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Abstract

Robust pricing is a concept of generating practical value bounds, where the actual price of the
derivative lies within, based on the market information instead of relying heavily on any specific
model for the dynamics of the underlying price process. This thesis aims to explore three methods
of robust pricing which lower the model risk: Uncertain volatility model(UVM), Martingale optimal
transport(MOT) and Model-independent methods for path-dependent options, and to check their
validity via numerical implementations. The standard UVM and Lagrangian UVM will be studied
for the value bounds with optimal hedging strategy. The MOT problem can be reduced into a
linear program(LP): the primal or the dual problem, then the solution to LP tells the best possible
value bounds and hedging portfolio. Approaches to finding optimal value bounds for the Lookback,
Digital and Barrier options will also be discussed.

The numerical results for these three methods prove their effectiveness, that is the market prices
indeed lie within the value bounds generated. Furthermore, the value bounds are reasonably narrow
so that arbitrage opportunities could be detected when the derivative is overpriced or underpriced.
A comparison between UVM and MOT will be conducted. In general, the performance of UVM
is slightly better than that of MOT. The reason behind it and other factors which may influence
the final results will be analysed.
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Introduction

The standard method of pricing options is to derive prices of options such as Call and Put under
the assumption that the behaviour of underlying prices follows certain models, with risk-neutral
arguments. By choosing reasonable models and parameters, the derived prices are expected to
approximate the prices at which derivatives are actually traded. However, the model risk may
arise due to inadequate models. Sometimes models may oversimplify the reality such as volatility
surfaces which cannot be generated by the simple Black-Scholes model. Instead, the overfitting
problem may appear due to complex models containing a large number of parameters.

In order to reduce the model risk, that is to lessen the exposure to potentially deficient models,
alternative approaches to option pricing will be introduced in this paper. These methods, called
’Robust Pricing’, depends rarely, or even not on the assumption that the real world is correctly
described by any proposed models; they mainly rely on the information from the market. The aim
is to produce optimal value bounds where the price of derivatives should lie within. At the same
time, some hedging strategies will also be discussed to improve the bounds of the price.

This paper contains three parts: i) Uncertain volatility models, ii) Martingale optimal transport,
iii) Robust pricing for path-dependent options with alternative methods. The first part introduces
the uncertain volatility model, which assumes the real volatilities lie within a value band with-
out depending on any deterministic models. Then the optimal value bounds for derivatives can
be obtained by utilising extremes of volatilities and the Black-Scholes-Barenblatt equation. The
Lagrangian UVM which optimises the hedging strategy for a best possible value bound will also
be studied. The second part describes the optimal transport problem and subsequently the mar-
tingale optimal transport problem. The methods of reducing MOT into two linear programs(LP):
the primal and the dual, and their solutions for finding the optimal value bounds with hedging
strategy, will be presented. The last part will mainly focus on model-independent approaches to
pricing path-dependent options: Lookback, Digital and Barrier options. The objective of these
three methods is to generate robust upper and lower value bounds containing the actual derivative
prices almost surely. The analysis of these methods in a theoretical and numerical sense will be
conducted. The source code for numerical implementations in this thesis can be found HERE.

Literature review
The framework of uncertain volatility models mainly relies on the work of Avellaneda, Levy and
Paras in [21]and [22]. The approach is first to study the standard UVM, thereby introducing
the Lagrangian UVM, which utilises portfolios containing hedging instruments to obtain optimal
value bounds. The hedging strategies in λ-UVM are also enhanced by Karoui and Quenez[26] and
Paras[3].

The martingale optimal transport part mostly depends on the book Model-free Hedging: A Mar-
tingale Optimal Transport Viewpoint, of Henry-Labordère[32]. Baker[8] and Guo and Ob lój[12]
introduces the methods of solving the MOT primal. The study on MOT dual problem can also be
found in [32].

The alternative method of robust pricing for Lookback options is discussed based on the view
of Hobson[10]. Brown, Hobson and Rogers[13] present pricing methods for Digital and Barrier
options.

Many other research papers are also studied and contribute to the completion of this thesis. Some
of them will be cited specifically throughout the thesis.
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Chapter 1

Pricing and hedging derivatives
using uncertain volatility models

1.1 Introduction

Volatility is the key parameter in pricing financial derivatives. Many efforts have been made to
estimate it. For example, the volatility of returns of underlying assets is assumed to be constant in
the Black-Scholes model. However, this is not observed in real markets, and we can find volatility
smile or skew from the graph of the implied volatility instead. Local volatility models, which regard
the volatility as a function of both the current asset level and of time, might be a solution to this
problem. Stochastic volatility models is also an approach to model derivatives accurately; they
treat the underlying security’s volatility as a random process.

Apart from the above methods, there is an alternative way to deal with the volatility: the uncertain
volatility models. When using this method, the value of volatility is assumed to lie between two
extreme values σmin and σmax, instead of following any deterministic or stochastic model. These
two bounds could be, for instance deduced from extreme values of the implied volatility. Then we
are able to derive a value band where the real portfolio price will lie within. Besides, the model of
underlying assets is presumed to be in the form dSt = rdt + σtdWt, so that the discounted stock
process is still a martingale under the risk-neutral probability measures.

In this chapter, the framework of the uncertain volatility models will be demonstrated firstly.
Methods of pricing and hedging financial derivatives under this framework will be subsequently
discussed. Finally, some applications of uncertain volatility models will be shown via numerical
implementations.

1.2 The uncertain volatility model

1.2.1 Basics

In this section, the basic definition of Uncertain Volatility Model(UVM) will be discussed. And
firstly, we will follow the common assumption that the price of an underlying is in a form of Itô
process without any dividend:

dSt/St = µtdt+ σtdWt,

where σt and µt are non-anticipative drift and volatility respectively, and Wt is a Brownian motion.
We will assume the drift µt is constant and only study the volatility σt. After some transformations
such as change of numeraire, we can obtain an equivalent martingale measure(EMM) under which
the discounted stock price is a true martingale:

dSt/St = rdt+ σtdWt. (1.2.1)

And we suppose the value of volatility lies between two extreme values:

σmin ≤ σt ≤ σmax. (1.2.2)

7



1.2. THE UNCERTAIN VOLATILITY MODEL 8

1.2.2 Calibration

Intuitively, we may encounter unrealistic option prices if the volatility takes values in an extensive
range. However, spurious arbitrage opportunities may appear if the volatility band [σmin, σmax]
is set to be too narrow when we conduct the calibration[22].

According to classical valuation theory, we know that the spot volatilities is mathematically related
to implied volatilities calculated by Black-Scholes formula. Furthermore, if we assume that spot
volatilities lie within a band, then implied volatilities of options traded would lie within predeter-
mined bounds over certain periods. This means the assumption of volatilities bands indicates an
upper bound of the purchase price and a lower bound of the sale price of traded options.[22]

If we assume σmin and σmax are constant, then

σmin ≤ σimpl(t, T ) ≤ σmax.

where σimpl(t, T ) is the implied volatility of an option with maturity T at time t.

If we assume that the bands are time-dependent deterministic functions

σmin = σmin(t), σmax = σmax(t),

then we will have

1

T − t

∫ T

t

σ2
min(u)du ≤ σ2

impl(t, T ) ≤ 1

T − t

∫ T

t

σ2
max(u)du

In summary, we could determine the volatility band to be either constant or time-dependent.
The critical point in calibration is that the historical option prices should be utilised so that we
can obtain a range of implied volatilities. By doing this, we need to ensure implied volatilities lie
within the bands that we propose. At the same time, bands are supposed to be reasonably narrow.

1.2.3 Derivatives pricing under the UVM framework

We will now introduce the method of pricing derivatives under the framework of the uncertain
volatility model. Our aim in this section is to drive bounds for the value of a derivative.

Suppose the derivative security on a stock with price process (St)t≥0 is path-dependent and spec-
ified by a stream of cash flows

F1(St1), F2(St2), F3(St3), ..., FN (StN ),

where Fj(·) are payoffs due at each settlements date t1 < t2 < t3 < ... < tN . And we denote the
class of all equivalent martingale measures to be P such that equation (1.2.1) holds for volatilities
lying within the band (1.2.2), and non arbitrage opportunity exists.

If we calibrate the volatility band accurately, then the value of this derivative V (t, St) is supposed
to lie between the following bounds:

V + (St, t) = sup
P∈P

EP [

N∑
j=1

e−r(tj−t)Fj(Stj )], (1.2.3)

and

V −(St, t) = inf
P∈P

EP [

N∑
j=1

e−r(tj−t)Fj(Stj )], (1.2.4)

where measure P belongs to the set of all EMMs P and EPt is the conditional expectation under
P given information up to time t[21].
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The above two functions could be calculated by solving dynamical programming differential equa-
tions if we regard it as a stochastic control problems with control variable σt[27]. Therefore, when
we consider the simple case that N = 1, t1 = T, F1 = F , then these extreme functions can be
transformed into a final-value problem[21]:

∂V (S, t)

∂t
+ r

(
S
∂V (S, t)

S
− V (S, t)

)
+

1

2
σ2

[
∂2V (S, t)

∂S2

]
S2 ∂

2V (S, t)

∂S2
= 0, (1.2.5)

with terminal condition
V (S, T ) = F (S).

