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Abstract

In our modern society financial bubbles often entail dramatic consequences. In
our research, we focused on defining a financial bubble by drawing from different
theories. Our work concentrates on the Log Periodic Power Law Singularity model
which characterises a bubble as an faster-than-exponential unsustainable growth
of the price-time series, which always ends up on a financial crash. After defining
the model theory, its calibration, and describing how one can generate indicators
with this model, we used it to reproduce some well-known results of the litera-
ture. We reproduced the analysis of the bubble in the Chinese stock market SSEC
in 2014 and 2015. Being able to predict a bubble, we then focused on implement-
ing a trading strategy using the LPPLS model. Thereafter, we propose a strategy
which invests when the LPPLS Confidence indicators detect a positive bubble and
when the LPPLS Trust indicators detects a negative bubble about to crash. The
strategy is then tested over different classes of assets and financial bubbles. As
a result, our analysis proves the efficiency of the methodology. Furthermore, we
enhance the strategy by adding different features, leaving the market when we
get a strong positive LPPLS Trust indicator signal. We finally add an Average True
Range strategy to do size the trades and then adjust the position in matter of the
maximal loss we can accept. The studies have been conducted on different as-
sets, however, cryptoccurencies and especially Bitcoin is often used to describe the
strategies throughout this work.
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1 INTRODUCTION

1 Introduction

Financial bubbles are not a modern conception of an irrational rise of the prices,
actually, they are almost as old as mankind. As long as there is a market with a few
consumers willing to invest their money in a product that seems to have potential
high profits in a long or short term, a bubble could potentially appear.

In the early 17th century, in the Netherlands the ex-
ceptional development of trades brought the first tulips
bulbs. The tulips were different from any other flower
known at that moment in Europe. It quickly became a
symbol of social status. The tulips were then seen as
beautiful, exotic and a display of good taste. The rich
merchants in the Netherlands, at the time, would buy
tulips as they did with paintings or other rare items.
The fast expanding of wealth in the country had made
more people able to buy luxuries. On the other hand,
tulips were still very hard to cultivate, which made
them a quite rare object. This scarcity rose the prices
over the years. To understand it, it is important to no-
tice that the tulips were under the form of a bulb from
June to September, making the trades easier. Most of
the trades were then done on this short period of time.
However, outside this lapse of time the Dutch created
contracts to buy tulips for the next season (effectively
futures contracts). As a result, the prices started to ex- Figure 1: Anonymous 17th-
plode in November 1636 without any rational reason century watercolor of the
despite the avidity of the buyers that would buy at any Sefnper Augustus, famous _for
price expecting to sell at an ever higher one. At that Peing the most expensive
time a bulb could be sold at more that a yearly paid tulip sold during the tulip ma-
for a skilled craftsmen, and for the rarest bulb it could ™2

reach the price of a common house. In February 1637,

the prices collapsed drastically after an uncertainty in the market, the buyers were
not certain that the prices would still go up, which ended up on a crash. This was
the first financial bubble ever recorded, and was later called the Tulip mania.
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In 1711 in England, the South Sea Company lent
7 million pounds to the government to finance
the war against France. In exchange the South
Sea Company obtained a monopoly in trade with
the South America, which was then under Span-
ish and Portugal domination. The company then
bankrolled the English National debt with its
shares, the stocks were delivered and backed with
the national bond and would then deliver a yearly
5 percent interests directly from the government.
The possible huge profit that would result of the
trades with the Spanish colonies brought many
investors in the market, and the prices increased
exponentially. But it was brief, in 1720 a crash
happened, putting back the prices just above its
original price. Additionally, that the company
did not even manage to trade anything with the
colonies, and the prospect was still even unlikely
from the beginning. This episode was later called
The South Sea Bubble, and it ruined many ambi-
tious investors.

Figure 2: Anonymous painting of
a debate in the South Sea Common
House

In these two historical instances we identify some interesting points about bubbles.
During a bubble, prices of the asset evolve and move away from what it is called
their fundamental value. In a positive bubble, there is an excessive demand, and
prices go up. In a negative bubble there is an excess of selling, and prices go down.

Even though these historical events are full of information to define a bubble, finan-
cial bubbles are not limited to our past. Many major bubbles have developed in our
modern society. We could cite the Dot-Com Bubble, for example. As in the historical
examples, the expectation of huge profits gathered many investors around internet
related stocks, creating a bubble which crashed in 2000.

Finally, the Tulip Mania, the South Sea Company bubble, or the Dot-Com bubble,
share common factors. We observe that a bubble starts with a new opportunity or
future profit expectation. The nature of the opportunity does not matter in the first
point, it could be a new technology, a new class of asset, or even a technical trading
event. What matters is the prospect of high profits in the future. With this prospect
of profits, the investors will start to show interest. The demand for the asset will
increase which will, as well, increase the prices. The positive feedback mechanism
then accelerates the process, the investors would be willing to follow the herd and
buy for higher prices expecting to sell for even more. At that time, the regime in
place can be shaken by any uncertainty in the market, the uncertainty will then gain
investors, and in a matter of days or even hours everyone will be willing to sell.
Prices will drop, and finally produces a financial crash. 'By nature, a bubble is an
unsustainable process in which the system is gradually pushed towards criticality’ in
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Sornette & Cauwels (2014). Besides in a critical system, even a small event can have
a huge impact, as stated in Sornette & Cauwels (2014), it is not that important to
understand what was the last event that caused the crash as it was bound to happen,
the criticality of the system is what matters most.

In the first section of this thesis, we will review the different theories of the liter-
ature to predict a financial bubble. Thereafter, we will focus on the LPPLS model,
its calibration, and indicators. In the second part of the thesis, we will propose a
trading strategy using the LPPLS model and its indicators. Through this section we
will improve the methodology and analyse the performance of our strategy.
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2 Bubbles and LPPLS model

2.1 Literature review

Detecting financial bubbles in the stock market has always attracted people. Not
only for the academics trying to predict them, but also for the governments seeking
to protect their national economy, and for individuals and entities whose daily life
would be directly impacted by a financial crash.

The dividend discount model introduced first in Gordon & Shapiro (1956) has played
an important role to explain the behavior of bubbles in the stocks market for the re-
searchers. Indeed in theory, the dividend discount model make the assumption that
the present discounted value of the future expected profits determines the stock
prices, see Campbell & Shiller (1987). Assuming that we have a time-invariant dis-
count rate, and that stock prices and dividends can be modelled as integrated pro-
cesses of order one, then dividend discount model predicts an equilibrium between
dividends and stock prices.

Using the theory of the dividend discount model, some academic studies have been
carried out aiming to predict a financial bubble since Diba & Grossman (1988a),
notably using the co-integration framework and the unit root. To predict a finan-
cial bubble in the stock market, Diba & Grossman (1988a,b) were then looking at
the logarithm of the dividend yield, and if this one followed a stationary or mean-
reverting process, they assumed that it was not a bubble. But it is worth noticing
that many other studies state that even if prices and dividends tend on a long term
to follow the same pattern, an irregularity or variation can emerge Froot & Obstfeld
(1991), and more recently Balke & Wohar (2002), and then such irregularities could
appear by non-linear dynamics in the relation between prices and dividends, an idea
introduced in Campbell et al. (1997).

It is rather difficult to find an explanation for those non-linearity, indeed it does
much probably come from a gathering of different effects.

As a first cause of non-linearity, we could state the presence of financial bubbles cre-
ated by speculation Blanchard & Watson (1982), and Charemza & Deadman (1995).
Furthermore, in Evans (1991) it was proved that the weakness of unit root tests for
detecting periodically collapsing bubbles due to non-linearity. And in Charemza &
Deadman (1995), the authors demonstrated (with a simulation analysis) the results
of the previous study Evans (1991). Secondly, the effect of the noise traders is rele-
vant as well to explain the non-linearity, along with the presence of intrinsic bubbles,
and the transaction costs.

There exist a lot of studies who focused on detecting the non-linearity in the stock
market to detect bubbles. Over the years some methods proved themselves quite use-

ful and accurate in the prediction while others deprecated over more recent models.

There is in the financial bubble theory a lot of different field of research. To the
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2.1 Literature review 2 BUBBLES AND LPPLS MODEL

best of my knowledge, we can distinguish three major different streams. The first
one is the one trying to detect bubbles using statistical tests that is best performed
by the supremum augmented Dickey-Fuller tests (ADF) in Phillips et al. (2011). The
second is a completely separated theory of literature, also very productive, that uses
the fitting of a Log Periodic Power Law (LPPL) to predict a financial bubble that was
first introduced in Sornette et al. (1996) .The third is the stream of research intro-
duced by Benth et al. (2013), Protter (2016) that build a mathematical theory of
financial bubbles.

