B. Cockburn, G. E. Karniadakis,
C.-W. Shu (eds.) ’00
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Semi-Lagrangian scheme for Vlasov type equations

Semi-Lagrangian scheme for the Vlasov-Poisson system
As an example let us consider the one-dimensional Vlasov-Poisson system

Vlasov-Poisson system
∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂v
= 0, x ∈ R, v ∈ R

∂2Φm
∂x2

(x, t) = 1− %(x, t) = 1−
∫
R
f(x, v, t)dv, E = −∂Φm

∂x
.

Observe that the Vlasov equation can be rewritten in equivalent form as

∂f

∂t
+ V · ∇(x,v)f = 0, V (x, v, t) = (v,E)

T

which is a linear transport equation in the phase space. Moreover since

∇(x,v) · V =
∂v

∂x
+
∂E

∂v
= 0,

the Vlasov equation can also be written in conservative form as

∂f

∂t
+∇(x,v) · (V f) = 0.
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Semi-Lagrangian scheme for Vlasov type equations The method by Cheng and Knorr

The method by Cheng and Knorr
The Cheng-Knorr method is one of the first semi-Lagrangian schemes designed for
the Vlasov-Poisson system 6. The method is based on the classical Strang
splitting method.

1 Starting from fn compute the electric field En solving the Poisson equation.
2 Compute f∗ solving

∂f

∂t
+ En

∂f

∂v
= 0,

with initial data fn, for a half time step ∆t/2.
3 Compute f∗∗ solving

∂f

∂t
+ v

∂f

∂x
= 0,

with f∗ as initial data, for a time step ∆t.
4 Compute %n+1 from f∗∗ and the electric field En+1 solving the Poisson

equation.
5 Compute fn+1 solving for a half time step ∆t/2

∂f

∂t
+ En+1 ∂f

∂v
= 0,

with initial data f∗∗.
6C. Cheng, G. Knorr ’76
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Semi-Lagrangian scheme for Vlasov type equations The method by Cheng and Knorr

Direct multidimensional approach

The semi-Lagrangian approach with splitting for the resolution of the
Vlasov-Poisson system has the big advantage that the characteristic equation
can be solved explicitly at each step of the splitting procedure. However, the
splitting introduce errors privileging the directions.

It is then interesting to consider the construction of semi-Lagrangian
methods directly without splitting. These methods, however, need a suitable
numerical approximation of the characteristic equation.

The characteristic curve is solution of

dV

dt
= E(X(t), t),

dX

dt
= V.

The above equations cannot be solved exactly since the electric field E is
computed through the Poisson equation which depends on the evolution of
the distribution of particles f .
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Semi-Lagrangian scheme for Vlasov type equations The method by Sonnendrücker et al.

The method by Sonnendrücker et al.
The method by Sonnendrücker et al.7 permits to pass from time tn to tn+1 in an
iterative way. Assume fn and the electric potential En are known, then a second
order in time iterative approach is summarized below.

1 Compute an approximation of the electric potential Ẽn+1 at time tn+1.

2 Solve for all points in the phase space (xj , vk) the characteristics equations
with a second order Runge-Kutta method

V n+1/2 = V n+1 − ∆t

2
Ẽn+1(Xn+1),

Xn = Xn+1 −∆t V n+1/2,

V n = V n+1/2 − ∆t

2
En(Xn).

3 Compute the interpolation of fn at points (Xn, V n) to obtain an
approximation of the distribution function fn+1(xj , vk) at time tn+1, which

we can use to compute a new value of the electric field Ẽn+1.

