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Diffusion

Diffusion equations describe how a continuous medium (say,
a population) spreads to occupy the available space.

Models come from all kinds of applications: fluids, chemicals, bacteria,
animal populations, the momentum of a viscous (Newtonian) fluid
diffuses, there is diffusion in the stock market,...

Diffusion of particles in a water solution

So the question is : what is diffusion for a mathematician? how to analyze
diffusion mathematically?
This question has received two quite different answers in recent history.
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The two ways to diffusion
The two answers:

First direction: Is diffusion more or less related to random walk ? This is a
correct answer, and this approach leads to Brownian motion and
Stochastic Processes, with the famous Ito equation:

dx = bdt +
1
2
σdW .

Second direction: how to explain it with “standard mathematics” based on
Analysis? The answer is PDEs of parabolic type, as explained by
Kolmogorov in the 1930s. The mother equation is the Heat Equation:

∂tu = ∆u.

Understanding this double way has been the source of much effort and
the work goes on today.
Here we will follow the way of Analysis with PDEs, inaugurated by Joseph
Fourier (1807, 1822) in an apparently different context, Heat Propagation.
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Expanding the basic model

Some of the problems we face today

How much of it can be explained with linear models, how much is
essentially nonlinear? which are the most relevant mathematical models?

The stationary states of diffusion belong to an important world, elliptic
equations. Elliptic equations, linear and nonlinear, have many relatives:
diffusion, fluid mechanics, waves of all types, quantum mechanics, ...

The Laplacian ∆ is really the King of Differential Operators.
The fractional Laplacian is close family. How strong is the theory and
application of the so-called nonlocal or long-range operators that include
the fractional Laplacian family?
Are we able to treat complex systems and describe their behaviour with
the combination of the tools we have?

Main tools : Modelling, Analysis, Stochastics, Asymptotics and Numerics.
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The heat equation origins
We begin our presentation with the Heat Equation ut = ∆u
and the analysis proposed by Fourier, 1807, 1822 1

(Fourier decomposition, spectrum). The mathematical models of heat
propagation and diffusion have made great progress both in theory and
application.

They have had a strong influence on 5 areas of Mathematics:
PDEs, Functional Analysis, Inf. Dim. Dyn. Systems, Diff. Geometry and
Probability. And on and from Physics.

The heat flow analysis is based on two main techniques: integral
representation (convolution with a Gaussian kernel) and mode
separation:

u(x , t) =
∑

Ti (t)Xi (x)

where the Xi (x) form the spectral sequence
−∆Xi = λi Xi .

This is the famous linear eigenvalue problem, Spectral Theory.

1Fourier, Joseph. (1822). Théorie Analytique de la Chaleur. Firmin Didot, Paris
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The heat equation semigroup and Gauss

When heat propagates in free space the natural problem is the initial
value problem

ut = ∆u, u(x ,0) = f (x) (1)

which is solved by convolution with the evolution version of the Gaussian
function

G(x , t) = (4πt)−n/2exp (−|x |2/4t). (2)

Note that G has very nice analytical properties for t > 0, but note that
G(x ,0) = δ(x), a Dirac mass. G works as a kernel (Green, Gauss).
(G is the Fundamental Solutions. This is a key idea that we would like to
copy, they are different in stationary and evolution problems. The concept
is problematic in some nonlinear PDEs and very useful in some of them.
G is self-similar).

The maps St : u0 7→ u(t) := u0 ∗G(·, t) form a linear continuous
semigroup of contractions in all Lp spaces 1 ≤ p ≤ ∞.
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Regularity and asymptotics

Regularity. Solutions in the standard class are unique, exist globally in
time and they are C∞ smooth in space and time. For nonnegative data
they are strictly positive.

Asymptotic behaviour as t →∞, convergence to the Gaussian.
Under very mild conditions on u0 it is proved that

lim
t→∞

tn/2(u(x , t)−M G(x , t)) = 0 (3)

uniformly, if M =
∫

u0(x) dx . For convergence in Lp less is needed. Thus,

lim
t→∞

‖(u(x , t)−M G(x , t)‖1 = 0 (4)

This is the famous Central Limit Theorem in its continuous form
(Probability).