This last branch compared to the other is relatively recent but already brings up
some interesting results. Precisely, in this theory, we model the price dynamic of a
financial asset by a continuous stochastic model. We then observe a financial bubble
when if the stochastic process turns out to be a strict local martingale under the risk
neutral measure. A generalised framework has then been proposed in Cretarola &
Figa-Talamanca (2019) where we consider that the stochastic process of the price
of the asset is correlated to the stochastic process of the market attention on the
asset. This idea allow to capture the positive feedback cycle that boost the price of
a bubble when the market attention grows, under some hypothesis. This research
stream has been applied essentially to criptocurrencies, especially on Bitcoin, Cre-
tarola & Figa-Talamanca (2019) proved that Bitcoin boost in a bubble if and only if
the correlation between changes in price and the attention factor is above a specific
positive threshold. As it is a relatively new stream of research, although academics
have started to put a lot of attention on criptocurrencies these last few years, and
the interest does not seem to fade yet. In Cretarola & Figa-Talamanca (2020) the
authors focused on predicting the bubble regimes in Bitcoin and Ethereum, and in-
terpret the correlations between criptocurrencies using the theory of Protter (2016)
and Cretarola & Figa-Talamanca (2019). To get those results, they used a continu-
ous latent markov chain to model the change of state, and proposed an estimation
procedure using conditional maximum likelihood.

However the main streams of bubble detection resides in the first two branches
described before. Around the statistical methods, there is a lot of techniques that are
popular in the literature, but we will not enumerate nor describe them all in this re-
view. To state a few, the momentum threshold autoregressive test (MTAR) of Enders
& Granger (1998), the exponential smooth transition autoregressive test (ESTAR) of
Kapetanios et al. (2003). At the moment, the supremum augmented Dickey-Fuller
tests (ADF) is the statistical test providing the best results. This test has been im-
porved over the years, with the recursive test (SADF) Phillips et al. (2011), and a
generalised version (GSADF) in Phillips et al. (2015). However this test possesses
some drawbacks, one would be assuming cointegration between the dividends and
the prices.

The second stream of literature on financial bubbles resides in the Log Periodic
Power Law Singularity (LPPLS), a theory that has initially been introduced in Jo-
hansen et al. (2000), Sornette (2009), Sornette et al. (1996). Under some assump-
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2 BUBBLES AND LPPLS MODEL 2.2 Log-Periodic Power Law Singularity model

tions it is possible to demonstrate that the prices dynamic follow a LPPLS model.
This model improves the traditional definition of a bubble and define it with an al-
ternative way. More exactly, instead of seeing bubbles by a chaotic exponential rise
till the critical time of the crash, this view characterises the bubble with a faster-
than-exponential growth of price conducting to an unsustainable regime that always
end up on a crash. The positive feedback is responsible of the bubble, and leads
to the unsustainable regime. And this feedback is created by many factors, such as
the imitation process and herding behaviour of traders. The LPPLS model is then a
very powerful tool which by working on the price-time series of an asset is able to
predict the critical time of the crash of a bubble. Since the work of Sornette many
others have used the model to predict the crashes of the major bubbles over the last
decades, from these numerous studies, we can state the study of the 2000-2003 real
estate bubble in the UK Zhou & Sornette (2003), or the post mortem analysis of the
2015 Shanghai stock market bubble Sornette et al. (2015).

The LPPLS model has aroused much interest over the last two decades, and proba-
bly even more after the crash of the US housing-market bubble. This infatuation of
academics and researchers on this model, after the crash, has allowed a few inter-
esting improvements of the method. In Geraskin & Fantazzini (2013) the authors
review the LPPLS original model and answer some critics about it, then they pro-
posed a new methodology to fit the model and detect a financial bubble with real
time data, after applying it to the gold bubble that crashed in December 2009. A
simple transformation of the LPPLS formulation has allowed to reduce slightly the
number of nonlinear parameters in Filimonov & Sornette (2013), making a stable
and robust calibration of the model. A few studies on the reliability of the beginning
and end time of a bubble have also been conducted in Demos & Sornette (2017),
this study revealed that it is in fact easier to detect the start of a bubble than its end.
In Demirer et al. (2019) the authors examine the predictive power of a few indica-
tors derived directly from the LPPLS model, via a multi-scaling method that aim to
generate a confidence indicator revealing the number of time the model predicted
the same bubble over different scale of windows.

2.2 Log-Periodic Power Law Singularity model

This section aims to cover the theory behind the LPPLS model.

The LPPLS model can be see as an extension of the Blanchard & Watson (1982)
rational expectation bubble model. A financial bubble is created by a faster-than-
exponential growth of price, that conducts to an unsustainable regime that always
end up on a crash. The LPPLS model is finally a combination of (i) mathematical and
statistical physics of phase transitions, (ii) behavorial finance, imitation and herding
of traders that creates positive feedback, (iii) the economic theory of bubbles.

In Johansen et al. (2000), Sornette et al. (1996) the model was developed under
the following assumptions
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2.2 Log-Periodic Power Law Singularity model 2 BUBBLES AND LPPLS MODEL

The asset pays no dividend

The risk free asset pays zero interest rate

Markets clear automatically without the need of imposing any conditions

* The agents are risk neutral

In a bubble phase, for an asset with a given fundamental value, the price trajectory
of the asset, the JLS model Johansen et al. (2000) assumes that the logarithm of the
asset price p(t) follows:

d

?” = u(t)dt + o (t)dW —kdj 1)
where pu(t) is the expected return, o(t) is the volatility, dW is the infinitesimal incre-
ment of a standard Wiener process, k is the loss amplitude of a possible crash, and
dj represents a discontinuous jump with the value of 0 before the crash and 1 after
the crash.

The LPPLS model considers two different types of agents. The first type consists
of traders that act with rational expectation as in Blanchard & Watson (1982). The
second group is made of noise traders that act with behaviour, herding behaviour.
One of the assumption is that the collective behaviour of the noise trader is able to
destabilize the asset prices via their trades. In Johansen et al. (2000), the authors
suggested that their behaviour could be included in the crash hazard rate h(t), which
is the probability that a crash will occur at a given time point t. It is proportional to
the expectation of dj, we get h(t) = E[dj]/dt.

We then assume that that the asset price satisfies the rational expectation condition
Johansen et al. (2000) which is equivalent to a martingale condition. We multiply
the equation (1) by p(t) and we take the conditional expectation at time ¢. The non-
arbitrage condition expresses that the expectation of the price increment should be
null, then, we obtain:

E[dp(t)] = prdt + 0 (DB, [dW (1)) - kdj = 0

which simplifies to:

pe = kh(t) (2)

The, we get that the return is proportional to the crash hazard rate with a factor k.
Now if we use (2) in (1) and assuming there is no crash (i.e. dj = 0), we end up on
a differential equation with solution:

E[ln(£h)] = kfh(x)dx 3)

P, to

This equation demonstrates that for to price to follow a martingale process, the price
has to increase along with the crash probability, and higher is the crash probability,
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2 BUBBLES AND LPPLS MODEL 2.2 Log-Periodic Power Law Singularity model

the faster the price has to increase. This can be explained by the fact that an investor
has to get a higher profit from a more risky asset. Then the price growth follows the
crash hazard growth.

Johansen et al. (2000) suggested that the behavior of the noise traders could be
modelled writing the crash hazard k(t) in this way:

h(t) = a(t, —t)" (1 + Bcos(wlIn(t, —t) — D)) 4)

where «, B, w, @, and ¢, are the model parameters. The power law singularity resides
in the term a(t, —t)""! it is the term that models the positive feedback mechanism
that eventually leads to the creation of the bubble. And the log-periodic large scale
oscillations are the two terms of the equations that accounts for the cascades of
oscillations. The log periodic oscillations can be seen as the tension between the
different agents of the model, this tension creates deviations in the prices growth,
and become more important as we get to the critical point ..

By combining (4) and (2) substituting with (3), we finally get:

E[lnp(t)] = A+ B(t.—t)"1 + C(t, — t)" cos(wIn(t, — t) — D)) (5)

with A = In(p(t.) is the logarithmic price at a critical time and B = —ka/m is the
amplitude of the power law, it is the increase of the logarithmic price before the
crash. B < 0 represents a positive bubble, and B > 0 represents a negative bubble.
We assume 0 < m < 1 this condition ensures the faster-than-exponential growth till
the critical time ¢.. Also we have C = —ka/Vm? + w? that is the magnitude of the
oscillations, when w is the pulsation of those oscillations and ® is a phase parameter.
We also can notice that this formulation allows to model the price dynamics beyond
t. we then have to replace ¢, —t by |t. — t|, we then assume a symmetric behavior of
the log price after the singularity.
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Figure 3: Example of LPPLS model following the equation 3, generated using (m,
w,D,A,B,C,t.)=(0.353689,9.154368,2.074608,7.166421,—0.434324,0.035405,530)

Classic positive bubble regimes can be characterised by those parameters B < 0 with
0 < m < 1. The first condition as stated before ensures that we are in a positive
bubble, that the prices trajectory will follow a faster-than-exponential growth until
we reach the critical time #.. The condition 0 < m is the condition that ensures that
the price remains finite at the critical time, while the condition m < 1 does ensure
the existence of the singularity, the peak of the expected log-price diverges at the
critical time.

Afterwards, for the fitting method, as well as the optimization and estimation of
these parameters, we shall refer to Filimonov & Sornette (2013).

