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Uncertainty in kinetic equations

Kinetic equations are usually derived from N-body Newton’s
second law, by mean-field limit, BBGKY hierachy, Grad-
Boltzmann limit, etc.

Collision kernels are often empirical

Initial and boundary data contain uncertainties due to
measurement errors or modelling errors; geometry, forcing

While UQ has been popular in solid mechanics, CFD, elliptic
equations, etc. there has been little effort for kinetic equation



UQ for kinetic models

For kinetic models, the only thing certain is their uncertainty

Quantify the propagation of the uncertainty

efficient numerical methods to study the uncertainty

e understand its statistical moments

e sensitivity analysis, long-time behavior of the uncertainty
e Control of the uncertainty

 dimensional reduction of high dimensional uncertainty



Example: linear neutron transport with random cross-
sections
(Jin-Xiu-Zhu JCP’14)
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Data for scattering cross-section
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Figure 2: Example of uncertainty associated with a nuclear cross-section (from (Chad-
wick et al., 2006)). Figure contains values corresponding to several data libraries and

measurements.



Some numerical methods for random PDEs

Sampling based methods (non-intrusive)

e The Monte-Carlo method (very efficient, no dimension curse,
but only half-th order

e Stochastic collocation methods: using deterministic legacy
code at well-chosen sample points, thus use interpolation or
qguadrature rules to get information at other random points or
statistical moments

Stochastic Galerkin (Intrusive):

e Using polynomial chaos expansion plus Gelerkin projection:
spectral method in the random space. Need to write a new
code



Polynomial Chaos (PC) approximation

e The PCor generalized PC (gPC) approach first introduced by
Wiener, followed by Cameron-Martin, and generalized by
Ghanem and Spanos, Xiu and Karniadakis etc. has been
shown to be very efficient in many UQ applications when the
solution has enough regularity in the random variable

e Letzbearandom variable with pdf .D( ] > ()

* Let ®,,(2) bethe orthonormal polynomials of degree m
corresponding to the weight p(z) > 0

f‘l"i{:)‘l’j[:j'ﬂ{:) dz = d;5



The Wiener-Askey polynomial chaos for random variables
(table from Xiu-Karniadakis SISC 2002)

Random variables ¢ | Wiener-Askey chaos {®(()} Support
Continuous Gaussian Hermite-Chaos (—oc, o0)
Gamma Laguerre-Chaos 10, )
Beta Jacobi-Chaos a, b]
Uniform Legendre-Chaos a, b]
Discrete Poisson Charlier-Chaos {0.1,2,...}
Binomial Krawtchouk-Chaos {0,1,..., N}
Negative Binomial Meixner-Chaos {0,1,2,...}
Hypergeometric Hahn-Chaos {0,1,..., N}
TABLE 4.1

The correspondence of the type of Wiener-Askey polynomial chaos and their underlying random
variables (N = 0 is a finite integer).



Generalized polynomial chaos

stochastic Galerkin (gPC-sG) methods

Take an orthonormal polynomial basis {®;(z)} in the
random space

Expand functions into Fourier series and truncate:

1) =S fi05(2) 2 3 Fi05(2) = £5(2).

§=0 §=0

Substitute into system, Galerkin projection. Then
one gets a deterministic system of the gPC



Accuracy and efficiency

We will consider the gPC-stochastic Galerkin
(gPC-SG) method

Under suitable regularity assumptions this
method has a spectral accuracy

Much more efficient than Monte-Carlo
samplings (halfth-order)

Our regularity analysis is also important for
stochastic collocation method



Stochastic AP schemes (s-AP)

2.1. Stochastic asymptotic preserving scheme. We now consider the same
problem subject to random inputs.

Oyu® = L(t,x, 2, u"; €), (2.3)

where z € I, C R, d > 1, are a set of random variables equipped with probability
density function p. These random variables characterize the random inputs into the
system. As € — 0, the diffusive limit becomes

du= L(t,x,z,u). (2.4)

We now extend the concept of deterministic AP to the stochastic case. To avoid the
cluttering of notations, let us now focus on the discretization in the random space I..

DEFINITION 2.1 (Stochastic AP). Let S be a numerical scheme for (2.3), which
results in a solution v*(z) € V, in a finite dimensional linear function space V,. Let
v(z) = lim__,qv*(2) be its asymptotic limit. We say that the scheme S is strongly
asymptotic perserving if the limiting solution v(z) satisfies the limiting equation (2.4)
for almost every z € I,.; and it is weakly asymptotic perserving if the limiting solution
v(z) satisfies the limiting equation (2.4) in a weak form.
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Linear transport equation with random coeffcients

1
€O f + v, f = J(i:z} E/ f(v')dv' — f] ._
J 1

To understand its diffusion limit, we first split this equation into two equations
for v = 0:

4l
0, f(v) + 00, f(v) = T8 E / ) f(-v)} ?