(we will try to repeat those questions over and over; the answers vary
with the models)
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Heat equation graphs. Conflicting views

The comparison of ordered dissipation vs underlying chaos

Left, the evolution to a nice Gaussian

Right, a sample of random walk, origin of Brownian motion
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Linear heat flows
Until well into the XXth century diffusion was almost exclusively heat
equation, a part of the classical theory of PDEs. From 1822 until 1950 the
heat equation has motivated
(i) Fourier analysis decomposition of functions (and set theory),
(ii) development of other linear equations
=⇒ Theory of Parabolic Equations

ut =
∑

aij∂i∂ju +
∑

bi∂iu + cu + f

Main inventions in Parabolic Theory:
(1) aij ,bi , c, f regular⇒ Maximum Principles, Schauder estimates,
Harnack inequalities; Cα spaces (Hölder); potential theory; generation of
semigroups.
(2) coefficients only continuous or bounded⇒W 2,p estimates,
Calderón-Zygmund theory, weak solutions; Sobolev spaces.

The probabilistic approach: Diffusion as an stochastic process: Bachelier,
Einstein, Smoluchowski, Wiener, Levy, Ito,...

dX = bdt + σdW
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Nonlinear heat flows

In the last 50 years emphasis has shifted towards the Nonlinear World.
Maths more difficult, more complex and more realistic.
My group works in the areas of Nonlinear Diffusion and Reaction
Diffusion.
I will talk about the theory mathematically called Nonlinear Parabolic
PDEs. General formula

ut =
∑
∂iAi (u,∇u) +

∑
B(x ,u,∇u)

Typical nonlinear diffusion: ut = ∆um

Typical reaction diffusion: ut = ∆u + up
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The Nonlinear Diffusion Models

The Stefan Problem (Lamé and Clapeyron, 1833; Stefan 1880)

SE :

{
ut = k1∆u for u > 0,
ut = k2∆u for u < 0. TC :

{
u = 0,
v = L(k1∇u1 − k2∇u2).

Main feature: the free boundary or moving boundary where u = 0. TC=
Transmission conditions at u = 0.
The Hele-Shaw cell (Hele-Shaw, 1898; Saffman-Taylor, 1958)

u > 0, ∆u = 0 in Ω(t); u = 0, v = L∂nu on ∂Ω(t).

The Porous Medium Equation→(hidden free boundary)
ut = ∆um, m > 1.

The p-Laplacian Equation, ut = div (|∇u|p−2∇u).
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The Reaction Diffusion Models

The Standard Blow-Up model (Kaplan, 1963; Fujita, 1966)

ut = ∆u + up

Main feature: If p > 1 the norm ‖u(·, t)‖∞ of the solutions goes to infinity
in finite time. Hint: Integrate ut = up.
Problem: what is the influence of diffusion / migration?
General scalar model

ut = A(u) + f (u)

The system model: −→u = (u1, · · · ,um)→ chemotaxis.
The fluid flow models: Navier-Stokes or Euler equation systems for
incompressible flow. Any singularities?
The geometrical models: the Ricci flow: ∂tgij = −Rij .
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Documenting the facts. My Related Books

2006-2007 and 2017
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Outline

1 Diffusion
Heat equation
Linear Parabolic Equations
Nonlinear equations

2 Mathematical Theory of the Porous Medium Diffusion
Applied motivation
Literature
Concepts of solution
Barenblatt profiles
Asymptotic behaviour
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The Porous Medium Equation

If you go to Wikipedia and look for the Diffusion Equation you will find

∂φ(~r , t)
∂t

= ∇ · (D(φ,~r)∇φ(~r , t))

It is not difficult from here to conclude that the simplest model of nonlinear
diffusion equation is

ut = ∆um = ∇ · (c(u)∇u)

c(u) indicates density-dependent diffusivity

c(u) = mum−1[= m|u|m−1]

It degenerates at u = 0 if m > 1, =⇒ slow diffusion

On the contrary, if m < 1 it is singular at u = 0 if =⇒ fast diffusion
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Applied motivation for the PME

Flow of gas in a porous medium (Leibenzon, 1930; Muskat 1933)
m = 1 + γ ≥ 2 {

ρt + div (ρv) = 0,
v = − k

µ∇p, p = p(ρ).