2.3 Estimation and Calibration of the model

As it as already been reported in the literature review, one of the most important
work on the LPPLS model resides in Filimonov & Sornette (2013), particularly for the
estimation and calibration. Their work rewrites (5) by modifying the term C cos().
The two parameters C and @ are then replaced by two other linear parameters that
are always referred as C; and C, with C; = C cos® and C, = Csin®. By this change,
we do reduce the number of nonlinear parameters in our model, from 4 non linear
parameters (w, m, t,, ), we then only have 3 to determine (w,m,t.). On the other
side we then have more linear parameters to determine, (A, B,C;,C2). Finally we
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2 BUBBLES AND LPPLS MODEL 2.3 Estimation and Calibration of the model

come from these set of 7 parameters to determine (w, m, t.,®, A, B, C) to these set of
7 parameters (w,m,t., A, B,C;,C5).

We can now rewrite (5) in terms of our new parameters following Filimonov &
Sornette (2013). We then obtain:

E[lnp(t)] = A+B(t.—t)" + Ci(t,—t)" cos(wIn(t, — t))+ Cy(t,—t)" sin(wIn(t. — t)) (6)

In order to give an estimation to these parameters, we will use the L?> norm which
gives the following, using the least-square method with the cost function F:

N
F(w,m,t.,A,B,Cy,C,) = Zlnp - B(t.— ;)"
i=1
— C1(t = )" cos(wln(t. — 7)) + Co(t. — ;)" sin(wIn(t. - 7;))]* (7)

We can separate the 4 linear parameters from the 3 non linear parameters, we then
get a non linear optimization problem:

(@, 1, £,) = arg min Fy(w,m, t,) (8)

w,m,t,

where the cost function F; (w, m, t,) is:

Fi(w,m,t F(w,m,t.,A,B,Cq,C 9
1(w,m, tc) = Aglélncz (w,m, £ 1,Cr) )
Similarly to the work of Filimonov & Sornette (2013), the optimisation problem of
(9) has a unique solution that is obtained in solving the matrix equation:

N Yf Y& Xh ][ A Yy
Yfi Lff Lfig Lfihi || B |_| Lyifi (10)

Yo Lfig Y& Lahi || C | | L
Yhi Lfihi Yghi Yh? || G, 2 vihi

where:
f (tC -

gi = (t.—7;)" cos (wln (t, — 7)) (11)
h; = (t,—1;)" sin(wln(t, — 1;))

)m

According to Filimonov & Sornette (2013), the modification of the LPPLS equation
delivers two very important results.

First, we notice that the non linear optimisation is transformed from a 4 dimen-
sional space to a 3 dimensional one, a modification that significantly reduces the

complexity of out problem.

Second, the modification wipes out the ® parameter of the problem, and by the
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2.3 Estimation and Calibration of the model 2 BUBBLES AND LPPLS MODEL

same way it does eliminate the periodicity of the cost function. Indeed before this
modification there were multiple minima in the cost function, which required meta-
heurestic searches. Then this method is undeniably more convenient, because it
does not require any heuristic to find the minimum.

covariance matrix adaptation evolution

We observe that the cost function can be in this form computed using local search
methods, such as Levenberg-Marquardt non linear least square algorithm, as stated
in Filimonov & Sornette (2013), or the Nelder-Mead method.

However there is numerous different methods to compute the estimation of the non-
linear parameters. For example the the covariance matrix adaptation evolution strat-
egy (CMA-ES) could be applied to minimise the residuals between the LPPLS model
estimations and the price time series. This method, first introduced in Hansen et al.
(2003) and developed after by the same authors, is the evolutionary method the
most widely spread and used in the scientific community. The performance of the
method made it one of the best among the other evolutionary methods for real-
valued single-objective optimisation. It can be applied to nonlinear and non convex
optimisation problem with search space dimension contained between 3 and 100.
We will later on observe that those conditions are respected for our model, and then
this optimisation can be used in our case. Moreover the main advantage of this min-
imisation algorithm resides in its invariance properties, along with the preservation
of the order of the objective function value.

By comparison to the Levenberg, and Nelder-Mead method, the CMA-ES used to
compute the LPPLS estimation has sometimes a lower computation and a lower rel-
ative error.

To calibrate the model, we fit the data using the Ordinary Least Square method. Then
this fitting provides us with the estimation of our parameters (w, m, t., A, B, C;, C,) for
a certain window of analysis.

We define the window of analysis as following. For each fixed point of data ¢, that
we want to analyse, we take a point t; such our window (¢, t,) as alength dt = t; —t,
varying between two values usually between 30 to 750. The size of our window rep-
resents the number of trading days we use to fit our LPPLS model to the price time
series data, so usually between 30 to 750 trading days. Moreover we can use a step
to decrease the window from the 750 trading days to 30, for example a step of 10
would make us fit only one window out of ten and we would only have 71 windows
to analyse for each t,.

Whatever the method we chose to apply to get the estimates of the linear param-
eter A, B,C;andC,, we chose the nonlinear parameters to reduce and minimise the
mean squared error of the resulting LPPLS model, by running a Nelder-Mead for
example Filimonov & Sornette (2013).

Furthermore we use some filtering conditions that will select only a few estima-
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2 BUBBLES AND LPPLS MODEL 2.4 LP-AR(1)-Garch(1,1) model

tion results of our LPPLS model. This is done to minimise some calibration problems
that could come up, as well as to avoid the minimisation issue of (5).

Those filtering conditions have been gathered over the years empirically, by the many
studies conducted in Jiang et al. (2010), Sornette et al. (2015), Zhou & Sornette
(2003). It has also been proved that in certain conditions those filtering conditions
could be lighten. And on the other hand previous calibration on the model enlighten
the importance of these condition on the non linear parameters to remove false pos-
itive LPPLS fits that would have found a nonexistent bubble Brée & Joseph (2013),
Demos & Sornette (2017).

We need to have m in [0, 2] to provide an increasing hazard rate and that the price
series converge to the the price at the critical time when we time converges to the
critical time.

We also have to reject the low estimation of the oscillation pulsation w. This re-
jection aims to avoid any slow oscillation that would try to fit the price time series
trend. We also reject the highest estimations of w cause they could be just estima-
tion fitting the noise. We then take w € [2,25] which is an interval often chosen
in the literature for these reasons Demirer et al. (2019), Demos & Sornette (2017),
Filimonov & Sornette (2013).

All the filtering conditions and requirements are gathered in table 1.

As a more technical requirement, we also need the matrix (10) to be non-singular
and well conditioned.

Item Notation Search space Filtering condition 1  Filtering condition 2

3 m [0,2] [0.01,1.2] [0.01,0.99]
nonlinear w [1,50] [2,25] [2,25]

parameters t, [t, — 0.2dt, [t, — 0.05dt, [t, — 0.05dt,

t2+02dt] t2+01dt] t2+01dt]

Nb oscillations s ln|t;_tt1 | - [2.5,+00) [2.5,+00)

Damping %gf - [0.8,+0) [1,+00)
Relative error % - [0,0.05] [0,0.2]

Table 1: Filtering conditions and search spaces of valid LPPLS fits from Sornette et al.
(2015)

2.4 LP-AR(1)-Garch(1,1) model

In this section, we will introduce a generalisation of the LPPLS model.

We already proposed the original LPPLS model, and its estimation and calibration.
However, while the original LPPLS is capable of modelling the long range dynamics
of price movements, it is sometimes harder to model the short term price movement
with this model. In Gazola et al. (2008), the authors proposed the following Log-
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Periodic-AR(1)-Garch(1,1) Model:
E[lnp(t)] = A+B(t.—t;)f + C(t, — ;)P cos[wln (t. — t;) + P] + u;

Ui =puj1+1;
ni = oie;, € ~N(0,1)

2 _ 2 2
Oy =aptait];_y + a0,

(12)

where ¢; is a standard white noise, which satisfies E[¢;] = 0 and E[eiz] = 1. And the
conditional variance o~i2 follows a GARCH(1,1) process.

The next section will give a new approach to calibrate this Log-Periodic-AR(1)-
Garch(1,1) model.

2.5 The 2-step/3-step ML approach

The estimation of the LPPLS model is, in general, never an easy or trivial task to
achieve. For example, the presence of local minima in the cost function can eventu-
ally ’trap’ the minimization algorithm.

The method we depicted in the previous section is the first one that has been de-
veloped and is often referred as a reference, however some alternatives do exist.
And these alternatives are sometimes a good help to avoid the computation of the
Nonlinear Optimization.

In Fantazzini (2010), the authors found out that estimating the LPPLS model over
a negative bubble was even easier than for a classical positive bubble. What they
called an anti-bubble is a negative bubble, the symmetric of a positive bubble. The
price-time series decreases with log-periodic oscillations to a rebound at the critical
time.

We have already seen, while establishing the model, that the original LPPLS model
is defined by a stochastic random walk component with an increasing variance. The
idea of the authors in Fantazzini (2010) was to minimise the effect of non-stationary
component of the model in reversing the original price-time series (getting a nega-
tive bubble instead of a positive bubble).

A first technique was then developed in Fantazzini (2010) called the 2-step ML ap-
proach, in order to estimate the LPPLS models using the (12) model. There are the
two steps:

1. Reversing of the price-time series, and estimation of the LPPLS model for a
negative bubble by using the BFGS algorithm (Broyden, Fletcher, Goldfarb,
Shanno), coupled with a quadratic step length method (STEPBT) as in Den-
nis Jr (1983).