4 Iterate the scheme up to a prescribed convergence error.

7E. Sonnendrücker, J. Roche, P. Bertrand, A. Ghizzo ’99
Lorenzo Pareschi (University of Ferrara) Numerical methods for kinetic equations #2 Imperial College, October 2-9, 2015 12 / 26



Semi-Lagrangian scheme for Vlasov type equations Positive flux-conservative schemes

Positive flux-conservative schemes
These schemes are based on a conservative reconstruction strategy along the
characteristics curves. For simplicity we restrict to the following one dimensional
transport equation

∂tf + ∂x (v f) = 0,

where v > 0 is a constant velocity (by symmetry one constructs the method for
v < 0).
Let us introduce the mesh points xj+1/2 = j∆x+ ∆x/2, j ∈ Z. Assume the
solution is known at time tn = n∆t, we compute the new values at time tn+1 by
integration of the exact solution in each cell∫ xj+1/2

xj−1/2

f(tn+1, x)dx =

∫ xj+1/2−v∆t

xj−1/2−v∆t

f(tn, x)dx,

then, setting

Gj+1/2(tn) =

∫ xj+1/2

xj+1/2−v∆t

f(tn, x)dx,

we obtain the conservative form∫ xj+1/2

xj−1/2

f(tn+1, x)dx =

∫ xj+1/2

xj−1/2

f(tn, x)dx + Gj−1/2(tn) − Gj+1/2(tn).
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Semi-Lagrangian scheme for Vlasov type equations Positive flux-conservative schemes

Reconstruction via primitive function
The main step is now to choose an efficient method to reconstruct the
distribution function from the values on each cell [xj−1/2, xj+1/2]. If we denote by

fnj =
1

∆x

∫ xj+1/2

xj−1/2

f(tn, x)dx,

the simplest choice is based on a linear interpolation procedure

f∆x(x) = fj + (x− xj)
fj+1 − fj−1

2∆x
,

which permits an explicit computation of the fluxes. Unfortunately the resulting
method does not preserve positivity.
Another approach is based on a reconstruction via primitive function 8. Let
F (tn, x) be a primitive of the distribution function f(tn, x), then
F (tn, xj+1/2)− F (tn, xj−1/2) = ∆x fnj and

F (tn, xj+1/2) = ∆x

j∑
k=0

fnk = wnj .

8F. Filbet, E. Sonnendrücker, P. Bertrand ’01
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Semi-Lagrangian scheme for Vlasov type equations Positive flux-conservative schemes

Nonnegative reconstructions
A reconstruction method allowing to preserve positivity and maximum principle
can be obtained using a third-order reconstruction with slope correctors

f∆x(x) = fj+

+
θ+
j

6 ∆x2

[
2 (x− xj)(x− xj−3/2) + (x− xj−1/2)(x− xj+1/2)

]
(fj+1 − fj)

+
θ−j

6 ∆x2

[
2 (x− xj)(x− xj+3/2) + (x− xj−1/2)(x− xj+1/2)

]
(fj − fj−1),

with

θ±j =


min

{
1;

2 fj
fj±1 − fj

}
, if fj±1 − fj > 0,

min
{

1;−2 (fmax − fj)

fj±1 − fj

}
, if fj±1 − fj < 0,

where fmax = max
j
{fj}. It can be shown that this reconstruction satisfies

(i) Conservation of the average∫ xj+1/2

xj−1/2

f∆x(x)dx = ∆x fj , ∀ j.

(ii) Maximum principle
0 ≤ f∆x(x) ≤ fmax, ∀x.
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Semi-Lagrangian scheme for Vlasov type equations Positive flux-conservative schemes

A numerical example
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Figure: Evolution of F (x, vx, t) =
∫
R f(x, vx, vy, t) dvy with Nx = 32, Nv = 64.

Initial data

f(0, x, v) =
1

2π σ2
e−|v|

2/2σ2

(1 + α cos(2π x/L)) , ∀x ∈ (0, L), v ∈ R2,

where σ = 0.24, α = 0.5, L = 4 and periodic boundary conditions.
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Semi-Lagrangian schemes for BGK type equations Explicit semi-Lagrangian schemes

Semi-Lagrangian schemes for BGK type equations
Coupling the previous semi-Lagrangian schemes with a collision term can be done
in a straightforward way through splitting methods. Here we consider direct
semi-Lagrangian approximations.
For simplicity, we restrict to the BGK equation in one space dimension

BGK model
∂f

∂t
+ v

∂f

∂x
= ν(M [f ]− f),

where ν > 0 is a constant. The characteristic formulation of the problem yields

df

dt
= ν(M [f ]− f),

dx

dt
= v.

