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|. Basics of kinetic equations

Time 4
1s + Continuum Theory
(Navier-Stokes)
1065 | Kinetic Theory
(Boltzmann)
10-10¢ | Molecular Dynamics
(Newton's Equation)
10-15¢ | Quantum Mechanics
(Schrodinger)
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Figure 1. Different laws of physics are required to describe
properties and processes of fluids at different scales.

 E & Engquist, AMS Notice (2003)



Kinetic equations

f+ k-V, -V, V.V, f= 1/ B(f)

f(t,x,k): probability density distribution
t: time X: position  k: particle velocity
V(x): potential Q(f): collision operator

e. dimensionless mean free path or Knudsen
number



Applications

Rarefied gas (astronautics)

Plasma (Vlasov-Poisson, Vlasov-Maxwell, Landau-
~okker-Planck,...)

Semiconductor device modeling
Microfluidics

Nuclear reactor

Astrophysics

Multiphase flows

Environmental science, energy, social science,
neuronal networks, biology, ...




Examples of kinetic equations

(neutron transport,
radiative transfer, etc.)

_ . 1.
(4.1) e f+v-Vauf :L'(_)‘) + &G .

In(4.1), G = G(t, x)is the source term, ¢ is the mean free path, £(f) is the anisotropic

collision term defined by

L(f) [ﬁ(v_ w){ M) f(w) — MQw)f(v) pdw,

with the normalized Maxwellian M defined by

M) -7 exp( — |'.U|2 ).
(m)™

The anisotropic scattering kernel o is rotationally invariant and satisfies

agw,w)=alw,v) > 0.



Fokker-Planck equation

e Diffusion due to Brownian motion

Ouf +3v -Uxf—Ltvuxo-Uvf=4Ff

Fr—v. (ﬂN ({;))

where M is the global equilibrium or global Maxwellian.
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M = ll (.’_T|
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The Boltzmann equation

of 1
ap TV Vxf = ZQ(F. )(v). xcQcRY veR

e f(t,x,v) is the phase space distribution function of time t,
position x, and velocity v

@ © is the Knudsen number, ratio of the mean free path and the
characteristic length scale: ¢ ~ O(1) kinetic regime; ¢ < O(1) fluid
regime

e Q(f.f) is the collision operator, a quadratic integral operator
modeling the interaction of particles



Collision operator

o(f, F)(v) = fR d /5 BV — v, ) F(V)F(V2) — F(v)F(v.)] dod, J

(v.v.) and (v'.v)) are the velocity pairs

before and after collision: o T T
(d “'\.
, VvV Vve  [v— vy [ A Ux
vV = a |
2 2 y |
v o=V +v.  |v— v*\g St /
E 2 2 \\\ \

B(v —v,.0) = B(|v — v,|, ZW=-)

v—v.|
vtuv, =v +v)

/v + |v.|?

Variable hard sphere (VHS) model
B=>b\v—-v.]'" —d<A<1

A = 1: hard sphere molecule
A = 0: Maxwell molecule

— 2+ ol P



Challenges in kinetic computation

* High dimension (phase space, 6d for
Boltzmann)

 Multiple scales

* uncertainty



uncertainties

e Derivation of kinetic equations for hard spheres:
from Newton’s second law for N-body particles,
by taking mean field limit (let N go to infinity)—
model uncertainty

e Except for special molecules (e.g. hard spheres),
the collision kernel is empirical— coefficient
uncertainty

* |nitial and boundary data, forcing, boundary, etc.
also contain measurement errors/uncertainties—
data uncertainty



Geometry and Experience
by
Albert Einstein

e 27 January 1921 address at the Prussian Academy of
Sciences in Berlin

One reason why mathematics enjoys special esteem,
above all other sciences, is that its laws are absolutely
certain and indisputable, while those of all other
sciences are to some extent debatable and in constant
danger of being overthrown by newly discovered
facts....... As far as the laws of mathematics refer to
reality, they are not certain; and as far as they are
certain, they do not refer to reality.



|. Multiscales

e Kinetic equations usually have macroscopic
limits, governed by the moments of the
density distribution, as the small parameter
(Knudsen number) goes to zero



Multiscale problems

Space shuttle reentry

e:10°% ~ 1 meters

Fluid equations not
adequate in boundary
layers shock layers,...