And V + could be obtained by setting

σ[X] =

{
σmax if X ≥ 0.
σmin if X < 0.

, (1.2.6)

in equation (1.2.5).Similarly, we obtain V − by setting

σ[X] =

{
σmax if X ≤ 0.
σmin if X > 0.

. (1.2.7)

If we consider general case that there are multiple payoffs, we firstly solve equation(1.2.5) for
tN−1 < t ≤ tN with terminal condition V (S, tN ) = FN (S). Then at time tN−1, we set the value
function to be

V (S, tN−1) = lim
t→0

V (S, tN−1 + t) + FN−1(S).

The first term on the right hand side represents the value at date tN−1 right after the cash flow
FN−1(StN−1

) is paid out. Then we use equation (1.2.5) to calculate the value at time tN−2 etc.

It is worth noting that this non-linear PDE (1.2.5) is, in fact, the Black-Scholes-Barenblatt(BSB)
equation, which is commonly used when the volatility is uncertain and the generalisation of stan-
dard Black-Scholes PDE where the volatility is constant(σmin = σmax). We will demonstrate how
to price derivatives using this equation via the trinomial tree method in Section 1.3.

1.2.4 Delta-hedging

In the previous section, we have defined the bounds for the value of a derivative under several
assumptions. It is easy to find that the value of the derivative in equation (1.2.3) is the worst-case
scenario of volatility path since the stream of cash flows reaches its largest possible value under an
equivalent martingale measure among P. This means

σt = σ

[
∂2V +(St, t)

∂S2

]
,

so σ[·] satisfies equation (1.2.6).

If we are interested in conducting a standard Black-Schole style delta-hedging strategy to replicate
this derivative, we can construct a self-financing portfolio containing long positions on 4t shares
of the stock

4t =
∂V +(St, t)

∂S
,

and Bt units of bonds

Bt = V +(St, t)− St ×
∂V +(St, t)

∂S
.

Since the volatility is assumed to lie within the band, this portfolio with initial value V +(St, t),
which is the largest possible cash flows caused by the volatility path, will have a non-negative final
value after paying out all cash flows. This means a short position in the derivative will be risklessly
hedged.

Moreover, according to Avellaneda, Levy and Paras[21], this strategy is optimal since its initial
cost is the least possible value among all other dominating strategies using only stocks and bonds.
And the initial cost cannot be lower due to the worst-case scenario.
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1.2.5 Risk Diversification

One of the important characteristics of the UVM is that it allows us to quantify the diversification
of volatility risk in portfolios containing derivatives. Let us consider a portfolio that consists of
two derivatives with discounted payoffs

Φ (St, t) =

N∑
j=1

e−r(tj−t)Fj(Stj ),

and

Ψ (St, t) =

N ′∑
k=1

e−r(t
′
k−t)Gk(St′k),

With the knowledge of previous sections, we could regard V + as the offer price and V − as the bid
price of a derivative, and V + − V − is the bid-ask spread. Also, it is easy to show that

sup
P∈P

EP [Φ + Ψ] ≤ sup
P∈P

EP [Φ] + sup
P∈P

EP [Ψ],

and
inf
P∈P

EP [Φ + Ψ] ≥ inf
P∈P

EP [Φ] + inf
P∈P

EP [Ψ].

This means the best risk-avoiding offer price of this portfolio is lower than the sum of the separate
optimal offer price of two derivatives. Likewise, the bid price of the portfolio is higher than the
sum of individual bid prices. So the bid-ask spread becomes narrow.

This can be explained from the viewpoint of option portfolios in the UVM. Because options prices
in the BSB equation are obtained with either σmin or σmax and they are convex in S, the price
bounds for standard options are the Black-Scholes prices directly calculated by extreme volatilities.
Whereas the portfolio containing several options has more complex convexity. It will be priced dif-
ferently since the BSB equation uses volatility path that results in optimal non-arbitrage offer/bid
prices[21], which means pricing the whole portfolio is more efficient than pricing and adding up
each component. One can also imagine intuitively that volatilities of different options offset each
other, thereby narrowing the volatility bands, so the extreme values of portfolios in BSB equation
are reduced.

1.3 The Lagrangian uncertain volatility model(λ-UVM)

In this section, we will illustrate the methods of hedging with derivatives such as options. The
Lagrangian Uncertain Volatility Model(λ-UVM) and its connection with standard UVM will be
introduced. Also, the framework of the trinomial tree for the numerical implementation of λ-UVM
will also be discussed.

1.3.1 Optimal static hedging

Suppose there is a derivative on a stock with price process (St)t≥0 is path-dependent and charac-
terised by a stream of cash flows

F1(St1), F2(St2), F3(St3), ..., FN (StN ),

where Fj(·) are payoffs due at each settlements date t1 < t2 < t3 < ... < tN , so the discounted payoff

of this derivative at time t is Φ =
∑N
i=1 e−r(ti−t)Fi(Sti). We also assume that there areM European

options available for us to hedge, with payoff Gi(Sτi) and expiration τi for τ1 ≤ τ2 ≤ ... ≤ τM .
And the prices of these options are C1, C2, ..., CM .

Suppose we hold a short position on this derivative and are interested in the optimal number
of options to long/short in order to hedge it efficiently. We construct a portfolio of options for
hedging, the number of each option is λ1, λ2, ..., λM respectively. So at time t this portfolio is
worth Ψ =

∑M
j=1 λje

−r(τj−t)Gj(Sτj ).
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Therefore, the residual liability after we short the derivative and construct the hedging portfolio is

N∑
i=1

e−r(ti−t)Fi(Sti)−
M∑
j=1

λje
−r(τj−t)Gj(Sτj ).

And the total cost of hedging with the cost of options, in the worst-case scenario, is

V +(St, t;λ1, ..., λM ) = sup
P∈P

EP

{
N∑
i=1

e−r(ti−t)Fi(Sti)−
M∑
j=1

λje
−r(τj−t)Gj(Sτj )

}
+

M∑
j=1

λjCj . (1.3.1)

The portfolio that we construct will be optimal when the total cost of this hedging strategy is
minimised, so we have an optimisation problem.

inf
λ1,...,λM

V +(t, St; λ1, . . . , λM ), (1.3.2)

and we call it the Lagrangian Uncertain Volatility Model(λ-UVM).

Similarly, if we try to hedge a long position on this derivative with options, the worst-case cost of
hedging V − is

V −(St, t;λ1, ..., λM ) = inf
P∈P

EP

{
N∑
i=1

e−r(ti−t)Fi(Sti)−
M∑
j=1

λje
−r(τj−t)Gj(Sτj )

}
+

M∑
j=1

λjCj , (1.3.3)

then we have another optimisation problem

sup
λ1,...,λM

V −(t, St; λ1, . . . , λM ),

Therefore, with λ−UVM we can deduce the optimal value bounds of a portfolio if we hedge
derivatives with options through solving Lagrangian dual-style optimisation problems, and these
bounds can be solved by PDEs described in Section 1.2.3. We also assume the vector (λ1, λ2, ..., λM )
is constrained into a reasonable range due to the liquidity considerations. Then λs may take
arbitrary positive or negative values within the following constant bounds

Λ−j ≤ λj ≤ Λ+
j .

According to Avellaneda and Paras[22], the value function V + is convex in (λ1, ..., λM ) since the
value function is a supremum of linear functions in λ. The value function becomes the standard
UVM valuation if the λ vector equals zero, which means we hedge in the cash market. Moreover,
the minimum of problem (1.3.2) could be obtained when λj 6= 0. This is because the implied
volatility is in the volatility band so that the options can be bought at lower prices and sold at
higher prices at σmax or σmin. Therefore, the cost of hedging strategy with efficiency will be less
than the expected cost of delta-hedging strategy under the worst-case scenario. Also, the convexity
of the value function ensures the uniqueness of the λ vector when the minimum is attained[3].

Unlike the delta hedging, the hedging strategy we propose is static since we do not need to change
the option hedge-ratios λj . Moreover, this is the only way to hedge options with no gamma risk and
to hedge volatility[26]. However, it can be easily enhanced by implementing dynamic strategies.
For instance, λ−UVM can be applied to the liability of the previous trading day with the new
options issued and changes in prices, and no additional volatility risk will be added[22].

