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Uncertainty in kinetic equations

• Kinetic equations are usually derived from N-body Newton’s 
second law, by mean-field limit, BBGKY hierachy, Grad-
Boltzmann limit, etc.

• Collision kernels are often empirical 
• Initial and boundary data contain uncertainties due to 

measurement errors or modelling errors; geometry, forcing
• While UQ has been popular in solid mechanics, CFD, elliptic 

equations, etc. there has been little effort for kinetic equation



UQ for kinetic models

For kinetic models, the only thing certain is their uncertainty

• Quantify the propagation of the uncertainty
• efficient numerical methods to study the uncertainty
• understand its statistical moments 
• sensitivity  analysis, long-time behavior of the uncertainty
• Control of the uncertainty
• dimensional reduction of high dimensional uncertainty

• …



Example: linear neutron transport with random cross-
sections

(Jin-Xiu-Zhu  JCP’14)

the scattering cross-section, is random
Diffusion limit:  Larsen-Keller, Bardos-Santos-Sentis,      

Bensoussan-Lions-Papanicolaou (for each z)

as                           f



Data for scattering cross-section



Some numerical methods for random PDEs

Sampling based methods (non-intrusive)
• The Monte-Carlo method (very efficient, no dimension curse, 

but only half-th order
• Stochastic collocation methods: using deterministic legacy 

code at well-chosen sample points, thus use interpolation or 
quadrature rules to get information at other random points or 
statistical moments

Stochastic Galerkin (Intrusive):
• Using polynomial chaos expansion plus Gelerkin projection:  

spectral method in the random space. Need to write a new 
code



Polynomial Chaos (PC)  approximation

• The PC or generalized PC (gPC)  approach first introduced by 
Wiener,  followed by Cameron-Martin,  and generalized by 
Ghanem and Spanos, Xiu and Karniadakis etc.  has been 
shown to be very efficient in many UQ applications when the 
solution has enough regularity in the random variable

• Let z be a random variable with pdf 
• Let              be the orthonormal polynomials of degree m 

corresponding to the weight 



The Wiener-Askey polynomial chaos for random variables
(table from Xiu-Karniadakis SISC 2002)





Accuracy and efficiency

• We will consider the gPC-stochastic Galerkin 
(gPC-SG) method

• Under suitable regularity assumptions this 
method has a spectral accuracy 

• Much more efficient than Monte-Carlo 
samplings (halfth-order)

• Our regularity analysis is also important for 
stochastic collocation method 



Stochastic AP schemes (s-AP)





Linear transport equation with random coeffcients



Diffusion limit



gPC approximations



Vectorized version of the deterministic problem
(we can do APUQ!) 

• One can now use deterministic AP schemes to 
solve this system

• Why s-AP?

• When              the gPC-SG for transport equation becomes the 
gPC-SG for the limiting diffusion equation



gPC-SG for limiting diffusion equations

• For diffusion equation:

• Galerkin approximation:

• moments:
• Let                                  then

sy   symm. pos. def



Uniform stability

• For a fully discrete scheme  based on the 
deterministic micro-macro decomposition
(f=M + g) based approach (Klar-Schmeiser, Lemou-
Mieusseun)  approach, we can also prove the 
following uniform stability: 



Numerical tests





SG for the Boltzmann equation (J. Hu-J, JCP 2016)





























A kinetic-fluid disperse two-phase flow model







Hydrodynamic limit



gPC- SG for two-phase flow (J-R. Shu, JCP ‘17)

• Considering uncertainty from initial data (can also 
come from other sources:  Y. Zhu-J MMS ‘17)



sAP property















gPC-SG for many different kinetic equations

• Boltzmann: a fast algorithm for collision operator     (J. Hu-Jin, JCP ‘16), 
initial regularity in the random space is preserved in time;   but not clear 
whether it is unifornly stable in the fluid dynamics limit (s-AP?):  gPC-SG 
for nonlinear hyperbolic system is not globally hpperbolic! (APUQ is open)

• Landau equation (J. Hu-Jin-R. Shu, ‘17):
• Semiconductor Boltzmann-drift diffusion limit (uniform regularity.  Jin-L. 

Liu  MMS 17,  Uniform spectral convergence : L. Liu ‘17)
• Radiative heat transfer (APUQ OK: Jin-H. Lu  JCP‘17): proof of regularity in 

random space for linearized problem (nonlinear?  Open)
• Kinetic-incompresssible fluid couple models for disperse two phase flow: 

(efficient algorithm in multi-D:  Jin-Shu)
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