2. Fixing the parameters of the LPPLS model found in 1, we estimate the param-
eters of the short term stochastic component (p, g, a1, a5).
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When the values of the parameters of the LPPLS model reveal poor, or when the bub-
ble is just beginning, the computation can be fasten and eased by using an additional
step. This method was later called the 3-step ML approach used first in Fantazzini
(2010):

1. We reverse of the price-time series, and then we change the time scale esti-
mation of the LPPLS model making the first day of observation the day of the
crash. We then estimate the LPPLS parameter for a negative bubble by us-
ing the BFGS algorithm (Broyden, Fletcher, Goldfarb, Shanno), coupled with a
quadratic step length method (STEPBT) as in Dennis Jr (1983).

2. Fixing the parameters of the LPPLS model found in 1, we use these values as
starting values to estimate all the LPPLS parameters, still using the reversed
price-time series

3. Fixing the parameters of the LPPLS model found in 1, we estimate the param-
eters of the short term stochastic component (p, ay, a1, a3).

This multiple step estimation possesses a lower asymptotic efficiency than the one
proposed before. However we obtain a drastic improvement in the computation-
al/numerical convergence. The improvement in terms of efficiency for small and
medium sized data makes this methodology totally relevant. A simulation study in
Fantazzini (2010) brings the proof of the benefits of this estimation methodology.

2.6 LPPLS indicators

This section will be focused on the LPPLS indicators that can be generated from the
model. First, we will introduce the DS LPPLS indicators as they have been suggested
in Sornette et al. (2015), and then the multi-scaling LPPLS framework, see Demirer
et al. (2019).

But first, we recall the difference between a positive and a negative bubble. For
a positive bubble, the prices time series exhibit a faster-than-exponential growth to-
wards the critical time ¢, till its crashes. On the other hand, a negative bubble is
the exact mirror situation over the horizontal axis x — —x, we then have a faster-
than-exponential decrease wich ends up on a change of regime, a negative crash or
a positive price rebound. This is modelled in the LPPLS by the B parameter, if B < 0
the bubble is positive, and negative in the case where B > 0.

2.6.1 DS LPPLS indicators

We can now introduce the DS LPPLS Confidence indicator and the DS LPPLS Trust
indicator, a feature that was first proposed in Sornette et al. (2015) and after used
and enhanced in Zhang et al. (2016).
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We define both LPPLS indicators at a time t, as the the fraction of windows where
we found a bubble respecting the filtering conditions. If we take the example where
for each t, we look for each window (t,t,) with dt = t, — t; between 30 and 750
trading days with a step of 10. Then, we have to fit the LPPLS model on each of the
71 different windows. If we get 7 different windows with a LPPLS fit that pass the
filtering conditions, we then obtain a confidence indicator of 7/71.

A large value of the indicator will then be the signal that a lot of our LPPLS model
have fitted and pass the filtering condition, we can state in this case that there is
with a high probability a bubble. On the other hand, a small value of the indicator
states that only a few windows have had a LPPLS that fitted, then it is unlikely that
there is a bubble.

DS LPPLS Confidence is defined as the fraction of fitting windows for which the
parameters of the LPPLS model satisfies the filtering condition 1 in table 1, page 17.
It indicates the sensitivity of the bubble at a fixed date of time. A value close to O
will indicate that only a few windows verified the conditions, a value close to 1 will
however indicate the reverse and that the LPPLS model pattern has been observed
many times, we then have a confidence level in the bubble.

DS LPPLS Trust is the median level over the number of estimations windows of
the fraction among the number of repetitions that satisfy the filtering condition 2 in
table 1, page 17. It indicates how closely the LPPLS model calculated respects the
price-time series. A value close to 0 will indicate that only a few windows where
close of the price-time series, a value close to 1 will however indicate the reverse
and that the LPPLS respects very closely the price-time series, we then have a level
of Trust in the bubble. This level being larger than 5% alerts that the current course
of prices is in a critical state and that a transition will occur.

However with some data we do not need to generate the indicators using the whole
spectrum of windows (¢, t,), with dt = t, — t; between 30 and 750 trading days. For
some data, only short term windows would be useful and relevant. We then have to
define Multi-Scale indicators.

2.6.2 Multi-scale indicators

In Demirer et al. (2019) the authors introduced different bubbles indicators relying
on the window size the indicators were computed, a short-term bubble indicator, a
medium-term bubble indicator, and a long-term bubble indicator. As explained in
the last section all of the indicators at time t, are a fraction of the fitting LPPLS
model over the window and then have values in [0, 1].

The short-term bubble indicator is the indicator for the window (t;,t,) of size
dt = t, — t; in [30,90]. For example if the fit for a specific window respect the
filtering condition we set its value to 1, if not to 0. If the step we took is equal to 10,
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we will have 7 different windows to look at ((90-30)/10+1). If we found 2 accepted
fits, we will take the short term indicator as the average of the fits, we would have
there have Short;,; = 2/7.

The medium-term bubble indicator is the indicator for the window (¢, t,) of size
dt = t, — t; in [90,300]. For example if the fit for a specific window respect the
filtering condition we set its value to 1, if not to 0. If the step we took is equal to
10, we will have 22 different windows to look at ((300 —90)/10 + 1). If we found
2 accepted fits, we will take the short term indicator as the average of the fits, we
would have there have Medium;,; = 2/22.

The long-term bubble indicator is the indicator for the window (t;,t,) of size
dt = t, —t; in [300,750]. For example if the fit for a specific window respect the
filtering condition we set its value to 1, if not to 0. If the step we took is equal to
10, we will have 46 different windows to look at ((300 —750)/10 + 1). If we found
2 accepted fits, we will take the short term indicator as the average of the fits, we
would have there have Long;,; = 2/46.
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3 Trading strategy

This part of the thesis is focused on the work I realised during my internship. Unless
stated otherwise, the work contained in this part is my own work.

My work has for final objective to implement a trading strategy and make some
profits out of a financial bubble. In a first time, we have to determine a methodology
to predict bubbles. And in a second time, we have to develop a trading strategy to
realise a profit out of the bubble we detected. In my work I focused on the LPPLS
model, and how one could use it to determine a trading strategy that would be effi-
cient on different type of assets.

In a first part, I will describe how I predicted a bubble using the LPPLS model by
replicating a well-known result of the literature. Following these explanations, I will
define a trading strategy using the LPPLS indicators. Then, we will backtest the
strategy and analyse the results. In this work, a significant number of ideas occurred
from the observation of my results. Consequently, the last part of this section will be
focused on these ideas and features that improved the trading strategy.

But first, we shall generate the LPPLS indicators.

3.1 Generate the LPPLS indicators

The first step is to detect a bubble using the previous theory of the LPPLS model,
developed over the years in Johansen et al. (2000), Sornette (2009), Sornette et al.
(1996). As described in the last section, following this theory, in a bubble state the
price-time series follows a power law possessing log periodic oscillations, that ulti-
mately ends up on a crash.

There exists different ways to compute the LPPLS model and its parameters for an
asset, they are all very well explained in Geraskin & Fantazzini (2013). So far, we
discussed the detection of financial bubbles by fitting the LPPLS model, and then
looking at the quality of the parameters over heuristic results.

In this thesis, I first worked with the original studies of the LPPLS model in Johansen
et al. (2000), Sornette (2009), Sornette et al. (1996). I developed in python some
code to do the basics task and generate the fitting LPPLS model from the price-time
series data. After I focused on this specific article Demos & Sornette (2017) to gen-
erate the DS LPPLS Confidence and DS LPPLS Trust indicators from part 2.6. Coding
functions that would generate such indicators was not an easy thing to do and took
me a few weeks. I realised then that computing the indicators was taking too much
time, indeed using the original theory of LPPLS and computing the optimization
problem of 10 requires heavy calculations. To compute the LPPLS model and do
the computations using this model, one must dispose of a lot of computation power
which I did not at the time. I then decided to move on to another computational
approach to get my results.
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In Geraskin & Fantazzini (2013), the authors created a R library that have been
after improved with the recent discoveries and improvement of the theory over the
years. It does contain numerous function that computes the parameters of the LPPLS
model following the model introduced at the end of the previous section, equation
12, and using the 2-step/3-step aproach to compute the model, in part 2.5. The
library can be found in Fantazzini (2020). The work done in this library is quite
remarkable and it proved itself very helpful for our work in this thesis.

As a first step to use the LPPLS model to detect a bubble, we focused on replicating
the work done in Sornette et al. (2015), more precisely the work done on the bubble
regime that evolved in the Chinese stock market between mid 2014 and 2015.

Using the LPPLS theory, we look at every single day in the data. For each day t,
we look for each window (t;,t,) with dt = t, —; 1 between 120 and 250 trading days
with a step of 10. To compute the DS LPPLS Trust indicator, we use a number of
10 repetitions. This number is very undervalued compared to the 100 chosen in
the study Sornette et al. (2015). We made that choice of reducing the number of
repetitions to increase the computing time of our algorithm. This is an issue we will
discuss later, but it should already be stated that the generating the indicators of
the LPPLS model is a time-consuming operation that takes hours even days for large
data.