1.3.2 Trinomial tree framework

The trinomial tree framework that will help us to solve the previous optimisation problems will
be introduced in this section. Suppose the stock price S0 may change after each trading period
∆t into three different prices: S0u, S0m and S0d. The maturity of derivative is T and we divide
it into N steps t1, t2, ..., tN so that each trading period is ∆t = T

N . We construct the model to be
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recombining such that ud = m2 and d < m < u, so the number of possible stock prices at time t
is 2t+ 1 (rather than 3t which is the total number of distinct price paths up to time t).

Figure 1.1: Trinomial Tree model.

We notice that the choice of probabilities of the stock price process going to three price levels
Pu, Pm, Pd is non-unique, so the trinomial tree model has one degree of freedom at each node.
Also, the larger spot volatility will be generated if the probability assigning weight to extreme
values is greater than probability assigning weight to the central. Therefore we may choose a
reasonable probability set such that the volatility of stock price lies within the band that we
expect[22].

According to Avellaneda, Levy and Paras[21], we define the parameters as follows:

u = eσmax

√
4t+r4t, m = er4t, d = e−σmax

√
4t+r4t,

and

Pu(p) = p(1− σmax
√
4t

2
), Pm(p) = 1− 2p, Pd(p) = p(1 +

σmax
√
4t

2
),

where p satisfies
σ2
min

2σ2
max

≤ p ≤ 1

2

to exhibit different choices for probabilities, as well as spot volatilities at each node.

1.3.3 UVM algorithm

In order to determine the value bounds of a hedging portfolio, we need to derive the supremum
and infimum of the expected residual liability by using the standard UVM:

L+ = sup
P∈P

EP

{
N∑
i=1

e−r(ti−t)Fi(Sti)−
M∑
j=1

λje
−r(τj−t)Gj(Sτj )

}
= sup
P∈P

EP

{
N ′∑
i=1

e−r(ti−t)F̂i(Sti , λ1, ..., λM )

}
,

(1.3.4)
and

L− = inf
P∈P

EP

{
N∑
i=1

e−r(ti−t)Fi(Sti)−
M∑
j=1

λje
−r(τj−t)Gj(Sτj )

}
= inf
P∈P

EP

{
N ′∑
i=1

e−r(ti−t)F̂i(Sti , λ1, ..., λM )

}
,

(1.3.5)
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where N ′ = max(N,M) and F̂i represents the cash flow at time step ti. After we obtain L+ and

L−, we add the amount
∑M
j=1 λjCj gained by hedging the derivative, to derive the final value

bounds V + and V −.

We will construct a N -period recombining trinomial tree model first. We denote the nodes of
trinomial tree by pairs (i, j), where i represents the time and j indicates the price level at the
node, i = 0, 1, ..., N and j = −i, ..., i − 1, i. Each node (i, j) will approach one of three possible
nodes in the next time step: (i+ 1, j + 1), (i+ 1, j) and (i+ 1, j − 1). We build the price process
at node (i, j) with the parameters defined:

Sji = S0
0 · ej·σmax

√
∆t+i·r∆t.

We use W+,j
i and W−,ji to represent the values of L+ and L− at node (i, j) respectively and go

through the price Sji at each nodes and compute the corresponding payoffs F̂i
j

= F̂i(S
j
i ). We will

compute the terminal residual liability W j
N first, then loop backward in time for i = N − 1, ..., 1, 0

to compute W j
i for each j = −i, ..., i− 1, i by applying the following algorithm[21]:

W+,j
i = F̂i

j
+ EPi,j

[
W+
i+1

]
= F̂i

j
+ e−r4t(W+,j

i+1 + p+l
+,j
i+1) (1.3.6)

where

l+,ji+1 =

(
1− σmax

√
4t

2

)
W+,j+1
i+1 + (1 +

σmax
√
4t

2
)W+,j−1

i+1 − 2W+,j
i+1 . (1.3.7)

Similarly,

W−,ji = F̂i
j

+ EPi,j
[
W−i+1

]
= F̂i

j
+ e−r4t(W−,ji+1 + p−l

−,j
i+1)

where

l−,ji+1 = (1− σmax
√
4t

2
)W−,j+1

i+1 + (1 +
σmax

√
4t

2
)W−,j−1

i+1 − 2W−,ji+1 .

And p satisfies:

p+ =

{
1/2 if l+,ji+1 ≥ 0,

σ2
min/2σ

2
max if l+,ji+1 < 0,

p− =

{
1/2 if l−,ji+1 < 0,

σ2
min/2σ

2
max if l−,ji+1 ≥ 0.

When p = 1
2 , the extreme cases(u and d) carry 100% of the probability and the local variance

reaches the extreme value. And equation (1.3.7) can be regarded as the discretisation of the sec-
ond derivative of V [22].

If we would like to deduce the optimal hedging value bounds, we will need to conduct the opti-
misation in Section 1.3.1. to get the optimal hedging strategy thereby obtaining an optimal value
bounds.

1.4 Numerical implementation

1.4.1 UVM: Call options

In this section, we will conduct the numerical implementations of the classic uncertain volatility
model. We will consider a simple case of pricing a Call option under uncertain volatility model.

We choose the underlying of the European Call option to be Amazon stock(AMZN) in the NASDAQ
market. The data of Call prices quoted in the market are taken on 12th August 2020, and the
corresponding spot price of Amazon S0 is 3118. And the expiration date of this option is on 21th

August 2020. We select the range of strike price K to be 2860, 2870, 2880, ..., 3500.

After determining the parameters of this option, we firstly will derive the implied volatility in
order to choose a reasonable volatility band. As we discussed in the previous section, the implied
volatility should lie within the volatility band. Therefore we choose σmax = 0.6 and σmin = 0.1 to
cover the range of implied volatilities. Moreover, according to the market information, we set the
risk-free interest rate to be r = 0.64%.
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Figure 1.2: Implied volatilities for different strikes.

So far we have determined a plausible volatility band [σmin, σmax] = [0.1, 0.6], then we will con-
struct a trinomial tree based on the previous algorithm to compute the bounds for the value of this
option V + and V −. Notice that we are only price an option by trinomial tree method under UVM
framework, so the payoff and cost of hedging instruments Gj(Sτj ) and Cj in equations (1.3.1) and
(1.3.3) are zero here.

Figure 1.3: Value bounds of option with volatility band [0.1,0.6].

To demonstrate the importance of volatility band calibration, now we will compute the value
bounds using the same procedure but different volatility band [σmin, σmax] = [0.3, 0.5]. And we
plot the value bounds together to show the effects of different choices of volatility bands
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Figure 1.4: Value bounds of option with volatility band [0.1,0.6] and [0.3,0.5].

Obviously, the value bounds get narrower when we use a narrower volatility band; this is in line
with our idea before. However, the value spread is still large, compared to the real market bid-ask
spread in this case.

In fact, in equation (1.2.5), we find that the implied volatilities of value bounds depend on the sign

of ∂2V +(S,t)
∂S2 and ∂2V −(S,t)

∂S2 . Furthermore, since the derivative we priced is simply a Call option in
this example, we know the Gamma of Call options is always positive. Thus, according to equations
(1.2.6) and (1.2.7), the volatilities which is used to calculate the derivative value V + and V − are
σmax and σmin respectively. This means the upper bound and lower bound of the derivative value
computed via UVM algorithm are actually Black-Scholes prices calculated with extreme volatility
values. To certify this numerically, we plot the implied volatilities of value bounds computed with
the trinomial tree model under UVM framework, together with the implied volatility. The result
in the figure below is consistent with our idea.

Figure 1.5: Implied volatilities of upper and lower bounds prices.
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1.4.2 Lagrangian UVM: Hedging with one Call option

We shall implement the λ−UVM with the same derivative(Call option) in the previous section.
Nevertheless, the difference is that we will use European Call options on the same stock to hedge
this derivative here.

Firstly, we will use one unit of a Call option with the same expiration date and strike price
K = 3110 as the hedging instrument, which is almost the at-the-money call. The volatility band
will also be [σmin, σmax] = [0.3, 0.5]. However, this time we should slightly modify the algorithm for
constructing the trinomial tree. Since the expiration date of the hedging instrument and derivative
is the same, so we only need to consider their payoffs Fi(Sti) andGj(Sτj ) at the maturity. Moreover,
the residual liability computed should be added by the price of hedging instruments Cj in the end.
Then we obtain the value bounds with this hedging strategy.

Figure 1.6: Value bounds of the portfolio with one hedging instrument.

Figure 1.7: Implied volatilities of upper bound price.
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As we can observe, the value spread between upper bound and lower bound of this portfolio has
been considerably shrunk, compared to that under standard UVM framework in Figure 1.4. This
can be interpreted as the improvement made by λ−UVM on the wide spread of the standard UVM.