Let fnj,k be the approximate solution at time tn at the nodes xj = j∆x,
vk = k∆v, j, k ∈ Z. A simple explicit first order forward semi-Lagrangian scheme
reads

f(xj + vk∆t, vk, t
n+1) = fnj,k(1−∆tν) + ∆tνMn

j,k,

which do not lie on the grid. Then compute the values of fn+1
j,k on the grid by

reconstruction from the computed values f(xj + vk∆t, vk, t
n+1).

Lorenzo Pareschi (University of Ferrara) Numerical methods for kinetic equations #2 Imperial College, October 2-9, 2015 17 / 26



Semi-Lagrangian schemes for BGK type equations Explicit semi-Lagrangian schemes

Computing Maxwellian states
In order to advance in time we must define the approximated Maxwellian
distribution Mn

j,k. The simplest method to do that is given by

Mn
j,k =

ρnj
(2πRTnj )1/2

exp

(
−
|vk − unj |2

2RTnj

)
,

where ρnj , Tnj and unj are approximations of the moments at the grid points. This
formula requires the computation of the discrete moments of fnj,k by some kind of
quadrature. For example by simple summations

ρnj = ∆v
∑
h

fnj,h, unj =
∆v

ρnj

∑
h

vhf
n
j,h, Tnj =

∆v

Rρnj

∑
h

(vh − unj )fnj,h.

Problems

Mn
j,k is not compactly supported in the velocity space. Problem of the

truncation of the velocity domain and the loss of conservations.

There is no CFL-type stability restriction on the time step due to convection.
The schemes may suffer from stability restrictions in stiff regimes when the
collision rate ν is large.
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Semi-Lagrangian schemes for BGK type equations Implicit semi-Lagrangian schemes

Implicit semi-Lagrangian schemes
By applying simple implicit Euler on the characteristic equation backwards in
order to compute fn+1

j,k one obtains

fn+1
j,k = f(tn, xj − vk∆t, vk) + ∆tν(Mn+1

j,k − fn+1
j,k )

=
1

1 + ∆tν
f(tn, xj − vk∆t, vk) +

∆tν

1 + ∆tν
Mn+1
j,k ,

where f(tn, xj − vk∆t, vk) is computed by suitable reconstruction from fnj,k.

The scheme cannot be directly solved for fn+1
j,k , because Mn+1

j,k depends from

fn+1
j,k itself. However, if the discrete Maxwellian at time tn+1 has exactly the same

first three moments as fn+1
j,k∑

h

Mn+1
j,h φh =

∑
h

fn+1
j,h φh, φh = 1, vh, |vh|2,

then we have∑
h

fn+1
j,h φh =

∑
h

f(tn, xj − vh∆t, vh)φh, φh = 1, vh, |vh|2.

Therefore the moments at time tn+1 can be computed from the solution at time
tn and this allows and explicit evaluation of Mn+1

j,k .
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Semi-Lagrangian schemes for BGK type equations Implicit semi-Lagrangian schemes

Remarks

For consistency, we must construct the approximated Maxwellian values
Mn+1
j,k in such a way that the moments equations are exactly satisfied. This

is a transversal problem to most schemes which use a finite grid over a
bounded velocity domain.

Higher order implicit semi-Lagrangian methods for relaxation operators can be
constructed using L-stable diagonally implicit Runge Kutta (DIRK) schemes9.

If the time step is such that ∆t = ∆x/∆v then the foot of the characteristic
is a grid point and no interpolation is required. In such case the
semi-Lagrangian schemes becomes particular cases of Lattice Boltzmann
Methods (LBM)10.

The implicit semi-Lagrangian schemes are unconditionally stable. However,
large time steps will cause large numerical diffusion in the solution. In
particular semi-Lagrangian schemes may suffer of accuracy degradation close
to fluid regimes, or equivalently for very large values of ν. The latter aspect
can be understood by observing that the characteristic speeds of the system
change in such a limit.

9P. Santagati, G. Russo, S.-B. Yun ’12
10S.Succi ’01
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Semi-Lagrangian schemes for BGK type equations Fully conservative methods

Fully conservative methods
Let us consider f = f(v), v ∈ Rd, d ≥ 1, and denote by fk ≈ f(vk),
k = 1, . . . , N the finite grid approximations. We want to define the grid values fk
in such a way that the macroscopic moments of f are preserved at a discrete level.
We denote by U ∈ R2+d the given set of moments

U =

∫
Rd

f

 1
v
|v|2

 dv.