In order to alleviate the number of tasks our CPU needs to compute. We do some

parallel computing/processing. We need for each time of data ¢, to compute the

250-120
LPPLS model for ———— + 1 = 14 different windows. We divide our processor in

7 entities so that for each point of data we can calculate the models in two steps
instead of 14. However, even with this technique, computing the indicators required
around 6 hours for the 3 years of data we had.

We used the data of the SSEC index Chinese stock market between July 2012 to
July 2015. This is the result we obtained:
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bet phi A B [ tc avg.length num.osc damping rel.err Ippl.Confidence Ippl.Trust crash.lockin
date

2‘”2"’;2' NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2012"’;‘; NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2012am NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2012"’6{; NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2012-am NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
20T 0172589 0534799 9.064556 1262613 1382821 782621718 190.0 1.031992 0773399 0.000019 0.0 0.0 2015-08-29
2MSOT- 0079203 0678909 9.086065 -1013822 0575861 781505528 190.0 0885563 0383500 0.000021 00 00 2015-08-28
201807 0010506 0762657 9.343874 -1.069600 0243338 777.033741 190.0 0.22072 0.245311 0.000022 0.0 0.0 2015-08-24
2507 0010250 0759352 9779808 -1015815 0135045 780.806044 190.0 0949763 0324210 0000014 00 00 20150829
201807 053501 0621354 9.271995 -0.966921 0.078056 785.033768 190.0 0.875959 0269057 0.000019 0.0 0.0  2015-09-03

28

Figure 4: Computing the DS LPPLS Confidence and DS LPPLS Trust indicators with the
SSEC index

Our algorithm return the table in figure 4. It contains all the information about the
fitting of the LPPLS model on our data, for every trading day.

bet: this is the average estimation of the LPPLS parameter g over all the esti-
mation windows

ome: this is the average estimation of the LPPLS parameter w over all the
estimation windows

phi: this is the average estimation of the LPPLS parameter ¢ over all the esti-
mation windows

A: this is the average estimation of the LPPLS parameter A over all the estima-
tion windows

B: this is the average estimation of the LPPLS parameter B over all the estima-
tion windows

C: this is the average estimation of the LPPLS parameter C over all the estima-
tion windows

t.: this is the average estimation of the LPPLS parameter ¢, over all the estima-
tion windows

length: this is the average length over all the estimation windows

num.osc: this is the average estimation of the number of oscillations over all
the estimation windows

damping: this is the average estimation of the damping over all the estimation
windows
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rel.err: this is the average estimation of the relative error over all the estima-
tion windows

Ippl.Confidence: the Confidence indicator as defined in part 2.6

Ippl.Trust: the Trust indicator as defined in part 2.6

crash.lockin: this is the critical time ¢, in date format

We have computed in this table all the important information on the computed LP-
PLS model for every single day of our data. We notice that do not have any LPPLS
Confidence indicator for the year of the data, indeed we computed the model using
a window between 120 and 250 trading days, so the first year (250 trading days)
cannot be computed and are referred as Not A Number in our table.

SSE from 2012-07-02 to 2015-07-30

}0.40
—— lppl.Trust

Ippl.Confidence
5000

4500 F0.30

4000 F0.25

Price
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3000

o010

2500
I 0.05

2000 L 000

2012.07-02 2012-11-26 2013-05-02 2013.09-26 2014-02-28 2014-07-24 2014-12-19 2015-05-21
date

Figure 5: SSEC index in red together with the DS LPPLS Confidence indicator in orange
from 2012 to 2015

We computed the indicators as Sornette did in Sornette et al. (2015), in taking for
last date, the same that he did. Our results then provide a diagnosis on the bubble
that was forming at this moment in the SSEC index. We do observe a change of
regime in early 2015, at the exact same period they did in their research.

However we notice that we get the LPPLS Confidence peak in early 2015 goes to 0.07
in Sornette et al. (2015), when in our computation we obtain a peak that reaches up
to 0.38. This discrepancy comes from the different technique we used to generate
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our result.

Indeed in Sornette et al. (2015), the authors used the original LPPLS model that
we introduced in the first part, when we used the 3-step ML approach technique
introduced in Gazola et al. (2008). The difference could eventually come from the
window step we worked with. We took a window step of 10, which means that
we were looking at only one window of ten. And taking a step of one could have
eventually reduce the peak. Indeed the Confidence indicator, which is the ratio of
the number of bubble found on the number of windows observed, would have been
divided by a greater number of windows taking 1 as the step. So our high peak
could have resulted from ’some luck’ if a lot of the 10 step away windows contained
a bubble for the LPPLS model.

Figure 5 illustrates the DS LPPLS indicator signal for the SSEC index between July
2012 and July 2015. It is a rather good example to explain the model. As said be-
fore, we observe that the figure do not have any LPPLS Confidence indicator for the
year of the data. Indeed we computed the model using a window between 120 and
250 trading days, so the first year could not be computed. This one of the limitation
of the model.

3.2 The trading strategy

Now that we are able to detect a bubble, and predict the critical time of its crash,
as well as to compute the indicators of early bubble warning and end flag bubble, it
would be relevant to understand how we could use this to make a profit out of it.
Academic studies about LPPLS have been really thriving these last few years since
the outstanding work of Johansen et al. (2000), Sornette et al. (1996). However to
the best of our knowledge there is only a very limited number of papers, articles and
studies that uses these recent discoveries and apply them to build a trading strategy
using the LPPLS model. And all of them have been carried out recently compared to
the year discovery of the LPPLS model.

In our research work, we found an interesting study by Mamageishvili (2019), fo-
cused on a trading strategy using LPPLS indicators that we replicated and tested.
The strategy relies on the LPPLS confidence indicators, the DS LPPLS Confidence
also called the early bubble warning and the DS LPPLS Trust indicator also called
end flag bubble indicator.

In the following section, I will describe the strategy as I implemented it in my work.
It is rather different from Mamageishvili (2019), even if the first idea is quite similar.
Indeed in Mamageishvili (2019), they computed the indicators using the original LP-
PLS model, and as said in the previous section, in my work I computed the indicators
using the 3-step ML method of Geraskin & Fantazzini (2013). The approach I used
computes faster but also obtains fewer indicators compared to the original method,
I had then to adapt to get an efficient trading strategy.
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3.2.1 The strategy

If we start from the beginning, the first idea that comes up in our mind is to try to
invest as soon as we detect a bubble and leave the market when this bubble is about
to crash. The simple idea proposed in Mamageishvili (2019) is to buy the asset if
we have the signal of an emerging bubble, we can then ’surf’ on the bubble as prices
follow a faster than exponential trend, and we are out of the bubble when it is about
to crash. Furthermore, the strategy looks at emerging negative bubble to avoid the
drop in the prices and eventually invest when prices are at the lowest.

First, we recall the idea behind the two indicators we use. The early bubble warning
represents the apparition of a bubble pattern in the price time series, a positive bub-
ble indicator means a positive bubble when a negative one indicates the emergence
of a negative bubble. The end flag bubble indicates that the bubble is matured and
is about to crash or to get a noticeable variation. If the indicator is larger than 5%
the positive bubble is likely to crash, and if the indicator is below —5% the negative
bubble is likely to rebound.

When we get a signal at time ¢, we trade at time ¢ + 1 with the adjourned price.

We define two different conditions.

The strategy includes short and long time indicators, this is a really important fea-
ture that ensure to look at short term bubbles but also for bigger long term bubbles.

First condition:
If one of these requirements is fulfilled we enter the market at time t+1.

* LPPLS Confidence short term indicator is larger than a threshold «
* LPPLS Confidence long term indicator is larger than a threshold «

The first one ensures to take profit and hunt for positive bubbles. We take a €
(=0.1,0.1), this value has to be determined for each specific stock in a way that it
optimises the Sharpe Ratio.

Second condition:
If one of these requirements is fulfilled we enter the market at time t+1.

* LPPLS Trust short term indicator is negative
* LPPLS Confidence long term indicator is less than —0.05

This one aims to focus on the end of a negative bubble, to then invest when the
prices are about to rebound.

The strategy:

e If the second condition is verified we invest for n, (depends on the window
sizes used) consecutive days at time t + 1
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* Else if the first condition is verified we invest for n; (depends on the window
sizes used) day at time ¢+ 1

* if none of them, we are out of the market at t+1, we then invest in the risk-free
3-Month US Treasury Bills

This strategy differs from Mamageishvili (2019) in many ways.

First, in the definition of the second condition, I decided to implement it with a
‘or’ instead of a ’and’, if at least one of the requirement is fulfilled I consider the
second condition to be true. My studies proved this to be more efficient, this is a
straightforward improvement that is due to the approach I choose. Indeed I do not
obtain as many indicators as in Mamageishvili (2019), and then obtaining a DS LP-
PLS Trust indicator negative for both long and short term at the same time is very
unlikely with my approach.

Second, when I invest, I hold my position for a fixed number of days, n; for the
first condition and 7, for the second condition. While in Mamageishvili (2019), the
strategy proposed was investing for only one day if the condition 1 for verified, and
100 days if the second was.

The performance of the strategy is then compared to the buy and hold strategy.
We use the Sharpe Ratio and we compare the Profit and Loss of the strategy against
the buy and hold.