And we also plot the implied volatility computed by the upper bound of the value. In contrast to
the observation in Figure 1.5, the implied volatility is no longer the extreme value in the volatility
band. This is mainly because the BSB equation utilises the volatility path, which seizes the optimal
non-arbitrage offer/bid prices.

1.4.3 Lagrangian UVM: Hedging with three Call options

Now we will use one unit of each following three European Call options to hedge the same derivative.

Expiration Strike Market price
2020-08-21 2870 261.6
2020-08-21 3110 73.85
2020-08-21 3470 5

Table 1.1: Hedging instruments

Then we perform the same procedure as before to obtain the value bounds of this portfolio and
also plot the value spread of this portfolio and the previous portfolio using one hedging instrument.
For more straightforward observation, the values of spreads are divided by S0. It can be observed
that the value spread of portfolio with three instruments is wider than that of the one-instrument
portfolio when strikes are close to the initial asset price, but narrower as K goes to both sides
of the strike range. The reason behind this phenomenon might be that even though we gener-
ate the hedging strategy with the optimal combination of the three given instruments, but this
three-instrument strategy may not be the best choice to generate the optimal value bound of our
derivative. Therefore we may try a portfolio containing a large number of hedging instruments by
using λ−UVM for obtaining narrower value bounds.

Figure 1.8: Value bounds of the portfolio with three hedging instruments.
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Figure 1.9: Comparison between portfolios with one and three hedging instruments.

1.5 Conclusion

In this chapter, we have discussed the method of managing the volatility under the uncertain
volatility model framework. The assumptions we made are that the stock price follows a stochastic
Itô process and the volatility lies within a predetermined range. We basically utilised the implied
volatility based on the market information to construct a volatility band which covered values of
implied volatilities and conducted the calibration. We also discussed how the derivative could be
risklessly hedged under UVM and the effects of risk diversification.

Then we introduced the Lagrangian uncertain volatility model which allows us to use options
as hedging instruments and the concept of optimal static hedging. The trinomial tree model, a
method that helps us to implement the UVM numerically, has also been presented. Consequently,
we showed the detailed UVM algorithm, thereby implementing the standard UVM and λ−UVM
with different hedging strategies. By doing this, we showed what value bounds would be with
a different choice of the volatility band, as well as the improvement on value bounds made by
λ−UVM. At the same time, we investigated the implied volatility driven from the value bounds
we established.



Chapter 2

Martingale optimal transport

2.1 Introduction

In the last chapter, we have introduced the UVM that allows us to find bounds on option prices in
the sense of robustness. The assumption in UVM is that the stock price is a Geometric Brownian
motion, with unknown volatility lying within given bounds. While in this chapter, we will discuss
an alternative way of robust hedging and pricing: Martingale optimal transport(MOT), where the
marginals of stock are assumed to be known under any risk-neutral measure in MOT.

We will introduce some basics first. If a market is complete, then the payoff of a derivative could
be replicated by self-financing strategies. Moreover, the price of this derivative is equal to the cost
of replication under the arbitrage-free condition. Also, there exists a unique equivalent martingale
measure(EMM) under which the derivative price equals the expected value of its discounted payoff.

However, if the market is incomplete, there will be multiple EMMs which also leads to a fair price.
Like what we have done in Chapter 1, in order to find a reasonable value bound of a portfolio, we
will seek for an EMM where the derivative price obtained is in tune with the market information.
Along with the standard optimal transport, we will discuss the financial application of MOT in
this chapter.

2.1.1 Trading T -Vanilla options

We assume that the T -Vanilla options on an asset S are traded on the market, whose payoff is
λ(ST ) with a maturity T . In practice, the Vanilla’s payoff could be replicated by a long position
of some Put and Call T-Vanillas through the Taylor expansion formula [28]:

λ(ST ) = λ(S0) + λ′(S0)(ST − S0) +

∫ S0

0

λ′′(K)(K − ST )+dK

+

∫ ∞
S0

λ′′(K)(ST −K)+dK

where (K − ST )+ (resp. (ST − K)+) is the payoff of a Put (resp. call) option. The second
derivative λ′′(K) can be regarded as a probability function. We also define the pricing operator
Π[·] and suppose it is linear, so that

Π

[∑
i

λi(ST −Ki)
+

]
=
∑
i

λiΠ

[
(ST −Ki)

+

]
Also, due to the arbitrage-free condition, we have

Π[1] = e−rT , Π[ST ] = S0 (2.1.1)

At the same time, Π[(ST −K)+] should be non-increasing, convex with respect to K and Π[(ST −
K)+] ≥ (S0 −Ke−rT )+. According to Riesz’s representation theorem, with the condition that the

19
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market price of a Call option with strike K approaches to 0 as K → ∞, we then should have a
probability measure Pmkt such that[32]

C(K) ≡ Π[(ST −K)+] = EPmkt

[e−rT (ST −K)+]

where EPmkt

[e−rTST ] = S0.

Again by using the linear property, we could obtain the market price of the payoff λ(ST ) in terms
of market prices of Put and Call T-Vanillas.

Π[λ(ST )] = EPmkt

[λ(ST )] = λ(S0) +

∫ S0

0

λ′′(K)EPmkt

[(K − ST )+]dK

+

∫ ∞
S0

λ′′(K)EPmkt

[(ST −K)+]dK

(2.1.2)

Based on the value Ci(K) of a Call option with strike K and maturity T on asset Si in the market,
we define the T -marginal distributions

Pmkt(Si = K) = ∂2
KC

i(K), i = 1, 2. (2.1.3)

Note that this second-order derivative exists almost everywhere due to the convexity of Ci(K)[11].

For simplicity, we assume the riskless interest rate is zero in the rest of this chapter; this can
be easily recovered by introducing a multiplicative factor e−rT to the relevant terms in formulas.
We also clarify that P(P1,P2) is the set of all probability measures, while M(P1,P2) is the set of
all martingale measures satisfying the following.

M(P1,P2) = {Q ∈ P(P1,P2) : EQ[St] = S0}.

2.2 Optimal Transport Problem

2.2.1 Monge-Kantorovich duality

We will first introduce the optimal transport(OT) in this section due to its close connection to our
method in MOT. Also, its interpretation in mathematical finance will be discussed.

Let us begin with two underlying assets S1 and S2 with the same maturity T and define a payoff
function c(s1, s2) in terms of these two assets. And we denote S1 ≡ S1

T and S2 ≡ S2
T .

Assumption 2.2.1. c : R2
+ → [−∞, ∞) is a continuous function such that

c+(s1, s2) ≤ K · (1 + s1 + s2)

on (R+)2 for some constant K.

Then we define the model-independent super-replication price(consistent with Call options on S1

and S2) as

Definition 2.2.2.
MK2 ≡ inf

P∗(P1,P2)
EP1

[λ1(S1)] + EP2

[λ2(S2)], (2.2.1)

where P∗(P1,P2) is the set of all functions (λ1, λ2) ∈ L1(P1)× L2(P2) such that

λ1(s1) + λ2(s2) ≥ c(s1, s2) (2.2.2)

for P1-almost all s1 ∈ R+ and P2-almost all s2 ∈ R+. λi(si), i = 1, 2 is the payoff of Vanilla Call
options.
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The linear program (2.2.1) is called Monge-Kantorovich formulation, and we regard it as the dual
problem. The infimum in (2.2.1) could be obtained and its value will not change if the definition of
P∗(P1,P2) is restricted to some bounded and continuous functions[7]. Thus, the inequality (2.2.2)
holds for all (s1, s2) ∈ R2

+. Note that if (λ1, λ2) ∈ P∗(P1,P2), then (λ1 + C, λ2 − C) ∈ P∗(P1,P2)
representing constant shifts in European payoffs, so this infimum is not unique[32]. From equations
above We could deduce that the static super-replicatwon strategy containing Vanilla payoff λ1(s1)

and λ2(s2) with market prices EP1

[λ1(S1)] and EP2

[λ1(S2)] generates a portfolio λ1(s1) + λ2(s2)
whose value is greater than or equal to the payoff c(s1, s2) at maturity. We can interpret (2.2.1)
as the robust super-replication price of c within the framework of mathematical finance.

2.2.2 Optimal transport formulation

The equation (2.2.1) could be transformed by adding a Kuhn-Tucker multiplier, which is a positive
measure on R2

+, to the inequality (2.2.2)[32]:

Theorem 2.2.3.

MK2 = sup
P∗(P1,P2)

EP[c(S1, S2)], (2.2.3)

where P∗(P1,P2) = {P : S1 ∼ P1,P : S2 ∼ P2}.

We call this expression the primal problem. When (2.2.3) is equal to (2.2.1), this equation is known
as the Kantorovich duality. Keep in mind that the OT problems are usually written with an ’inf’
rather than a ’sup’, while this optimisation MK2 is to maximise the cost function EP[c(S1, S2)]
over the convex set of joint measures with P1 and P2. If the cost function is continuous and the
set P∗(P1,P2), then the supremum over P∗(P1,P2) can be obtained by Prokhorov’s theorem. This
proves the existence of a P∗ ∈ P∗(P1,P2)(may not be unique) such that MK2 = EP∗ [c(S1, S2)][32].