Military jets and supersonic
flights: F1x, F2x, F3x:

Mach number 1.8—2.5
Different properties of
materials require different

physical laws at different
scales




Scales in Boltzmann equation

* When ¢is small (kn <0.01), the moments
of f solve the compressive Euler (to
leading order) or Navier-Stokes equations
(to O(¢) ) of fluid dynamics, except at
initial, boundary or shock layers

* When ¢ is not small the fluid equations
are not valid, so one has to use the kinetic
equations

AL
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FIGURE 1. (Colour online) Inverse shock thickness, .1,/L, as a function of upstream
Mach number, M, for argon gas: O. experimental results of Linzer & Hornig (1963),
Camac (1965). Russell (1965). Schultz-Grunow & Frohn (1965). Robben & Talbot (1966),
Schmidt (1969), Rieutord (1970), Garen et al. (1974) and Alsmeyer (1976); ———, NSF
theory: m, direct simulation Monte Carlo results of Bird (1970); . theoretical results
of Lumpkin & Chapman (1992), Woods (1993) and Reese er al. (1995).

(from S. Paolucci & C. Paolucci JFM "18)



Altinude, y, km

Some Space Shuttle Data
(NASA TR/2006-213486 T. Rivell)
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TABLE 1. FLOW REGIME BOUNDARIES

Flow Regime Anderson (1989)° Regan and Anandakrishnan (1993)
Free molecular Kn>>1 Re <M/3

Near free molecular Kn>1.0 S

Transitional 1.0>Kn=>0.03 M/3 <Re < 10,000 M*
Continuum Kn<0.2 Re > 10.000 M’

® Note the overlap of the continuum and transitional flow regimes. Anderson (1989) notes that in this region
(0.03 = Kn < 0.2) temperature and velocity ship effects (discontinuities) are present at the body surface.



Multiscale simulation of a nuclear reactor

Fluid IIHIIIIIIIi:s




Diffusion limit of linear transport equation

| . .1
(4.1) e f+v-Vuf = ;L’(_}‘) + & .

In(4.1), G = G(t,x)is the source term, ¢ is the mean free path, £( ) is the anisotropic

collision term defined by
L(f)= J()’("!_J__ w{ M) f(w) — M(w)f(v)}dw,
with the normalized Maxwellian M defined by

M(w) = exp( — |-‘u\2 ).

/2
()"

The anisotropic scattering kernel o is rotationally invariant and satisfies

g, w) =alw,v) > 0.



The collision operator £ has the following properties:
L(f)=0= f(t,x,v) = plx. )y M(v),
with

p(t, x) = Jf (w)dv = {f).

We also assume that the collision frequency 4 satisfies the following bound for some
positive constant ,

Av) = Jﬂ(v, w) M(w) dw < p.

As & — 0, one can show that f(x, v, t) is approximated by
f =~ pla.t) M)
where p satisfies the diffusion equation [108, 99|
(4.2) Op=Vyu - (DVyp) +G
with the diffusion coefficient matrix

(M)
v J )

vavdy.




Scaling limit of Fokker-Planck equation

Utf + éV . vxf — % Ux O \_/'vf — ,g._leff

Ff—V. (MV ({[))

where M is the global equilibrium or global Marwellian,

|  potential



e High field limit 5 =1

Oep+V-(pVxod) =0

e Paraboliclimit §=¢

Oep —V - (Vxp — pVxo) = 0.



Fluid approximations of the Boltzmann equation

of 1
vV =2 Q)

Conservations of mass, 5
momentum and total energy '[Rdy Qf )p(v)dv =0. for ¢(v)=1.v,|7|

H-Theorem (entropy condition) _;r flogfdy = — / Q(f)log(fydv = 0
J Rdv J RAv

1 1
Moments P = /Rdyf( v)dv = '/Rdy Mpur(v), U= ; '[Rdy vf (v)dv :[_) '/Rdy UM, ur(v)do.

| 2 1 5
T = d,p ./Rdv u—v|°f(v)ydv = d,p /Rdy u — v «pr__u_r(?))d?}.

2
Local Maxwellian (equilibrium ; __ P ju—17
( q ) "w!}elieT{y) {ZRT)G;UJ,J’Z eXp ( 2T




when >0, Q(f)=>0 @, x,v) =M
the moments converge to the compressible Euler equations

f(r)p

N + Ve -pu = 0, 1 2
n=(-1) (E — —p|ul )
dpu __ :
{ 5 + V.- (pu@u + pl) =0,
OF ) = (d-aﬂ + 2)/ d-a:
E + V- ((E + ?J)@-ﬂ) =

If one expands to the next order (the Chapman-Enskog expansion) then
one gets the compressible Navier-Stokes equations



Kinetic and hydrodynamic equations

* Solving kinetic equations are much more expensive than
solving hydrodynamic equations

* Defined in phase space (six dimension + time)

* More expensive when mean free path (Knudsen
number=mfp/typical domain length) is small



Multi-physics domain decomposition method

« Domain decomposition methods are useful in multiscale

computation:

coupling of microscopic and macroscopic models: multiphysics

simulation

Kinetic

hydrodynamic

The difficulty is the interface condition: how to transfer data between
different scales—often no unique solution; where to put the interface?



