# Basic Facts of GFD + Atmospheric LFV, Wind-driven Oceans, Paleoclimate & "Tipping Points"

### Michael Ghil

**Ecole Normale Supérieure, Paris, and University of California, Los Angeles** 





Please visit these sites for more info.

http://www.atmos.ucla.edu/tcd/

http://www.environnement.ens.fr/

### **Overall Outline**

- Lecture I: Observations and planetary flow theory (GFD<sup>(\*)</sup>)
- Lecture II: Atmospheric LFV<sup>(\*)</sup> & LRF<sup>(\*\*)</sup>
- Lecture III: EBMs<sup>(+)</sup>, paleoclimate & "tipping points"
- Lecture IV: The wind-driven ocean circulation
- Lecture V: Advanced spectral methods—SSA<sup>(±)</sup> et al.
- Lecture VI: Nonlinear & stochastic models—RDS(\*)

- (%) GFD = Geophysical fluid dynamics
- (\*) LFV = Low-frequency variability
- (\*\*) LRF = Long-range forecasting
- (+) EBM = Energy balance model
- (±) SSA = Singular-spectrum analysis
- (\*) RDS = Random dynamical system

# Lecture I: Observations and Basic Planetary Flow Theory

### **Outline**

- 1. General introduction and motivation
  - Scale dependence of atmospheric & oceanic flows
  - Turbulence & predictability
- 2. Basic facts of large-scale atmospheric life
  - The atmospheric heat engine
  - Shallowness
  - Rotation
- 3. Flow regimes, bifurcations & symmetry breaking
  - The rotating, differentially heated annulus
  - Regime diagram & transitions

- 1. General introduction and motivation
  - Scale dependence of atmospheric & oceanic flows
  - Turbulence & predictability
- 2. Basic facts of large-scale atmospheric life
  - The atmospheric heat engine
  - Shallowness
  - Rotation
- 3. Observations of persistent anomalies
  - Blocked & zonal flows
  - Conditioning on El Niño

## Weather & climate: variability and prediction, I

U.S. National Weather Service (NWS): Forecast suite



### Weather & climate: variability and prediction

**Problem 1**: Find the comparable forecast suites on the web sites of the UK Met Office & the ECMWF

### Weather & climate: Observations, II

Space & time scales,  $k \sim \omega^{(*)}$ 

Atmospheric LFV ≈ 10–100 days (intraseasonal)

Oceanic LFV ≈ 3–300 years (interannual–interdecadal)



(\*) A high-variability ridge lies close to the diagonal of the plot (cf. also Fraedrich & Böttger, *JAS*, 1978)

### Composite spectrum of climate variability

#### **Standard treatement of frequency bands:**

- 1. High frequencies white noise (or "colored")
- 2. Low frequencies slow evolution of parameters



From **Ghil (2001**, **EGEC)**, after **Mitchell\* (1976)** 

- \* "No known source of deterministic internal variability"
- \*\* 27 years Brier (1968, *Rev. Geophys.*)

# F. Bretherton's "horrendogram" of Earth System Science



### Climate models (atmospheric & coupled): A classification

#### Temporal

- stationary, (quasi-)equilibrium
- transient, climate variability



#### Coupling

Partial unidirectional asynchronous, hybrid

Full

**Hierarchy:** from the simplest to the most elaborate, iterative comparison with the observational data

#### ITALIAN PHYSICAL SOCIETY

### Lecture I: Outline

- 1. General introduction
  - Scale dependence of atmosphe
  - Turbulence & predictability
- 2. Basic facts of large-scale atr
  - The atmospheric heat engine
  - Shallowness
  - Rotation
- 3. Observations of persistent a
  - Blocked & zonal flows
  - Conditioning on El Niño

#### **PROCEEDINGS**

OF THE

INTERNATIONAL SCHOOL OF PHYSICS
«ENRICO FERMI»

#### Course LXXXVIII

edited by M. GHIL
Director of the Course
and by R. BENZI and G. PARISI
VARENNA ON LAKE COMO
VILLA MONASTERO
14 - 24 June 1983

# Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics

1985



NORTH-HOLLAND

AMSTERDAM - OXFORD - NEW YORK - TOKYO

# The Lorenz model (1963a): a concrete example of a strange attractor<sup>(\*)</sup>

• The model equations: 3 coupled, nonlinear ODEs

$$\dot{X} = -\sigma X + \sigma Y \qquad (1)$$

$$\dot{Y} = -XZ + rX -Y \qquad (2)$$

$$\dot{Z} = XY - bZ \qquad (3)$$

### Physics: a model of thermal convection in 2-D

The variables X and Y represent the intensity of the velocity field in a 2-D space, Z is the deviation of the vertical temperature profile from pure conduction (no motion), and  $(X, Y, Z)^{\bullet}$  is their rate of change.