Moreover, the following proposition will show that the infimum in Monge-Kantorovich formulation
can be attained by a pair (λ, λ∗) of bounded continuous c-concave functions.

Proposition 2.2.4.

MK2 = inf
λ∈Cb

EP1

[λ∗(S1)] + EP2

[λ(S2)], (2.2.4)

where λ∗(s1) ≡ sups2∈R+
{c(s1, s2)− λ(s2)} is the c-concave transform of λ.

2.3 Martingale optimal transport

In this section we will discuss the martingale optimal transport(MOT). Firstly, some basics will
be introduced.

Let us consider one asset with payoff c(s1, s2) evaluated at two dates t1 < t2. We suppose the
Vanilla options of all strikes whose maturities are t1 and t2 can be traded, so the distribution of S1

and S2(S1 ≡ St1 , S2 ≡ St2) can my implied. Then we define the model-independent value upper
bound, which is consistent with t1 and t2 Vanilla options, to be the OT problem in a martingale
version. We construct the dual problem:

Definition 2.3.1.

M̂K2 ≡ inf
M∗(P1,P2)

EP1

[λ1(S1)] + EP2

[λ2(S2)], (2.3.1)

where M∗(P1,P2) is the set of function λ1 ∈ L1(P1), λ2 ∈ L1(P2), and H is a bounded continuous
function on R+ such that

λ1(s1) + λ2(s2) +H(s1) · (s2 − s1) ≥ c(s1, s2),∀(s1, s2) ∈ R2
+. (2.3.2)
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This represents a semi-static hedging strategy containing European Call options with payoffs λ1

and λ2 and a delta strategy at time t1, it generates a Profit & Loss(P&L) at time t2 with zero
cost. A delta-hedging H0(S0) · (s1 − S0) can be performed but since it could be incorporated into
λ1(s1), so it is not included[32]. We could have also added any intermediate delta-hedging term
Hi(S0, ..., sti) · (sti+1

− sti) with 0 < ti < ti+1 ≤ t2, but the optimal solution is obtained when
Hi = 0. A corollary later will support this.

Compared M̂K2 to the OT MK2 in equation (2.2.1), we can deduce that M̂K2 ≤ MK2 because
of the existence of the function H.

2.3.1 MOT formulation

Similar to what we have done in the previous section, the MOT duality (2.3.1) can be formulated
as below: the primal problem.

Definition 2.3.2.

M̂K2

∗
= sup

P∈M(P1,P2)

EP[c(S1, S2)], (2.3.3)

where M(P1,P2) = {P : EP[S2|S1] = S1, S1 ∼ P1,P : S2 ∼ P2} is the set of discrete martingale
measures on R2

+ with P1 and P2.

The set M(P1,P2) is convex and weakly compact, so M̂K2

∗
can be achieved at the extremal

point[32]. The proposition below will show the sufficient and necessary condition such that this
set is not empty.

Proposition 2.3.3. The set M(P1,P2) is non-empty if and only if the mean of either P1 or P2

is S0 and P1 ≤ P2 are in convex order[14].

Definition 2.3.4. P1 ≤ P2 are in convex order if and only if

EP1

[(S1 −K)+] ≤ EP2

[(S2 −K)+], ∀K ∈ R+.

In addition, we can reconstruct M(P1,P2) by its extremal points, according to the Krein-Milman
theorem. We now present the following theorem characterizing extremal points:

Theorem 2.3.5. For P ∈M(P1,P2), the properties below are equivalent[19]:

• P ∈ Ext(M(P1,P2)), which is the set of extremal points.

• The set of all functions c ∈ L1(P) is dense in L1(P), where

c(s1, s2) = λ1(s1) + λ2(s2) +H1(s1)(s2 − s1), P− a.s.

for some λ1 ∈ L1(P1), λ2 ∈ L2(P2) and H ∈ L0(P1)

Based on this theorem we find that a payoff c ∈ L1()P could be roughly replicated in the semi-static
sense. Thus, there exists some point P ∈ Ext(M(P1,P2)) in a robust, complete model where all
payoffs c ∈ L1(P) are obtainable by the semi-static hedging.

Now we introduce another important theorem.

Theorem 2.3.6. Suppose that P1 ≤ P2 are probability measures in convex order on R+ with first

moment S0, and Assumption 2.2.1 holds, then M̂K2

∗
= M̂K2.

The theorem tells us if the assumptions above hold, then there is no duality gap. With our
knowledge of duality so far, we introduce the following corollary to explain why we do not include
any intermediate delta-hedging in Definition 2.3.1.
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Corollary 2.3.7. Define

M̂K2

3/2
≡ inf
M∗

3/2
(P1,P2)

EP1

[λ1(S1)] + EP2

[λ2(S2)],

where M∗3/2(P1,P2) is the set of functions λ1 ∈ L1(P1), λ2 ∈ L1(P2), and H(resp.H3/2) is bounded

continuous function on R+(resp.R2
+) such that ∀(s1, s3/2, s2) ∈ R3

+. And

λ1(s1) + λ2(s2) +H(s1)(s3/2 − s1) +H3/2(s1, s3/2)(s2 − s3/2) ≥ c(s1, s2), ∀(s1, s2).

Then we have

M̂K2

3/2
= M̂K2.

This corollary shows that there is no need for the delta hedging at intermediate dates since the

optimal value for M̂K2

3/2
and M̂K2 are the same.

2.3.2 Connection with Hamilton-Jacobi-Bellman equation

We will show that the minimisation in MOT can be restricted to the class of concave envelope.
For a function g, its concave envelope is the smallest concave function greater than or equal to g.

Proposition 2.3.8. For probability measures P1 ≤ P2 in convex order on R+ with mean S0, and
Assumption 2.2.1 holds. We have

M̂K2 = inf
λ∈L1(P2)

EP1

[(c(S1, ·)− λ(·))∗∗(S1)] + EP2

[λ(S2)], (2.3.4)

where λ∗∗ denotes its concave envelope[25].

By using the formulation (2.3.4), we may connect the martingale Monge-Kantorovich formulation
with the solution of Hamilton-Jacobi-Bellman equation:

Corollary 2.3.9.

M̂K2 = inf
u(1,·)∈L1(P2)

EP1

[u(0, S1, S1)] + EP2

[u(1, S2)],

where

u(0, s1, s2) ≡ sup
σ∈[0,∞]

EP[c(s1, ST )− u(1, ST )|S0 = s],

and dSt = σtdBt. B is a Brownian motion and σ is an adapted(w.r.t the filtration of B) unbounded
control process.

If s1 is fixed, u(0, s1, s) represents a value function of a stochastic control problem containing
the maximisation of the expectation of c(s1, ST ) − u(1, ST ) over all controls σ. In the view of
mathematical finance, the SDE of St represents an unbounded uncertain volatility model[32].

If we assume that the dual (2.3.1) can be obtained by (λ∗1, λ
∗
2, H

∗), then the primal (2.3.3) tells
that the payoff could be perfectly dynamically replicated under P∗ ∈M(P1,P2), i.e.

λ∗1(s1) + λ∗2(s2) +H∗(s1)(s2 − s1) = c(s1, s2), P∗ − a.s. (2.3.5)

for the optimal martingale measure P∗. Equation (2.3.5) holds because

EP∗ [λ∗1(S1) + λ∗2(S2) +H∗(S1)(S2 − S1)− c(S1, S2)] =

EP1

[λ∗1(S1)] + EP2

[λ∗2(S2)]− EP∗ [c(S1, S2)] = 0.
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2.3.3 The discrete martingale Fréchet-Hoeffding solution

In this section, we will demonstrate the explicit solution to M̂K2 under the martingale Spence-
Mirrlees condition ∂s1s2s2c > 0, which gives a martingale measure similar to Fréchet-Hoeffding
solution. Under this condition, the optimal measure will be independent of payoff and only depend
on P1 and P2. Then the infimum in the dual problem could be obtained.

Explicit solution for the primal

The extremal probability measure P∗ coincides with the unique left-monotone martingale transference[24]:

Definition 2.3.10. P ∈ M(P1,P2) is left-monotone if we can find a Borel set Γ ⊂ R × R such
that P[(X,Y ) ∈ Γ] = 1. And ∀(x, y1), (x, y2), (x

′
, y
′
) ∈ Γ with x < x

′
, then y

′
/∈ (y1, y2).

For simplicity, we assume that δF ≡ F2−F1 has a unique maximum m. In real market, distribution
implied by Vanilla option also satisfy this condition[32]. Now we will characterise P∗ in terms of
ODEs by using the primal formulation, and we denote F1 and F2 to be the cumulative distribution
functions of P1 and P2.

