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I. Basics of kinetic equations



Kinetic equations



Applications

• Rarefied gas (astronautics)
• Plasma (Vlasov-Poisson, Vlasov-Maxwell, Landau-

Fokker-Planck,…)
• Semiconductor device modeling
• Microfluidics
• Nuclear reactor
• Astrophysics
• Multiphase flows
• Environmental science, energy, social science, 

neuronal networks, biology, …



Examples of kinetic equations

Linear transport equation (neutron transport, 
radiative transfer, etc.)



Fokker-Planck equation

• Diffusion due to Brownian motion







Challenges in kinetic computation

• High dimension (phase space, 6d for 
Boltzmann)

• Multiple scales
• uncertainty



uncertainties

• Derivation of kinetic equations for hard spheres:  
from Newton’s second law for N-body particles, 
by taking mean field limit (let N go to infinity)—
model uncertainty

• Except for special molecules (e.g. hard spheres), 
the collision kernel is empirical— coefficient 
uncertainty

• Initial and boundary data, forcing, boundary, etc. 
also contain measurement errors/uncertainties–
data uncertainty



Geometry and Experience
by

Albert Einstein
• 27 January 1921 address at the Prussian Academy of 

Sciences in Berlin

One reason why mathematics enjoys special esteem, 
above all other sciences, is that its laws are absolutely 
certain and indisputable, while those of all other 
sciences are to some extent debatable and in constant 
danger of being overthrown by newly discovered 
facts……. As far as the laws of mathematics refer to 
reality, they are not certain; and as far as they are 
certain, they do not refer to reality.



I.  Multiscales

• Kinetic equations usually have macroscopic 
limits, governed by the moments of the 
density distribution, as the small parameter 
(Knudsen number) goes to zero



Multiscale problems
• Space shuttle reentry

• Fluid equations not 
adequate in boundary 
layers shock layers,…

• Military jets and supersonic 
flights:  F1x, F2x, F3x:   
Mach number 1.8—2.5 

• Different properties of 
materials require different 
physical laws at different 
scales



Scales in Boltzmann equation

（from S. Paolucci & C. Paolucci JFM ’18)





Multiscale simulation of a nuclear reactor



Diffusion limit of linear transport equation







• High field limit 

• Parabolic limit 



Fluid approximations of the Boltzmann equation

• Conservations of mass, 
momentum and total energy

• H-Theorem (entropy condition)

• Moments

• Local Maxwellian (equilibrium)



the moments converge to the compressible Euler equations

If one expands to the next order (the Chapman-Enskog expansion) then 
one gets the compressible Navier-Stokes equations



Kinetic and hydrodynamic equations



Multi-physics domain decomposition method



Asymptotic-preserving schemes





Numerical goal



Asymptotic-preserving 



AP Uniform convergence
(Golse-J-Levermore ‘99) 

• Classical estimate

• AP: 

• Uniform error estimate:

• Review articles:  Jin 2010 (general); 
Degond-Dulezet 2017  (plasma)



Examples of AP schemes

• Linear transport equation
Method 1: parity formulation (Jin-Pareschi-Toscani ‘99)





Method 2: Micro-macro decomposition

• Klar-Schmeiser (‘01), Bennoune-Lemou-Mieusseun (‘08)



AP property

• Uniform stability (J.G. Liu and Mieusseun)



Some other issues

• Higher  (2 or higher) order in time: Implicit-Explicit 
(IMEX) Runge-Kutta:  Caflisch-Jin-Russo (‘95), 
Pareschi-Russo (‘05), …

• How to deal with implicit nonlinear collision 
operators:  BGK-penalty (Filbet-Jin) 
(related idea:  exponential integrator: Dimarco-
Paraschi-Li, etc.)

avoiding inverting nonlinear collision operator yet 
still uniformly stable in terms   



















The exponential integrator method
(Gabetta-Pareschi-Toscani, Giacomo-Pareschi, Li-Pareschi) 



A Mach 10 problem (AP-DSMC, Ren-Liu-Jin, JCP ‘14)

• Time step of AP-DSMC 
is 10 times larger than 
DSMC

• CPU time for AP-DSMC 
is 5 times smaller 

• Contour of density, 
velocity and 
temperature



Flows around 3d double-ellipsoid
(left: computational geometry; right: temperature

Ma=7.8, Kn=1.93e-5)



Pressure distribution
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