
Classify Neural Networks in Credit Scoring area

based on the Financial Ratios

by

Zhentian Qiu (CID: 00856071)

Department of Mathematics

Imperial College London

London SW7 2AZ

United Kingdom

Thesis submitted as part of the requirements for the award of the

MSc in Mathematics and Finance, Imperial College London, 2017-2018

2

4

Acknowledgements

I want to express my gratitude to my external supervisor Dr. William Perraudin for his guid-

ance and encouragement throughout this difficult project.

I want to extend my gratitude to my internal supervisor Prof. Harry Zheng for his expert

advice and great efforts during the research.

I wish to express my special thanks to Jozsef Kutas for his support. His patiently teaching of

SQL and python languages gives me invaluable help during the data cleaning. I would also like to

thank Zhen Hu for her guidance of applying Logistic Regression.

Lastly, I thank my fiend Chao Tang for great support.

This thesis would not be completed without the support from all the people mentioned above.

Once again, I appreciate all friends, Imperial College and Risk Control Limited for their precious

resources and encouragement.

5

List of Acronyms

AGD Adam Gradient Descent

AI Artificial Intelligence

AR Accuracy Ratio

AUC Area Under the ROC Curve

DBN Deep Brief Network

DT Decision Tree

FAR Fuzzy Adaptive Resonance

GD general Gradient Descent

GPR Gaussian Process Regression

GRBM Gaussian RBM

KD Kernel Density

KNN K-Nearest Neighbor

LDA Linear Discriminant Analysis

LR Logistic Regression

LVQ Learning Vector Quantization

MGD Momentum Gradient Descent

MLP Multi-Layer Perceptron

MoE Mixture of Experts

NF Neurofuzzy sustem

PDF Probability Density Function

PNN Probabilistic Neural Network

RBFN Radial Basis Function Network

RBM Restricted Boltzmann Machine

RGD RMSprop Gradient Descent

ROC Receiver Operating Characteristics

ROLS Recursive Orthogonal Least Squares

SD Sdandard Deviation

6

Contents

0 Introduction 9

0.1 Thesis Goal . 9

0.2 Background and Related Work . 9

0.3 Structure of the Thesis . 10

1 Data Cleaning 12

1.1 Data Sources and Company Filter . 12

1.2 Default Definition and Period Decision . 13

1.3 Fields Decision . 13

2 Model Scoring Process 16

2.1 Introduction of Model Scoring Processes . 16

2.2 Methods for Verification . 16

2.3 K-Fold Cross-Validation . 17

2.4 Gradient Descent Optimisation . 18

2.5 Default Balance . 20

3 Logistic Regression 21

3.1 Description . 21

3.2 Results . 22

4 Multi-Layer Perceptron 23

4.1 Description . 23

4.2 Main Processes . 24

4.3 Activation Functions . 25

4.4 Hidden Layer Structure . 27

4.5 Results . 28

5 Probabilistic Neural Network 29

5.1 Description . 29

5.2 Main Processes . 30

5.3 Dimension of Variance . 31

5.4 Results . 32

7

6 Radial Basis Function Network 33

6.1 Description . 33

6.2 Main Process . 33

6.3 Relation with Gaussian Process Regression . 35

6.4 Recursive Orthogonal Least Squares Training and Centre Selectors 36

6.5 K-Means Clustering Centre Selector . 38

6.6 Results . 39

7 Restricted Boltzmann Machine 41

7.1 Description . 41

7.2 Gaussian RBM and Further Improvements . 42

7.3 Hybrid Model . 43

7.4 Missing Data . 45

7.5 Problems and Result . 45

8 Further Directions 46

8.1 RBM Dimensional Reduction . 46

8.2 Voting Model . 46

9 Conclusion 47

A Appendix: Bisection method and Boundary Reduction method 49

B Appendix: Gibbs sampling 51

C Appendix: Hybrid RBM Formula Provement 52

D Appendix: Tables 54

8

0. Introduction 9

0 Introduction

0.1 Thesis Goal

When a bank lends money to companies, the measure of default (Insolvency) risk is very

significant as a reference for making a certain decision. An unpredicted bankrupt might cause over

millions of losses which is undesirable for everyone. Credit Scoring is the topic of how to measure

the default probability based on the past data. It helps companies to reduce losses of investment,

and find some new chances for profit. Also, those model, which can produce a probability from

the past data, is called statistic model.

Until now, one of the most commonly used statistic models in credit scoring has been the

Logistic Regression (LR). It has been used in this area for over 50 years [1] and shows excellent

performance consistently. However, the larger Random Access Memory, the faster CPU, and the

even more powerful GPU have been developed, and computers can process a more extensive data

with a higher dimension and more observations. A more massive data-set has more complexity,

which reduces the accuracy of LR. For a highly dimensional data, the most effective way to increase

the accuracy of LR is to reduce the dimension of data [2]. Finding an alternative to LR has become

an unavoidable problem.

The idea of Neural Network comes from the biological neural network which is made by a

group of chemically connected neurons. Similarly, a Neural Network is a group of linked neurons

which receive information from other neurons and pass the processed information to next neurons

through links. Since Google get a great achievement on alpha-go and alpha-zero [3][4], the Artificial

Intelligence (AI) has become a popular topic in machine learning area. As the foundation of AI,

Neural Networks has been continuously developed and have much application in different areas,

e.g., Face Recognition, Advertising Serving, and Motion Capture. Neuron Networks require a much

more extended training period (sometimes require weeks) than traditional machine learning, but

they have a unique feature to handle large data size (over millions).

In this thesis, the database is financial balance sheets collected from the public website from

2013 until 2018. The size of the data is significantly different for each year (from thousands to

hundreds thousand). The purpose of this thesis is to compare the accuracy of small and medium-

size companies’ bankrupt as predictions between Neuron Networks and the traditional statistic

method based on the financial ratio from 2008 to 2015 and find some relations between model type

and data size.

0.2 Background and Related Work

The idea of Neural Networks already exists over 50 years. Lots of published researches contain

comparisons of different Neural Networks and traditional statistic models. In these papers, for

different data sources or different data sizes, the best model may not be the same.

Desai Vijay S. applies LR, Linear Discriminant Analysis (LDA) and Multi-Layer Perceptron

10 0. Introduction

(MLP) on three classes of data and 18 variables per observation in 1997 [5]. Three classes have

962, 918 and 853 observations respectively. After thousands of iterations, none of them outperform

any other. In average, LR has slightly higher accuracy, but the MLP has a better result in some

cases.

Piramuthu Selwyn compares MLP and Neurofuzzy system (NF) on real banks’ data which

includes 59 failed banks and 59 non-failed banks [6]. For each observation, there are 18 variables

to predict the failure. A 10-hidden-neuron MLP gets the best result in classification.

Instead of comparing two or three models, West David analysed ten different models from three

types of models with 1000 real data [7]. The representative of the Neural Networks is Mixture of

Experts (MoE), Radial Basis Function Networks (RBFN), Learning Vector Quantization (LVQ),

Fuzzy Adaptive Resonance (FAR) and MLP. LR and LDA represent the parametric models. K-

Nearest Neighbour (KNN), Decision Tree (DT), and Kernel Density (KD) belong to the non-

parametric models. LR achieved the best fit, and MoE becomes the second most used model by

only 1% worse than LR. RBFN and MLP are third and fourth respectively.

In 2002, Lee, Chiu, Lu, and Chen developed a Hybrid Neural Discriminant Model and com-

pared it with LR and MLP [8]. They found LR had the same performance as MLP on 6000

9-dimensional observations.

Besides, Bensic, Sarlija, and Zekic tested LR, MLP, RBFN, Probabilistic Neural Network

(PNN), LVQ, FAR and DT [9]. A 50-hidden-neurons MLP, the LR, and the DT have best results

on a database containing 160 observations and 31 variables per observation. In conclusion, MLP

is the best model as it has the lowest Type I error (predicting bad credit applications as good).

However, there are some different conclusions which says something unusual about LR. In

2005, Ong, Huang, and Tzeng applied LR, MLP, and DT on 20 fields of 1000 observations from

real-world data, and the best model is the DT [10]. In the same year, Cuicui, Desheng, and

Dexiang got an incredible 100% accuracy result of Deep Brief Network (DBN) on 20 fields of

661 observations’ database [11]. This result was much better than MLP, LR and Support Vector

Machine (SVM).

0.3 Structure of the Thesis

The main content of this thesis contains 9 Chapters. Chapter 1 describes the process of data

cleaning which includes the observation filter and fields selection. Then this chapter declares the

definition of the default based on the filtered data. Finally, the chapter shows the benefit from the

winsorization.

Chapter 2 introduces a general process of model training. Then it describes some model’s

performance measurement, such as Area Under the Receiver Operating Characteristics Curve

(AUC) and Accuracy Ratio (AR). The chapter also explains the K-Fold Cross-Validation to improve

the stability of accuracy measurements. After this, the Chapter compares some popular gradient

descent methods and finds the best one. The best gradient descent method will apply to LR, MLP,

PNN, RBFN, and RBM. In the end, the Chapter introduces some methods of balancing data which

0. Introduction 11

can solve the problem caused by the small percentage of defaults.

According to the listed previous researches, the five most representative models are chosen

in this thesis. Firstly, LR is the only traditional statistic model used in this thesis. Except for

LR, there are many other well-performed traditional models in credit scoring. KNN, DT, and

SVM frequently have a better result than LR. However, the LR has a solid result and transparent

process. It is always the best or one of the best models in the previous research mention before.

Hence this thesis only takes LR as a representative of traditional scoring models. In Chapter 3, this

thesis describes the iterative training and prediction process of LR. Besides, the Chapter shows

the effect of the default balance and finds the best result from LR. The result is going to be a

benchmark for all other models.

The second chosen model is the MLP, because all researches listed above has shown it is one of

the best models to be used for this type of analysis (credit scoring). Chapter 4 describes the MLP

model, and it explains the primary processes of MLP: the Forward activation and the Backwards

propagation. Also, this chapter compares the different activation functions and different structure

of Hidden layers. The best result is listed at the end of the Chapter.

Chapter 5 illustrates the structure of the PNN and describes its training and prediction pro-

cesses. It also proves that increasing the dimension of variance can improve the accuracy of

prediction.

Chapter 6 formulates the RBFN and shows its relation to the Gaussian Process Regression

(GPR). Then the Chapter introduces two methods of centre reduction: Recursive Orthogonal Least

Squares (ROLS) Training centre filtering and K-mean Clustering centre reduction.

Chapter 7 reviews binary Restricted Boltzmann Machine (RBM) and Gaussian Restricted

Boltzmann Machine (GRBM). The Chapter also includes a new Hybrid Model which can handle

binary and non-binary variable together. Then the Chapter explains how RBM deal with missing

data.

The Further analysis is in the Chapter 8. It includes the RBM Dimension Reduction and the

Voting model. These approaches have not been implemented. In addition, the conclusion is in the

Chapter 9.

12 1. Data Cleaning

1 Data Cleaning

1.1 Data Sources and Company Filter

The financial data are taken fromCompanies House public data source in XBRL & iXBRL

form, which including Assets, Liabilities, and Equity data between 2004 and 2018. The main signal

of default (Insolvency), insolvency notices, are listed by The Gazette, the UKs official public

record, from 2008 to 2018. The financial data is taken from the annual balance sheet of each

company. As the real reported date may be not the date of balance sheet, so the month and date

information are not considered in this thesis. Table 1 contains all fields of raw data. Turnover and

Number of Employees fields are sparsely populated, hence they will only be involved in the data

filtering. Other Current Assets, Other Fixed Assets, Other Current Liabilities, Total Long-term

Liability, and Other shareholders Funds did not appear in the balance sheet, so they are calculated

by other fields.

Code Field name Calculation

ca Total Current Assets

ca1 Cash Flow

ca2 Trade and other Receivables (Debtors)

ca3 Stock and Inventory

ca4 Other Current Assets ca4=ca-ca1-ca2-ca3

fa Total Fixed Assets

fa1 Tangible Fixed Assets

fa2 Intangible Fixed Assets

fa3 Other Fixed Assets fa3=fa-fa1-fa2

stl Total Current Liability (Less than 1 Year)

stl1 Short-term Borrowing (Including Overdrafts)

stl2 Trade and Other Payables

stl3 Other Current Liabilities stl3=stl-stl1-stl2

ltl Total long-term Liabilities (Greater than 1 Year) ltl=ltl1+ltl2+ltl3

ltl1 Long-term Borrowings (Debt and Loans)

ltl2 Accruals Deferred Income

ltl3 Long-term Provisions

e Total Shareholders funds or Equity

e1 Shareholder funds from Issuance

e2 Shareholder funds from Remained Earnings

e3 Other Shareholders Funds e3=e-e1-e2-e4

e4 Balance Sheet Minorities

T Turnover

NE Number of Employees

Table 1: Fields of the Raw Data. If the field is not the first-hand data, then the calculation formula

are listed in the column of Calculation.

1. Data Cleaning 13

In this thesis, only small and medium size companies are being analysed. One way of improving

the quality of the data is by applying a few filters to the raw data, see table 2. Filter 1 and Filter

2 select small-size and medium-size companies. Filter 4 drops Dormant and Inactive companies.

The rest of the filters are used to increase the quality of data.

ID Filters detail Equation

1 Remove any records with more than 500 Employees in that year. NE<500

2

Remove any entities with more than 60 million on both of

the Turnover and the Total Assets or more than 200 millions

Total Assets.

(T<60 or ca+fa<60)

and ca<200

3
Remove any records where the Shareholder Funds are greater than

the Total Assets.
e<ca+fa

4 Remove any records with less than 0.5 million Total Assets. ca+fa>0.5

5
Remove any records which failed the balancing test (absolute

difference exceeds 0.002 million).
abs(ca+fa-stl-ltl-e)<0.002

6
Remove any records which do not have at least two consecutive

fillings.

7
Remove abbreviated accounts (Total Other Current Liability is

equal to the Current Liabilities and Long-term Borrowing is 0.)
stl=stl3 and ltl1=0

Table 2: Filters applied on the raw data. Equations take field codes from Table 1.

1.2 Default Definition and Period Decision

The relation between the final financial reported year (the Last Filling Year) and the first

insolvency notices year is listed in the Table 3. Only 434 defaults (7.2%) happen before the last

filing year. Therefore, the default signal can be defined as

Default Year = min
{

First Default Year, Last Filing Year+1
}

.

Following this default definition, the default rate and the number of records after filters are shown

in the Table 4. All the years before 2008 will be dropped because their default sample size is less

than 100. 2016, 2017 and 2018 will also be removed as their low default rates, which means the

data has a tremendous amount of uncaught insolvency notice after 2018. Therefore, only records

between 2008 and 2015 are used for further analysis.

1.3 Fields Decision

Comparing with the first-hand data, Beaver and William H have proven financial ratios are

more powerful to predict failures for at least five years in future [1] [12]. There are few further

analysis on the topic of financial ratios in bankrupt prediction. Their selected fields are listed in

the Table 5.