We define P∗ ∈M(P1,P2) as

P∗(ds1, ds2) = P1(ds1)(q(s1)δTu(s1)(ds2) + (1− q(s1))δTd(s1)(ds2)) ,

q(x) =
x− Td(x)

Tu(x)− Td(x)

with the maps Td(x) ≤ x ≤ Tu(x), Tu is increasing and Td is decreasing. They are defined by

Tu(x) = Td(x) = x, x ≤ m
Tu(x) = F−1

2 (F1(x) + δF (Td(x))
(2.3.6)

and

T
′

d(x) = − Tu(x)− x
Tu(x)− Td(x)

F
′

1(x)

F
′
2(Td(x))− F ′1(Td(x))

(2.3.7)

We need to solve the first-order OED (2.3.7) with the initial condition Td(m) = m to find Td(x)
for x ≥ m. Also, Td(x) can be expressed as the unique solution t ∈ R+ of

−
∫ m

t

(g(x, ζ)− ζ)dδF (ζ) +

∫ x

m

(g(ζ,m)− ζ)dF1(ζ) = 0, (2.3.8)

where g(x, ζ) ≡ F−1
2 (F1(x) + δF (ζ)) and t ≤ m ≤ x.

Explicit solution for the dual

We first define a triple of dual variables (λ∗1, λ
∗
2, H

∗) with a smooth function c.

The dynamic hedging component H∗ is defined by

H∗
′

(s1) =
cs1(s1, Tu(s1))− cs1(s1, Td(s1))

Tu(s1)− Td(s1)
, ∀s1 ≥ m (2.3.9)

The payoff function λ∗2 is defined by

λ∗
′

2 (s2) = cs2(T−1
u (s2), s2)−H∗ ◦ T−1

u (s2) , ∀s2 ≥ m
= cs2(T−1

d (s2), s2)−H∗ ◦ T−1
d (s2) , ∀s2 < m.

(2.3.10)

And λ∗1 is

λ∗1(s1) = EP∗ [c(S1, S2)− λ∗2(S2)|S1 = s1]

= q(s1)(c(s1, .)− λ∗2)× Tu(s1) + (1− q(s1))(c(s1, .)− λ∗2)× Td(s1) , ∀s1 ∈ R+

(2.3.11)

With the theorem below we are able to obtain the solution for the dual.
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Theorem 2.3.11. For probability measures P1 ≤ P2 on R+ with first moment S0, and the as-
sumption that δF ≡ F2 − F1 has a unique maximum m holds. And we further suppose that
λ∗+1 ∈ L1(P1),λ∗+2 ∈ L1(P2), and the partial derivative of cs1s2s2 exists with cs1s2s2 > 0 on R2

+.
Then

• (λ∗1, λ
∗
2, H

∗) ∈M∗(P1, P2).

• the strong duality holds for the martingale transport problem, P∗ is a solution of M̂K
∗
2 and

(λ∗1, λ
∗
2, H

∗) is a solution of M̂K2:

EP∗ [c(S1, S2)] = M̂K
∗
2 = M̂K2 = EP1

[λ∗1(S1)] + EP2

[λ∗2(S2)].

2.4 Methods for numerical implementation

In this section, we will explore how to find the optimal solutions to the MOT primal and dual
problems, and what computational techniques should be utilised. For simplicity, we will consider
the case of one asset evaluated at two dates t1 < t2 with the corresponding Vanilla options. And
Assumption 2.2.1 holds for the remaining part of this chapter.

2.4.1 U-quantization

Before introducing the method of solving the MOT primal problem numerically, we discuss some
foundations related to this method. This is because we need to reduce the primal problem to a
linear program by quantising measures. Baker[8] presents various methods for the quantisation of
measures, for example, the L2 quantisation. However, it has been proved that the L2 quantisation
does not preserve the convex order[8]. By Proposition 2.3.3 we know that the set M(P1,P2) will
be empty if P1 ≤ P2 are not in convex order. Therefore, Baker[8] introduces another method called
U-quantisation.

Definition 2.4.1. For a probability measure with distribution function F (x), its quantile function
is

F−1(p) = inf{x ∈ R : p ≤ F (x)}
Definition 2.4.2. For an integer n, define a probability measure µ ∈ P(R) with distribution
function F (u) =

∫ u
−∞ dµ(x). Then the U-quantization of µ is

U(a1, ..., an) =
1

n

n∑
i=1

δai , where ai = n

∫ i
n

i−1
n

F−1(u)du, (2.4.1)

and δx is the Dirac point mass at x. And its distribution function F ∗ is

F ∗ =


0 , x ≤ a1

i
n , x ∈ [ai, ai+1)

1, x ≥ an.

Some useful properties of U-quantisation that convince us to use this method for numerical imple-
mentations will be shown below.

Theorem 2.4.3. (U-quantization preserves the mean of a measure) Define a probability measure
µ with distribution function F , and U(a1, ..., an) to be its U-quantization. Then µ and U(a1, ..., an)
have the same mean.

Theorem 2.4.4. (U-quantization preserves the convex order) For µ, ν ∈ P(R) with U-quantizations
U(a1, ..., an) and U(b1, ..., bn). If µ ≤ ν are in convex order, then U(a1, ..., an) ≤ U(b1, ..., bn) are
in convex order.

As we discussed before, there is no duality gap if Proposition 2.3.3 and Theorem 2.3.6 hold, so

that M̂K2 can be attained. Therefore, the theorems above assure us that the duality gap will not
appear if we utilise the U-quantisation, since the mean and convex order of original measures will
not be changed.
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2.4.2 Solving the MOT primal problem

Now we will discuss how to solve the MOT primal by using the U-quantisation. Firstly, we will
need the implied probability measures P1 and P2 from the prices of Vanillas with a range of strikes
K quoted in the market. However, not all options with desired strikes are traded in reality. Thus
we will use interpolation methods to build a complete spectrum of strikes with the available market
information. The details of this step will not be presented here.

We emphasise that the implied probability measures P1 and P2 can be obtained by differentiating
the market values of Calls twice with respect to strikes K, as Breeden and Litzenberger[11] claim.
So after acquiring Call prices with desired strikes, we could approximate the partial derivative of
C(ti,K) by differencing it over small step sizes and repeat the same process to get the second-order
derivative of C(ti,K), thereby obtaining the marginals.

We quantilize P1 and P2 with distribution function F and G, for fixed integers n and m respectively:

P1(a1, ..., an) =
1

n

n∑
i=1

δai , where ai = n

∫ i
n

i−1
n

F−1(u)du,

and

P2(b1, ..., bm) =
1

m

m∑
j=1

δbj , where bj = m

∫ j
m

j−1
m

G−1(u)du,

Also, we discretise the price of underlying such that asset takes n possible values (xi)1≤i≤n at time
t1 and takes m possible values (yj)1≤j≤n at time t2.

According to Guo and Ob lój[12], we could transfer the MOT primal (2.3.3) into the following linear
programming problem:

U(K) = max
(pi,j)1≤i≤n,1≤j≤m∈Rn,m

+

n∑
i=1

m∑
j=1

pi,jc(xi, yj) (2.4.2)

subject to:

m∑
j=1

pi,j = ai, i = 1, ..., n

n∑
i=1

pi,j = bj , j = 1, ... m

m∑
j=1

pi,jbj = aixi, i = 1, ..., n

For the lower bound:

L(K) = min
(pi,j)1≤i≤n,1≤j≤m∈Rn,m

+

n∑
i=1

m∑
j=1

pi,jc(xi, yj), (2.4.3)

subject to the same constraints above.

We summarise the steps of algorithm below:

• Interpolate t1- and t2 Vanillas available in the market to derive options prices with desired
strikes.

• Use (2.1.3) to calculate the second-order derivative of market values of Call options w.r.t the
strike K, to obtain the implied measures P1 and P2.

• Discretise the asset prices s1 at time t1 and s2 at time t2 on a two-dimensional grid.

• Conduct U-quantization on P1 and P2, to obtain a′is and b′js.

• Use the simplex algorithm to solve the linear programs (2.4.2) and (2.4.3).



2.4. METHODS FOR NUMERICAL IMPLEMENTATION 27

2.4.3 Solving the MOT dual problem

According to Pierre Henry-Labordère[32], we could solve the MOT dual problem by linear pro-
gramming.

We transfer EP1

[λ1(S1)] and EP2

[λ2(S2)] into a sum of weighted prices of Call options in the market
and the value v of other components in the portfolio. There are N Calls whose strikes ranging
from [α1%, α2%]× S0 maturing at time t1 and t2 respectively.

EP1

[λ1(S1)] + EP2

[λ2(S2)] ≈ v +

N∑
j=1

ωj1C(t1, K
j
1) +

N∑
j=1

ωj2C(t2, K
j
2) ,

where C(ti, K) is the market value of a Call of maturity ti and strike K.