Second line left is the Darcy law for flows in porous media (Darcy, 1856).
Porous media flows are potential flows due to averaging of Navier-Stokes
on the pore scales.
To the right, put p = po ρ

γ , with γ = 1 (isothermal), γ > 1 (adiabatic flow).

ρt = div (
k
µ
ρ∇p) = div (

k
µ
ρ∇(poρ

γ)) = c∆ργ+1.

Underground water infiltration (Boussinesq, 1903) m = 2
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Applied motivation for the PME II

Plasma radiation m ≥ 4 (Zeldovich-Raizer, ¡ 1950)
Experimental fact: diffusivity at high temperatures is not constant as in
Fourier’s law, due to radiation.

d
dt

∫
Ω

cρT dx =

∫
∂Ω

k(T )∇T · ndS.

Put k(T ) = koT n, apply Gauss law and you get

cρ
∂T
∂t

= div(k(T )∇T ) = c1∆T n+1.

→When k is not a power we get Tt = ∆Φ(T ) with Φ′(T ) = k(T ).

Spreading of populations (self-avoiding diffusion) m ∼ 2.
Thin films under gravity (no surface tension) m = 4.
Kinetic limits (Carleman models, McKean, PL Lions and Toscani et al.)
Many more (boundary layers, geometry).
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Planning of the Theory

These are the main topics of mathematical analysis (1958-2006):
The classical methods based on representations and Fourier
decomposition do not work. Hence, a new approach based on

a priori estimates and functional analysis.
The plan starts with understanding what is the precise and convenient
meaning of “solution”.
Prove Existence (in some cases, non-existence). Prove Uniqueness (or
non-uniqueness).
Regularity of solutions: is there a limit? Ck for some k?
Regularity and movement of interfaces: Ck for some k?.
Asymptotic behaviour: patterns and rates? universal?
The probabilistic approach. Nonlinear process. Wasserstein estimates
Generalization: fast models, inhomogeneous media, anisotropic media,
applications to geometry or image processing; other effects.
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References

About PME

J. L. Vázquez, ”The Porous Medium Equation. Mathematical Theory”,
Oxford Univ. Press, 2007, 624 pages

About estimates and scaling
J. L. Vázquez, “Smoothing and Decay Estimates for Nonlinear Parabolic
Equations of Porous Medium Type”, Oxford Univ. Press, 2006, 234 pages.

About asymptotic behaviour. (Following Lyapunov and Boltzmann)
J. L. Vázquez. Asymptotic behaviour for the Porous Medium Equation
posed in the whole space. Journal of Evolution Equations 3 (2003),
67–118.
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Concept of solution

There are many concepts of generalized solution of the PME:

Classical solution: only in nondegenerate situations, u > 0.
Limit solution: physical, but depends on the approximation (?).
Weak solution Test against smooth functions and eliminate derivatives
on the unknown function; it is the mainstream; (Oleinik, 1958)∫ ∫

(u ηt −∇um · ∇η) dxdt +

∫
u0(x) η(x ,0) dx = 0.

Very weak ∫ ∫
(u ηt + um ∆η) dxdt +

∫
u0(x) η(x ,0) dx = 0.
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More on concepts of solution

Solutions are not always weak:

Strong solution. More regular than weak but not classical: weak
derivatives are Lp functions. Big benefit: usual calculus is possible.
Semigroup solution / mild solution. The typical product of functional
discretization schemes: u = {un}n, un = u(·, tn),

ut = ∆Φ(u),
un − un−1

h
−∆Φ(un) = 0

Now put f := un−1, u := un, and v = Φ(u), u = β(v):

−h∆Φ(u) + u = f , −h∆v + β(v) = f .

