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Overall Outline

» Lecture I: Observations and planetary flow theory (GFD(*))
 Lecture Il: Atmospheric LFV() & LRF()

« Lecture lll: EBMs®), paleoclimate & “tipping points”

* Lecture IV: The wind-driven ocean circulation

« Lecture V: Advanced spectral methods—-SSA®) et al.

« Lecture VI: Nonlinear & stochastic models—RDS(*)

() GFD = Geophysical fluid dynamics
() LFV = Low-frequency variability

(*) LRF = Long-range forecasting

(+) EBM = Energy balance model

() SSA = Singular-spectrum analysis

(*) RDS = Random dynamical system



Lecture I: Observations and
Basic Planetary Flow Theory

Outline

1. General introduction and motivation
— Scale dependence of atmospheric & oceanic flows

— Turbulence & predictability
2. Basic facts of large-scale atmospheric life

— The atmospheric heat engine
— Shallowness

— Rotation

3. Flow regimes, bifurcations & symmetry breaking

— The rotating, differentially heated annulus
— Regime diagram & transitions



Lecture I: Outline

1. General introduction and motivation

— Scale dependence of atmospheric & oceanic flows



Weather & climate: variability and prediction, |

U.S. National Weather Service (NWS): Forecast suite
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Weather & climate: variability and prediction

Problem 1: Find the comparable forecast suites on the
web sites of the UK Met Office & the ECMWF



Weather & climate: Observations, I

Space & time scales, k ~ w)
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) A high-variability ridge lies close to the diagonal of the plot
(cf. also Fraedrich & Bdéttger, JAS, 1978)



Composite spectrum of climate variability

Standard treatement of frequency bands:
1. High frequencies — white noise (or “colored”)
2. Low frequencies — slow evolution of parameters
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CONCEPTUAL MODEL of Earth System process operating on timescales of decades to centuries
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Climate models (atmospheric & coupled) : A classification

= stationary, (quasi-)equilibrium
= transient, climate variability

» Space

» 0-D (dimension 0) O
= 1-D / Radlatlve-Convectlve Model(RCM)
vertical

Energy Balance Model (EBM)
latitudinal

= 2-D

horizontal @
meridional plane
= 3-D, GCMs (Général Clrculatlon Model)

horizontal
meridional plane
= Simple and intermediate 2-D & 3-D models

e Coupling
= Partial
unidirectional
asynchronous, hybrid
= Full

Hierarchy: from the simplest to the most elaborate,
iterative comparison with the observational data



Lecture I: Outline

1.

General introduction

— Turbulence & predictability
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The Lorenz model (1963a):
a concrete example of a strange attractor()

« The model equations: 3 coupled, nonlinear ODEs

( = —oX +oY (1)
= -XZ +rX -Y (2)
= XYy —bZ (3)

 Physics: a model of thermal convection in 2-D

The variables X and Y represent the intensity of the velocity field in a 2-D
space, Z is the deviation of the vertical temperature profile from pure
conduction (no motion), and (X, Y, Z2)° is their rate of change.

The parameters are the Rayleigh number p (intensity of the thermal forcing),
the Prandtl number o (the fluid’s dissipative properties) and 3 caracterizes
the wave length of the perturbation from pure conduction.

) Mommy, what’s a strange attractor, please?



The Lorenz convection (1963a) model
— some numerical solutions
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Both for the canonical “chaotic” values p =28, 0 =10, 3 = 8/3.

Trajectory in phase space



The Lorenz (1963a) convection model

Problem 2: Find the appropriate software to compute the
Lorenz “butterfly” and use it to do so.



But chaos doesn’t explain everything:
there are many other sources of irregularity!

Wavenumber (radians m-1)

* Indeed, the atmosphere’s & 00 s o4 109 g
oceans’ energy spectrum is “full” | [
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prediction errors.

« Sitill, one can imagine that
the longest, slowest & most
energetic modes play a key
role.