14 1. Data Cleaning

First Default Year

Last Filing Year <=07 08 09 10 11 12 13 14 15 16 17 18 Total

2006 0 0 1 1 0 0 0 0 0 1 0 0 3

2007 0 9 23 13 6 2 0 2 0 0 1 0 56

2008 0 0 53 42 22 13 1 9 2 3 1 0 146

2009 0 1 8 123 94 33 2 14 3 6 1 0 285

2010 0 0 0 23 194 140 8 22 18 12 7 0 424

2011 0 1 3 4 22 225 16 75 44 29 16 0 435

2012 0 0 3 1 6 33 43 236 86 60 22 6 496

2013 0 3 1 6 2 7 18 358 224 66 32 4 721

2014 0 0 2 7 5 1 0 48 424 265 53 9 814

2015 0 2 0 2 12 5 2 4 66 566 273 28 960

2016 0 4 8 10 15 19 1 18 18 99 594 207 993

2017 1 5 15 33 48 41 3 32 47 25 170 243 663

2018 0 1 1 1 3 0 0 2 1 1 2 5 17

Total 1 26 118 266 429 519 94 820 933 1133 1172 502 6013

Table 3: Default year analysis on filtered data

Report Year Total Observations Will Not Default Will Default Default Rate

<=2005 3 3 0 0.0%

2006 51 48 3 5.88%

2007 1205 1147 58 4.81%

2008 3914 3766 148 3.78%

2009 8876 8579 297 3.34%

2010 14985 14576 409 2.72%

2011 21498 21070 428 1.99%

2012 28960 28557 403 1.39%

2013 38853 38224 629 1.61%

2014 46480 45799 681 1.46%

2015 54288 53534 754 1.38%

2016 65695 65029 666 1.01%

2017 80103 79893 210 0.26%

2018 4664 4664 0 0.0%

Table 4: Default ratio and number of records after filters

Field Equation I II III usable

Quick ratios (ca-ca3) / stl X X

Current ratio ca / stl X X X

Inventary/Net working captital ca3 / (ca-stl2) X X

Net working capital/Total assets (ca-stl2) / (ca+fa) X X X X

Current assets/Total debt ca / (stl+ltl) X X

Total debt/Equity (stl+ltl) / e X X

Fixed assets/Equity fa / e X X

Cash flow/Current liability ca / stl X X

Current liability/Equaty stl / e X X

1. Data Cleaning 15

Field Equation I II III usable

Equity and Long-term debt/Fixed assets (e + ltl) / fa X X

Inventory/Sales X

Fixed assets/Sales X

Total assets/Sales X

Net working capital/Sales X

Equity/Sales X

Earning before taxed (EBT)/Sales X

EBT/Total assets X

EBT/Equity X

EBT and Deprociation/Total debt X

Retained Earning/Total Assets e2 / (ca + fa) X X X

Earning Before Interest & Taxes/Total Assets X

Market value of Equity/Book value of Total debt X

Sales/Total Assets X

log(Total Assets) log(ca + fa) X X

Total Liability/Total Assets (stl + ltl) / (ca + fa) X X

Indicator of Total liability larger than Total Assets X

Funds provided by operation/Total Liability X

Indicator of negative Retained Earning ✶(e2<0) X X

Table 5: Fields analysis from I: Edmister, Robert O 1972 [13], II: Ohlson, James A. 1980 [15], III:

Altman, Edward I. 1968 [14]. “X” in usable gives the data fields available. Other “X” means this

field is included in the paper.

✶(e2 < 0) = 1 when e2 < 0, otherwise ✶(e2 < 0) = 0

Some fields in the Table 5 (Earning Before Interest and Taxed, Sales, Market value of Equity

and Fund from Operation) are not included in the raw data, so only 14 ratios can be used in further

analysis, which is marked in the “usable” column of table 5.

Some values in the selected fields are unusually extreme (10, 000, 000 times larger than the

median), which strongly affect the training process. Therefore, for each field, the top 1% largest

data will be replaced by the minimum of this 1% data. Table 13 shows the LR results of default-

balanced (default-balance is shown in Section 2.5) but non-winsorized data. Comparing with the

results of default-balanced and winsorized data, shown in Table 7, 1% top winsorization effectively

increases AR from 3.2% to the 28%. Hence the winsorized data is more accessible for prediction

comparing to the non-winsorized data. It will be used as the final cleaned data for each model in

the next few sections.

In this thesis, all models will be applied to the clean data on an annual basis. One observation

contains the 14 selected fields for one company in one year. Each observation only have one

True label that is 1 for default in next year, 0 for not default in next year. Each year’s data-set

is separated into a Training data-set, a Validation data-set and a Test data-set which have

67.5%, 22.5%, 10% of whole year’s observations respectively.

16 2. Model Scoring Process

2 Model Scoring Process

2.1 Introduction of Model Scoring Processes

To do the comparison between different model, a quantification process is necessary, in which

a more accurate model should have a higher score. And the process of getting this score is called

Model Scoring Process, which contains three process: the Prediction process, the Training

process and the Verification process.

All statistic models in this thesis can get a probability of default (1) and a probability of

non-default (0) for each observation. The label with higher probability is the prediction of the

observation. The process of getting prediction is called the Prediction process. The main aim

of the Training process is to obtain the minimal cost on the Training data-set, in which the cost

function is the mean of Loss functions. A Loss function can measure the difference between the

prediction and the True label for one observation. The common used Loss function is the Mean

Square Error, L(Yi, Ŷi) = (Yi− Ŷi)
2, and the log loss, L(Yi, Ŷi) = −Yi log(Ŷi)+ (1−Yi) log(1− Ŷi),

where Yi is the True label of ith observation and Ŷi is its prediction. The cost reduction can

be achieved by adjusting hyper-parameters (e.g., weights, biases, number of neurons). In the

meantime, this thesis applies the statistic model to the Validation data-set as a stopping signal.

The Training process keeps running until the model gets the lowest cost on the Validation data. It

can efficiently avoid the problem of the Over-Fitting on the Training data-set, i.e., the model only

gets a highly accurate result on the Training data-set and a much lower result on other data-sets.

Then this thesis applies the Prediction process of the trained model onto the Test data-set, the

score of a trained model is depended on the accuracy between its predictions and the True labels

of the Validation data-set. The process of getting this score is called the Verification process.

The best model should have high score each year by using this method described.

2.2 Methods for Verification

There are four types of possible results shown below.

Observation

Default Non-Default

Default dD dN
Prediction

Non-Default nD nN

A good model will have less dN and nD results. Three common ways of measuring the accuracy

of classifiers are

Sensitivity =
dD

dD + nD
,

Specificity =
nN

nN + dN
,

Predictive Accuracy =
dD + nN

dD + nD + nN + dN
.

(1)

Based on those, another measure of the performance is Area Under the ROC curve (AUC).

2. Model Scoring Process 17

Figure 1: ROC of a MLP model on 2015 year

The Receiver Operating Characteristic (ROC) curve is a two-dimensional measure of binary clas-

sification performance [16] in which 1-specificity is plotted on the x-axis and sensitivity is plotted

on the y-axis. An example of a ROC curve is shown in Figure 1. The AUC is the area under the

ROC curve.

A random model has relation of

dD

dN
=

nD

nN
.

Therefore Sensitivity = 1− Specificity for all samples. The ROC will be curved y = x, and half of

the area is under the ROC, hence the AUC will be 0.5. On the other side, a perfect model has zero

dN and nD. The ROC is y = 1, and the AUC is 1. For a more meaningful result, the Accuracy

Ratio (AR), AR = 2 ∗AUC − 1 is used to be the measure of model performance in this thesis.

2.3 K-Fold Cross-Validation

Once the performance measure of the model is decided, the upcoming question is how consistent

the measure is. According to the result in Table 4, 2008 and 2009 have a small size of default data.

The selection of Test observations will strongly affect the result and cause high variance. K-

fold Cross-Validation is an excellent solution to reduce the variance. Bengio, Yoshua, and Yves

Grandvalet have explained K-Fold Cross-Validation can generate an unbiased expected error of

the whole database [17] in 2004.

In practice, each year’s data is randomly and uniformly partitioned into K disjoint subsets

(M1,M2, . . . ,Mk) by the Cross-Validation. Between any two of subsets, there are no same obser-

vations, and the difference in size can only be one or zero. Let each subset be an individual Test

data-set. Their corresponding experimental data-sets, (M ′
1,M

′
2, . . . ,M

′
k), are obtained by remov-

ing the elements of the Test data-set from the whole data-set. For each pair of data-sets, (Mi,M
′
i)i,

this thesis splits the M ′
i into the Training data-set and the Validation data-set randomly, and apply

18 2. Model Scoring Process

the Training process of each statistic model on them.

In this thesis, ten sets of predictions are produced by 10 Test data-sets of 10-Fold Cross-

Validation for each year’s data. According to the K-Fold Cross-Validation. The observations of

10 prediction sets are disjoint, which compose a total prediction set. The comparison of the total

prediction set and the True label is the Annual AR calculated by the AUC, see Section 2.2. The

average of annual ARs from 2008 to 2015 is going to be the Overall AR of the model. The split

of default observations set will strongly affect the result because of the small size of the default

samples. Therefore, after repeating the whole model validation process five times (with different

random seed), the average of the Overall ARs is the Final AR which is the final score of the

model.

The measurement used to quantify the stability of the results is the standard deviation of 10

ARs from 10-Fold Cross-Validation. For a more stable model, the prediction accuracy should be

less affected by the split of data-sets, hence a small standard deviation means a more consistent

result.

2.4 Gradient Descent Optimisation

Sebastian Ruber describes more than eight gradient descent optimisation algorithms in his

work [24]. In this thesis, only a few classical optimisation algorithms will be discussed: Momentum

Gradient Descent (MGD), RMSprop Gradient Descent (RGD) and Adam Gradient Descent (AGD).

If the first derivative of the cost function to parameters, ▽θL(θ
(n)), is calculable, the most

basic optimisation should be general Gradient Descent (GD).

θn+1 = θn − η▽θL(θn),

where L is the cost function, η is learning rate, θn = (θ
(1)
n , . . . , θ

(m)
n) is the combination of all

parameters after the nth iteration and θ(0) is initialised randomly.

MGD is based on Newton’s Second Law, and it helps accelerate the training process in the

right direction. From the paper [24], the equation of MGD is:

vt = γvt−1 + η▽θL(θt)

θt+1 = θt − vt

(2)

where γ is commonly used as 0.9 and v0 = 0.

The learning rate of RGD is dependent on the derivative of the cost function and slowly

decrease to zero during the training process. It can reduce the rate of the Over-shooting which

means one training iteration changes the sign of derivative.

γt = 0.9γt−1 + 0.1(▽θL(θt))
2

θt+1 = θt −
η√

γt + ǫ
▽θL(θt),

(3)

where γ0 = 0 and ǫ = 10−8.

2. Model Scoring Process 19

AGD is similar to a mixture of MGD and RGD, and it has benefits of both models. The

following is the equation of AGD from the paper:

vt = β1vt−1 + (1− β1)▽θL(θt)

γt = β2γt−1 + (1− β2)(▽θL(θt))
2

θt+1 = θt −
η√

γt + ǫ
vt

(4)

According to Kingma, Diederik P. and Jimmy Ba.’s research [25], 0.9, 0.999 and 10−8 are suitable

default values for β1, β2 and ǫ respectively for the training process.

GD MGD RGD AGD
ID

Cost Loop Cost Loop Cost Loop Cost Loop

1 0.6377 7692 0.5886 6548 0.5153 9951 0.5264 7060

2 0.6368 9559 0.5542 8903 0.437 10028 0.5315 6842

3 0.6692 1629 0.5981 4835 0.4986 9931 0.5736 4992

4 0.6698 5442 0.6437 2552 0.516 9993 0.5103 7714

5 0.6359 5513 0.5303 5019 0.5316 10032 0.5592 5586

6 0.6294 9342 0.4965 9685 0.5675 4205 0.5405 8870

7 0.6559 17483 0.5755 9750 0.5363 7187 0.5117 7475

8 0.6728 3463 0.6072 9511 0.543 10014 0.5564 6190

9 0.6578 8724 0.5767 7369 0.5939 1328 0.5773 9255

10 0.637 9548 0.6238 2610 0.5637 2887 0.5773 5229

Average 0.6502 7839.5 0.5794 6678.2 0.5303 7555.6 0.5464 6921.3

Table 6: Cost is the final cost after 50, 000 training iteration. Loop is the minimal number of

iteration to achieve a cost which only has ±1% different to the final cost.

Figure 2: The x-axis is the number of training loop. The y-axis is the cost on training data.

The results of two-neurons single hidden layer MLP model on 2008 data-set is in Table 6. The

20 2. Model Scoring Process

Cost is the final cost which is the mean of the log loss function after 50, 000 training iterations,

see Section 4.2. The loop is the minimal number of training iteration to get a cost which only has

±1% different to the final cost. The maximal value of each column is bold. From the result we

can find MGD has the fastest speed of converging, RGD has minimal training result and AGD has

the best overall performance.

An example of cost converging for each gradient descent methods on the same data-set is

shown in the Table 2. The MGD has an increasing converge speed from 6939 to 7196 loops, but

MGD is trapped in a local minimum point before 6939. The RGD has lots wave before reach the

minimum value. This high volatility process helps RGD to find a minimal global point. The graph

of AGD has both steps and wave. AGD can be treated as the mixture of MGD and RGD.

2.5 Default Balance

There is a class imbalance issues with the data, only 1−4% default been observed, as shown in

Table 4. If a statistic model is directly applied to the unbalance data, there is a high probability

that the model predicts every Test observations to be non-default. It is because that the cost

function takes an average of all losses of each training observation. Guessing every observation to

be non-default has a lower cost than predicting some default. An example of unbalanced data is

in Table 14. After the Model Scoring process, the result shows that LR is not much different from

a random model.

One way of avoiding the unbalance default problem is to balance the percentage of default

observations before the training process. This methods are the Over-Sampling and the Under-

Sampling. The Over-Sampling is to copy the default observations until them achieves 50% of the

whole data-set [18]. Then a wrong prediction of default observation will also appear on its replica

and cause more substantial punishment to the cost. On the other hand, the Under-Sampling drop

non-default observations randomly to achieve a balance default structure [19]. The Under-Sampling

can reduce the difficulty of calculation but lose information from non-default data.

The third method is the Weighted-Loss which increases the punishment of wrong default

observation as well. It multiplies a sample weight onto each loss directly, in which the sample

weight should depend on the percentage of the labels. In other words, a smaller percentage label

should have a larger sample weight, and a larger percentage label has less sample weight. This

thesis sets the sample weight of label l to be

SW (l) =
∑

i

ni

nl
,

where ni is the number of label i in the data-set. The benefit of the Weighted-Loss is that it

can apply non-integer sample weights which perfectly balance any types of data. However the

Over-Sampling can only increase default samples integer times, it can never balance a 30% default

rate to 50%. Therefore, this thesis mainly applies the Weighted-Loss to balance default.