3.2.2 Literature results

In Mamageishvili (2019), the author performed the strategy over 27 equity indices
located in USA, Asia, and Europe, between 1996 and 2018. This lapse of time of
more than 20 years is really fascinating while hunting for bubbles. As it does con-
tain two major equity bubbles: the Dot-Com bubble, and the Subprimes bubble.
This strategy outperformed the hold and buy strategy on 22 indices out of the 27
tested in their work, with respect to the Sharpe Ratio.

In their work they also conducted a few studies to calibrate the thresholds around
the indicators. This calibration revealed very useful in our work but we did not
replicate this studies as it was non essential to get our own results, and was a highly
time-consuming task. However we used the parameters found to compute our strat-

egy-

One of the major outcome of the backtesting of this strategy is the following, even a
small indicator is already a good indication of a possible bubble. We then expect to
have as much as indicators as possible to have more trading opportunities. Indeed
our indicators represent the number of bubble we saw appearing in our moving win-
dows. Hence a small indicator still proves that the LPPLS model found at least one
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legitimate fitting bubble across our data. Hence it might already be enough to start
trading.

3.2.3 Visualisation of the results

The Sharpe Ratio

We recall the definition of the Sharpe Ratio. It was introduced by William Forsyth
Sharpe in 1966, a Nobel-prize winning economist, who also helped establish the
Capital Asset Pricing Model (CAPM). It is used to understand the return of an invest-
ment over its risk. The Sharpe Ratio is the average return earned subtracted of the
risk-free rate over the total volatility. Subtracting the risk-free rate from our expected
returns isolate the profit that can be made with risk from the risk free profits. The
risk free rate is the return made from a zero risk investment, here in our strategy it is
the 3-month US Treasury Bill yield. The higher the value, the better the investment
is, compared to the risk.

We resume all of that in the Sharpe Ratio formulation:

E[R,] - Ry

Op

SharpeRatio =

With R, the return of the portfolio, R f the risk-free return, and op the standard vari-
ation of the portfolio.

The Sortino Ratio

To observe the results of our strategy I decided to use another indicator, even though
none of the studies I worked with used it, I felt this indicator would have a non-
negligible value in the analysis of the results, and would complete the Sharpe Ratio.

While computing the efficiency of a strategy, the investor may decide to not pe-
nalise a strategy for positive volatility.

The Sortino Ratio is a metric that attempts to penalise an asset only with its negative
volatility, by considering the standard deviation of the negative returns instead of
the deviation of all the returns in the Sharpe Ratio.

How to compute the negative volatility can be debated. But by definition, the
standard deviation of an asset measures the dispersion of the data compared to
its average. When we apply the standard deviation definition to negative returns, it
measures dispersion around the average negative return. However, it is often more
useful to compute the dispersion compared to a target, usually 0. Like this we mea-
sure the dispersion compared to 0. This idea was introduced in Rollinger & Hoffman
(2013). In fact the positive volatility means profits, so we are often willing to accept
and concentrate only on the negative volatility. This is the interest of this ratio, the
downside deviation allows to isolate only negative returns of the strategy.
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We resume all of that in the Sortino Ratio formulation:

E[R,]- Ry

0d

SortinoRatio =

With R, the return of the portfolio, Ry the risk-free return, and o4 the downside
deviation of the expected return of the strategy. The Sortino Ratio is often preferred
to Sharpe Ratio for evaluating high-volatility portfolios, when the Sharpe is more
commonly used for low volatility portfolios. In our case, the combination of the two
ratios is interesting, as when during the different states of a bubble, we go through
high and low volatility phases.

Along with the Sharpe Ratio, the Sortino Ratio is of great help to compare strategies.

3.2.4 Holding period

We should also comment the number of days we are holding the asset if one of
the conditions is verified. In Mamageishvili (2019), the author proposed to test the
number n, of days we should hold the position when the second condition is veri-
fied. The tests have been conducted for n, in [20,200], and the best results seems to
have been obtained with n equal to 100, all parameters fixed. In my work I decided
to keep this result and work with 7, = 100.

Yet no studies have been carried on the number of days one should hold the po-
sition if the first condition is verified.
I then decided to run some tests to determine the holding period ;.

I worked with the Bitcoin data over the last 3 years. I run my strategy over the data
for different holding periods, and then compared the Profit and Loss and Sharpe
Ratio of the strategy for the last trading day. This is the results I obtained:
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P&L in 2020-05-31 function of the holding period for Bitcoin from 2016-12-01 to 2020-05-31
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Figure 6: P&L and Sharpe ratio of the strategy with variable holding periods, for

We observe that a holding period between 30 to 40 trading days would grant us the
best results in terms of P&L and Sharpe Ratio. This result was partially predictable
cause the holding period depends first from the indicators and then from the way
we generated them and specifically the range of windows we took to generate them.
In this case, I generated the short term indicators Confidence and Trust using win-
dows in [30,90] using a step of 10. For the long term, I first generated the in-
dicators Confidence and Trust using windows in [90,250] with a step of 10. The
average size of the windows for the long term indicators is then of 170 trading days.
And if we refer to the table 1, and our observations, the crash date happen usually
0.2 x (t, —t1), where (¢, — t;) = dt is the size of the window, which would give in our
case 0.2 x 170 = 34 days later in average. Then we are not surprise to get this result.
In this specific case, it seems that the best n; would be 38 days, in terms of PL and
Sharpe Ratio.

When one wants to invest in a stock using the strategy, running this test might give
a different number for a different asset. Our tests, with different asset classes, also
revealed that a holding period in [20,50] gives usually good results.

3.2.5 Results

We shall now describe with more details the results obtained with this strategy.

I replicated the strategy over different classes of assets. I carefully selected the
assets I worked with, to obtain a coherent set of data across equity, commodities,
currencies, and cryptocurrencies. Those choices were motivated by different factors,
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first it was in the intention of the company to conduct these studies on different
types of assets. And more academically, the LPPLS model has been applied to eg-
uities in almost all the studies I was able to find. Furthermore it has always been
my intention to prove that my strategy could be applied on different classes of assets.

However, due to time constraints, we were not able to conduct as many tests on
the strategy as we would have wanted. Indeed, as stated before, computing the LP-
PLS indicators takes usually many hours, even days when working on large datasets.

Equity
First, I started by reproducing the strategy on the S&P 500 for the last 25 years.

To apply our trading strategy, we first need to have the LPPLS indicators, DS Con-
fidence and DS Trust computed for the whole 25 years of data. In the strategy, we
have to compute two types of indicators, short period and long period indicators.
Moreover I noticed that the time period to produce the indicators was not specified
in Mamageishvili (2019), I then decided to work with the short and long period
indicators as defined in the part 2.6.2. I generated the short term indicators Con-
fidence and Trust using windows in [30,90] using a step of 10. For the long term,
I first generated the indicators Confidence and Trust using windows in [300,750].
This operation was time consuming, it took no less than 4 straight days to compute
the long term indicators, even using parallelisation of the processors.

However, I faced an issue while generating the long term indicators with size win-
dows in [300,700]. Indeed I did not find any fitting LPPLS bubble with these sizes
of windows. This is much probably an issue of the LPPLS model. When trying to
fit the model on a lot of data with big windows, we end up finding a fitting model
with too much relative error. But to accept a LPPLS model, the model has to ful-
fill some conditions and pass through the filtering condition of table 1. And within
those conditions, we have that the relative error must be contained in [0, 0.05]. Then
if we work with large windows, the model will have to fit perfectly to get a relative
error that passes through the error condition. That explains why we did not find any
fitting bubble in that case.

I then decided to work with medium window sizes instead of large, as defined in
part 2.6.2. Using medium term indicators, I successfully generated the Confidence
and Trust indicators.

In the first condition of the strategy in 3.2.1, we should choose the parameter «
to optimise the Sharpe Ratio. I computed the model for different values, and I found

that a threshold « equal to O was the best option for the S&P 500.

The results obtained are gathered in figure 8, page 36.
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The figure 8 contains 5 different charts. The two firsts contain the prices along
with the indicators found using the LPPLS model, the first one displays the positive
indicators, and the second the negative indicators. The third chart is the ratio of
the P&L of our strategy over the buy and hold strategy, for every trading day of our
data. And the last two graphs display the Sharpe and Sortino Ratio of our strategy,
compared to the hold and buy strategy.

In those graphs we can observe green and red vertical lines. A green line represents
a buy, and a red a sell. We always start by buying the stock and we always sell it on
the last trading day if we possess any.

I followed this rule with every asset I worked with and kept the same format to dis-
play my results.

The first graph proves the efficiency of the LPPLS model to detect a bubble in an
asset. We obtained two indicators that predicted the Dot-com bubble emergence in
1999. Also the model generated two others at the early stage of the Subprime bub-
ble, and again two indicators when the bubble was maturing. However, we observe
that we got much more shot term indicators than long term indicators. A result that
comes from the difficulty to obtain a fitting LPPLS model while working with huge
windows.

The P&L obtained with the strategy is unfortunately lower than the buy and hold
strategy. This can be explained by the time we spent in the stock. Indeed, the LPPLS
model did not generate enough indicators for us to spend enough time in it and
make profits out of the bubbles.

To obtain more indicators we would need to compute the indicators using a shorter
step, and then look at more windows. However in this work I was limited by the
computational power at my disposal. Indeed, my company gave me an access to
an external server, but even with this, computing the indicators usually takes a few
days. Taking a step of 10 was then a reasonable choice between time constraints and
accuracy.