”Nonlinear elliptic equations”; Crandall-Liggett Theorems Ambrosio,
Savarè, Nochetto
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Barenblatt profiles (ZKB)

These profiles are the alternative to the Gaussian profiles.
They are source solutions. Source means that u(x , t)→ M δ(x) as t → 0.
Explicit formulas (1950):

B(x , t ; M) = t−αF(x/tβ), F(ξ) =
(

C − kξ2
)1/(m−1)

+

α = n
2+n(m−1)

β = 1
2+n(m−1) < 1/2

Height u = Ct−α

Free boundary at distance |x | = ctβ

Scaling law; anomalous diffusion versus Brownian motion
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Regularity results

The universal estimate holds (Aronson-Bénilan, 79):

∆v ≥ −C/t .

v ∼ um−1 is the pressure.
(Caffarelli-Friedman, 1982) Cα regularity: there is an α ∈ (0,1) such that
a bounded solution defined in a cube is Cα continuous.
If there is an interface Γ, it is also Cα continuous in space time.
How far can you go?
Free boundaries are stationary (metastable) if initial profile is quadratic
near ∂Ω: u0(x) = O(d2). This is called waiting time. Characterized by
JLV in 1983. Visually interesting in thin films spreading on a table.

Existence of corner points possible when metastable,⇒ no C1

Aronson-Caffarelli-V. Regularity stops here in n = 1
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Free Boundaries in several dimensions

A regular free boundary in n-D

(Caffarelli-Vazquez-Wolanski, 1987) If u0 has compact support, then after
some time T the interface and the solutions are C1,α.
(Koch, thesis, 1997) If u0 is transversal then FB is C∞ after T . Pressure
is “laterally” C∞. when it moves, it is always a broken profile .
A free boundary with a hole in 2D, 3D is the way of showing that focusing
accelerates the viscous fluid so that the speed becomes infinite. This is
blow-up for v ∼ ∇um−1. The setup is a viscous fluid on a table occupying
an annulus of radii r1 and r2. As time passes r2(t) grows and r1(t) goes to
the origin. As t → T , the time the hole disappears.
There is a solution displaying that behaviour Aronson et al., 1993,...
u(x , t) = (T − t)αF (x/(T − t)β). It is proved that β < 1.
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FDE profiles
We again have explicit formulas for 1 > m > (n − 2)/n:

B(x , t ; M) = t−αF(x/tβ), F(ξ) =
1

(C + kξ2)1/(1−m)

α = n
2−n(1−m)

β = 1
2−n(1−m) > 1/2

Solutions for m < 1 with fat tails (polynomial decay; anomalous distributions)
.They are very important in Probability, associated to Levy flights.
Big problem: What happens for m < (n − 2)/n? Most active branch of
PME/FDE. New asymptotics, extinction, new functional properties, new geometry
and physics.
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Asymptotic behaviour I
Nonlinear Central Limit Theorem

Choice of domain: Rn. Choice of data: u0(x) ∈ L1(Rn). We can write

ut = ∆(|u|m−1u) + f

Let us put f ∈ L1
x,t . Let M =

∫
u0(x) dx +

∫∫
f dxdt .

Asymptotic Theorem [Kamin and Friedman, 1980; V. 2001] Let B(x , t ; M) be
the Barenblatt with the asymptotic mass M and f = 0; u converges to B after
renormalization

tα|u(x , t)− B(x , t)| → 0

For every p ≥ 1 we have

‖u(t)− B(t)‖p = o(t−α/p′
), p′ = p/(p − 1).

The case p = 1 works for all f ∈ L1
x,t .

Note: α and β = α/n = 1/(2 + n(m − 1)) are the zooming exponents as
in B(x , t).
Starting result by FK takes u0 ≥ 0, compact support and f = 0.

J L Vazquez (Universidad Autónoma de Madrid) Nolinear diffusion. PME 28 / 35



Asymptotic behaviour I
Nonlinear Central Limit Theorem

Choice of domain: Rn. Choice of data: u0(x) ∈ L1(Rn). We can write

ut = ∆(|u|m−1u) + f

Let us put f ∈ L1
x,t . Let M =

∫
u0(x) dx +

∫∫
f dxdt .