£

o(xz,2) [1 [} (3.6)
anf-0) = v0.f(-0) = 22 [ gyao— g,
and then consider its even and odd parities
r(t,z,v) = %[f{:fzﬂf,l-‘) + f(t, z, —v)],
(3.7)

j(t,xz,v) = %[f(ta:,v) — f(t,z,—v)l.

€



Diffusion limit

The system (3.6) can then be rewritten as follows:

hr +vdy] = U(J;‘z) (F—1),
€ (z.2) (3.8)
. v olx,z
Oij + —50pr = ——— 2.
t.] + 62 T 62 J
where
1
7(t, x) =/ rdv.
0
As e — 07, (3.8) yields
v
r=T, | = — Oy T.
r=r, j (@.2) T

Substituting this into system (3.8) and integrating over v, one gets the limiting diffu-
sion equation ([23, 1]):

| | 1
O, = O, [ a)ﬁ] . (3.9)



gPC approximations

M

M
(T, 2, ) = Y Pt 2)Pm(2), (T2 t) =) Jm(t,2)®
m=A0

m=1

be the Nth-order gPC expansion for the solutions and

P= (i), G= G )T
. ~ 2 1 .
O +v0,) = E—ES(:F)I[I‘ —r)
A v . . 1 . -
ﬂr%9%1=—§5mh

where

1
f(:czt)zf rdv,
0

and S(z) = (s;5(%))1<ij<m 18 a M x M matrix with entries

siy(@) = [ 0(2,2)8,(2)8, (2)p(2)ds:

z) (6.1)



Vectorized version of the deterministic problem
(we can do APUQ!)

e One can now use deterministic AP schemes to
solve this system

e Why s-AP?

e When ¢—0 the gPC-SG for transport equation becomes the
gPC-SG for the limiting diffusion equation



gPC-SG for limiting diffusion equations

e For diffusion equation:
ug = Ozla(z, 2)Opul
e Galerkin approximation:

M

w(@, z,t) =Y g (t, 2) By ()
=i M
e moments: (Elud=ruo. Var[u] = :D--ﬂr.;i

e let a= (1. --.am)" then
0yt = 0, (Ad,0) A= (a)mxu symm. pos. def

aij(ar) = /u.(.r. 2)Pi(2)Pji(z)p(z)d=.



Uniform stability

* For a fully discrete scheme based on the
deterministic micro-macro decomposition

(f=M + g) based approach (Klar-Schmeiser, Lemou-
Mieusseun) approach, we can also prove the
following uniform stability:

min 5 ¢ QH
At <2 2 AC? + gm,



Numerical tests
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Fic. 8.13. The linear transport eguation: Errors of the mean (solid line) and standard deviation
(dash line) of ¥ (circle) with respect to the gPC order at e = 107 % Aax — 0.04 (sguares), Hoe — 0.02
(circles). A = 0.01 (stars).
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Fia. 8.14. The linear transpori egquaiion: The mean (left) and standard deviation (right) of
T oat € = 10 %, obtained by the gPC Galerkin at order W = 4 (eircles), the stochastic collocation
method (crosses), and the limiting analytical solution (8.6).
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Fig. 8.15. The linear transport equation: Differences in the mean (solid line) and standard
deviation (dash line) of ¥ with respect to €2, between the limiting analytical solution (8.6) and the
4th-order gPC solution with Az = 0.04 (squares), Az = 0.02 (circles) and Az = 0.01 (stars).



SG for the Boltzmann equation (J. Hu-J, JCP 2016)

The stochastic Boltzmann equation can be formulated as follows:

r Of
o Vs f = —Q(f. A)(t.x.v.z), (0, tmax] X Q x RY x &,

y{ f(0,x,v.2) = fD(x.u.z), Q x RY x .

f(t.x.v.z) = g(t.x.v.z). [0, tmax] x 9Q x RY x 1,

\

where z is an n-dimensional random vector with support /,
characterizing the random inputs of the system. For simplicity, we assume
z is a collection of random vectors z®, z%, z' with mutually independent
components

@ collision kernel: B = b;‘(zﬂ)lv — V*I’\

e boundary data: T,, = T, (t.x.z2"), u, = u,(t.x.z"%)
e initial data: p°(x.z'), T°(x.z'), u’(x,z')



Stochastic Galerkin method

We seek a solution in the following form

K
f(t.x,v.z) =~ Pxf = Z fi(t,x,v)Pg(z),
k|=0

fil(t. x.v) = ;(/I f(t.x,v,z)du(z)7(z) dz.