Asymptotic-preserving schemes

* Work in both kinetic and fluid regimes
by solving only the kinetic equation

* When ¢ is small, and A x, At >> ¢ they
automatically become a fluid dynamic
solver

* No coupling with macroscopic equations,
thus avoid the difficulty of interface
condition/treatment as in other multiscale
methods



« Numerical stiffness: an explicit collision term
would require A t=0(g)

* |Implicit collision allows At to be independent of ¢,
but inverting the non-local collision term is
numerically difficult and expensive

* Does the underresolved computation gives the
correct macroscopic solutions?



Numerical goal

* |Implicit collision that can be solved explicitly (or
easily—no iterative Newton solvers):
underresolved time step

 Schemes capture the macroscopic behavior
without resolving the small Knudsen number

« Asymptotic-preserving:
numerical scheme should preserve the discrete
analog of the Chapman-Enskog expansion



Asymptotic-preserving

d—0 d— 0

e— 0




AP—> Uniform convergence
(Golse-J-Levermore ‘99)

Classical estimate

5
E = ||F—F| =00/, 1<s<r | & &
AP: & = ||F, — F*|| = Oe + ")
Uniform error estimate: : .
(0,0) c=O(@T/6t0y  ©

Hfi) — f":H — min (51,52)

}.f.'r(s |

which has an upper bound around ¢ = O(6"/*"V). This gives
(1.6) |F5 — Fo|| = 0@ty uniformly in &.

Review articles: Jin 2010 (general);
Degond-Dulezet 2017 (plasma)



Examples of AP schemes

* Linear transport equation

Method 1: parity formulation (Jin-Pareschi-Toscani ‘99)

Split (4.1) into two equations, one for v and one for —uv:

. . . 1. .
(4.3) 200 f(0) + 0 - Vaf (0) = = L£()0) + G,
. . 1. .
(’1’1] {i()g f( —)—- v_rf( — ) :L(f )( — ) + (7,

Define the even- and odd-parities [94] as

(4.5) (T, ., v) % [, e v)+ ftx. —v)],
N . 1 . .
(4.6) (e, v) 5. [F(E,x,v)—f(t, e, —v)].

Adding and subtracting the two equations in (4.4) lead to

(4.7) O +0v-Vpj %L‘(r} 1 G,

: 1 1.
(4.8) Q)+ 50 Vor =——= 4j;



The idea of [70] was to rewrite (4.7) and (4.8) into the following form

o1
(4.9) hr+v-Vy) = Eﬁ{fr) + @G,
& - ]- A e 2
(4.10) KJ+v-Vpr = — 2 [;Lj + (1 — &) - V;E’r] ._

where iy = y(¢) is a free parameter satisfying 0 <y < 1/£2. The simplest choice of y is

wie) = min{ 1, %}

1
oy == L(r) + G,

2
1 . .
i = [—4j— A = E2HW - Var)] .

O+ Vi =0,
Oj+v-Var=0.



Method 2: Micro-macro decomposition

e Klar-Schmeiser (‘01), Bennoune-Lemou-Mieusseun (‘08)
f=pM + &g
I I )(w) == M(-).
Ohp+Vi-(vg) =G

Forg+eld —INW-Vag) +v-MVyp = Lg+ U —11eG

yn—l _ .f)’“ 1 1 1

———+ - —ID- Vag") = 3 Lo — 50 MV, P

n+1 1n

p_ =P
At

+V, - (o =G



AP property

One-dimensional Spatial discretization

In one space dimension, a staggered grid can be used by also defining
2i1/2 = (1 + 1/2)4x. Now the macroscopic density p will be defined at gridpoint a;,
while g is defined at x;.4 2. Using upwind discretization for the space derivative, one
arrives at

ntl  m i 1 _ gt 1
P ; j? 1/2 j? 1/2 -
4.25 L4t (p———"1" ) = (7,
(425) ot < Az !
fj” 12 {)ﬁ.l . 2 1
1 it + -
= A ; o LD ("’ (Givre = Gimae) + 0 (Gl —!J:Ll_f'2)>
4.26 -
( ) 1 Py =t
_ n+l oy ] i+ 1
—2Lq? 22 vM e

where v = (v + |v])/2.
As e — 0, (4.26) gives

L

}
n+l 1
gril, =L (aMi

which when applied to (4.25) gives the following scheme

gl Pl =200 +p,
D - =G.
At N ()
Uniform stability (J.G. Liu and Mieusseun)
A"\Q min 2
At < ‘1; +SeAn