In terms of Sharpe Ratio, the strategy is performing better than the hold and buy
strategy. Furthermore, the Sortino Ratio proves that the strategy performs also bet-
ter in terms of negative volatility.

Cryptocurrency

After working on equities, I moved on to cryptocurrencies, this choice was moti-
vated by some reasons. First, many cryptocurrencies such at Bitcoin does possess
a few interesting bubbles that appeared on quite a short period of time, making it
even easier for my algorithm to compute the indicators. Second, my tutor expressed
its interest in that specific class of asset. Moreover I was eager to try out a strategy,
that had only been tested on equities (to the best of my knowledge), on a different
class of asset.
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First, I worked with Bitcoin (prices in US Dollars) over the last 3 years, from 01/12/2016
to 01/08/2020.

I generated the short term indicators Confidence and Trust using size windows in
[30,90] using a step of 10. For the long term, I first generated the indicators Con-
fidence and Trust using size windows in [90,180] with a step of 20. Having only
3 years of data to analyse, it was not relevant to compute the long term indicators
on bigger windows. The data used being quite small, computing the indicators was
made in a matter of hours for the short term, and a bit more than a day for the long
term, using 7 paralleled processors at a time for each run.

In the first condition of the strategy in 3.2.1, we should choose the parameter «a
to optimise the Sharpe Ratio. I computed the model for different values, and I found
that a threshold a equal to 0.05 was the best option for the Bitcoin.

The results obtained are gathered in figure 9, page 37.

To the best of my knowledge, this is the first time that this trading idea was ap-
plied to cryptocurrencies.

The results I obtained with the Bitcoin data are excellent and then deserve more
explanations.

First, we notice that the model generated many indicators, both short and long term
indicators. This can be explained by the incredible similarity between the price-time
series of the Bitcoin and the LPPLS model. We do observe perfect log periodic oscil-
lations in the prices of Bitcoin, that lead the asset to an unsustainable growth, and
a crash. These similarities explain the huge number of LPPLS indicators, and their
accuracy.

We are able to detect the beginning of the Bitcoin bubble exceptionally early, in
the first months of 2017, thanks to the LPPLS model. Unfortunately, we do not use
this information to make profit as in this model we proposed a strategy with a fixed
holding period n; and n, (I recall that we found n; = 38 in 3.2.4). We also observe a
gathering of positive indicators when the bubble is about to crash in December 2017.
And specifically a DS LPPLS Trust indicator just a few days before the crash, which
exactly means that in a short period of time the bubble will reach its mature state
and a crash will follow. That this specific result that gave me the idea to develop
a new condition in my strategy that will force the investor to exit the market when
such an indicator occurs (next part).

The P&L of the strategy exceeds the buy and hold strategy. Indeed the indicators in
November 2017 gave us a signal to enter the bubble just a month before its crash,
and during this month the prices almost doubled. And something quite similar hap-
pened during the second bubble of the Bitcoin.
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In terms of Sharpe and Sortino Ratio, our strategy performs well, we are above
the buy and hold strategy.

Currency

After working with cryptocurrencies, I was eager to discover if the LPPLS model
and my strategy would work as well with currencies. I then decided to run some
tests on the Swiss Franc against the US Dollar. When we look at the price-time series
from 2005 to 2015, we observe faster than exponential prices rise, that looks as the
LPPLS model.

CHF / USD from 2005-01-03 to 2015-01-01

14 = CHF /USD
13
12

11

10
09
0.8

2005-01-03 2006-12-04 2008-11-03 2010-10-04 2012-09-03 2014-08-04
date

Figure 7

As usual I launched my algorithm to compute the LPPLS indicators for the classic
short and long term period, however I did not find any.

I then saw this example as a limitation of the LPPLS model I used. My research gave
me the beginning of an explanation. Real currencies would not form bubbles as I
defined them. Indeed holders of real currency are usually not investors, and they
held the currency for daily usage. With cryptocurrencies we have a totally different
phenomenon, as it is hold both as a currency and as an investment. Recalling this,
in currencies, we understand that we do not see the herd behaviour and positive
feedback of a bubble, as we described it in the first part of the thesis. And finally we
cannot observe the bubble with the LPPLS model, as it is not one according to this
theory.
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Figure 8: LPPLS Confidence and Trust indicators and performance of the strategy

for S&P 500 from 1995-12

-01 to 2020-05-29. The first two panels illustrate the price-

time series and LPPLS Confidence and Trust indicators, the first one displays positive
indicators, and the second negative indicators. The third panel displays the P&L ratio of
our strategy over the buy and hold strategy. The last two panels, Sharpe and Sortino Ra-
tio, compare the performance of our strategy (in blue) against the buy and hold strategy
(in orange). The green vertical lines indicate that we enter in the market and the red
ones that we leave the market.
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Figure 9: LPPLS Confidence and Trust indicators and performance of the strategy
for Bitcoin from 2016-12-01 to 2020-05-31. The first two panels illustrate the price-
time series and LPPLS Confidence and Trust indicators, the first one displays positive
indicators, and the second negative indicators. The third panel displays the P&L ratio of
our strategy over the buy and hold strategy. The last two panels, Sharpe and Sortino Ra-
tio, compare the performance of our strategy (in blue) against the buy and hold strategy
(in orange). The green vertical lines indicate that we enter in the market and the red
ones that we leave the market.
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3.3 The improved strategy

The strategy we used in the previous part performed well in some cases, and gen-
erated interesting results. However, from the analysis of these results, I figured out
different ways to improve the strategy.

First, I propose to develop the idea we suggested in the previous part, use the pos-
itive DS LPPLS Trust indicators as a signal that the bubble will soon crash and that
we should leave the market.

Second, we did not discuss the quantity we should invest when we enter the market.
I then propose to improve the strategy by implementing an ATR risk management
feature for position sizing, to protect the strategy against a loss, and take the volatil-
ity into account.

In my work I computed the strategy across many assets, equity indexes with S&P
500 and CAC 40, cryptocurrencies with Bitcoin, Ethereum and others, commodities
with gold, oil and others, and currencies with the Swiss Franc.

In this part, as I cannot describe exhaustively every studies I have undertaken, I
will focus on cryptocurrencies results, as it does describe perfectly how the strategy
works.

3.3.1 The improved strategy

First condition:
If one of these requirements is fulfilled we enter the market at time t+1.

* LPPLS Confidence short term indicator is larger than a threshold «
* LPPLS Confidence long term indicator is larger than a threshold «

The first one ensures to take profit and hunt for positive bubbles. We take a €
(=0.1,0.1), this value has to be determined for each specific stock in a way that it
optimises the Sharpe Ratio.

Second condition:
If one of these requirements is fulfilled we enter the market at time t+1.

e LPPLS Trust short term indicator is negative
* LPPLS Trust long term indicator is less than —0.05

This one aims to focus on the end of a negative bubble, to then invest when the
prices are about to rebound.

Third condition:
If one of these requirements is fulfilled we enter the market at time t+1.

e LPPLS Trust short term indicator is greater than 0.05
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* LPPLS Trust long term indicator is greater than 0.05

This one aims to focus on the end of a positive bubble, we then avoid the crash. A
threshold of 0.05 is a good compromise that allows to work only with strong signals
of a possible crash.

The strategy:

¢ If the third condition is verified we leave the market at time t + 1 and we wait
50 days to enter again

* Else if the second condition is verified we invest for 1, consecutive days at time
t+1

* Else if the first condition is verified we invest for n; consecutive days at time
t+1

It is also important to notice that we do not invest in the 3-Month US Treasury Bills
anymore. Even if on a theoretical plan this is a good idea, in practice this action
could cause liquidity issue, I then decided to compute the results without this last
operation.

3.3.2 Holding period

As is the previous section, we should comment the number of days we are holding
the asset if one of the conditions is verified. As the strategy changed, the best hold-
ing period has also changed.

I worked again with the Bitcoin data over the last 3 years. I run the improved
strategy over the data for different holding periods, and then compared the Profit
and Loss and Sharpe Ratio of the strategy for the last trading day. This is the results
I obtained:

P&L in 2020-05-21 function of the holding peried for Bitcoin from 2016-12-01 to 2020-05-31
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Figure 10: P&L and Sharpe ratio of the strategy with variable holding periods, for
Bitcoin
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To obtain such results, I generated as usual the short term indicators Confidence and
Trust using windows in [30,90] using a step of 10. For the long term, I first generated
the indicators Confidence and Trust using windows in [90,250] with a step of 10.

We observe that the best holding period in terms of Sharpe Ratio is after 300 trading
days. With more than 300 trading days, we get a flat Sharpe Ratio. This case rep-
resents that for every investment we make, we get out of the market using the third
condition. Taking n; superior to 300 would not change anything cause we would
leave the market anyway using the third condition.

I then decide to work with #; = 300 and for the same reason 7, = 300.

3.3.3 Results

In sample study

First we apply the improved strategy to Bitcoin. I used the same parameters than
previously, and computed the LPPLS indicators with the same set of windows. I kept
the a of the first condition equal to 0.05. And I generated the short term indicators
Confidence and Trust using size windows in [90,180] using a step of 10. For the
long term, I first generated the indicators Confidence and Trust using size windows
in [90,180] with a step of 20.