Here k = (k1..... ky) is a multi-index with k| = ki + -+ kq. {®k(2)}
are the gPC basis functions satisfying

[ du@@)n()dz — a. 0= kL.l < K.

z

where 7(z) is the probability distribution function of z, and ~ are
normalization factors. The above approximation is optimal in space ]P’f(
(the set of all d-variate polynomials of degree up to K) in the sense that

IF = Ptz = inf 1 — bl



Stochastic Galerkin method (cont'd)

Inserting the gPC expansion into the Boltzmann equation, and performing
standard Galerkin projection, we get
r Of
d—k+v V,f = —Qk(t,x, V), (0, tma] X Q x RY,
§ (0%, v) = £2(x,v), €x RY,

L (. x0v) = ge(t. x.v), [0, tmax] x 0K R,

for each 0 < |k| < K, and
1
Qk :: Q(PKf P f)(t,x,v,z)dk(z)m(z)dz
—[foxuztbk z)m(z)dz.

gk fg(t x,v.z)®(z)7(z) dz.

Wk



Treatment of boundary condition

For the Maxwell boundary condition with uncertainty in the wall
temperature T,, (assume u,, = 0 for simplicity), gk is given by

gk = (1 — a)fi(t.x,v—2(v-n)n)+ (:rz Dyj(x. v)/ fi(t.x,v)|v-n| dv]
f v-n<0

where

w2

1 e 2Tw(xz)
Di(x.v) = / —— b (z)di(z)7m(z) dz.
L (2r)z T,? (x.2)




Treatment of collision term

For the VHS collision kernel with uncertainty in by, Qx can be further
expanded as

K
&= Y S v = v [R)A(V,) = A()F(v.)] dodv..
il il=0 / "/

where

Skij = %k/f br(z)Pk(z)®i(z)®j(z)7(z) dz.

as collision invariants.

Note that @k still has 1, v,

Evaluating Q) is definitely the most expensive part. Can we do it
efficiently?



Evaluating the collision operator — first reduction

K
Q=D Sii /};%d fsd_l v — v [i(V)(V.) — fiv)fi(v.)] dodv,

il [31=0

For each fixed k, decompose Sy (via SVD) as

R
| d+ K
Sk = ) Up Vi, R < Ng :dlm(lf"ﬂ):< J )
r=1

Substituting it into Q¢ and rearranging terms, we get

Q= ZR; [, [ =l [£)H ) - E)h(va) | dodv. J

K

gr(v) = USA(v). hi(v):= > VER(v).

1{=0 li|=0



Evaluating the collision operator — second reduction

Note that
R
A=Y [ [, v wl [EHW) - gbwrbv.)] dodv.
— Jrd Jsda-1
R
= O(gk. %), Qs the original deterministic collision operator
r=1

One can apply the fast Fourier spectral method! in velocity space (with
slight modification).

* Perthame-Pareschi

* Mouhot-Pareschi



Saved cost

O(NEMI=IN? Jog N) (compare with O(N3 N??))

N =120t K =7T.n=3,and Ng =792 if K =7.n =5,



Boltzmann equation with random collision kernel

Assume B(z) = 1+ sz, s = 0.6, Knudsen number ¢ = 0.1.

0 p°(x) BT O Vo' 9
f(xjv):f]-’}TTo(X) e 0 te e |, xel0,1],

where

2 + sin(27x) 0

Ox) = " _(02.0), TO— 3+ COS(2’?TX).

A




Boltzmann equation with random collision kernel
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Figure: Solutions at t = 0.2. Solid line: collocation with N, = 64, M, =8,
N, = 200, N, = 20. Red star: Galerkin with N, =32 M, =4, N, =100, gPC
mode: K =7.



Boltzmann equation with random initial data

Consider continuous initial data

0 p°(x. z) A
o(x.v) = i TO(x. 2) e 21%x2) Le 2T%2) |, x€]0,1].

where u° = (0.2.0), and

2 + sin(27x) + 3 sin(4mx)z; + 3 sin(67x)z
3 .
3 4 cos(27x) + 3 cos(4nx)z; + 1 cos(67x) 2
] ‘

p'(x.2) =

TO(x, z) =



Boltzmann equation with random initial data
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Boltzmann equation with random boundary data

Consider sudden heating problem? (purely diffusive Maxwell boundary
condition at left boundary x = 0).

2

L

FO(x,v) = eT2, T°=1, xel01].

27 TO

At time t = 0, suddenly change the wall temperature to
Tw(z) =2(To + swz), s = 0.2, Knudsen number = = 0.1.