Some other issues

 Higher (2 or higher) order in time: Implicit-Explicit
(IMEX) Runge-Kutta: Caflisch-Jin-Russo (‘95),
Pareschi-Russo (‘05), ...

e How to deal with implicit nonlinear collision
operators: BGK-penalty (Filbet-Jin)

(related idea: exponential integrator: Dimarco-
Paraschi-Li, etc.)

avoiding inverting nonlinear collision operator yet
still uniformly stable in terms &



An efficient AP scheme for Boltzmann
(Filbet-J)

* A major challenge for
AP-Boltzmann is that

the implicit collision— B(f) = [B(f)- p (M-H1 + B (M)

which is inevitable—is ]I |[

daunting to solve explicit implicit
e We introduced a BGK For a suitably chosen constant f3, this

scheme will be uniformly stable in ¢
penalization method:



An explicit-implicit time discretization

(ft-f )/A t+k - V7, o
= 1/g [B(f") + B (M- o] - B/e (Mn+1- fo=1)

Let B,= [B(f)-B(M~, Mn)J/(f>-Mn)

stability requires: p>1/2 sup |B, |. best choice: B ~ sup |B,].
can be made time-dependent

Explicit Implementation:

Taking the moments:

<frti-fn >/At+ V, - <k fn>=0 ( <B>=<M-f>=0)
This defines (rho, u, T)™*1, thus Mn*!. The rest is explicit!

Can still use legacy code to obtain B(f") !



Spatial discretization

* If a high resolution upwind discretization is
used for convection, then as =20,

one gets a high resolution kinetic scheme
for Euler.

AP Is space discretization!



Properties

1) Stable if At~Ax/c (no dependence on ¢ !)
2) If >0, then ™1 >M*1?

classical AP scheme requires that

For any f0, fn — Mn = O(e) for any n > 1
namely any data will be projected to the local Maxwellian in one time
step (strongly AP)

This scheme does NOT have this property: it takes several steps
(after initial layer) (relaxed AP)

If At>>¢, then for any f,, there exsits an N(¢), such that
f-Mn=0(¢) for n > N(e)
Can prove this for hyperbolic relaxation problem



Numerical examples:
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FIGURE 7. Mixing regime problem (£ = 1072}, comparison of the numerical soliution
to the Boltzmann equation obtaimed with the AP scheme (2.3) using n, = 50 {dots
x) and n, = 200 points (line): evolution of (1) the density p, (2) mean velocity u. (3)
temperature T at time ¢ = 0025, 0.5 and 0.75.



The exponential integrator method
(Gabetta-Pareschi-Toscani, Giacomo-Pareschi, Li-Pareschi)

One can write (3.22) as

g | . .
(3.26) of tv-v,f =" (Q(” - M) Lovp,
€ f &
with

Q' (f) = Q)+ f .

(3.27) W — M) = %[Q () = pM] P

If one discretizes the above equation by the forward Euler method one arrives at

; e_ﬁﬁ‘tl{f{: Q | (}(}?) |

(328) }( _ e—[fﬂt;’.‘:f'n 41— e—ﬁdi,r":: _Ee—ﬁdt;’:: M" + L _ /))
& &

for e < 1, (3.28) gives f* = M" + o(e),



A Mach 10 problem (AP-DSMC, Ren-Liu-Jin, JCP ‘14)

e=10"3

AP-DSMC

 Time step of AP-DSMC
is 10 times larger than
DSMC

e CPU time for AP-DSMC
is 5 times smaller

e Contour of density,
velocity and
temperature




Flows around 3d double-ellipsoid
(left: computational geometry; right: temperature
Ma=7.8, Kn=1.93e-5)

T
114866
1044.31
938 866
833621
728275
622 .929
517583
412 238
306.882




Pressure distribution




Landau-Fokker-Planck operator (for plasma)

(Jin-Yan, JCP 2011)

Q) =Vy- [ AC=v)(F)VLf(¥) = F) Ve F(v.))dv..,

A(z) = ¥(z) (f — #) ._ W(z) = |z|7+2

Explicit collision term requires A t=0(e (A v)?)
Use the Fokker-Planck operator

Prp(f) = Pepf = Vo - (Mvr (%) )

as the penalty (we use a symmetirc discretization so the
Conjugate-Gradient method to can be used to invert the
symmetric matrix)
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