After applying the Weighted-Loss, an improved result of LR is shown in Table 7, which gives

a 200 times better result than unbalanced data, in Table 14.

3. Logistic Regression 21

3 Logistic Regression

3.1 Description

Logistic Regression (LR) is the most popular statistical model used in credit scoring. In finance,

it has been used for over 50 years to classify real data. Lots of researches have shown its stability

and accuracy applied to real-world data. In previous research mention in section 0.2, almost

everyone gets a best or second best result from using LR, hence this thesis chooses LR to be the

representative of traditional statistical models and treat its result as a benchmark.

According to Frank E. Harrell, Jr.’s book Regression Modeling Strategies [20], for a given

observation vector

X =











x1
1 x1

2 . . . x1
n

...
...

. . .
...

xm
1 xm

2 . . . xm
n











,

the LR prediction is written as

P [Y = 1|X] =
1

1 + exp(−Xβ − β0)
, β =











β1

...

βn











.

The LR training process is to find the best hyper-plane {X|Xβ + β0 = 0} which divides the

whole space into the default half-space {X|P [Y = 1|X] > 0.5} and the non-default half-space

{X|P [Y = 1|X] < 0.5}. A common used definition of the “best” is that its parameters, β,

maximise the likelihood,

L(β) =
∏

Yi=1

P (Xi)
∏

Yi=0

(1− P (Xi)),

where P (Xi) = P [Yi = 1|Xi] are predictions, Yi are true labels of training observations. The

production for a large number of probabilities is more likely to be a tiny number and might cause

some unpredictable numerical problems. Some papers [20][21] prefer to maximise the log likelihood,

logL(β) =
∑

i

Yi log(P (Xi)) + (1− Yi) log(1− P (Xi))

=
∑

i

Yi log

(

P (Xi)

1− P (Xi)

)

+ log(1− P (Xi))

=
∑

i

Yi(Xiβ)− log(1 + exp(Xiβ))

(5)

After taking the derivative of logL(β) to βj , the new βj can be calculated by

βj = βj + η
∑

i

Xi,j(Yi − P (Xi)),

where η is the training ratio. 0.01 is a commonly used training ratio. By repeating this process,

the model training is completed until reaches a converging logL. Besides, as the first derivative of

log likelihood is well defined, it is able to apply four ways of gradient descent methods on − logL,

which is described in the Section 2.4. The AGD method can produce a faster and more accurate

training process.

22 3. Logistic Regression

Year 2008 2009 2010 2011 2012 2013 2014 2015 Overall AR

AR 34.8% 27.3% 31.5% 30.6% 23.6% 28.9% 24.8% 21.4% 27.9%
1

SD 0.1594 0.1003 0.0856 0.0700 0.0684 0.0729 0.0665 0.0609

AR 36.7% 32.2% 35.7% 32.9% 27.8% 34.6% 27.7% 23.6% 31.4%
2

SD 0.1101 0.0749 0.0490 0.0677 0.0663 0.0460 0.0658 0.0645

AR 34.5% 26.9% 28.8% 30.7% 26.5% 27.8% 26.3% 19.2% 27.6%
3

SD 0.1161 0.0923 0.0839 0.1053 0.0429 0.0706 0.0608 0.0779

AR 35.8% 28.1% 32.2% 31.8% 23.1% 29.7% 24.0% 22.2% 28.4%
4

SD 0.1950 0.0869 0.0877 0.0563 0.0761 0.0954 0.0515 0.0550

AR 38.2% 28.4% 33.0% 30.6% 22.4% 30.6% 24.4% 21.7% 28.6%
5

SD 0.1733 0.0906 0.0777 0.0662 0.0746 0.0735 0.0408 0.0538

Average AR 36.0% 28.6% 32.3% 31.3% 24.7% 30.3% 25.4% 21.6% 28.8%

Average SD 0.1508 0.0890 0.0768 0.0731 0.0657 0.0717 0.0571 0.0624

Table 7: LR results with winsorized and default-balanced data.

SD is the standard deviation of ARs in 10-Fold Cross-Validation. 1-5 means 5 times repeating test.

The Overall AR is the average annual ARs.

3.2 Results

The 10-Fold Cross-Validation splits a year data-set in 10 ways and produces 10 pairs of training

and test observations, {(M1,M
′
1), . . . , (M10,M

′
10)} (see Section 2.3). LR is applied to each pair

of observations, so LR produces 10 ARs for each year. The AR in the tables is the annual AR,

calculated by True results and all Predictions of 10-Fold Cross-Validation (see Section 2.3). The

SD in tables means the standard deviation of 10 ARs from 10-Fold Cross-Validation. The overall

AR is the average of five times repeat result. The standard deviation of ARs is used to measure

the complexity of a model. For an over-complex model, the AR will be strongly affected by the

training data and require a larger size of training data. On the other hand, a simple model is

stable but more likely to lose information of data.

The results of LR is on unbalanced data shown in Table 14. The final AR is only 0.13%, which

is a random guess and almost all predictions are non-default (0). After applying the Weighted-Loss

method, see Section 2.5, the new result is shown in Table 7. The overall AR is 28.8% which is 200

times better than unbalanced data. The Average AR for each year shows a declining trend from

2008 to 2015.

However the average SD in Table 7 has a relatively high value of 0.1508 in 2008, and it fast

decrease to the half, 0.0890, in the next year. Also, the average SD only have small change from

2009 to 2015 (from 0.0890 to 0.0624). In 2008 even though it has the highest AR but it varies

significantly more than the other years, which means the predictions of 2008 is strongly affected

by the split of K-Fold Cross-Validation. Therefore, LR has an unstable prediction for 2008 which

only has a small size of default observation, see Table 4.

4. Multi-Layer Perceptron 23

4 Multi-Layer Perceptron

4.1 Description

Multi-Layer Perceptron (MLP) is one of the most frequently used Neural Networks, all research

in Section 0.2 used MLP. Similar to LR, MLP can find a surface which divides the observation

space into two classes, but, instead of the hyper-plane, MLP can find a non-linear surface. The

primary training process, the Backward Propagation method, first described by Rumelhart, Hinton

and Williams [36] at 1986, let the large data-set training become possible. In addition, MLP has

been proved it can approximate any function [23].

MLP contains three types of layers:

(i) an Input layer whose nodes representing observation variables,

(ii) an Output layer whose nodes representing the prediction,

(iii) one or two Hidden layers used to catch the non-linearity of the data, see Section 4.4,

and each layer contains several neurons. From the Input layer to the Output layer, neurons in

each layer only pass information to the neurons in the next layer with the individual weight.

The primary process of MLP training is the initialisation of the whole network, the Forward

Activation and the Backward Propagation, see Section 4.2. After the initialisation of weights

and biases randomly, the model uses the Forward Activation to produce prediction results and uses

the Backward Propagation to adjust all weights during the training.

The Figure 3 is an example of MLP with one Input layer, one Hidden layer, and one Output

layer. For each observation, this model takes three input variables and produces one dependence

variable as output. Each link between neurons represents a weight, i.e., the weight between the

Input layer and the Hidden layer is a 3× 2 matrix, W [1], the weight between the Hidden layer and

the Output layer is a 2× 1 matrix, W [2]. Besides, there is a bias, b[1], between the Input and the

Hidden layer and a bias, b[2], between the Hidden layer and the Output layer.

X
[1]
2

X
[1]
1

X
[1]
3

X
[2]
1

X
[2]
2

X
[3]
1

W [1],b[1]

W [2],b[2]

Input layer Hidden layer Output layer

Figure 3: An example structure of MLP.

24 4. Multi-Layer Perceptron

4.2 Main Processes

The prediction process of MLP is the Forward Activation, in which neurons of the Input layer

take information from each variable of a observation. The model propagated all information forward

through links to the Output layer. In each layer, two processes are applying the information. First,

all information from the previous layer will be weighted and summed up with the bias of the layer

as a linear function. Secondly the result is processed by the activation function and then passes to

all linked neurons.

Assume a MLP model has same structure (3-2-1) as Figure 3, then the weights and biases of

the model are

W [1] =











w
[1]
1,1 w

[1]
1,2

w
[1]
2,1 w

[1]
2,2

w
[1]
3,1 w

[1]
3,2











, W [2] =





w
[2]
1,1

w
[2]
2,1



 , b[1], b[2]

To fit n three-dimensional observations, the MLP model will have three-dimensional variables in

the Input layer, two-dimensional variables in the Hidden layer and one dimensional variables in

the Output layer:

X [1] =











x
[1]
1,1 x

[1]
1,2 x

[1]
1,3

...
...

...

x
[1]
n,1 x

[1]
n,2 x

[1]
n,3











, X [2] =











x
[2]
1,1 x

[2]
1,2

...
...

x
[2]
n,1 x

[2]
n,2











, X [3] =











x
[3]
1,1

...

x
[3]
n,1.











Then values of the Hidden layer is

x
[2]
i,j = σ

(

∑

k

w
[1]
k,jx

[1]
i,k + b[1]

)

where σ is the activation function. One common used activation function is the Sigmoid function,

σ(Z) = 1
1+exp(−Z) . X

[3] is calculated by a similar function,

x
[3]
i,j = σ

(

∑

k

w
[2]
k,jx

[2]
i,k + b[2]

)

,

which is the prediction of X [1].

The training process of MLP is the Backward propagation. For each observation of the

Training data-set, the model produces a prediction by the Forward Activation. There is a Loss

function to measure how close from one prediction to its True label (1 or 0). The model takes

the mean of all loss as the cost function. To achieve a minimal cost, the gradient descent method

updates all parameters backward, see Section 2.4. One of the often used Loss function is the log

loss function,

L(Ŷ , Y) = −Y log Ŷ − (1− Y) log(1− Ŷ),

where Y is the true label and Ŷ is the prediction (See LR log likelihood, Equation (5)). If the

Activation function is the Sigmoid function, then the first derivative of the cost respective to the

second weights and the second bias are

dW [2] =
1

n

∑

i

X
[2]T
i (X

[3]
i − Yi), db[2] =

1

n

∑

i

(X
[3]
i − Yi),

4. Multi-Layer Perceptron 25

where n is the number of observations. This section only takes the GD method as a example (see

Section 2.4 for more methods). The updated weights and bias are

Ŵ [2] = W [2] + ηdW [2] and b̂[2] = b[2] + ηdb[2]

respectively, where η is the learning rate. Then the first derivative of the cost respective to first

weights and first bias are

dW [1] =
1

n

∑

i

X
[1]T
i

(

σ′(X [1]
i W [1] + b[1])W [2](X

[3]
i − Yi)

T
)

,

db[1] =
1

n

∑

i

σ′(X [1]
i W [1] + b[1])W [2](X

[3]
i − Yi)

T
(6)

respectively, where σ′ is the first derivative of the Sigmoid function, σ′(x) = exp(−x)
(exp(−x)+1)2 . It is

worth to mansion that apply a function on a matrix means apply the function on each entry of

the matrix. Similar as before, the updated weights are Ŵ [1] = W [1] + ηdW [1], and the updated

bias is b̂[1] = b[1] + ηdb[1]. Repeat updating all weights and biases in next layer until reach the

Input layer. The process of updating all weights and biases once is a training loop of Backward

propagation. The MLP training process keeps running until the MLP get a minimal cost on the

Validation data-set.

4.3 Activation Functions

There are five different Active functions introduced by Tricks of the Trade [22]: Sigmoid

function, tanh function, ReLU function, Leaky ReLU function and a designed tanh function (shown

in Figure 4).

The most typical activation function is the Sigmoid function σ(Z) = 1
1+exp(−Z) , which can

map any real numbers to the segment of (0,1). The result is often treated as a probability of default.

However, it has been proved that centralised data (zero mean) has faster converge speed [22] for

deep training. The results of the Sigmoid function can only be positive which is non-centralised.

The tanh function is a better choice than the Sigmoid function because the tanh function maps all

real numbers to (-1,1) and with the maximum gradient at zero. The values in the Output layer

can be adapted to probabilities of default by function g(x) = x+1
2 . Comparing with the Sigmoid

function, the processed information from the tanh function is closer to zero. Tricks of the Trade

[22] recommended way is only to use the Sigmoid function in the Output layer and use the tanh

function during the perception.

Both of the Sigmoid function and the tanh function have two horizontal asymptotic lines.

When the prediction is close to the target value (True label), the gradient of two activation function

will tend to zero. Suppose the Loss function is L(Yi, Ŷi), where Ŷi = σ(XiW +B) is the probability

of prediction, Yi is the True label and σ is the activation function. The change ofW in each training

loop is

∆W =
α

n

n
∑

i

∂L(Yi, Ŷi)

∂W
=

α

n

n
∑

i

∂L(Yi, Ŷi)

∂Ŷi

σ′(XiW +B)Xi,

where α is the learning rate, n is the number of observations and σ′ is the first derivative of the

activation function. If XW+B are huge or negatively huge, σ′(XW+B) will tend to zero and slow

26 4. Multi-Layer Perceptron

down the training speed. One of the solutions is setting target values to be in the range and let them

be reachable. To avoid the activation function is too linear, the best target values are the maximal

and minimal points of the second derivative. To keep same target values, f(x) = 1.7159 tanh(23x)

is a good choice of the activation function [22].

Figure 4: Five distinct Active Function. The red lines are {(x, y)|y = ±1}.

Another choice of the activation function is the ReLU function, σ(Z) = max(0, Z). The ReLU

function can keep the same gradient for all positive input. So the training speed will not decrease

while the prediction is approaching the True label. However, the negative input will have zero

gradients. Taking special initial values for weights and biases can fix this problem. Based on the

ReLU function, the Leaky ReLU function, σ(Z) = max(0.01Z,Z) keeps the benefit of the ReLU

function and still has a small gradient for negative input. The 0.01 can be altered to a larger

number to procure quick converge for negative input, but it might cause more local minimal and

mislead the training result.

To compare the performance of Activation functions, all five activation functions are applied

on a single two-hidden-neurons hidden layer MLP with 2008 data, and its results are listed in

Table 8. The Cost is the limit of cost after 50, 000 training loops, and the Loop is the minimal loop

4. Multi-Layer Perceptron 27

Sigmoid tanh ReLu Leaky ReLu f(x)
ID

Cost Loop Cost Loop Cost Loop Cost Loop Cost Loop

1 0.5668 6927 0.5543 6848 0.5361 4990 0.5546 9521 0.5076 9544

2 0.5378 7363 0.5331 7609 0.5679 4934 0.4807 9877 0.5190 6913

3 0.4912 9639 0.5145 5876 0.4896 10046 0.6030 2112 0.5261 6742

4 0.5160 7396 0.4723 9943 0.5757 9032 0.5615 9856 0.5003 8176

5 0.5123 8015 0.5600 6211 0.5533 5684 0.5120 9458 0.5833 9088

6 0.5437 6857 0.5623 6603 0.5142 1349 0.5368 9985 0.5488 6175

7 0.5391 6284 0.5497 6233 0.5559 6778 0.5053 5481 0.5713 7986

8 0.5722 6642 0.5477 9511 0.5749 9996 0.5099 9999 0.5152 9036

9 0.5528 6748 0.5303 5266 0.5077 8207 0.5040 7560 0.5843 4523

10 0.5139 7280 0.5390 5241 0.4820 10000 0.4985 9985 0.5670 7803

Average 0.5346 7315.1 0.5363 6934.1 0.5357 7101.6 0.5266 8383.4 0.5423 7598.6

Table 8: Activation functions comparison. Cost is the final cost after 50, 000 training loops. Loop

is the minimal training loop required to achieve a ±1% accurate cost.

required to reach the cost with only ±1% different with the limit of cost. The minimal average

cost, 0.5266, is made by the Leaky ReLU function, which is only 0.0159% less than the average of

all cost, 0.5351, hence the choice of activation function cannot significantly improve the accuracy

of results. However, the minimal average loop, which is made by the tanh activation function, is

7.1% less than the average loop of all activation function, 7466.2. Therefore the tanh activation

function is the most suitable function for this 14 dimensions simple data.