2Acki et al., 1991,



Boltzmann equation with random boundary data
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A kinetic-fluid disperse two-phase flow model

(_)tf + U - Vm.f — V:{?(I) ) vt-‘f — 'C“f'

1
EAI“ =K /(1* —u) fdo,

L

Ou+Vy- - (u®u)+Vyp—

V- -u=0,
e u :velocity field of the primary phase

e f :particle distribution of the secondary phase

e L,f=V,-((v—u)f+V.f). Fokker-Planck operator

Goudon-Jabin-Vasseur (2004)



conservation property,
energy-entropy dissipation

d
e Mass conservation: at /<f>dﬁ? =0
* Momentum conservation: %/(u 4 <fo>)d$ — 0
dt

* Energy-entropy dissipation

_/(u f111f+—)>d:1?§0



Fine particle scaling

- 1
hf+v-Vof =V & -V,f =-Lyf,
€

| 1
§ du+ V- (u@u)+ Vep — BTAQ,H =
©
V.- -u=0.
\
€0 mmip L, f=0 =i

L,f=V,-((v—u)f+V.,f).

1
f{./(zf — ) f do,
‘

f(t,x,v) =n(t,x)M,(v),

1
(2m)d/

M,(v) =

5 exp(—

lv — u(t,2)|?

2

),

n(t,r) = /f(z‘.;r.-v}(il-v. J(t,z) = /'?..-‘f(f-.i.‘. v)dv, P(t,z)= /'L—‘ @uvf(t,z,v)dv.




Hydrodynamic limit

—p S =nu, P=nu®u-+ nl.

3 on + V- (nu) =0,
yﬂlb - | 1
(1 4+ kn)u) + Vo ((1+kn)u@u)+ Vi(p+ kn) + snV, o = E&Iu’

variable density incompressible Navier-Stokes equations



gPC- SG for two-phase flow (J-R. Shu, JCP “17)

Considering uncertainty from initial data (can also
come from other sources: Y. Zhu-J MMS ‘17)

. . L1 -
Of +v-Vof = Vo -Vof = ~Laf.

1 1 L
{ 8@ 1 8, (AVTV) 1 8,,(AV7?) + 9, p_R_A i = ﬁ./( — AN fdv, i=1,2,
€

V, =0,

| _ S = /Qi@‘@kﬁ(:) dz.
e \ector notation g=(g1.... ,‘('j;{)T { ! -

e Multiplication by g(z) becomes A(g), Z Sirge AV = A(uM)

e Vectorized Fokker-Planck operator

— —

La(f) = A F + 0y (01 f) 4 Dy (02f) = Dy (AD F) — 8, (AP f),



SAP property

—

La(f) = Auf + Oy, (01 ) + Dy, (vaf) — By (A F) — Dy, (AP ).

Vectorized FP operator is weakly nonlinear: A) A(?) are
constant symmetric matrices if © is fixed, but they do
not commute in general.

Theorem: ﬁu — Ju~p /g

—+

T2(f) = exp(—AWa,, — Ao, )(f).

Null space of Lz: M(v) =Ta(MC)

|2
My = % exp(—%) (' is any constant vector



e Hydrodynamic limit of gPC-sG system:

(047 + V- (A) = 0,

0,(@ + kADR) + V, - [AdD + g(ﬂﬁ)ﬂ + AAD)7]

L

_ _ 1 :
+ Op (P4 K1) + KOy O = R—Am-ﬁf{*h i=1,2.
(=

is the gPC-sG system for the limiting NS equations

ey S-AP



Treat £, implicitly

e |n order to achieve AP for the timﬁe digC[eEization, one
needs to treat the stiff operator £z = T:L5T; " implicitly.

e Adirect computation of Ta(/) = exp(—AMd,, — AP dy,)(f).
using Fourier transform will require N° times of matrix

exponential of size K .

e Using a spectrally accurate splitting

—
R L

exp( —A(l)i'}t,l — A(Q)E)vz ) F exp{—ﬁ(l}f)vl ) exp[—A(g)ﬁvg ) f.

we reduce the number of matrix exponentials to 2.



Numerica

results
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gPC-SG for many different kinetic equations

Boltzmann: a fast algorithm for collision operator (J. Hu-Jin, JCP “16),
initial regularity in the random space is preserved in time; but not clear
whether it is unifornly stable in the fluid dynamics limit (s-AP?): gPC-SG
for nonlinear hyperbolic system is not globally hpperbolic! (APUQ is open)

Landau equation (J. Hu-Jin-R. Shu, “17):

Semiconductor Boltzmann-drift diffusion limit (uniform regularity. Jin-L.
Liu MMS 17, Uniform spectral convergence : L. Liu ‘17)

Radiative heat transfer (APUQ OK: Jin-H. Lu JCP“17): proof of regularity in
random space for linearized problem (nonlinear? Open)

Kinetic-incompresssible fluid couple models for disperse two phase flow:
(efficient algorithm in multi-D: Jin-Shu)
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