Then the upper bound of the portfolio M̂K2 becomes

U(K) = min
v,(ωj

1),(ωj
2),H(·)

v +

N∑
j=1

ωj1C(t1, K
j
1) +

N∑
j=1

ωj2C(t2, K
j
2) (2.4.4)

subject to:

v +

N∑
j=1

ωj1(s1 −Kj)
+ +

N∑
j=1

ωj2(s2 −Kj)
+ +H(s1)(s2 − s1) ≥ c(s1, s2), ∀(s1, s2) ∈ R2

+.

In addition, we could also discretise the price of underlying s1 with n possible values (xi)1≤i≤n
and s2 with m possible values (yk)1≤k≤m at time t1 and t2 respectively. Then the linear program
(2.4.4) will have n×m constraints:

v +

N∑
j=1

ωj1(xi −Kj)
+ +

N∑
j=1

ωj2(yj −Kj)
+ +H(xi)(yj − xi) ≥ c(xi, yj), ∀(xi, yj) ∈ R2

+,

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Thus, we have reduced the MOT dual problem for the upper bound into a standard linear program
U(K), which could be numerically solved via optimisation algorithm.

As for the lower bound, we simply need to replace min by max in (2.4.4), and reverse the inequality
sign in constraints.

L(K) = max
v,(ωj

1),(ωj
2),H(·)

v +

N∑
j=1

ωj1C(t1, K
j
1) +

N∑
j=1

ωj2C(t2, K
j
2) (2.4.5)

subject to:

v +

N∑
j=1

ωj1(xi −Kj)
+ +

N∑
j=1

ωj2(yj −Kj)
+ +H(xi)(yj − xi) ≤ c(xi, yj), ∀(xi, yj) ∈ R2

+,

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

We summarise the steps of algorithm below:

• Determine the number and range of strikes of Vanillas, and collect the market prices C(ti,K).

• Discretise the asset prices s1 at time t1 and s2 at time t2 on a two-dimensional grids to build
the constraints.

• Solve the linear program.
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2.5 Numerical implementation

2.5.1 MOT primal

In this section, we will focus on how to conduct the U-quantisation by utilising the market informa-
tion. The reason that we will not show the full implementation is that in practice the option prices
are influenced by various factors such as intrinsic value, time value and the methods of pricing in
reality. The assumption that marginals we obtain by differentiating the Call prices with respect to
strikes are in a martingale measure may easily be violated, so the mean of U-quantisation points
in P1(a1, ..., an) and P2(b1, ..., bn) may not be the same. Besides the above reasons, the choice of
Call prices due to bid-ask spread, different interpolation methods and numerical accuracy may also
influence the measure we intend to acquire. Therefore, the probability measures built up by solely
relying on Call prices in the market might not be ’perfect’ enough to solve the linear program
(2.4.2). So the consistency of observed Vanilla prices is a crucial step, which is hardly met in
practice and is one of the greatest challenges in the algorithm. Still, we will present the results of
U-quantisation.

Firstly, we collect the data of Call options on the stock Amazon ”AMZN” with strikes ranging
from $2950 to $3500 on 21 August 2020. The expiration dates of two options are t1 : 28 August
and t2 : 4 September 2020 respectively, which means the maturities are 7 days and 14 days. Not
all options with strikes on [2950, 3500] are available in the market, so we conduct the interpolation
on option prices and corresponding strikes by the spline method. We will show only the case of
the first option with maturity T = 7 days, the similar results of the other option can be found in
the code link.

Figure 2.1: Interpolation on available Call prices with strikes.

After doing this, we are able to utilise the desired Call prices with strikes depending on the number
of points we set in the interpolation.

Then we compute the implied marginals of stock from the second derivative of Call prices w.r.t.
strikes. Due to the fluctuation of Call prices, some values of ∂2

KC
i(K) become negative, but the

probability should be non-negative. So we also smoothen the curve for Call prices in the process
of interpolation. Also, in order to prevent obtaining unrealistic Call prices, we do not interpolate
any prices whose strikes are not in the range [2950, 3500] supported by the real market. Then we
standardise the probability measure we obtain since we assume the sum of all marginals should be
equal to 1.
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Figure 2.2: Implied probability marginals after interpolation.

Subsequently, we build the CDF and quantile function by equation (2.4.1) to U quantise the
measures P1 and P2 from the implied probability marginals, with n = 10. The results are as
follows:

U-quantization ai’s and bi’s
P1(a1, ..., an) 2961, 3084, 3137, 3212, 3254, 3311, 3339, 3368, 3401, 3447
P2(b1, ..., bn) 3002, 3139, 3171, 3209, 3236, 3243, 3280, 3320, 3363, 3403

Table 2.1: U-quantization

This means, for example, we predict that the stock s1 on the date t1: 28 August 2020 will have
the following probability distribution function:

F ∗(x) =


0 , x ≤ a1

i
10 , x ∈ [ai, ai+1)

1, x ≥ a10,

where ai’s are listed above.

2.5.2 MOT dual

In this section, we will implement a numerical example for the MOT dual problem.

We will use the options on the stock Amazon in the previous section to find the value bounds for a
Call option expiring at t1, along with a hedging strategy containing one t1-Vanilla, one t2-Vanilla
and some risk-free bounds V , and the delta at t1. The market prices of t1- and t2-Vanillas are
$108.85 and $106.05, strikes are $3210 and $3260 respectively. After interpolating Call prices and
discretising the asset prices on a two-dimensional grid of 100 values, we solve the linear programs
(2.4.4) and (2.4.5) to obtain the value bounds of this portfolio. As we can see in the figure below,
except the lower bound reduces to zero for large strikes, the real market values indeed lie with the
bounds we implement.
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Figure 2.3: Value bounds produced by linear programs in MOT dual.

2.5.3 Comparison between UVM and MOT

Figure 2.4: Comparison between UVM and MOT in numerical implementations

We also present the spreads of value bounds obtained by using λ-UVM and MOT in previous
sections. In order to compare the performances in their numerical implementations more straight-
forwardly, we divide strikes by the initial asset price and value spreads by corresponding market
prices of the derivative to standardise the x- and y-axis. Note that we are trying to observe some
potential differences between these two methods; hence not all characteristics may appear in this
numerical comparison. We find in Figure 2.4 that, when strikes are close to the initial asset price,
the value bounds of MOT are slightly narrower, but there is no much difference between two value
spreads in the most of these cases. Furthermore, the UVM works well when the strike is much
smaller than S0; its value spread presents a trend converging to zero. The value bound of UVM is
also narrower when K is slightly large than S0. So the performance of UVM is moderately better
than that of MOT. In general, the UVM requires more assumptions that the asset price process
behaves under some specific models, and its volatility band needs to be calibrated. So the accu-
racy of UVM depends on several factors, and any violation of these assumptions may compromise
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the model. In our implementations, we chose the trinomial model to simulate the price process.
In fact, the usage of other models may also affect the numerical results. As a whole, the UVM
performs well since the value bounds we obtained in the last section is relatively narrow and it
based on more assumptions. When it comes to MOT, just like the problem we discussed in Section
2.5.1 for the primal, the points in U-quantisations of probability measures with the same mean are
hard to obtain from the market due to various reasons, and the marginals obtained may not be
in a martingale measure. Also, it is difficult to ensure the implied probability marginal obtained
are in a martingale measure, and the interpolation we used may also cause the uncertainty. For
the MOT dual, the linear programming form of it can be easily implemented and solved, although
different methods for solving linear programming might influence the value bounds. In summary,
we may obtain better value bounds for derivatives by using the method based on more assump-
tions. However, these assumptions might be violated in the real world. Therefore, it is essential to
consider carefully about the trade-off between the robustness and model assumptions in order to
produce practical value bounds when the model risk is acceptably low at the same time.

2.6 Conclusion

In this chapter, we first discussed the optimal transport problems, which subsequently leads us
to a similar problem with a martingale constraint, namely MOT. We deduced the primal and
dual problems for MOT with important properties and presented the methods for their numerical
implementations, which allows us to reduce the MOT problem into a linear program.

Finally, we demonstrated how to conduct the U-quantisation and presented the value bounds for a
derivative with hedging strategy in the MOT dual problem. Then the comparison between MOT
and UVM in terms of their numerical performances and basic properties was conducted.



Chapter 3

Robust pricing for
path-independent options with
alternative methods

3.1 Introduction

In this chapter, alternative methods of pricing path-dependent options, such as Digital, Lookback
and Barrier options, will be discussed. Our objective here is to deduce the optimal upper and
lower bounds which are in line with the market information. For the sake of simplicity, we will
suppose that the riskless interest rate is zero. Furthermore, we will assume the case that all Calls
and Puts with the desired strikes are available on the market, which can be implemented through
interpolation methods similar to the previous chapter.