4.4 Hidden Layer Structure

During the building of an MLP structure, the number of neurons in the Input layer depends

on the dimension of observations, and the number of neurons in the Output is one or two. The

most significant questions are what the number of Hidden layer and numbers of neurons for each

layer are. Many pieces of research talked about this question, but none of them have a precision

enough conclusion.

“As many hidden nodes as dimensions needed to capture 70-90% of the variance of the input

data-set.” [27] is one of most acceptable opinions. The dimension of the hidden layer will not larger

than input layer. Besides, after checking the value of weights, high correlative hidden neurons can

be reduced. The left number of hidden neurons is the most suitable size. Except for this way, some

researches suggests that the number of hidden neurons should be less than double size of input

neurons [28], or be between the numbers of output neurons and input neurons [29].

In this thesis, only 14 fields are chosen as the input neurons. The hidden neuron should be

less than the number of input neurons. The test results from 1 hidden neurons to 14 neurons are

listed in Figure 5. The best result is “3” which means one Hidden layer with three hidden neurons.

Some further two Hidden layer analysis results are also included in the Figure 5, but they do not

improve accuracy. Therefore, one Hidden layer is enough for the data-set.

28 4. Multi-Layer Perceptron

Figure 5: The final ARs of different MLP structure with the tanh Activation function and the

AGD method on balanced data from 2008 to 2015.

“5-3” means 2 hidden layers with 5 neurons at first and 3 neurons at end.

4.5 Results

MLP is an advanced method of LR, each neuron of MLP is a LR model. As a balanced data can

improve LR significantly (see Section 3.2), the MLP training uses Weighted-Loss on the Training

data (see Section 2.5). The Section 4.3 proves the tanh function is the most suitable activation

function. The Section 2.4 shows AGD is the best global minimal approaching method. After

testing MLP with different Hidden layers in Section 4.4, the best structure is a 3-neurons Hidden

layer. The Table 9 lists the optimal result of MLP. The model has near or over 30% ARs from 2009

to 2013. The standard deviation is low for each year. Although the average annual AR of 2008

(Table 9) is less than LR (Table 7), MLP has a better final AR and lower fluctuation in overall.

Year 2008 2009 2010 2011 2012 2013 2014 2015 Overall AR

AR 30.2% 34.9% 29.1% 31.6% 31.2% 31.7% 28.7% 29.9% 30.9%
1

SD 0.1212 0.0778 0.0857 0.0691 0.0609 0.0543 0.0896 0.0516

AR 29.1% 35.2% 29.4% 27.9% 32.1% 31.7% 27.7% 29.3% 30.3%
2

SD 0.1216 0.0903 0.0678 0.0648 0.0710 0.0423 0.0510 0.0515

AR 22.2% 31.1% 29.4% 31.3% 30.4% 30.5% 30.9% 27.5% 29.2%
3

SD 0.0621 0.0694 0.0603 0.0735 0.1302 0.0602 0.0942 0.0529

AR 29.3% 27.8% 30.6% 31.9% 29.2% 34.0% 27.2% 30.2% 30.0%
4

SD 0.1504 0.0573 0.0578 0.0641 0.0828 0.0691 0.1132 0.0451

AR 30.1% 31.1% 30.9% 31.4% 29.4% 33.5% 28.3% 26.4% 30.1%
5

SD 0.0921 0.1009 0.0575 0.1037 0.0584 0.0598 0.0792 0.0771

Average AR 28.2% 32.0% 29.9% 30.8% 30.4% 32.3% 28.5% 28.7% 30.1%

Average SD 0.1095 0.0791 0.0658 0.0750 0.0807 0.0571 0.0854 0.0556

Table 9: 14-3-1 MLP with the tanh activation function and AGD.

SD is the standard deviation of ARs in 10-Fold Cross-Validation. 1-5 means 5 times repeating test.

The Overall AR is the average annual AR.

5. Probabilistic Neural Network 29

5 Probabilistic Neural Network

5.1 Description

Probabilistic Neural Network (PNN) is a nonlinear classifier statistic model which is based on

the probability distribution function (PDF) and Bayesian theorem. Since Specht develops PNN at

1988 [30], PNN is a typical example of non-linear Neural Networks in credit scoring.

PNN has four layers:

(i) an Input layer whose nodes representing observation variables,

(ii) an Pattern layer which absorbs information from the distance between observations,

(iii) an Summation layer which produces the averages of groups in the Pattern layer,

(iv) an Output layer whose nodes representing the prediction.

All input information propagates from the Input layer to the Output layer following the network.

Comparing with MLP, PNN has a more regular network structure. The Summation layer has the

same number of neurons as the possible types of the label, and each neuron in the Pattern layer

only connects one of the Summation layer’s neuron.

X
[1]
1

X
[1]
2

X
[1]
3

X
[2]
1

X
[2]
2

X
[2]
3

X
[2]
4

X
[3]
1

X
[3]
2

X
[4]
1

Input layer Pattern layer Summation layer Output layer

C [1], σ Mean

argmax

Figure 6: An example structure of PNN.

The Figure 6 is a simple PNN example. The Input layer has three neurons for three dimensions

of observations, X [1], and the Input layer connect with the Pattern layer by a bias σ and centres,

C [1], which is a 4× 3 matrix. In the example, the Pattern layer contains four neurons which relate

to four distinct centres which must have the same dimensions as observations. For a small data-

set, it is common to use the Training data-set to be the centres. All neurons in the Pattern later

are separated into certain groups. Any two neurons belong to a same group if and only if their

related centres have same labels. Each group links with an individual neuron of the Summation

30 5. Probabilistic Neural Network

layer, hence each neuron in the Summation layer has a distinct label. Finally, both of summation

neurons pass their information, which is the mean of output from all linked pattern neurons, to

the output neuron and the label from the highest-valued summation neuron is the output.

5.2 Main Processes

Instead of the linear function of observations and weights, the prediction process of PNN

absorbs information from a distance between observations and centres. Suppose a PNN has the

same structure as the example in Figure 6 and the Training data-set has n observations. Then the

Input layer, centres and centres’ labels are

X [1] =











x1
1 x1

2 x1
3

...
...

...

xn
1 xn

2 xn
3











, C [1] =

















c11 c12 c13

c21 c22 x2
3

c31 c32 x3
3

c41 c42 x4
3

















, Y =

















1

0

1

0

















respectively. The first and third centres have label 1 and the rest centres have label 0, so X
[2]
1 and

X
[2]
3 are in one group, X

[2]
2 and X

[2]
4 are in another group. The distance between ith observation,

Xi = [xi
1, x

i
2, x

i
3], and jth centre, Cj = [cj1, c

j
2, c

j
3], is

∥

∥Xi − Cj
∥

∥ =

√

(xi
1 − cj1)

2 + (xi
2 − cj2)

2 + (xi
3 − cj3)

2. (7)

For the ith observation, the results of jth pattern neuron is

X
[2]
ij = exp

(

−||Xi − Cj ||2
σ2

)

. (8)

Hence, the first summation neuron is X
[3]
i1 = 1

2X
[2]
i1 + 1

2X
[2]
i3 with label 1. If X

[3]
i1 is larger than X

[3]
i2 ,

then the prediction of ith observation is 1, otherwise its prediction is 0.

The training process of PNN is more complex than MLP as the Output layer of PNN contains

the argmax function which is not differentiable, hence the cost of PNN is not differentiable as

well. Gradient descent methods are not suitable for cost reduction, and the only ways are Grid

search and Random search. Grid search lists all or most values for each parameter and tests

on each of possible combination one by one to find the best parameters which optimise the result.

Random search randomly sets each parameter in each training loop. After a certain number of

loops, the parameters which get the best result is the optimiser. Therefore, Random search and

Grid search are slow for continuous multi-dimension space and might miss the optimal value.

The first way of speed up the training process is to reduce parameter dimensions. According

to Donald F. Specht’s paper Probabilistic Neural Networks [30], PNN assumes all dimension of

observations are individual, and each of default probability and non-default probability is following

a mean of multiple Gaussian distributions, see example in Figure 7. For a given mean, µ, and

standard deviation, σ, the Probability density function (PDF) of Gaussian distribution is

PDF (Xi) =
1

√

2π||σ||2
exp

(

−||Xi − µ||2
2σ2

)

= αX
[2]
ij ,

where α is some constant which does not affect the output result of the network. From the Figure

7, the mean of PDF is likely to have high value at the means of each Gaussian distribution. To

5. Probabilistic Neural Network 31

be able to achieve a low cost on training data, all training observations are picked as centres in

the Pattern layer, so σ is the only parameter required for training. As the model assume PDFs

of default and non-default are continuous, and σ should be a finite positive number, Bisection

method can be used to find a best σ which minimise the cost of the Training data-set (see Appendix

A for Bisection method).

Figure 7: The top-left is the PDF of 1-dimensional Gaussian distribution with mean 0 and standard

deviation 1, (0,1).

The top-right is the mean of PDFs of two 1-dimensional Gaussian distribution with parameters

(0.5,0.7) and (-1,0.7) respectively.

The bottom-left is the PDF of 2-dimensional Gaussian distribution with mean [0,0], standard

deviation [1,1]. Each number of [1,1] represents a standard deviation in one dimension.

The bottom-right is the mean of PDFs of two 2-dimensional Gaussian distribution with parameters

([1,1],[1,0.7]) and ([-1,-1],[1,0.7]) respectively.

5.3 Dimension of Variance

Different fields might have different variance, and values in the small variance field are more

close to each other. A shorter distance will produce a more considerable value to the neurons

of the Pattern layer. So those fields will be more important than a large variance field. To

get a more accurate result, different dimensions of the data-set should have an individual σ in

Equation (8). However, Bisection method is only usable on a function with 1-dimensional domain.

The boundary reduction method can achieve similar work on a multi-dimensional variable, see

Appendix A.

For a list of variables and their losses, the boundary reduction method assumes that the

32 5. Probabilistic Neural Network

point with the minimal loss, X0, and the point with the second minimal loss X1 should be closest

to the global minimum point. In every training loop, the boundary reduction method randomly

picks a new variable from the circle which has centre X0 and radius ||X0−X1||. The new random

variable is joined into the list, and the whole process will repeat until its minimal loss reaches the

convergence.

Table 15 (in Appendix D) shows the five times repeating test results with the global one

dimensional σ. It has the best result 23.1% in 2009, the worst result 15.1% in 2012 and the final

AR is 19.7%. Similar to the global σ, the local σ has maximal AR in 2009 and minimal AR in

2012 with values 29.3% and 20.5% respectively, shown in Table 10. The overall AR increase to the

23.8%, hence increase the dimension of σ can get definite improvement.

Note, every year’s result gets some amount of improvement. Therefore, increase the dimension

of σ only has positive effect to PNN model, and there is no reason to use the global σ.

5.4 Results

The best result of PNN is shown in Table 10. The best annual AR is 29.3% and 25.5% in 2009

and 2015 respectively, and the worst annual AR is in 2012 with 20.5%. From the table, there is no

relation between the annual AR and data size. One of the reason is that PNN absorbs information

from a distance between observations, so the AR is affected by the aggregation of observations

more.

Year 2008 2009 2010 2011 2012 2013 2014 2015 Overall AR

AR 23.8% 27.9% 21.5% 21.0% 18.2% 22.0% 22.4% 24.9% 22.7%
1

SD 0.1449 0.1092 0.0705 0.0482 0.0980 0.0626 0.0501 0.0721

AR 19.7% 29.0% 22.8% 22.5% 18.2% 23.3% 24.4% 26.1% 23.2%
2

SD 0.1321 0.0820 0.0619 0.0962 0.0710 0.0628 0.0614 0.0737

AR 18.7% 27.9% 23.0% 24.6% 22.1% 25.7% 22.8% 26.5% 23.9%
3

SD 0.0836 0.0785 0.0771 0.0785 0.0766 0.0695 0.0498 0.0500

AR 22.2% 28.1% 22.8% 22.9% 22.4% 25.5% 20.0% 26.0% 23.7%
4

SD 0.1001 0.1195 0.0713 0.0630 0.0927 0.0482 0.0741 0.0670

AR 22.6% 33.6% 27.7% 25.0% 21.4% 23.7% 25.1% 24.0% 25.4%
5

SD 0.1250 0.0845 0.0854 0.0799 0.0659 0.0687 0.0457 0.0661

Average AR 21.4% 29.3% 23.6% 23.2% 20.5% 24.0% 22.9% 25.5% 23.8%

Average SD 0.1172 0.0947 0.0732 0.0809 0.0624 0.0571 0.0562 0.0658

Table 10: PNN results with default-balanced data and local multi-σ.

SD is the standard deviation of ARs in 10-Fold Cross-Validation. 1-5 means 5 times repeating test.

The Overall AR is the average annual ARs.

Comparing with the LR best result in Table 7, it is worth mentioning that although the LR’s

final AR has 5% higher than the PNN’s, the PNN has better AR than the LR in years 2009 and

2008. LR is the better statistic model but, in some condition, PNN is more accurate than LR.

6. Radial Basis Function Network 33

6 Radial Basis Function Network

6.1 Description

Radial Basis Function Network (RBFN) is another commonly used artificial Neural Networks

and is first formulated by Broomhead and Lowe [31] in 1988. Similar to PNN, RBFN absorbs

information from the distance of observations, which is more convenient to find the non-linear

boundary.

RBFN has one Input layer, one Hidden layer and one Output layer. Similar as PNN, all input

information propagates from the Input layer to the Output layer following the network, and the

number of neurons in the Hidden layer depended on the number of centres which must have same

dimensions as observations. In the prediction process, all information from the Hidden layer will

be processed through a linear function of weights and bias. Finally, a Sigmoid function changes

the linear result to the probability of default.

A simple 4-centres RBFN example is shown in Figure 8. It has three neurons in the Input

layer and one neuron in the Output layer. It means the RBFN model can predict three-dimensional

observations and get one-dimensional predictions. Also four neurons in the Hidden layer means

the RBFN has four three-dimensional centres, C [1], and a 4× 1 matrix weight, W [2].