« "One person’s signal is another
person’s noise.”
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Lecture I: Outline

2. Basic facts of large-scale atmospheric life

— The atmospheric heat engine



The mean atmospheric circulation

Direct Hadley circulation
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*From Ghil and Childress (1987), Ch. 4



Lecture I: Outline

2. Basic facts of large-scale atmospheric life

— Shallowness



Basic facts of large-scale atmospheric life,
or how to read weather maps — |

1. Shallowness, |

¢

The flow is approximately 2-D / f /\

(" "barotropic”) & hence,
to a good approximation, it is L = 6700 km
governed by shallow-water equations (SWE):

Ut + Uy + VUy = — @y + [0,
vy + UV, + VU, = —@, — fu,
¢t + (u¢)a} + (U¢)y —

Here his the height of the “free surface,” which is of order H,
while ¢ = gh is the geopotential.



Basic facts of large-scale atmospheric life,
or how to read weather maps -l

. Shallowness, Il

0 =H/L <1 alsoimplies that the flow is approximately

hydrostatic, P> = —pg < 0; hence “pressure coordinates”:
RT
Zp = ——= O Qp = %.

z A

The role of the free surface is played 20%
2 — ——~( h=10km

by the tropopause. ¢ 200 mb
The atmospheric jets / 80%

0 — latitude

coincide roughly with the 1000 mb
“tropopause gaps.”
U ) h(e)



Lecture I: Outline

2. Basic facts of large-scale atmospheric life

— Rotation



Basic facts of large-scale atmospheric life,
or how to read weather maps - lli

2. Rotation & geostrophy
f = 20sin 6 is the planetary vorticity, or the Coriolis parameter.

The Rossby number ¢ = U/fL measures the importance of rotation:

It’'s important if € is small; € < 1.

In geostrophic flow, ¢ — 0 and thus the SWE are reduced to
u=—(1/fpy, v=_(1/f)¢s.

The flow is parallel to isobaric contours, rather than perpendicular, and thus
Y = (g/f)h is astream function.
In the quasi-geostrophic approximation, 0 < ¢ < 1

allows for small, slow deviations from exact geostrophy.



Basic facts of large-scale atmospheric life — IV

3. Rotation + shallowness =» The quasi-geostrophic,
equivalent-barotropic potential vorticity equation with topography

(A = X"+ J(n, A = X"+ ho) =0;
here A is the Laplacian, J(n,Q) = on oQ  dnoQ = (u,v) - VQ

Is the Jacobian, Oz Oy Oy Ox

h = Hy(l 4+ eX"2n), ho = Hyeh}.

The potential vorticity Q equals /\L n

Q: (A_)\_Q)U+ho, A f’x’( 4

and the Rossby deformation H _

radius Ly plays a key role in it, ° \*ho =hy(x,y)
Y/ T T [ [ [7

A=L/Lr, Lgr=(gHo)"?/fo. A

.



Lecture I: Outline

3. Flow regimes, bifurcations & symmetry breaking

— The rotating, differentially heated annulus



Laboratory Analogues of Planetary
Atmospheric Circulation Systems

warm water

a working fulid

e Baroclinic instability:

- A potential energy
releasing instability in
the atmosphere and the
oceans



Lecture I: Outline

3. Flow regimes, bifurcations & symmetry breaking

— Regime diagram & transitions



Rotating Convection: An lllustration

TYPICAL FLOWS AND
REGIME DIAGRAM
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M. Ghil, P.L. Read & L.A. Smith (Astron. Geophys., 2010)



Rotating annulus & Earth’s atmosphere

Tropics
(Hadley
cell)

Rb

Midlatitudes
(Ferrell cell)

T

>
log T
Or why doesn’t the Hadley cell on Earth extend to the poles,

like on Venus ?

77

Tropics : both f (i.e., Q)

and AT small

1.0

I Midlatitudes : both Q
and AT large
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