Results are gathered in figure 11, page 42.

First the major change from the previous strategy is that now if the third condi-
tion is verified we leave the market for 50 days. When, we take a position at the
beginning in 01/12/2016, to leave the market, we need to verify the third condition
of the strategy or we need to wait for n; or n, consecutive days (depending of the
condition that made us enter in the market).

We notice that we used the third condition twice. First just before the end of the
first bubble, we wait until the positive DS LPPLS Trust short term signal to get out of
the market. We observe this quite clearly in the Sharpe Ratio chart with the red sell
vertical line at that date. In 2019, we trade with the first condition and we hold our
position until we get the positive DS LPPLS Trust long indicator, just after the crash.
We also observe a last trade around the end of the data, for only a few days as we
have to short our positions at the end.

This strategy performs really well, we obtain an important P&L. And we perform on
both bubbles in the data, the indicators provide powerful signals, which the strategy
uses to invest at the right moment and performs on almost every single trading day
of the positive bubbles.

The Sharpe Ratio obtained is much better than the buy and hold strategy and proves
the performance of the strategy. We also notice that the Sortino Ratio is above the
buy and hold strategy, which means that in terms of negative volatility the strategy
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performs well.
Out of sample study

After obtaining the results for Bitcoin, I tried out my strategy on another cryptocur-
rency asset: the Ethereum, over the same period of time, with the same parameters
n, = 300, n, = 300, and a = 0.05.

And I generated as usual the short term LPPLS indicators Confidence and Trust using
size windows in [90,180] using a step of 10. For the long term, I first generated the
LPPLS indicators Confidence and Trust using size windows in [90,180] with a step
of 20.

Indeed even if the strategy does not change, the indicators have to be generated for
every single asset we want to work with. Then, we had to generate the indicators
for the Ethereum, in the same conditions.

Results are gathered in figure 12, page 43.

We notice that the Sharpe and Sortino Ratio are not as good as previously. This
is explained by the importance of the indicators for the trading strategy. We have to
generate the indicators for every asset we work with. And with Ethereum, the indi-
cators are not as reliable as with Bitcoin, for example some LPPLS Trust indicators
at the beginning of the data force us to leave the market before the bubble actually
starts.

Those results prove how the LPPLS indicators are important, and that the whole
strategy depends on them. If we get many good indicators fitting exactly the data,
we will get excellent results. Otherwise we may miss a few investment opportunities.
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Figure 11: LPPLS Confidence and Trust indicators and performance of the improved
strategy for Bitcoin from 2016-12-01 to 2020-05-31. The first two panels illustrate
the price-time series and LPPLS Confidence and Trust indicators, the first one displays
positive indicators, and the second negative indicators. The third panel displays the P&L
ratio of our strategy over the buy and hold strategy. The last two panels, Sharpe and
Sortino Ratio, compare the performance of our strategy (in blue) against the buy and
hold strategy (in orange). The green vertical lines indicate that we enter in the market
and the red ones that we leave the market.
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Figure 12: LPPLS Confidence and Trust indicators and performance of the improved
strategy for Ethereum from 2016-12-01 to 2020-05-31. The first two panels illustrate
the price-time series and LPPLS Confidence and Trust indicators, the first one displays
positive indicators, and the second negative indicators. The third panel displays the P&L
ratio of our strategy over the buy and hold strategy. The last two panels, Sharpe and
Sortino Ratio, compare the performance of our strategy (in blue) against the buy and
hold strategy (in orange). The green vertical lines indicate that we enter in the market
and the red ones that we leave the market.
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3.3.4 ATR

To improve the overall results of my strategy, especially in terms of profits without
changing the risk, I decided to implement a risk management strategy and incorpo-
rate it to my strategy. I used the Average True Range (ATR) to do position sizing in
my strategy.

Instead of simply entering the market with one position, using the ATR allow us
to incorporate a position sizing process, and to compute a volatility-adjusted stop
loss threshold.

The simple idea behind position sizing with ATR is to avoid a big loss on a single
trade.

ATR is essentially a measure of the asset’s volatility since we compute it using the
average difference between opening and closing prices. Using this measure to size
the trades gives an efficient risk management scheme to purchase in terms of the
maximal loss we are willing to accept.

Calulating ATR

The computation of ATR is based on moving averages, we then have to determine
a period we will use, it is typically taken between 10 and 20 trading days. I there
picked 20 trading days.

We first need to compute the True Range (TR) for the previous periods of 20 trading
days. And to get the ATR we will simply take the average.

We define the TR as being the maximum of these three values (let n represent the
current period, and n — 1 the previous period):

TR =max(| High[n]— Low[n] |,| High[n] — Close[n—1]|,| Low[n]— Close[n—1]|)

And we have:
ATR = mean(TR)

Finally, we define the quantity to purchase as being the loss we are willing to ac-
cept over the ATR:
Maximal Loss

Quantity = ATR

Trading strategy using ATR

I run a few tests to observe the efficiency of my trading strategy using ATR. I used
Bitcoin with the exact same parameters than previously.
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Results are gathered in figure 13, page 46.

Those results were computed using a maximum loss equal 5% of the prices. It means
that when the strategy makes us buy the asset instead of buying one quantity, we
buy the quantity given by the ATR, and we accept up to a 5% loss of the current
price.

For this accepted loss, the ATR makes us purchase 1.99, 1.69, and 1,4 quantity in-
stead of one. We observe that only the P&L differs from previously, the Sharpe and
Sortino Ratio are unchanged. We do not take any risker decision using ATR, but we
maximise the profits made over our strategy.

In figure 14, page 47, this is the same strategy but accepting a 20% draw-down
of the current price. The P&L is then 20 times higher than the buy and hold strategy.

Finally, adding an Average True Range (ATR) feature for position sizing improved the
overall P&L of the strategy. This risk management tool made more profits possible
while keeping our Sharpe and Sortino Ratio, and then improved the outperformance
of our strategy.
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Figure 13: LPPLS Confidence and Trust indicators and performance of the improved
strategy using ATR for Bitcoin from 2016-12-01 to 2020-05-31.
Maximal Loss fixed to 5% of the current price
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3.3 The improved strategy

Bitcoin ATR 20%

Bitcein from 2016-12-01 to 2020-05-31, positive indicators.

20000
—— confidence_short
17500 confidence_lang
—— trust_short
15000 — trust_long
12500
f
= 10000
£
7500
5000
2500
0 L I
Bitcoin from 2016-12-01 to 2020-05-31. negative indicators
20000
—— confidence_short
17500 confidence_lang
—— trust_short
15000 — trust_long
12500

P&L(strategy) / P&L(Buy & Hold)

2016-12-01 2017-06-19 2018-01-05

. dat:
Sharpe Ratio: Strategy = T.QG, Buy & Hold = 1.08

2018-07-24 2019-02-09

40

2019-08-28

2020-03-15

35

30

25

|
20 |

Sharpe Ratio

—— signal

signal jhojd_buy

Sortino Ratio: Strategy = 3.36, Buy & Hold = 1.59

Sortino Ratio
w

. | : | M \MR—B—E‘_——_‘

—— signal

signal_hold_buy

2017-03-11 2017-09-27 2018-04-15 2018-11-01

date

2019-05-20

Figure 14: LPPLS Confidence and Trust indicators and performance of the improved

strategy using ATR for Bitcoin from 2016-12-01 to 2020-05-31.
Maximal Loss fixed to 20% of the current price

2019-12-06

47



4 CONCLUSION

4 Conclusion

Financial Bubbles are a part of financial markets, that sometimes lead to dramatic
consequences. In this thesis, we presented a model, the Log Periodic Power Law
Singularity model, to predict the emergence and crash of a financial bubble in a
market. The model can be used to generate two types of indicators, Confidence and
Trust that give useful information about the bubble, and its critical time of burst.
We were able to reproduce the analysis of the bubble in the Chinese stock market
SSEC in 2014 and 2015.

Then, we used the signals above to build a simple trading strategy looking for posi-
tive bubble and the end of negative bubbles. We backtested this strategy over differ-
ent classes of assets. The obtained results confirmed the reliability and performance
of the Confidence and Trust indicators over many assets. We then enhanced the
strategy with a new condition and backtested it using cryptocurrencies. The third
condition, that we added to our strategy, allows us to leave the market when we get a
strong signal of a possible crash. Then, we avoid losses by leaving the market around
the critical time of the crash. Furthermore, the improved strategy outperformed the
buy and hold strategy in almost all cases with respect to the Sharpe and Sortino
Ratio. Finally, adding an Average True Range (ATR) feature for position sizing im-
proved the overall P&L of the strategy. This risk management tool made more profits
possible while keeping our Sharpe and Sortino Ratio. The limitations of our strategy
comes directly from the model and its capacity to generate enough indicators for the
strategy to work correctly. The challenge being to find a good compromise between
the computing time and generating enough indicators.

Moreover, our final strategy, using all the features and ATR, performed remarkably
well with cryptocurrencies.

To conclude, this work proves the efficiency of the LPPLS model to predict a fi-
nancial bubble, and proposes a working trading strategy on cryptocurrencies using
LPPLS Confidence and Trust indicators.
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