X
[1]
2

X
[1]
1

X
[1]
3

X
[2]
2

X
[2]
3

X
[2]
4

X
[2]
1

X
[3]
1

C [1], σ

W [2],b[2]

Input layer Hidden layer Output layer

Figure 8: An example structure of RBFN.

6.2 Main Process

A simple 4-centres RBFN example are shown in Figure 8. Suppose the Training dataset and

four centres are

X [1] =











x1
1 x1

2 x1
3

...
...

...

xn
1 xn

2 xn
3











, C [1] =

















C
[1]
1

C
[1]
2

C
[1]
3

C
[1]
4

















=

















c11 c12 c13

c21 c22 x2
3

c31 c32 x3
3

c41 c42 x4
3

















34 6. Radial Basis Function Network

respectively. Then the values of the Hidden layer, X [2], is a n× 4 matrix. The jth value of ith row

of the matrix is

X
[2]
ij = Φ

(

||X [1]
i − C

[1]
j ||

σ

)

,

where σ is a 1-dimensional parameter and Φ is the activation function of the Hidden layer which

is common to use either Gaussian form Φ(x) = exp(−x2) or a multiquadric Φ(x) =
√
c2 + x2, [31].

‖·‖ is shown in Equation (7). The prediction of ith observation from the paper [31] is

X
[3]
i = X

[2]
i W [2] + b[2]. (9)

where W [2] is the weight, b[2] is the bias and X
[2]
i is the ith row of X [2]. As True labels of data-set

are only default (1) and non-default (0), this thesis uses

X
[3]
i = φ(X

[2]
i W [2] + b[2]), (10)

where φ is the Sigmoid function, as the prediction.

The original RBFN has a simple Training process [31]. Suppose there are n training observa-

tions, X [1] = X = [X1, X2, . . . , Xn], and related labels, Y = [Y1, Y2, . . . , Yn]. The Loss function of

RBFN, L(Yi, X
[3]
i) can be the Mean Square Error function or the Log loss function. Same as PNN,

setting centres C [1] to be training observations X can reduce the cost of training observations.

According to the previous prediction function (see Equation (9)), the output of RBFN can be

written as











X
[3]
1

...

X
[3]
n











=











Φ
(

||X1−X1||
σ

)

. . . Φ
(

||X1−Xn||
σ

)

...
. . .

...

Φ
(

||Xn−X1||
σ

)

. . . Φ
(

||Xn−Xn||
σ

)





















W
[2]
1

...

W
[2]
n











+











b[2]

...

b[2]











. (11)

By solving linear regression with Ordinary Least Square (OLS), the optimal weights and bias are





b[2]

W [2]



 =

(

[

1 Σ̂
]T [

1 Σ̂
]

)−1
[

1 Σ̂
]T

Y,

where Σ̂ is the n×n matrix in the Equation (11) and 1 is 1×n matrix with 1 in each entries. σ is

the only parameter which needs the gradient descent optimisation, see Section 2.4. The derivative

of the cost function respective to σ is

∆σ = − 1

n

n
∑

i

∂L(Yi, X
[3]
i)

∂X
[3]
i

n
∑

j

Φ′
(‖Xi −Xj‖

σ

)

Wj
‖Xi −Xj‖

σ2

where Φ′ is the first derivative of Φ and
∂L(Yi,X

[3]
i

)

∂X
[3]
i

is the partial derivative of the Loss function

respective to the prediction. This section only take the GD method as a example (see Section 2.4),

the updated σ is σ̂ = σ + α∆σ, where α is the learning rate.

However, this thesis uses the adapted RBFN model, i.e., the prediction is Equation (10), so

the derivative of the cost function respective to σ changes to

∆σ = − 1

n

n
∑

i

∂L(Yi, X
[3]
i)

∂X
[3]
i

φ′(X [2]
i W [2] + b[2])

n
∑

j

Φ′
(‖Xi −Xj‖

σ

)

Wj
‖Xi −Xj‖

σ2

6. Radial Basis Function Network 35

where φ′ is the first derivative of the Sigmoid function. Instead of the OLS, the weight W [2] have

to be calculated by the gradient descent method. The derivative of the cost function respective to

the W [2] is

∆W [2] =
1

n

n
∑

i

∂L(Yi, X
[3]
i)

∂X
[3]
i

φ′(X [2]
i W [2] + b[2])X

[2]T
i and

∆b[2] =
1

n

n
∑

i

∂L(Yi, X
[3]
i)

∂X
[3]
i

φ′(X [2]
i W [2] + b[2])

(12)

Then weights, bias and σ are updated by the gradient descent method, see Section 2.4.

6.3 Relation with Gaussian Process Regression

In 1963, Gaussian Process Regression (GPR) was described for the first time by Georges

Matheron [41]. For n given training observations, X̂ = [X̂1, . . . , X̂n]
T , and their related labels,

Ŷ = [Ŷ1, . . . , Ŷn]
T , GPR assumes the observation of data follows the standard linear regression

model with a Gaussian noise ǫ, i.e.

Ŷ = f(X̂) + ǫ, ǫ ∼ N (0, σ2
n)

where N (µ, ν) is a Normal distribution with mean µ and standard deviation ν, and f(X) = XW+b

is a linear function with weights W and bias b. The conditional PDF of Y is

P (Ŷ |X̂,W) =
n
∏

i=1

P (Ŷi|X̂i,W) =
1

(2πσ2
n)

n/2
exp






−

∥

∥

∥Ŷ − X̂W
∥

∥

∥

2

2σ2
n






(13)

For a given inputs, X, the prediction is a Normal distribution [42]:

P (Y |X, X̂, Ŷ) = N (ΣT Σ̂−1Ŷ , C(X,X)− ΣT Σ̂−1Σ),

Σ = C(X̂,X), Σ̂ = C(X̂, X̂)

where the jth value in ith row of C(A,B) is

C(A,B)ij =

[

α exp

(

−‖Ai −Bj‖2
2σ2

)

+ a0 + a1A
T
i Bj + βδ(i, j)

]

ij

, δ(i, j) =











1, if i = j

0, if i 6= j

where β is a small constant number to avoid non-invertible situation.

This prediction has high relation with the RBFN’s prediction. Suppose the activation function

Φ(‖Ai, Bj‖) of RBFN is C(A,B)ij , then the a0
∑n

i W
[2]
i term is equivalent to the bias b[2]. Let

the centres to be training observations, the prediction becomes

X [3] = ΣT (Σ̂T Σ̂)−1Σ̂T Ŷ .

If Σ̂ is invertible, than X [3] = ΣT Σ̂−1Ŷ is same as the mean of P (Y |X, X̂, Ŷ).

The training process of GPR is to minimize the log likelihood [42],

l = −1

2
log detΣ̂− 1

2
Ŷ T Σ̂−1Ŷ − n

2
log 2π

by gradient descent methods, see Section 2.4.

36 6. Radial Basis Function Network

6.4 Recursive Orthogonal Least Squares Training and Centre Selectors

As the database has great size (over million data), it requires too much memory space (over 16

GB) to store every training observations as centres. Also, a significant number of neurons leads to

a higher system complexity, which has a lower training speed. Gomm, J. Barry, and Ding Li Yu

introduced Recursive Orthogonal Least Squares (ROLS) training and two ways of selecting centres

[32] to reduce the number of centres.

Yu, D. L., J. B. Gomm, and D. Williams explained the ROLS method [34] based on QR

decomposition. For a full rank n×m matrix Θ, there exists n× n orthogonal matrix Q such that

Θ = Q





R

0



 , QTQ = QQT = I

and R is n×m upper triangle matrix with same rank as Φ.

Huang, De-Shuang, and Wen-Bo Zhao gave a more detail explanation in 2005 [35]. Let

Y (n) = [y1, . . . , yn]
T ∈ R

n×l be labels and Θ(n) = [θ1, . . . , θn]
T ∈ R

n×m be the values of the

Hidden layer. The final cost function can be written as

L(n) = ‖Y (n)−Θ(n)W (n)‖2F

where ‖X‖F =
√

∑

i

∑

j X
2
ij is the Frobenius norm, and the bias b[2] is transformed to be a

constant term in θ. By using QR decomposition, it is able to get

Θ = Q





R

0



 , QTY =





Ŷ

Ȳ



 (14)

Therefore, the cost function can be written as

L(n) =

∥

∥

∥

∥

∥

∥

Q(n)





Ŷ (n)

Ȳ (n)



−Q(n)





R(n)

0



W (n)

∥

∥

∥

∥

∥

∥

2

F

=
∥

∥

∥Ŷ (n)−R(n)W (n)
∥

∥

∥

2

F
+
∥

∥Ȳ (n)
∥

∥

2

F

(15)

where
∥

∥Ȳ (n)
∥

∥

2

F
represents the residual of the error cost function L(n). If a new training observation

is added into the data-set,

L(n+ 1) = ‖Y (n+ 1)−Θ(n+ 1)W (n+ 1)‖2F

=

∥

∥

∥

∥

∥

∥





Y (n)

y(n+ 1)



−





Θ(n)

θ(n+ 1)



W (n+ 1)

∥

∥

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

∥

∥

∥

∥

∥











Q(n)





Ŷ (n)

Ȳ (n)





y(n+ 1)











−











Q(n)





R(n)

0





Θ(n+ 1)











W (n+ 1)

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

∥

∥

∥

∥

∥











Ŷ (n)

y(n+ 1)

Ȳ (n)











−











R(n)

θ(n+ 1)

0











W (n+ 1)

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

F

=
∥

∥

∥Ŷ (n+ 1)−R(n+ 1)W (n+ 1)
∥

∥

∥

2

F
+ ‖ȳ(n+ 1)‖2F +

∥

∥Ȳ (n)
∥

∥

2

F

(16)

6. Radial Basis Function Network 37

So R, Q, Ȳ , Ŷ are updated by the following equations:




R(n)

θT (n+ 1)



 = Q(n+ 1)





R(n+ 1)

0









Ŷ (n+ 1)

ȳT (n+ 1)



 = QT (n+ 1)





Ŷ (n)

yT (n+ 1)



 ,

(17)

W (n + 1) can be calculated by R(n + 1)W (n + 1) = Ŷ (n + 1), and the new residual of error can

be updated by
∥

∥Ȳ (n+ 1)
∥

∥

2
=
∥

∥Ȳ (n)
∥

∥

2
+ ‖ȳ(n+ 1)‖2 = L(n+ 1).

The size of R, Ŷ are only related to the number of centres. The training complexity will

linearly increase while the growing of the training data size.

One way of selecting network centres is Backward selection algorithm [32]. Suppose the

jth centre is deleted, then the jth column of Θ is removed and similarly jth column of R, jth row

of W are removed as well, R!j = [r1, . . . , rj−1, rj+1, . . . , rn], W!j = [w1, . . . , wj−1, wj+1, . . . , wn]
T .

The cost function becomes

L(!j) =

∥

∥

∥

∥

∥

∥





Ŷ −R!jW!j

Ȳ





∥

∥

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

∥

∥





rjw
T
j

Ȳ





∥

∥

∥

∥

∥

∥

T

F

=
∥

∥rjw
T
j

∥

∥

2

F
+
∥

∥Ȳ
∥

∥

2

F
. (18)

The new optimal weight Wj can be calculated by

R!j = Q!j





Rj

0



 ,





Ŷj

ȳTj



 = QT
!j Ŷ , RjWj = Ŷj . (19)

Then the new cost function will be

L(j) =

∥

∥

∥

∥

∥

∥



Q!j





Ŷj

ȳTj



−Q!j





Rj

0



Wj





∥

∥

∥

∥

∥

∥

2

F

=
∥

∥

∥Ŷj −RjWj

∥

∥

∥

2

F
+
∥

∥ȳTj
∥

∥

2

F
+
∥

∥Ȳ
∥

∥

2

F
. (20)

Therefore, the ‖ȳj‖2F is the residual of error caused by the deleting jth centre. The new

residual of error is
∥

∥Ȳj

∥

∥

2

F
= ‖ȳj‖2F +

∥

∥Ȳ
∥

∥

2

F
= L(j).

Gomm, J. Barry, and Ding Li Yu use Akaike’s final prediction error (FPE) [33] as a stopping

signal of the Backward selection algorithm [32]:

FPE =
1 + β(np/N)

1− β(np/N)
V (21)

where V =
∥

∥Ȳ (N)
∥

∥

2

F
/(N), np is the dimension of network output, and β is a weighting factor.

The paper suggest to use β = 2. The whole algorithm process is to find minimal point of FPE by

deleting centres.

The other way of selecting centres is Forward selection algorithm [32]. Suppose the model

already have the first k− 1 centres and is looking for the kth centre. The upper triangle matrix is

R = [r1, . . . , rk, . . . , rn], and the measure of information is Ŷ = [ŷ1, . . . , ŷ
T
np
] from (k − 1)th centre

search. For all k < j ≤ n, Rj = [r1, . . . , rk−1, rj , rk+1, . . . , rj−1, rj+1, . . . , rn]. Then the new Ŷj

and Wj can be calculated by

R∗
j = QjRj , Ŷj =











Ŷ 1
j

ŷTj,k

Ŷ 2
j











= QT
j Ŷ , R∗

j(k)Wk =





Ŷ 1
j

ŷTj,k



 (22)

38 6. Radial Basis Function Network

where R∗
j is upper triangle matrix has same size as Rj , R∗

j(k) is the top k × k matrix of R∗
j ,

Ŷ 1
j = [ŷj,1, . . . , ŷj,k−1]

T and Ŷ 2
j = [ŷj,k+1, . . . , Ŷj,np

]. Therefore, the new cost function will be

Vj = (
∥

∥

∥Ŷ 2
j

∥

∥

∥

2

F
+
∥

∥Ȳ
∥

∥

2

F
)/N .

The Equation (14) gives ‖Y ‖2F =
∥

∥

∥
Ŷ
∥

∥

∥

2

F
+
∥

∥Ȳ
∥

∥

2

F
, hence the maximal

∥

∥ŷj ŷ
T
j

∥

∥

2

F
can decide

which centre will be the kth. The whole process keeps running until the FPE (see Equation (21))

reaches the minimum point.

6.5 K-Means Clustering Centre Selector

Another centre selector method is K-Means Clustering method which is famous in data analysis.

K-Means Clustering can separate observations into k clusters, and each observation point belongs

to the cluster whose centre is closest. Each centre is the mean of all observation points in its

cluster, for example, three clusters are shown in Figure 9.

K-means clustering has four steps:

1. Initialise k centres by randomly picking k observations, {C1, . . . , Ck}.
2. Classify all observations into k clusters by finding the closed centre,

group(X) = argmin
i∈{1,...,k}

‖X − Ci‖ .

3. Recalculate means for each cluster,

Cy = mean
group(X)=y

(X), y ∈ {1, . . . , k}.

Set the means to be new centres.