The parameters are the Rayleigh number  $\rho$  (intensity of the thermal forcing), the Prandtl number  $\sigma$  (the fluid's dissipative properties) and  $\beta$  caracterizes the wave length of the perturbation from pure conduction.

(\*) Mommy, what's a strange attractor, please?

# The Lorenz convection (1963a) model – some numerical solutions





Plot of Y = Y(t) + projections onto the (X, Y) & (Y, Z) planes

Trajectory in phase space

Both for the canonical "chaotic" values  $\rho = 28$ ,  $\sigma = 10$ ,  $\beta = 8/3$ .

### The Lorenz (1963a) convection model

**Problem 2**: Find the appropriate software to compute the Lorenz "butterfly" and use it to do so.

# But chaos doesn't explain everything: there are many other sources of irregularity!

- Indeed, the atmosphere's & oceans' energy spectrum is "full"

   all the time & space scales are active, and contribute to prediction errors.
- Still, one can imagine that the longest, slowest & most energetic modes play a key role.
- "One person's signal is another person's noise."



After Nastrom & Gage (JAS, 1985)

- 1. General introduction and bibliography
  - Scale dependence of atmospheric & oceanic flows
  - Turbulence & predictability
- 2. Basic facts of large-scale atmospheric life
  - The atmospheric heat engine
  - Shallowness
  - Rotation
- 3. Observations of persistent anomalies
  - Blocked & zonal flows
  - Conditioning on El Niño

### The mean atmospheric circulation

#### **Direct Hadley circulation**



#### **Observed circulation**



Idealized view of the atmosphere's global circulation.\*

Schematic diagram of the atmospheric global circulation.\*

<sup>\*</sup>From Ghil and Childress (1987), Ch. 4

- 1. General introduction and bibliography
  - Scale dependence of atmospheric & oceanic flows
  - Turbulence & predictability
- 2. Basic facts of large-scale atmospheric life
  - The atmospheric heat engine
  - Shallowness
  - Rotation
- 3. Observations of persistent anomalies
  - Blocked & zonal flows
  - Conditioning on El Niño

# Basic facts of large-scale atmospheric life, or how to read weather maps – I

### 1. Shallowness, I

$$\delta = H/L \ll 1$$
  $\Rightarrow$ 

The flow is approximately 2-D (`barotropic") & hence, to a good approximation, it is governed by shallow-water equations (SWE):



Here h is the height of the "free surface," which is of order H, while  $\phi = gh$  is the *geopotential*.



# Basic facts of large-scale atmospheric life, or how to read weather maps - II

### 1. Shallowness, II

 $\delta = H/L \ll 1$  also implies that the flow is approximately

hydrostatic,  $p_z = -\rho g < 0$ ; hence "pressure coordinates":

$$z_p = -\frac{1}{gp}$$
 or  $\phi_p = -\frac{RT(p)}{p}$ .

The role of the free surface is played

by the tropopause.

The atmospheric jets coincide roughly with the "tropopause gaps."



- 1. General introduction and bibliography
  - Scale dependence of atmospheric & oceanic flows
  - Turbulence & predictability
- 2. Basic facts of large-scale atmospheric life
  - The atmospheric heat engine
  - Shallowness
  - Rotation
- 3. Observations of persistent anomalies
  - Blocked & zonal flows
  - Conditioning on El Niño

# Basic facts of large-scale atmospheric life, or how to read weather maps – III

### 2. Rotation & geostrophy

 $f = 2\Omega \sin \theta$  is the *planetary vorticity*, or the *Coriolis parameter*.

The Rossby number  $\epsilon=U/fL$  measures the importance of rotation: It's important if  $\pmb{\varepsilon}$  is small:  $\epsilon\ll 1$ .

In geostrophic flow,  $\epsilon \to 0$  and thus the SWE are reduced to

$$u = -(1/f)\phi_y, \quad v = (1/f)\phi_x.$$

The flow is parallel to isobaric contours, rather than perpendicular, and thus  $\psi=(g/f)h$  is a stream function.