We use notations f = (f1, . . . , fN )T to denote the unknown set of values and
f̃ = (f̃1, . . . , f̃N )T the point values f̃k = f(vk). We also denote by C ∈ R(d+2)×N

the matrix containing the parameters of the quadrature formula used to evaluate
the discrete moments. Therefore we have C f̃ 6= U , and search for a vector f that
it is “close” to f̃ and such that Cf = U .
In order to find a solution to the problem one can consider the constrained
optimization problem find f ∈ RN such that

min
{
‖f̃ − f‖22 : Cf = U ;C ∈ R(d+2)×N , f̃ ∈ RN , U ∈ R(d+2)

}
.
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Semi-Lagrangian schemes for BGK type equations Fully conservative methods

The optimal L2 Maxwellian
The problem can be solved by a Lagrange multiplier method. Let λ ∈ Rd+2 be
the Lagrange multiplier vector, the objective function to be minimized is given by

L(f, λ) =

N∑
k=1

|f̃k − fk|2 + λT (Cf − U).

Next we impose

∂L(f, λ)

∂fk
= 0, k = 1, . . . , N

∂L(f, λ)

∂λi
= 0, i = 1, . . . , d+ 2.

The first condition implies 2f = 2f̃ + CTλ and the second Cf = U . Since CCT is
symmetric and positive definite one gets λ = 2(CCT )−1(U − C f̃) and therefore11

f = f̃ + CT (CCT )−1(U − C f̃).

Reverting now to the full space and time dependent notation, we get

Mn
j = M̃n

j + CT (CCT )−1(Unj − CM̃n
j ),

with Unj the set of moments, Mn
j = (Mn

j,1, . . . ,M
n
j,N )T and M̃n

j defined similarly.

11I. Gamba, S. Tharkabhushanam ’09
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Semi-Lagrangian schemes for BGK type equations Fully conservative methods

Remarks

The method only involves a matrix-vector multiplication. Moreover, since the
matrix C depends only on the parameter of the discretization, the matrix
CT (CCT )−1 can be precomputed and stored in memory. This makes the
technique extremely efficient for multi-dimensional computations.

Positivity of the solution is lost in general, as well as the monotonicity
property induced by the entropy inequality.

For Maxwellian densities, these properties can be recovered considering a
constrained minimization problem with respect to the entropy of the solution.
However, solving such a minimization problem implies the solution of a
system of d+ 2 nonlinear equations at each time step.
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Semi-Lagrangian schemes for BGK type equations Fully conservative methods

The discrete entropic Maxwellian

Let V =
{
vk ∈ R3, k = 1, . . . , Nv

}
be a discrete-velocity grid of Nv points. A

classical way to recover the exact moments and the minimum entropy property of
the Maxwellian in a finite computational domain is based on the theory of discrete
velocity models 12.
The discrete Maxwellian state Mk[f], where f = (f1, . . . , fNv )T , should be such
that log(Mk[f]) ∈ span{1, vk, |vk|2} which implies

Mk[f] = exp(a+ b · vk + c|vk|2), c < 0,

where a, c ∈ R, b ∈ R3 are obtained from the solution of the nonlinear system

Nv∑
h=1

fh(vh)s =

Nv∑
h=1

Mh[f](vh)s, s = 0, 1, 2.

Note that, due to the particular choice of the grid, not all set of moments may be
realizable by the discrete velocity model.

12H.Cabannes ’81, L. Mieussens ’00
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Semi-Lagrangian schemes for BGK type equations Fully conservative methods

Discrete Maxwellian states
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Semi-Lagrangian schemes for BGK type equations Fully conservative methods

Further reading

E. Sonnendrücker (2013), Numerical methods for Vlasov equations, Technical
report, MPI TU Munich.
(http://www-m16.ma.tum.de/foswiki/pub/M16/
Allgemeines/NumMethVlasov/Num-Meth-Vlasov-Notes.pdf).
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