Asymptotic Theorem [Kamin and Friedman, 1980; V. 2001] Let B(x , t ; M) be
the Barenblatt with the asymptotic mass M and f = 0; u converges to B after
renormalization

tα|u(x , t)− B(x , t)| → 0

For every p ≥ 1 we have

‖u(t)− B(t)‖p = o(t−α/p′
), p′ = p/(p − 1).

The case p = 1 works for all f ∈ L1
x,t .

Note: α and β = α/n = 1/(2 + n(m − 1)) are the zooming exponents as
in B(x , t).
Starting result by FK takes u0 ≥ 0, compact support and f = 0.

J L Vazquez (Universidad Autónoma de Madrid) Nolinear diffusion. PME 28 / 35



Asymptotic behaviour I
Nonlinear Central Limit Theorem

Choice of domain: Rn. Choice of data: u0(x) ∈ L1(Rn). We can write

ut = ∆(|u|m−1u) + f

Let us put f ∈ L1
x,t . Let M =

∫
u0(x) dx +

∫∫
f dxdt .

Asymptotic Theorem [Kamin and Friedman, 1980; V. 2001] Let B(x , t ; M) be
the Barenblatt with the asymptotic mass M and f = 0; u converges to B after
renormalization

tα|u(x , t)− B(x , t)| → 0

For every p ≥ 1 we have

‖u(t)− B(t)‖p = o(t−α/p′
), p′ = p/(p − 1).

The case p = 1 works for all f ∈ L1
x,t .

Note: α and β = α/n = 1/(2 + n(m − 1)) are the zooming exponents as
in B(x , t).
Starting result by FK takes u0 ≥ 0, compact support and f = 0.

J L Vazquez (Universidad Autónoma de Madrid) Nolinear diffusion. PME 28 / 35



Asymptotic behaviour I
Nonlinear Central Limit Theorem

Choice of domain: Rn. Choice of data: u0(x) ∈ L1(Rn). We can write

ut = ∆(|u|m−1u) + f

Let us put f ∈ L1
x,t . Let M =

∫
u0(x) dx +

∫∫
f dxdt .

Asymptotic Theorem [Kamin and Friedman, 1980; V. 2001] Let B(x , t ; M) be
the Barenblatt with the asymptotic mass M and f = 0; u converges to B after
renormalization

tα|u(x , t)− B(x , t)| → 0

For every p ≥ 1 we have

‖u(t)− B(t)‖p = o(t−α/p′
), p′ = p/(p − 1).

The case p = 1 works for all f ∈ L1
x,t .

Note: α and β = α/n = 1/(2 + n(m − 1)) are the zooming exponents as
in B(x , t).
Starting result by FK takes u0 ≥ 0, compact support and f = 0.

J L Vazquez (Universidad Autónoma de Madrid) Nolinear diffusion. PME 28 / 35



J L Vazquez (Universidad Autónoma de Madrid) Nolinear diffusion. PME 29 / 35



In Memoriam

♥ This page is my homage to the memory of Grigori Barenblatt, my Russian
friend and world master of self-similarity (died in Moscow 21 June 2018). We
wrote an Obituary in the the Sept. Newsletter of the European Mathematical
Society telling part of his incredible life between East and west.

Grisha Barenblatt in his happy British days
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Asymptotic behaviour II
The rate cannot be improved without more information on u0. This
happens in all central limit theorems. The standard assumption is having
a finite moment like

∫
|x |2u0(x)dx <∞.

m may be also less than 1 but supercritical (→ with even better
convergence called relative error convergence)

m < (n − 2)/n has big surprises;

m = 0 → ut = ∆ log u →, Ricci flow with strange properties;

Proof works for p-Laplacian flow; many authors are busy with
p-Laplacians, like Di Benedetto, Lindqvist, Mingione, ... my group.

