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VI. High dimensional random space
(R. Shu-J. Hu-J, Num. Math ‘17)

Curse of dimension

* Boltzmann is already 6 dimension in space and
velocity; random inputs add many more
dimensions

* SG basis for random space:

if polynomial of degree n is used, then the

number of basis is (n + d)
d



Sparse Grids”

Efficient methods to choose basis functions {®x(z)} in
high dimensional random spaces

Guo and Cheng® use sparse grids for a
discontinuous Galerkin method for transport equations

For sufficiently smooth function, the approximation
error is O(K ="+ (log K)m*+2(d=D+1) where K is the
number of basis, and m is the degree of polynomials.

Partly break “the curse of dimensionality”

(2] H.-J. Bungartz and M. Griebel, 2004
[3] W. Guo and Y. Cheng, 2016



Restrict to the case 1, =[-1,1]% and n(z) = 4

P™(a.b) . the space of polynomials of degree at
most m on the interval (a,b)

Start with 1-d piecewise polynomial space

={b:0eP"(=1+27 Nt —1+27NF1(j 4+ 1)), =0,1,....2Y -1},

Define Wi as the orthogonal complement of Vi,
INnside Vy'. Then V' = @ogan Wi

Dimension of W is (m + 1)2%~1



* |In d-dimensional random space, define tensor

g”ds Vm, ‘ m

* Then V3, = o< <v Wi

When all the
components of j are
large, the
coefficients are very
small. But such
spaces have a lot of
basis functions!
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e |ldea: take Vi, = Gocljl<n Wil

* [he most expensive parts are dropped, without affecting
the accuracy too much

« 256 ~—pp 48 Zgzlwgéw‘fwg WY W4

* More effective in higher
dimensional random
spaces




Number of Basis Functions
Sparse vs. Full

(a) =0 (b) m=1

N=3 N=4 N=5 N=3 N=141 N =5
d = _ 8.8 16,16 32.32 d = 16,16 32,32 64,64
d=2 20.64 48,256 112.1024 =72 80.256 192.1024 448 4096
d=23 | 38512 104,4096 272,32768 d =23 | 304,4096 | B32,32768 | 2176,262144

7
d=4 | 63,4096 | 192,65536 | 552,1045576

Table 1: Comparison of basis funetion: d is the dimension; in each cell, the left number (blue)
1s the number of basis of tunctions of Viy; the right number (red) is the number of basis of
functions of Vi

Sparse grid: O((m + 1)V NIt
Full grid: O((m + D2



Sparsity Of Sijk:

. The most expensive part is the computation of
K
Q) = Y SuQUff). k=0,1,..., K
i,J=0

where Sk 2/ b(z)Pi(z)P;(z)Pr(z)m(z)dz.
I

« The computation of Q(f.. f;) is unnecessary if

S =0, Vk

* This happens if ®; and ¢; have disjoint supports



* Since ¢,and ¢, are tensor products of locally supported functions, their
supports are disjoint if one of their components are disjoint.

Theorem 4.1. The pairs of basis functions of \73’{}' with intersecting supports have a total number
at most O((m + 1)2d221\“'¢\.7d+1)_
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Figure 3: Demonstration of sparsity of Sip: m =0,N =4,d = 3.



Regularity in the random space

Theorem. Assume that B depends on z linearly, B and 0,B are
locally integrable and bounded in z. Assume sup,c; || f 0||L1, < M,
I[/°Nx < oo for some integer k > 0. Then there evists a constant
Crx > 0, depending only on B, M, T, and ||| fO)||x such that

e < Ch,

for any te|0,71].
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Projection Error

Number of basis functions of Vi is K = O((m + 1)%2N Nd-1),

3 _
o | Lemma.” For any f € H"Y(1,). N > 1. we have

|1Pxc f = Fllza,) < (COn)NY 23D fllggman )

Express the error in terms of A |

|Prcf = flliz) < Cm.d) K=" (log K) DY | fllygmea ).

The space H™(I.) is defined by I flum,) = max|[0F] --- 07 [lr2r,)

[3] W. Guo, Y. Cheng, 2016




Accuracy estimate

Theorem. Assume the random variable z and initial data f° sat-

isfy the assumphion in the lemma for regularity, and the Galerkin
approzimation f% is uniformly bounded in K, then

§
-

| Jr_fﬁ" L < GI:E] {{;I:'m,djlﬁ—_['ﬂhl:I:lﬂgf{:l':m*z:l:"f_H
where e*(0) = (Px f — f5)|e=o.

41O}



Numerical Result 1.
Approximation Error

* Take function f(z) in random spaces with
dimension 2, 3, 4

1 1 s _ J-_K:(Z)
f(z) = K (2)? exp (2!\5(2)) (Z'»’C(_Z} — 1+ K (z) ) ,

where

Ki=(z)=1—0.5(0.54+0.Isin(z;)+ 0.1sin(2z5)),
Ka=3(z) =1 —0.5(0.54+ 0.1sin(z; ) + 0.1sin(2z2) + 0.1 cos(z3)),
Ka=sa(z) =1 —=0.5(0.54+0.1sin(z;) + 0.1sin(2z2) + 0.1 cos(z3) + 0.1 cos(2z4)).

| f=Pfll;2

Compare relative error ——zy,
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Figure 1: Comparison of approximation crror for d = 2,3, 4. For d = 4 we do not give the result

by tensor grid because the number of basis functions is too large.