4. Repeat step 3 and step 4, until reaching a given number of iterations, no exchange of points

between clusters or reaching a threshold value.

Figure 9: The left graph is some random points in a two dimensional space. The right graph is

three clusters after applying K-means clustering on the points from the left graph. The diamond

marks in the right graph are the centres of each cluster.

K-Means Clustering can reduce the number of non-default centres to k centres. As this thesis

takes the activation function for the Hidden layer to be the Gaussian form, φ(x) = exp(−x2

σ), the

mean of few non-default centres, which are close to each other, is likely to be a local maximal

point in the probability surface. Figure 10 is an example of probability surfaces. The left graph is

6. Radial Basis Function Network 39

Clusters 2008 2009 2010 2011 2012 2013 2014 2015 Average AR

100 16.07% 15.29% 9.78% 15.83% 15.75% 24.15% 21.39% 17.54% 16.98%

200 21.85% 21.33% 13.84% 18.32% 18.80% 26.29% 23.23% 20.12% 20.47%

250 21.47% 21.22% 13.33% 16.93% 17.21% 25.70% 23.51% 20.39% 19.97%

300 19.78% 20.52% 12.49% 19.48% 16.65% 26.14% 23.50% 19.16% 19.71%

350 19.37% 18.59% 13.55% 18.15% 16.23% 25.22% 22.63% 19.79% 19.19%

400 19.42% 18.63% 13.96% 18.17% 16.82% 25.34% 22.43% 19.66% 19.30%

500 15.04% 17.68% 13.28% 17.47% 15.55% 23.80% 20.74% 19.57% 17.89%

Table 11: The AR of RBFN for different number of clusters. The best two ARs in each column

are in bold.

the probability surface of three Gaussian distribution’s mean. The means of those three Gaussian

distributions are [1, 0], [
√
3
2 ,− 1

2] and [−
√
3
2 ,− 1

2] whose average is [0, 0]. The mean of right side

standard Gaussian distribution is [0, 0]. It is obvious the left probability surface has a maximal

point at [0, 0] and has a similar shape as the right probability surface (standard Gaussian distribu-

tion). The only difference between the two surfaces is the sharpness, hence it is possible to use the

centre of a cluster representing all RBFN’s centres in this cluster without losing most information.

Figure 10: The left probability surface is the mean of three Gaussian distribution with same

standard deviation [1, 1], but different means [1, 0], [
√
3
2 ,− 1

2], [−
√
3
2 ,− 1

2].

The right probability surface is standard Gaussian distribution with mean [0, 0] and standard

deviation [1, 1].

Figure 11 lists overall ARs for different numbers of clusters, the best two ARs in each column

are in bold. It is evident that the PNN with 200 clusters has the best result in almost every year.

Therefore, 200 is the most suitable number for RBFN’s clusters.

6.6 Results

As an old model, GPR requires matrix inverse during both of the training process and the pre-

diction process. When applying GPR on more than 200 observations, the matrix inverse becomes

computationally very expensive which is limited by the CPU performance and memory space. A

way of avoiding the large matrix inverse in the training process is only to take part of observations

(about 300) randomly in each training loop, which gives a locally trained σ. After repeating a

certain amount of loops, the locally trained σ is getting closer to the global trained σ. According

40 6. Radial Basis Function Network

to the relation between RBFN and GPR, the weights optimisation can replace the matrix inverse

in the prediction process. However, the AR of the adjusted GPR model is about 0%. It is hard to

say whether the adjustment makes the regression failed, but it is clear that the GPR model is not

suitable for our data.

Year 2008 2009 2010 2011 2012 2013 2014 2015 Overall AR

AR 21.9% 19.8% 14.5% 19.1% 18.8% 27.6% 22.2% 19.5% 20.4%
1

SD 0.1290 0.0757 0.0808 0.0509 0.0595 0.0537 0.0512 0.0346

AR 19.5% 21.9% 13.9% 16.6% 19.0% 24.5% 23.0% 21.0% 19.9%
2

SD 0.1268 0.0928 0.0946 0.0942 0.0830 0.0545 0.0571 0.0448

AR 24.9% 18.8% 14.4% 19.8% 20.7% 29.0% 24.4% 20.0% 21.5%
3

SD 0.0965 0.1068 0.0656 0.0901 0.0671 0.0543 0.0447 0.0628

AR 20.9% 25.0% 11.9% 20.1% 17.5% 25.7% 22.8% 20.6% 20.6%
4

SD 0.1337 0.0904 0.0663 0.0754 0.0760 0.0427 0.0709 0.0679

AR 22.0% 21.2% 14.4% 16.0% 18.0% 24.7% 23.7% 19.5% 19.9%
5

SD 0.1334 0.1043 0.0542 0.0711 0.0752 0.0522 0.0545 0.0519

Average AR 21.8% 21.3% 13.8% 18.3% 18.8% 26.3% 23.2% 20.1% 20.5%

Average SD 0.1239 0.0940 0.0723 0.0763 0.0732 0.0515 0.0557 0.0524

Table 12: The result of 200 clusters RBFN.

SD is the standard deviation of ARs in 10-Fold Cross-Validation. 1-5 means 5 times repeating test.

The Overall AR is the average annual ARs.

During the application of the RBFN on the real data, the main problem is the training speed

and required memory space. When the number of centres is over 20, 000, the program will run

over all the available memory space (10GB) and terminate the process. The only way to avoid this

problem is by reducing the number of centres to 5, 000. The first way is the Under-Sampling which

is shown in Section 2.5, but the final AR is about 0%. The second way is ROLS centre selector,

however, both of the Backward centre selector and the Forward centre selector need to run QR

decomposition on all centres individually. It’s very difficult to apply ROLS centre selector to the

problem due to the limitation of the machine. The third method is the K-Means Clustering centre

selector (see Section 6.5) and the optimal cluster size is 200. Therefore, the final model is to use

K-Means Clustering centre selector on non-default centres with 200 clusters.

Table 12 is the best results which are RBFN with 200 clusters. The best annual AR is 26.3%

in 2013’s data, and the worst annual AR is 13.8% in 2010’s data. There is no clear relation between

AR and data size. Comparing with LR, RBFN does not have any advantage on training speed,

prediction accuracy, and memory space.

7. Restricted Boltzmann Machine 41

7 Restricted Boltzmann Machine

7.1 Description

Restricted Boltzmann Machine (RBM) is the component layer of Deep Belief Network which

is the typical representative of Deep Learning. Different from previous models, RBM is built on

the Gibbs sampling (see Appendix B) and the conditional probability. In 1986, Paul Smolensky

developed RBM which is used to be called as Harmonium [37].

The original type of RBM has a binary-valued Hidden layer, a binary-valued Visible layer,

and an Energy function. The Energy function, E(H,V), maps values of the Hidden layer, H,

and the values of the Visible layer, V , to a surface which is proportional to the probability surface

of V and H, P (H,V). Therefore, RBM can calculate a conditional probability of any fields for any

other given fields. It is worth to mention that RBM treats observations and their labels together as

the Visible layer. The prediction is the conditional probability of the label given the observation.

V1 V2 V3 V4 V5

H1 H2 H3 H4

Hidden layer

Visible layer

W , b, c

Figure 11: An example structure of RBM.

Figure 11 is an example structure of RBM which has four hidden neurons, five visible neurons

and an Energy function,

E(V,H) = −HTWV − bTV − cTH,

where the weights, W , and the biases b, c, are initialised randomly. The core of the RBM is

assuming that it is able to find a probability function of the Visible layer, V , the Hidden layer, H,

such that

P (V,H) =
E(V,H)

Z
,

where Z is a normalisation constant which normally uses
∑

V,h E(V, h). All observations, X,

and their labels, Y , are input values of the Visible layer, V . For a observation, the values of

the Hidden layer, H are sampled by the conditional probability, P (Hj |V) = φ(cj +
∑

i WjiVi),

where φ is the Sigmoid function. Then the positive phase is E0 = E(V, φ(c + WV)). Once the

whole Hidden layer is generated following the conditional probabilities, the RBM model transforms

information backward to reproduce the Visual layer V̂ , through the conditional probability function

P (V̂j |H) = φ(bj+WT
j Hj). Similar as the previous, the new generated Hidden layer, Ĥ, is following

the conditional probability, P (Ĥ|V̂) = φ(cj+
∑

i WjiV̂i), and the negative phase is E1 = E(V̂ , φ(c+

42 7. Restricted Boltzmann Machine

WV̂)). Finally, the difference between the positive phase and the negative phase is the Loss

function of the observation. This section only take the GD method as a example (see Section 2.4),

all parameters Θ = (W,U, b, c, d) will be updated by Θ = Θ−λ(∂
∂ΘE0− ∂

∂ΘE1). After the training

process, the labels Y can be predicted by the conditional probability function [38]

P (Y |X) =

∑

H1∈{0,1}
∑

H2∈{0,1} · · ·
∑

Hn∈{0,1} exp(−E(X,Y, h))
∑

Y ⋆∈{1,... }
∑

H1∈{0,1} · · ·
∑

Hn∈{0,1} exp(−E(X,Y ∗, h))

=
exp(dY +

∑

j Softplus(cj + UjY +
∑

i WjiXi))
∑

Y ⋆∈{1,... } exp(dY ⋆ +
∑

j Softplus(cj + UjY ⋆ +
∑

i WjiXi))

(23)

where Softplus(x) = log(1 + exp(x)).

Similar to the Gibbs sampling (see Appendix B), the newly generated pair (V̂ , Ĥ) is equivalent

to a random variable following the probability, P (V,H). If the original pair, (V,H), has low

probability, P (V,H), then the new generate pair (V̂ , Ĥ) is likely to have higher value on the

probability surface, i.e., P (V̂ , Ĥ) > P (V,H), which is same as E1 > E0, hence reducing the

difference between E0 and E1 is equivalent to maximising the likelihood of V .

7.2 Gaussian RBM and Further Improvements

The original RBM is used to analysis binary-valued data, not suitable for the database, but a

combination with Gaussian probability allow RBM to have a non-binary Visible layer. The first

Gaussian RBM (GRBM) is based on RBM and added the Gaussian noise into the model [39].

E(V, h) = −hTWV − bTV − cTh+
1

2σ2
‖V ‖2 (24)

Honglak Lee, Chaitanya Ekanadham and Andrew Y.Ng did the further improvement [40]. They

scaled the energy function by the variance, which reduced the mean square error between inputs

and outputs. The Energy function and conditional probability functions are adapted to

E(V, h) = − 1

σ2
(hTWV + bTV + cTh) +

1

2σ2
‖V ‖2

P (Vi|h) = N (bi + hTWi, σ
2)

P (hj |V) = φ((cj +WjV)/σ2)

(25)

where N (µ, ν) means a normal distribution with the mean µ and the standard deviation ν.

Gaussian Bernoulli RBM (GBRBM) is published by Krizhevsky, Alex, and Geoffrey Hinton

[43]. It adapts the constant global σ to the individual local σi for each visible neurons.

E(V, h) =
∑

i

(Vi − ai)
2

2σ2
i

− (
∑

j

bjhj +
∑

i,j

Vi

σi
hjWij)

P (Vi|h) = N (ai +
∑

j

σih
T
j Wij , σ

2
i)

P (hj |V) = φ(
∑

i

Vi

σi
Wij + bj)

(26)

σi can be adapted by Gibbs sampling, same as other parameters.

7. Restricted Boltzmann Machine 43

Based on GBRBM, Cho, KyungHyun, Alexander Ilin, and Tapani Raiko improved the Gaus-

sian probability function, limited the affect of σ [44].

E(V, h) =
∑

i

(Vi − ai)
2

2σ2
i

− (
∑

j

bjhj +
∑

i,j

Vi

σ2
i

hjWij)

P (Vi|h) = N (ai +
∑

j

hT
j Wij , σ

2
i)

P (hj |V) = φ(
∑

i

Vi

σ2
i

Wij + bj)

(27)

7.3 Hybrid Model

The data-set is a combination of non-binary observations and binary labels. It means the inputs

of the Visible layer is mixed of binary and non-binary values. None of the previous RBM models

fit this data type. According to Hinton, Geoffrey E.’s work [45], setting Visual layer and Hidden

layer both to be Gaussian is not a good choice. Therefore this section introduces a Hybrid model

from the original binary RBM and the improved GBRBM. The Hybrid RBM model contains a

non-binary Observations layer, X, a binary Label layer, Y and a binary Hidden layer, H.

By adding their energy functions together, the new Energy function for the Hybrid RBM is

E(X,Y, h) =
∑

i

(Xi − ai)
2

2σ2
i

− (
∑

j

bjHj +
∑

i,j

Xi

σ2
i

hjWij +
∑

k

ckYk +
∑

k,j

YkUkjHj). (28)

X1 X2 X3 Y1 Y2

H1 H2 H3 H4

Binary Hidden layer

Non-binary Observation layer Binary Label variable

W , a, b U , c

Figure 12: An example structure of Hybird RBM.

Once the Energy function is decided, the conditional probability functions are proved by

Bayesian inference (Detail provement is in Appendix C). The conditional probability function for

the Hidden layer is

P (Ĥm|X,Y) =

∑

Ĥk 6=m
p(X,Y, Ĥm, Ĥk 6=m)

∑

H p(X,Y,H)

=











φ
(

bm +
∑

i
Xi

σ2
i

Wim +
∑

k YkUkm

)

Ĥm = 1

1− φ
(

bm +
∑

i
Xi

σ2
i

Wim +
∑

k YkUkm

)

Ĥm = 0

(29)

where φ is the Sigmoid function, Ĥk 6=m means the Hidden layer without the mth neuron i.e.

Ĥk 6=m =
[

Ĥ1, . . . , Ĥm−1, Ĥm+1, . . . , Ĥn

]

.

44 7. Restricted Boltzmann Machine

Similarly, the conditional probability of the Label layer is

p(Ŷm|X,H) =

∑

Ŷk 6=m
P (X, Ŷm, Ŷk 6=m, H)

∑

Y P (X,Y,H)

=











φ
(

cm +
∑

j HjUmj

)

Ŷm = 1

1− φ
(

cm +
∑

j HjUmj

)

Ŷm = 0

(30)

and the conditional probability of the Observation layer is

P (X̂m|Y,H) =

∑

X̂k 6=m
P (X̂m, X̂k 6=m, Y,H)

∑

X P (X,Y,H)

=
1√

2πσm

exp

(

−
(X̂m − am −

∑

j HjWmj)
2

σ2
m

) (31)

The result of P (X̂m|Y, h) is similar to the PDF of the normal distribution with the mean

am +
∑

j HjWmj and the standard deviation σm. Hence, for given Y and H, the new Xm can be

generated by N (am+
∑

j HjWmj , σ
2
m), where N (µ, ν) means a normal distribution with the mean

µ and the standard deviation ν.