In the quasi-geostrophic approximation,  $0<\epsilon\ll 1$  allows for small, slow deviations from exact geostrophy.

## Basic facts of large-scale atmospheric life – IV

3. Rotation + shallowness → The quasi-geostrophic, equivalent-barotropic potential vorticity equation with topography

$$(\Delta - \lambda^{-2})\eta_t + J(\eta, \Delta - \lambda^{-2}\eta + h_0) = 0;$$

here  $\Delta$  is the Laplacian, is the Jacobian,  $J(\eta,Q)=\frac{\partial \eta}{\partial x}\frac{\partial Q}{\partial y}-\frac{\partial \eta}{\partial y}\frac{\partial Q}{\partial x}=(u,v)\cdot\nabla Q$ 

$$h = H_0(1 + \epsilon \lambda^{-2} \eta), \quad h_0 = H_0 \epsilon h_0^*.$$

The potential vorticity Q equals

$$Q = (\Delta - \lambda^{-2})\eta + h_0,$$

and the Rossby deformation radius  $L_R$  plays a key role in it,

$$\lambda = L/L_{\rm R}, \quad L_{\rm R} = (gH_0)^{1/2}/f_0.$$



- 1. General introduction and bibliography
  - Scale dependence of atmospheric & oceanic flows
  - Turbulence & predictability
- 2. Basic facts of large-scale atmospheric life
  - The atmospheric heat engine
  - Shallowness
  - Rotation
- 3. Flow regimes, bifurcations & symmetry breaking
  - The rotating, differentially heated annulus
  - Regime diagram & transitions

# **Laboratory Analogues of Planetary Atmospheric Circulation Systems**



- Baroclinic instability:
- A potential energy releasing instability in the atmosphere and the oceans





- 1. General introduction and bibliography
  - Scale dependence of atmospheric & oceanic flows
  - Turbulence & predictability
- 2. Basic facts of large-scale atmospheric life
  - The atmospheric heat engine
  - Shallowness
  - Rotation
- 3. Flow regimes, bifurcations & symmetry breaking
  - The rotating, differentially heated annulus
  - Regime diagram & transitions

### **Rotating Convection: An Illustration**



M. Ghil, P.L. Read & L.A. Smith (Astron. Geophys., 2010)

### Rotating annulus & Earth's atmosphere



Or why doesn't the Hadley cell on Earth extend to the poles, like on Venus?



### Some general references

- Arnold, L., 1998: Random Dynamical Systems, Springer Monographs in Math., Springer, 625 pp.
- Arnol'd, V. I., 1983: *Geometrical Methods in the Theory of Ordinary Differential Equations*, Springer-Verlag, New York/Heidelberg/Berlin, 334 pp.
- Chekroun, M. D., E. Simonnet, and **M. Ghil**, 2011: Stochastic climate dynamics: Random attractors and time-dependent invariant measures, *Physica D*, **240**(21), 1685–1700.
- Dijkstra, H. A., and M. Ghil, 2005: Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach, *Rev. Geophys.*, **43**, RG3002, doi:10.1029/2002RG000122.
- Ghil, M., R. Benzi, and G. Parisi (Eds.), 1985: *Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics*, North-Holland, 449 pp.
- Ghil, M., and S. Childress, 1987: *Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics*, Ch. 5, Springer-Verlag, New York, 485 pp.
- Ghil, M., M.D. Chekroun, and E. Simonnet, 2008: Climate dynamics and fluid mechanics: Natural variability and related uncertainties, *Physica D*, **237**, 2111–2126.
- Ghil, M., et al., 2002: Advanced spectral methods for climatic time series, *Rev. Geophys.*, **40**(1), pp. **3**.1–**3**.41, doi: 10.1029/2000RG000092.
- Guckenheimer, J., and P. Holmes, 2002: *Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields*, 2<sup>nd</sup> ed., Springer-Verlag, New York/Berlin.
- Lorenz, E.N., 1963: Deterministic nonperiodic flow. *J. Atmos. Sci.*, **20**, 130–141.
- Ruelle, D., and F. Takens, 1971: On the nature of turbulence. *Commun. Math. Phys.*, **20**, 167–192.
- Saltzman, B., 2001: *Dynamical Paleoclimatology: Generalized Theory of Global Climate Change*, Academic Press, 350 pp..

# **Reserve slides**