Numerical Result 2: Solve
SE with uncertainty

« 6-dimensional random space. 3 for initial data, 2 for boundary data, 1 for
collision kernel. 1-din X, 2-dinV

* |nitial data: equilibrium with
plr,z) =1, u(r,z)=0, T =1+40.5(14+0.229)exp(—100(140.123)(x—0.4—0.0121)?)
* Boundary data: at =+ = () take Maxwell boundary with
T,=1+02zy., a=05+0.3z5
» Collision kernel: b(z) =1+ 0.2z
» Take sparse grid basis with m = 0. N = 3, number of basis: 138

« Gompare with stochastic collocation method at ¢ = 0.04
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Figure 7: The Boltzmann equation with randomness on initial data, boundary data, and collision
kernel (d = 6). N, = 100, t = 0.04. Curve: collocation with M. = 4; asterisks: Galerkin with
m =0, N = 3. Left column: mean of density, first component of bulk velocity, and temperature.

Right column: standard deviation of density, first component of bulk velocity, and temperature.



High dimensional random space (J-Zuazua-Y. Zhu)

 Consider random parametric linear Vlasov-Fokker-
Planck equation

| | 1
€ f +v0,f —0pdOuf =—-Ff, x,veQ=(0,]) xR
-

r . . f I 2
— -) ] 4.'-:1[ -)1; — J_I ' p— 2
f (—L( If_ (J[)) 1[(3) QTE

E(x,z) = 0,0(x.z) = E(x) + Z 2z Ei(x).

zeU=[-1,1]~



Best N-approximation

We seek approximate solution h, in a finite dimensional space,
Py ={ha:ha = Z hy (t,z,v)L,(z)}, (3.1)
reh

where A is an index set with infinite dimensional vectors v. Here L,(z) form the normalized

Legendre polynomial basis such that,

1
dz:
L=TI2nG) [ L)L) 52 = bu, 52)
-1

g1

so L, is also an orthogonal basis in L?(U. dp).

the projection of the solution h onto Py,

Pyh = Z (/ hLvdp) : Z h, L, = argmin ||h — hAHLQ(L. Vidp)

rel reA ha €FA

The best N approximation is a form of nonlinear approximation that searches for v € A according

I

to the larges




Cohen-Devore-Schwab (‘10)

Theorem 3.1 (Corollary 3.11 of [3]). Consider a parametric problem of the form

P(f,a)=0, (3.4)

with random field a = a(x) 4+ i>1 zii(x) e X, z € U, where X is certain space of x. Assume
the solution map a — f(a) admits a holomorphic extension to an open set O € X which contains
a(U) ={a(z) : z € U}, with uniform bound

sup ||u(a)l,, < C. (3.5)
acQ

If in addition (||| X)j)] € (P(N) for some p < 1, then for the set of indices A,, that corresponds
to the n largest f,, = ||f fL,,dp”w one has,

Hf'_ 2::fLLv

s==—= (3.6)
velAy, .

L2(U\V,p)

where C = | fully |-



 While C-D-S proved it for elliptic PDEs, we extend it

to linear Vlasov-Fokker-Planck equations with
random forcing

e 1) assume isotropy

Condition 2.1. Assume [|0zE||pw ) |Ell =@ r=) < CB:

10 Esll o I Bs e < C.
Furthermore, the upper bounds Cg.C; satisfies,

i 2\ C i AC _
Cg + Z C; < min {T 73} . (Op< K (2.16)
j>1 ‘(
—y /\C'_“S B p - 1~
Z\/C.jg < (Cj)j>1 € 12(N), for somep < 1. (2.17)

g1



e 2) prove analyticity

Theorem 3.2. Under Condition 2.1, for Vz € U, one has the following estimate for the solution
to (2.8),

[0 h(t)ly < B(t) (Jw]t) b, (3.8)

where b is an infinite dimensional vector with the j-th component

3C; ‘

B(t) is an exponential decay function in t,

2
B(#) = mm{— 1ROy e~ 2 [RO)]]y C} (3.10)
€

Cs = /\1063, Cs, \ are constants defined in (1.1), (2.10).



Numerical tests
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Figure 1: This is the convergence rate of the approximate solution to (4.29) at t = 1 with different

parametric forcing terms obtained by Algorithm 4.1, where we set € = 1.



Kinetic equations vs

PDEs in phase space with velocity

Polynomial chaos based
stochastic Galerkin (loss of
hyperbolicity for nonlinear
hyperbolic systems)

Dimension reduction: mean-field
limit, molecular chaos-BBGKY
etc.

Particles to kinetic equations

AP

Uncertainty Quantification

PDEs with parameters

Grad’s thirteen moment closure
(via Hermite polynomials) (loss of
hyperbolicity)

Dimension reduction: low rank
perturbation; evolution of marginal
distribution, ...

Stochastic gradient decent to
Fokker-Planck equation

SAP




Open questions

For SG for Boltzmann, in the fluid limit, one arrives at a SG for
compressible Euler. Hyperbolicity? ( a direct application of SG
for Euler loses hyperbolicity)

Sharper estimate? Remove linearity assumptionin z,
stronger perturbation, more general random variables and
orthogonal polynomials

Landau damping under uncertainty (preliminary results
by on regularity of solution in random space)

Control and inverse problems (regularization based or
Bayesian inference theory based)

Utilize sparsity to reduce computational costs
Machine learning techniques
Other applications
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