As each Ym represent a label class, each observation can only belong to one class. During the

calculation of P (Ŷm|X), it is able to assume that Ŷk = 0 for any k 6= m. Hence, the prediction

function is

P (Ŷm|X) =

∑

Ŷk 6=m,h P (X, Ŷm, Ŷk 6=m, H)
∑

Y,H P (X,Y,H)

=
exp(cmŶm)

∏

j

(

exp(ŶmUmj +
∑

i
Xi

σ2
i

Wij + bj) + 1
)

∏

j(exp(
∑

i
Xi

σ2
i

Wij + bj) + 1) + exp (cm)
∏

j

(

exp(Umj +
∑

i
Xi

σ2
i

Wij + bj) + 1
)

(32)

Take the example of Hybrid RBM in Figure 12, the training process is the same as the binary

RBM. Suppose the training observations and labels are

X =











x1
1 x1

2 x1
3

...
...

...

xn
1 xn

2 xn
3











, Y =











y1

...

yn











respectively. As the labels are belong to two class: default (1) and non-default (0). Instead of

1-dimensional Y , RBM takes 2-dimensional

Y0 =











1− y1 y1

...
...

1− yn yn











as the Label layer. The first column of ith row is 1 if the ith observation is non-default, and it is

0 for a default observation. In other words, the first column is opposite of the second column, and

there must be one “1” and one “0” in any row. After the initialisation the weights, the Hidden

layer H0 is calculated by the Observation layer X0 = X, the Label layer Y0 and the Equation (29),

P (H0|X0, Y0). Then, the model backwards generate a new Observation layer X1 and a new Label

layer Y1 by the Equations (30), P (X1|Y0, H0), and the Equation (31), P (Y1|X1, H0), respectively.

7. Restricted Boltzmann Machine 45

Similarly, their relative new Hidden layer H1 is computed by the Equation (29), P (H1|X1, Y1).

Finally, the gradient descent method (see Section 2.4) update all parameter θ = (W,U, a, b, c, σ)

and the cost function

L(X0, Y0) = E(X0, Y0, H0)− E(X1, Y1, H1).

Repeat those processes until a converged cost on the training data-set or reaching a minimal cost

on the Validation data-set.

After the training process, the default and non-default probability, Y1, is calculated by the

Equation (32), P (Y1|X0), in which Y1 is a 2 × n matrix and n is the number of observations in

the data-set. The first column of Y1 is the probability of non-default and the second column is

the probability of default. The label with higher probability will be the prediction of the Hybrid

RBM.

7.4 Missing Data

Missing data is an inevitable problem when applying a statistic model to the real data. Nor-

mally, the observation with the missing field will be dropped during the data cleaning, or the

missing field will be filled up by a guessing number. However, RBM can use known fields to find

the highest possible of the missing field by P (X̂m|Xk 6=m), similar as predicting the class of labels

by P (Ŷm|X). Then the highest possible X̂m is the value of missing data Xk 6=m, which chooses

the mean of the normal distribution for non-binary Xm and the one from {0, 1} with the higher

probability for binary Xm.

The ability to generate missing data has more benefit in prediction. A training-completed

RBM can predict a company without taking all fields. Although missing fields will reduce the

accuracy of RBM, it is useful in practice.

7.5 Problems and Result

This thesis test RBM with 10, 100 and 200 hidden neurons. All of them produce about a 0%

AR. The main reason for it is that RBM considers every dimension of observations and their labels

equally. An extra large variable in observation will cause a larger effect than a wrong prediction.

For example, some variable in observations is larger than 1, 000. The mean of each variable is

under 10. So ai in Energy function (see Equation (28)) would not exceed 20. The σ is less than 20

because 99% variables are under 10, also, the Hidden layer h is variable between 0 and 1. Hence

the energy for observation containing extra large variable will be over 100, 000. The common

observation (no extra large variable) has energy under 1000. The whole training process actually

is trying to reduce the energy of those unusual observations.

One way of avoiding it is dropping all large observation values (over 10). It process increases

the AR to 3% which is still a terrible result. Therefore, RBM is not a suitable classify model for

our database.

46 8. Further Directions

8 Further Directions

8.1 RBM Dimensional Reduction

GRBM maps the Visible layer to the binary Hidden layer, and this process has a highly accurate

inverse, hence, instead of 14 fields, the binary Hidden layer can be used for prediction. This GRBM

transform can reduce the dimension of observations from 14 non-binary fields to finite binary values

without losing most information from them. This process is called RBM dimensional reduction,

[46].

For each training data, the GRBM dimensional reduction transforms the observation to binary

values by the conditional probability, P (H|V). Its Hidden layer becomes a new observation of other

models. An example of the combination of RBM dimension reduction and Multi-Layer Perceptron

is in Figure 13.

X
[1]
2

X
[1]
1

X
[1]
3

V2

V1

V3

X
[2]
1

X
[2]
2

X
[3]
1

W [1],b[1]

W [2],b[2]

W ,bx,bv

Input layer of RBM Hidden layer Output layerHidden layer of RBM

= Input layer of MLP

RBM

Figure 13: An example structure of RBM dimension reduction with MLP.

8.2 Voting Model

As this thesis has more than one usable model, the voting model can decide which one to use.

The probabilistic voting model is based on the voting theory and Majority rule [47].

After applying all trained models for a observation and the majority label is the prediction of

the Voting model.

9. Conclusion 47

9 Conclusion

This thesis applies five different models to the real companies data from 2008 to 2015. RBM

has some issues during the processing (see Section 7.5). For the rest four models, their hyper-

parameters are adapted in each Chapter. The comparison of the four best models is shown in

Figure 14. The detail data are listed in Table 7, 9, 10 and 12

Figure 14: The above graph is the average annual AR of four best model. The below graph is the

average standard deviation of four best model.

The SD in the second graph of Figure 14 represents the standard deviation of k-fold cross-

validation results’ AR. The SD tends to decrease while the increasing of data size. It means the

increase of data size can improve the stability of four models’ predictions.

The first graph of Figure 14 lists all AR for each year. It is obvious that a three-hidden-

neurons MLP and LR have best overall AR. Although LR has better AR on 2008’s, 2010’s and

48 9. Conclusion

2011’s observations, LR has a significant drop in the 2012’s and the 2015’s data. LR might have

great overall AR, but it is too fluctuate. Therefore, MLP is the most suitable model to predict the

bankrupt.

LR has the highest overall AR, 36%, on 2008’s data, but decrease to minimise 21.6% on 2015’s

data. It shows a negative correlation between AR and data size. Also, Lr has a good AR before

2011. According to the Table 4, LR is more suitable for under 20, 000 data size.

A three-hidden-neurons MLP has higher overall AR between 2009 and 2013. According to the

Table 4, the three-hidden-neurons MLP is more suitable for a 10, 000 to 40, 000 data size. However,

a more complex database will be difficult to find a most suitable structure for MLP. Also, when

the additional data is added to the database, the most suitable structure might changes.

PNN and RBFN do not have a regular pattern of AR in Figure 14. The reason for it is that

the size of the training data will affect their structure, i.e., a more extensive training data size will

lead to more hidden neurons. Their model complexity is self-adjust by data, which MLP and LR

do not have. Therefore, for a much more complex data size, PNN and RBFN can be treated as a

fast analysis.

LR has the best result for under 20, 000 data size. MLP is perfectly suitable for any size of

data, but it requires more time to find the best structure. PNN’s and RBFN’s results are less

affected by data size. They are more suitable for a growing database.

RBM is not suitable for prediction, but it can do a combination with other models.

A. Appendix: Bisection method and Boundary Reduction method 49

A Appendix: Bisection method and Boundary Reduction

method

Bisection method is a recursive method to find one solution or minimum of a single variable

function. Different with gradient descent methods, it does not need to calculate the gradient of

the function. For non-smooth continuous function, Bisection method is the only way to find the

solution and minimal point.

The left graph in Figure A is a example of Bisection solution detector. Assume a solution of

function, f , is in the period [a, b] and f(a) < 0 < f(b). The main process of Bisection method

contains three steps:

1. Let xn = a+b
2 , and calculate f(xn).

2. If f(xn) > 0 then b← xn. Otherwise, a← xn.

3. Repeat step 1 and 2 until get f(xn) = 0, or the period [a, b] is small enough.

(a← x means giving the value of x to a.)

Following the steps of the Bisection method, the Bisection method finds x1 in the first loop.

Then the boundary reduces to the [x1, b]. Repeatedly, it finds x2, x3, . . . , until the boundary is

small enough, and the xn is the root of function.

y

x

a

b

x1

x2

x3

y

xa

b

x1

x2

x3

Figure 15: Bisection method finding solution (Left) and minimal point (Right).

Bisection minimal/maximal detector has an example in the right graph of the Figure 15.

The main assumption of Bisection minimal detector is that the minimal or maximal point of the

function f in the period [a, b] is unique. Hence for any two points x, y in the period, if f(x) > f(y)

then the minimal point m is greater than x. Otherwise, m is less than y.

Suppose there is a minimal point in period [a, b]. Bisection minimal detector has more complex

steps, as shown in Figure 16. Following those steps, it firstly finds x1 and let x be the value of

x1. Then the detector finds x2, and let a be the value of x2. Repeat the process until it finds an

accurate enough result or reach certain loops.

Based on the Bisection method, I develop the Boundary Reduction method. It contains similar

50 A. Appendix: Bisection method and Boundary Reduction method

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Yes
No

Input range [a, b].

Generate x ∈ [a, b]

If f(x) < f(a) and f(x) < f(b)?

If x is accurate enough? Output x

Generate y ∈ [a, b]

If f(y) < f(x)?

If f(x) < f(a)?

If y < x?

If y < x?

a← x

b← x

a← y

b← y

(a, x, b)← (x, y, b)

(a, x, b)← (a, y, x)

Figure 16: Bisection minimal finder process illustration.

x

y

x1

x2

x3

M

Figure 17: M is the minimal point of f(x, y). Each concentric circle is a set Ck = {(x, y) ∈
R

2|f(x, y) = k}. Smaller concentric circle has smaller k.

four steps:

1. Choose two points in the space, a and b, such that f(a) < f(b).

2. Randomly generate a point, x, in {x ∈ R
2| ‖x− a‖ < ‖b− a‖}.

3. If f(x) < f(a) then b← a and a← x. If f(a) < f(x) < f(b), then b← x.

4. Repeat step 2,3, until get close enough a and b.

The Figure 17 shows an example of Boundary Reduction method, which starts with two points

x1 and x2, and the next point, x3, is generated from the yellow circle. The fourth point will be

randomly picked from the green circle. Repeat the process until getting a small enough circle.

B. Appendix: Gibbs sampling 51

B Appendix: Gibbs sampling

Suppose φ1, φ2 ∼ p(φ1, φ2) need to be sampled by the conditional probabilities p(φ1|φ2) and

p(φ2|φ1). Then Gibbs sampling is a good method for this question.

Gibbs sampling has three steps:

1. Initial a starting value X0, Y0 in range of φ1, φ2.

2. Simulate Xi by p(φ1|φ2 = Yi−1).

3. Simulate Yi by p(φ2|φ1 = Xi).

4. Repeat steps 2, 3 until get a converge enough result, reach certain amount of loop or achieve

some conditions.

The final φ1 and φ2 can be treated as the random variables generated by p(φ1|φ2) and p(φ2|φ1).

52 C. Appendix: Hybrid RBM Formula Provement

C Appendix: Hybrid RBM Formula Provement

P (ĥm|X,Y) =

∑

ĥk 6=m
p(X,Y, ĥm, ĥk 6=m)
∑

h p(X,Y, h)

=

∑

ĥk 6=m
exp

(

−E(X,Y, ĥm, ĥk 6=m)
)

∑

h exp (−E(X,Y, h))

=

∑

ĥk 6=m
exp

(

−∑i
(Xi−ai)

2

2σ2
i

+
∑

j bj ĥj +
∑

i,j
Xi

σ2
i

ĥjWij +
∑

k ckYk +
∑

k,j YkUkj ĥj

)

∑

h exp
(

−∑i
(Xi−ai)2

2σ2
i

+
∑

j bjhj +
∑

i,j
Xi

σ2
i

hjWij +
∑

k ckYk +
∑

k,j YkUkjhj

)

=
exp

(

bmĥm +
∑

i
Xi

σ2
i

ĥmWim +
∑

k YkĥmUkm

)

∑

hm∈{0,1} exp
(

bmhm +
∑

i
Xi

σ2
i

hmWim +
∑

k YkhmUkm

)

=
exp

(

bmĥm +
∑

i
Xi

σ2
i

ĥmWim +
∑

k YkĥmUkm

)

1 + exp
(

bm +
∑

i
Xi

σ2
i

Wim +
∑

k YkUkm

)

=











φ
(

bm +
∑

i
Xi

σ2
i

Wim +
∑

k YkUkm

)

ĥm = 1

1− φ
(

bm +
∑

i
Xi

σ2
i

Wim +
∑

k YkUkm

)

ĥm = 0

(33)

p(Ŷm|X,h) =

∑

Ŷk 6=m
p(X, Ŷm, Ŷk 6=m, h)

∑

Y p(X,Y, h)

=
exp

(

cmŶm +
∑

j ŶmhjUmj

)

∑

Ym∈{0,1} exp
(

cmYm +
∑

j YmhjUmj

)

=
exp

(

cmŶm +
∑

j ŶmhjUmj

)

1 + exp
(

cm +
∑

j hjUmj

)

=











φ
(

cm +
∑

j hjUmj

)

Ŷm = 1

1− φ
(

cm +
∑

j hjUmj

)

Ŷm = 0

(34)

C. Appendix: Hybrid RBM Formula Provement 53

P (X̂m|Y, h) =
∑

X̂k 6=m
p(X̂m, X̂k 6=m, Y, h)

∑

X p(X,Y, h)

=

∑

X̂k 6=m
exp

(

−E(X̂m, X̂k 6=m, Y, h)
)

∑

h exp (−E(X,Y, h))

=

∑

X̂k 6=m
exp

(

−∑i
(X̂i−ai)

2

2σ2
i

+
∑

j bjhj +
∑

i,j
X̂i

σ2
i

hjWij +
∑

k ckYk +
∑

k,j YkUkjhj

)

∑

X exp
(

−∑i
(Xi−ai)2

2σ2
i

+
∑

j bjhj +
∑

i,j
Xi

σ2
i

hjWij +
∑

k ckYk +
∑

k,j YkUkjhj

)

=
exp

(

− (X̂m−am)2

2σ2
m

+
∑

j
X̂m

σ2
m
hjWmj

)

∫∞
−∞ exp

(

− (Xm−am)2

2σ2
m

+
∑

j
Xm

σ2
m
hjWmj

)

dXm

=
exp

(

− (X̂m−am)2

2σ2
m

+
∑

j
X̂m

σ2
m
hjWmj

)

√
2πσm exp(− a2

m

2σ2
m

+ 1
σ2
m
(am +

∑

j hjWmj)2)

=
1√

2πσm

exp

(

−
(X̂m − am −

∑

j hjWmj)
2

σ2
m

)

(35)

P (Ŷm|X) =

∑

Ŷk 6=m,h p(X, Ŷm, Ŷk 6=m, h)
∑

Y,h p(X,Y, h)