Proofs of convergence to a Barenblatt solution for m < 1 need
sophisticated entropy - entropy rate analysis based on Hardy-Poincaré
inequalities (with weights of the form wα(x) := (1 + x2)−γ).2

2A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, J.L. Vázquez, ”Hardy-Poincaré
inequalities and applications to nonlinear diffusions” C. R. Math. Acad. Sci. Paris 344
(2007), no. 7, 431–436.
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inequalities and applications to nonlinear diffusions” C. R. Math. Acad. Sci. Paris 344
(2007), no. 7, 431–436.

J L Vazquez (Universidad Autónoma de Madrid) Nolinear diffusion. PME 31 / 35



Asymptotic behaviour II
The rate cannot be improved without more information on u0. This
happens in all central limit theorems. The standard assumption is having
a finite moment like

∫
|x |2u0(x)dx <∞.

m may be also less than 1 but supercritical (→ with even better
convergence called relative error convergence)

m < (n − 2)/n has big surprises;

m = 0 → ut = ∆ log u →, Ricci flow with strange properties;

Proof works for p-Laplacian flow; many authors are busy with
p-Laplacians, like Di Benedetto, Lindqvist, Mingione, ... my group.

Proofs of convergence to a Barenblatt solution for m < 1 need
sophisticated entropy - entropy rate analysis based on Hardy-Poincaré
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Asymptotic behaviour. III

The rates. Carrillo-Toscani 2000. Using entropy functional with entropy
dissipation control you can prove decay rates when

∫
u0(x)|x |2 dx <∞

(finite variance):
‖u(t)− B(t)‖1 = O(t−δ),

We would like to have δ = 1. This problem is still open for m > 2. New
results by JA Carrillo, Markowich, McCann, Del Pino, Lederman,
Dolbeault, Vazquez et al. include m < 1.

Eventual geometry, concavity and convexity Result by Lee and Vazquez
(2003): Here we assume compact support.There exists a time after
which the pressure is concave, the domain convex, the level sets convex
and

t ‖(D2v(·, t)− k I)‖∞ → 0

uniformly in the support. The solution has only one maximum. Inner
Convergence in C∞.
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Asymptotic behaviour. III

The rates. Carrillo-Toscani 2000. Using entropy functional with entropy
dissipation control you can prove decay rates when

∫
u0(x)|x |2 dx <∞

(finite variance):
‖u(t)− B(t)‖1 = O(t−δ),

We would like to have δ = 1. This problem is still open for m > 2. New
results by JA Carrillo, Markowich, McCann, Del Pino, Lederman,
Dolbeault, Vazquez et al. include m < 1.

Eventual geometry, concavity and convexity Result by Lee and Vazquez
(2003): Here we assume compact support.There exists a time after
which the pressure is concave, the domain convex, the level sets convex
and

t ‖(D2v(·, t)− k I)‖∞ → 0

uniformly in the support. The solution has only one maximum. Inner
Convergence in C∞.

J L Vazquez (Universidad Autónoma de Madrid) Nolinear diffusion. PME 32 / 35



Asymptotic behaviour. III

The rates. Carrillo-Toscani 2000. Using entropy functional with entropy
dissipation control you can prove decay rates when

∫
u0(x)|x |2 dx <∞

(finite variance):
‖u(t)− B(t)‖1 = O(t−δ),

We would like to have δ = 1. This problem is still open for m > 2. New
results by JA Carrillo, Markowich, McCann, Del Pino, Lederman,
Dolbeault, Vazquez et al. include m < 1.

Eventual geometry, concavity and convexity Result by Lee and Vazquez
(2003): Here we assume compact support.There exists a time after
which the pressure is concave, the domain convex, the level sets convex
and

t ‖(D2v(·, t)− k I)‖∞ → 0

uniformly in the support. The solution has only one maximum. Inner
Convergence in C∞.

J L Vazquez (Universidad Autónoma de Madrid) Nolinear diffusion. PME 32 / 35



Asymptotic behaviour IV. Concavity
The eventual concavity results of Lee and Vazquez

Eventual concavity for PME in 3D and in 1D

Eventual concavity for HE Eventual concavity for FDE
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Thank you for your attention

Muchas gracias.
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