=

∑

h exp
(

cmŶm +
∑

j ŶmUmjhj +
∑

i,j
Xi

σ2
i

hjWij +
∑

j bjhj

)

∑

Ym,h exp
(

cmYm +
∑

j YmUmjhj +
∑

i,j
Xi

σ2
i

hjWij +
∑

j bjhj

)

=
exp(cmŶm)

∑

h exp
(

∑

j ŶmUmjhj +
∑

i,j
Xi

σ2
i

hjWij +
∑

j bjhj

)

∑

Ym∈{0,1} exp (cmYm)
∑

h exp
(

∑

j YmUmjhj +
∑

i,j
Xi

σ2
i

hjWij +
∑

j bjhj

)

=
exp(cmŶm)

∏

j

(

exp(ŶmUmj +
∑

i
Xi

σ2
i

Wij + bj) + 1
)

∑

Ym∈{0,1} exp (cmYm)
∏

j

(

exp(YmUmj +
∑

i
Xi

σ2
i

Wij + bj) + 1
)

=
exp(cmŶm)

∏

j

(

exp(ŶmUmj +
∑

i
Xi

σ2
i

Wij + bj) + 1
)

∏

j(exp(
∑

i
Xi

σ2
i

Wij + bj) + 1) + exp (cm)
∏

j

(

exp(Umj +
∑

i
Xi

σ2
i

Wij + bj) + 1
)

(36)

54 D. Appendix: Tables

D Appendix: Tables

Year 2008 2009 2010 2011 2012 2013 2014 2015 Overall AR

AR -0.5% -17.2% -0.4% 1.6% -5.3% 5.6% 18.5% 23.0% 3.2%
1

SD 0.019 0.062 0.015 0.061 0.061 0.055 0.043 0.085

AR -0.5% -16.9% -0.4% 1.7% -4.5% 5.7% 19.6% 22.9% 3.5%
2

SD 0.018 0.057 0.017 0.038 0.083 0.062 0.072 0.049

AR -0.5% -16.9% -0.3% 1.2% -3.7% 6.2% 17.5% 22.1% 3.2%
3

SD 0.023 0.068 0.016 0.050 0.098 0.050 0.058 0.043

AR -0.5% -19.1% -0.4% 1.9% -2.7% 5.6% 17.4% 22.2% 3.0%
4

SD 0.045 0.063 0.019 0.036 0.090 0.059 0.057 0.066

AR -0.5% -17.3% -0.1% 1.2% -3.5% 6.5% 17.5% 22.8% 3.3%
5

SD 0.027 0.071 0.014 0.053 0.086 0.069 0.052 0.040

Average AR -0.5% -17.5% -0.3% 1.5% -3.9% 5.9% 18.1% 22.6% 3.2%

Table 13: Logistic Regression results with default-balanced but non-winsorized data.

SD is the standard deviation of ARs in 10-Fold Cross-Validation. 1-5 means 5 times repeating test.

The Overall AR is the average annual ARs.

Year 2008 2009 2010 2011 2012 2013 2014 2015 Overall AR

AR 0.67% 0.27% 0.13% -0.11% 0.80% 0.07% -0.01% -0.01% 0.23%
1

SD 2.20E-02 1.00E-02 2.00E-02 4.20E-03 1.90E-02 1.40E-02 2.30E-04 1.20E-04

AR 0.56% -0.10% 0.35% 0.04% -0.58% -0.40% 0.06% 0.00% -0.01%
2

SD 1.60E-02 2.60E-03 1.50E-02 8.60E-03 1.90E-02 4.80E-03 4.90E-03 7.80E-05

AR 0.59% -0.14% 0.65% 0.20% -0.56% -0.39% -0.01% 0.00% 0.04%
3

SD 2.40E-02 2.70E-03 2.90E-02 6.70E-03 1.30E-02 9.60E-03 2.30E-04 7.80E-05

AR 0.56% -0.05% 0.25% 0.53% 0.09% -0.10% 0.15% -0.01% 0.18%
4

SD 4.30E-02 8.20E-04 1.80E-02 1.20E-02 2.60E-02 8.00E-03 5.40E-03 9.00E-05

AR 0.56% 0.16% -0.23% 0.10% 1.35% -0.12% -0.01% -0.01% 0.23%
5

SD 2.40E-02 1.00E-02 8.60E-03 8.60E-03 3.20E-02 1.40E-02 2.30E-04 8.90E-05

Average AR 0.59% 0.03% 0.23% 0.15% 0.22% -0.19% 0.03% -0.01% 0.13%

Table 14: Logistic Regression results of winsorized but non-default-balanced data.

SD is the standard deviation of ARs in 10-Fold Cross-Validation. 1-5 means 5 times repeating test.

The Overall AR is the average annual ARs.

D. Appendix: Tables 55

Year 2008 2009 2010 2011 2012 2013 2014 2015 Overall AR

AR 23.3% 24.9% 19.1% 23.2% 14.3% 22.1% 19.0% 20.7% 20.8%
1

SD 0.0978 0.0937 0.1060 0.0909 0.0826 0.0581 0.0504 0.0457

AR 21.0% 25.8% 19.0% 19.4% 15.2% 22.0% 18.8% 21.3% 20.3%
2

SD 0.1331 0.0929 0.0784 0.0930 0.0856 0.0397 0.0731 0.0555

AR 14.2% 25.1% 18.5% 17.8% 16.4% 20.3% 19.4% 21.2% 19.1%
3

SD 0.0667 0.1032 0.1076 0.0548 0.0691 0.0620 0.0752 0.0136

AR 21.9% 20.2% 17.0% 18.9% 13.4% 19.1% 21.8% 23.0% 19.4%
4

SD 0.1515 0.1037 0.0756 0.0973 0.0641 0.0766 0.0657 0.0619

AR 18.4% 19.7% 19.8% 18.5% 16.0% 21.8% 16.8% 20.9% 19.0%
5

SD 0.1727 0.0716 0.0718 0.0804 0.0699 0.0442 0.0379 0.0528

Average AR 19.7% 23.1% 18.7% 19.6% 15.1% 21.1% 19.2% 21.4% 19.7%

Table 15: PNN results with default-balanced data and single global σ.

SD is the standard deviation of ARs in 10-Fold Cross-Validation. 1-5 means 5 times repeating test.

The Overall AR is the average annual ARs.

56 References

References

[1] Beaver, William H. Financial ratios as predictors of failure. Journal of accounting research

(1966): 71-111.

[2] Aguilera, Ana M., Manuel Escabias, and Mariano J. Valderrama. Using principal components

for estimating logistic regression with high-dimensional multicollinear data. Computational

Statistics & Data Analysis 50.8 (2006): 1905-1924.

[3] Byford, Sam. Googles AlphaGo AI beats Lee Se-dol again to win Go series 4-1. (2017).

[4] Gibbs, Samuel. Alphazero AI beats champion chess program after teaching itself in four hours.

Guardian, December 7 (2017).

[5] Desai, Vijay S., et al. Credit-scoring models in the credit-union environment using neural net-

works and genetic algorithms. IMA Journal of Management Mathematics 8.4 (1997): 323-346.

[6] Piramuthu, Selwyn. Financial credit-risk evaluation with neural and neurofuzzy systems. Eu-

ropean Journal of Operational Research 112.2 (1999): 310-321.

[7] West, David. Neural network credit scoring models Computers and Operations Research 27

(2000) 1131-1152

[8] Lee, Tian-Shyug, et al. Credit scoring using the hybrid neural discriminant technique. Expert

Systems with applications23.3 (2002): 245-254.

[9] Mirta Bensic, Natasa Sarlija and Marijana Zekic-Susac. Modelling Small-Business Credit Scor-

ing by using Logistic Regression, Neural Networks and Decision Tree Intelligent systems in

Accounting, Finance and Management, 13, 133-150 (2005)

[10] Ong, Chorng-Shyong, Jih-Jeng Huang, and Gwo-Hshiung Tzeng. Building credit scoring mod-

els using genetic programming. Expert Systems with Applications 29.1 (2005): 41-47.

[11] De Keyser, Robain. Engineering Applications in Artificial Intelligence. (2005).

[12] Beaver, William H. Market prices, financial ratios, and the prediction of failure. Journal of

accounting research (1968): 179-192.

[13] Edmister, Robert O. An empirical test of financial ratio analysis for small business failure

prediction. Journal of Financial and Quantitative analysis 7.2 (1972): 1477-1493.

[14] Altman, Edward I. Financial ratios, discriminant analysis and the prediction of corporate

bankruptcy. The journal of finance 23.4 (1968): 589-609.

[15] Ohlson, James A. Financial ratios and the probabilistic prediction of bankruptcy. Journal of

accounting research (1980): 109-131.

[16] Rakotomamonjy, Alain. Optimizing area under ROC curves with SVMs. (2004).

[17] Bengio, Yoshua, and Yves Grandvalet. No unbiased estimator of the variance of k-fold cross-

validation. Journal of machine learning research 5.Sep (2004): 1089-1105.

References 57

[18] Chawla, Nitesh V., et al. SMOTE: synthetic minority over-sampling technique. Journal of

artificial intelligence research 16 (2002): 321-357.

[19] Liu, Xu-Ying, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-imbalance

learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39.2

(2009): 539-550.

[20] Frank E. Harrell, Jr.: Regression Modeling Strategies. With Applications to Linear Models,

Logistic and Ordinal Regression, and Survival Analysis

[21] Dreiseitl, Stephan, and Lucila Ohno-Machado. Logistic regression and artificial neural network

classification models: a methodology review. Journal of biomedical informatics 35.5-6 (2002):

352-359.

[22] Montavon, Grgoire, Genevive B. Orr, and Klaus-Robert Müller. Tricks of the Trade. (1998).

[23] Leshno, Moshe, et al. Multilayer feedforward networks with a non-polynomial activation func-

tion can approximate any function. (1992).

[24] Ruder, Sebastian. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747 (2016).

[25] Kingma, Diederik P., and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 (2014).

[26] Karsoliya, Saurabh. Approximating number of hidden layer neurons in multiple hidden layer

BPNN architecture. International Journal of Engineering Trends and Technology 3.6 (2012):

714-717.

[27] Boger, Zvi, and Hugo Guterman. Knowledge extraction from artificial neural networks models.

IEEE International Conference On Systems Man And Cybernetics. Vol. 4. INSTITUTE OF

ELECTRICAL ENGINEERS INC (IEEE), 1997.

[28] Berry, Michael J., and Gordon Linoff. Data mining techniques: for marketing, sales, and

customer support. John Wiley & Sons, Inc., 1997.

[29] Blum, Adam. Neural networks in C++: an object-oriented framework for building connec-

tionist systems. Vol. 1. New York: Wiley, 1992.

[30] Donald F. Specht:Probabilistic Neural NetworksNeural Networks. Vol. 3. pp. 109-118. 1990

[31] D S Broomhead and D Lowe. Radial Basis Functions, Multi-variable functional interpolation

and adaptive networks ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN 1988

[32] Gomm, J. Barry, and Ding Li Yu. Selecting radial basis function network centres with recursive

orthogonal least squares training. IEEE Transactions on Neural networks 11.2 (2000): 306-314.

[33] Akaike, Hirotugu. Fitting autoregressive models for prediction. Annals of the institute of Sta-

tistical Mathematics 21.1 (1969): 243-247.

58 References

[34] Yu, D. L., J. B. Gomm, and D. Williams. A recursive orthogonal least squares algorithm for

training RBF networks. Neural Processing Letters 5.3 (1997): 167-176.

[35] Huang, De-Shuang, and Wen-Bo Zhao. Determining the centres of radial basis probabilis-

tic neural networks by recursive orthogonal least square algorithms. Applied Mathematics and

Computation 162.1 (2005): 461-473.

[36] David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams: Learning representations

by back-propagating errors Nature VOL 323 9 OCTOBER 1986

[37] Smolensky, Paul (1986).Chapter 6: Information Processing in Dynamical Systems: Founda-

tions of Harmony Theory In Rumelhart, David E.; McLelland, James L. Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations. MIT

Press. pp. 194281. ISBN 0-262-68053-X.

[38] Hugo Larochelle, Michael Mandel, Razvan Pascanu and Yoshua Bengio Learning Algorithms

for classification Restricted Boltzmann Machine Journal of Machine Learning Research 13

(2012) 643-669

[39] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle Greedy Layer-Wise Training

of Deep Networks In Proc.Annu.NIPS.conf. vol. 19 Advances in Neural Information Processing

Systems, Vancouver, Dec.2006, pp. 163-160.

[40] Honglak Lee, chaitanya Ekanadham and Andrew Y.NgSparse deep belief net model for visual

area V2 U.G.thesis, Symbolic systems program, Stanford University, Jun.2007.

[41] Noel Cressie:The Origins of Kriging Mathematical Geology, Vol. 22. No. 3, 1990

[42] Christopher K. I. Williams and Carl Edward Rasmussen Gaussian Processes for Regression

Advances in neural information processing systems. P 514–520. 1996.

[43] Krizhevsky, Alex, and Geoffrey Hinton. Learning multiple layers of features from tiny images.

Vol. 1. No. 4. Technical report, University of Toronto, 2009.

[44] Cho, KyungHyun, Alexander Ilin, and Tapani Raiko. Improved learning of Gaussian-Bernoulli

restricted Boltzmann machines. International conference on artificial neural networks. Springer,

Berlin, Heidelberg, 2011.

[45] Hinton, Geoffrey E. A practical guide to training restricted Boltzmann machines. Neural net-

works: Tricks of the trade. Springer, Berlin, Heidelberg, 2012. 599-619.

[46] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J].

science, 2006, 313(5786): 504-507.

[47] Coughlin, Peter J. Probabilistic voting theory. Cambridge University Press, 1992.

	Introduction
	Thesis Goal
	Background and Related Work
	Structure of the Thesis

	Data Cleaning
	Data Sources and Company Filter
	Default Definition and Period Decision
	Fields Decision

	Model Scoring Process
	Introduction of Model Scoring Processes
	Methods for Verification
	K-Fold Cross-Validation
	Gradient Descent Optimisation
	Default Balance

	Logistic Regression
	Description
	Results

	Multi-Layer Perceptron
	Description
	Main Processes
	Activation Functions
	Hidden Layer Structure
	Results

	Probabilistic Neural Network
	Description
	Main Processes
	Dimension of Variance
	Results

	Radial Basis Function Network
	Description
	Main Process
	Relation with Gaussian Process Regression
	Recursive Orthogonal Least Squares Training and Centre Selectors
	K-Means Clustering Centre Selector
	Results

	Restricted Boltzmann Machine
	Description
	Gaussian RBM and Further Improvements
	Hybrid Model
	Missing Data
	Problems and Result

	Further Directions
	RBM Dimensional Reduction
	Voting Model

	Conclusion
	Appendix: Bisection method and Boundary Reduction method
	Appendix: Gibbs sampling
	Appendix: Hybrid RBM Formula Provement
	Appendix: Tables