The technique is similar to what we used in the first chapter. We studied the uncertain volatility
model, where the calibration of the volatility band and the assumption of underlying’s behaviours
are required. In contrast, in this chapter, we only need the Vanilla options market prices to generate
value bounds for path-dependent options. The main idea is to use super-replicating strategies to
produce the value bounds, then to examine whether those bounds are optimal by utilising the
assumption that asset prices process is a martingale consistent with the market information under
the equivalent martingale measure with zero interest rate. Also, we need to deduce the probability
marginals for Vanilla at certain points.

We will introduce basic definitions and properties of the Digital, Lookback and Barrier options,
then the optimal value bounds in a discrete sense. Finally, some numerical results will be presented.

We assume the Call option can be traded at prices C(K) with all possible strikes K and maturity
date T = 1 year. We further assume S0 = 1, by defining the EMM Q and the probability law p of
ST , we have the mean of p to be 1 due to the martingale property of S. Then we know the Call
price is

C(K) = EQ[(ST −K)+] =

∫ ∞
0

(x−K)p(dx), ∀K ≥ 0 (3.1.1)

Note that we have C ′(K) = −p([K,∞)). And if the function of Call price w.r.t the asset price
x→ C(x) is twice differentiable, then we also have p(dx) = C ′′(x)dx. The details can be found in
[11]. So the Call price is

C(K) =

∫ ∞
0

(x−K)C ′′(x)dx, ∀K ≥ 0.

32
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3.2 Lookback options

We define the price for the underlying asset to be (St)t≥0 with S0 = 1, and the payoff of the
Lookback option with maturity T to be

sup
0≤t≤T

St.

We suppose the continuous updating of the maximum. The upper and lower bound will still be
valid even if the asset prices are observed in discrete time. Since in a discrete sense, the payoff
can only be shrunk for the upper bound. Setting T to be one of the updating points leads to the
soundness of the lower bound.

Before we present the value bounds for the Lookback option, we need the following assumptions[10]:

Assumption 3.2.1. (Continuous market) We can find a family of Call options with maturity T ,
the continuum of possible strike prices exists for each of them. Moreover, we are able to long Calls
in arbitrary amounts, including fractions, and short them at the same price, which is independent
of the quantity.

Assumption 3.2.2. (Regularity of Call prices) The price of a Call option C(K) is a decreasing,
convex function of K with C(0) = 1 for K ≥ 0, and C(K) reduces to zero as K goes to infinity. If
we sell a European Call before its maturity, then its value will always be the intrinsic value of the
corresponding American Call option. So at time t < T we can sell a European Call with strike K
for at least (St −K)+.

We firstly define the barycentre function bv

bv(x) =
1

v((x,∞))

∫
(x,∞)

yv(dy).

For a random variable X with continuous distribution v, then we define the Hardy-Littlewood
transform of v to be v∗, which is the law of bv(X). More specifically, bv(k) is the point on the
x-coordinate where the tangent at K to the function Cv(K) =

∫
R(y − K)+v(dk) intersects the

x-axis, and v∗((bv(K),∞)) is the modulus of the slope of this tangent. More details about the
barycentre function can be found in [10]. Then we show the value bounds for the Lookback option.

Proposition 3.2.3. Under the above assumptions, the upper bound for the price of the Lookback
option is

U =

∫
xp∗(dx),

and the lower bound is
L = C(1) + 1.

Proof. Here we will only prove the lower bound, the proof of the upper bound can be found in
[10]. It is obvious that

sup
0≤t≤T

St ≥ (ST − 1)+ + 1, S0 = 1, (3.2.1)

which can be interpreted as the payoff of the Lookback option is greater than the payoff of a Call
option with strike 1 plus 1. So we are able to pay L = C(1) + 1 for the Lookback option without
any risk.

We consider a price process containing a single jump at time T/2 with S0 = 1. The jump follows
the law p corresponding to C(K) in (3.1.1). Thus, the process is a martingale since

EQ[ST − 0] =

∫ ∞
0

(x− 0)p(dx) = C(0) = S0 = 1.

By taking the expectation on both sides, the inequality (3.2.1) becomes equality. So C(1) + 1 is
the largest lower bound for this Lookback option.

Note that U denotes the lowest price at which a risk-averse dubious investor is willing to sell the
Lookback option; L denotes the highest price that he/she is willing to pay. The arbitrage-free
condition tells that the price of the Lookback option has to lie within the interval [L,U ].
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3.3 Digital options

Now let us consider the Digital option, whose payoff is one unit if the price of an underlying asset
crosses a constant Barrier B before the maturity T = 1, and the payoff is zero otherwise. Suppose
the initial price S0 < B, and we denote HB to be the first time of the asset price reaching the
Barrier, so HB = inf{t : St ≥ B} and the option has the payoff 11{HB≤1}. We preclude the extreme
case that Q(ST ≤ B) = 1 which leads to the Call price C(B) = 0, so C(B) > 0.

Now we construct a model-independent lower bound on the value of the Digital option. Intuitively,
we know that at maturity T the asset price may be lower than the Barrier B even if it crosses B
at any time before T , so {S1 ≥ B} ⊆ {HB ≤ 1}. We take the expectation on both sides of the
following inequality containing the Digital’s payoff[13]

11{S1≥B} ≤ 11{HB≤1},

we have
−C ′(B) = p([B,∞)) = Q(S1 ≥ B) ≤ Q(HB ≤ 1) = E[11{HB≤1}].

Proposition 3.3.1. The largest lower bound L on the value of a Digital option is −C ′(B), where
C = C(K) is the price of a Call option with strike K.

L = −C ′(B) is the largest lower bound because if the asset price process S is 1 for t < T and it
jumps to value above the Barrier B at time T , the above inequalities become equalities.

Now we work on the model-independent upper bound of the Digital. We consider a super-
replicating strategy for the one-touch Digital option whose arbitrage-free price is D(B): long
(B−K) unit of a Call option with strike K and short (B−K) forward contract of the underlying
asset whenever the price of underlying crosses the Barrier. So we have

11{HB≤1} ≤
(ST −K)+

B −K
+
SHB

− ST
B −K

× 11{HB≤1} (3.3.1)

Let us first check the inequality (3.3.1). If the underlying does not reach the Barrier, then the
left-hand side term reduces to zero and the right-hand side term is non-negative. In the other case,
the value on the left becomes one and SHB

≥ B. If we replace the part (ST −K)+ by (ST −K)
to make the right-hand side value even smaller, the inequality holds.

We take the expectation and optimise the amount of the Call to obtain

D(B) ≤ inf
K<B

C(K)

B −K
+ 0,

where the zero term on the right-hand side means the zero cost of a forward.

Proposition 3.3.2. The smallest upper bound U on the value of a Digital option is infK<B
C(K)
B−K .

we also examine whether the upper bound U is optimal[9]. Recall that C is differentiable and

C(B) > 0 so the infimum infK<B
C(K)
B−K can be obtained at some point a(p,B) < B and −C ′(a) =

C(a)
B−a . We also have Q(ST > a) = p([a,∞]) = −C ′(a). Let γ ∈ (0, S0) solve

S0 − γ
B − γ

=
C(a)

B − a
.

We also build S to be a constant except at time T/2 and T . ST/2 takes value B with probability
C(a)
B−a and value γ otherwise. Furthermore, restrict the law p of ST to {ST > a} on ST/2=B and the
law p of ST to {ST ≤ a} on ST/2=a. So {ST/2 = B} = {ST > a} and we obtain

ST 11{ST/2=B}] = C(a)+a·P (ST > a) = C(a)+a
C(a)

B − a
= B

C(a)

B − a
= B·P (ST > a) = B·P (ST/2 = B),
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and {ST/2 = γ} = {ST ≤ a}. So

E[ST 11{ST/2=γ}] = E[ST (1− 11{ST>a})] = S0 −
BC(a)

B − a
,

which implies E(ST ) = S0 and E[ST 11{ST/2=γ}] is equal to

S0 −B
S0 − γ
B − γ

=
γ(B − S0)

B − γ
= γ(1− S0 − γ

B − γ
) = γP (ST/2 = γ) .

Then we find that E[ST |FT/2] = ST/2, which means E[ST/2] = E[ST ]. And also S is a martingale
since E[ST/2|F0] = E[ST/2] = S0 = E[St]. With the law p of ST , {HB ≤ 1} = {ST/2 = B} =

{ST > a} and Q(ST > a) = −C ′(a) = C(a)
B−a , we conclude P (D) = U in this case and thus U is the

optimal upper bound.

Proposition 3.3.3. For B < S0 the optimal value bound for this Digital option, with payoff
11{HB≤1} and HB = inf{t : St ≤ B < S0}, is[13][

1 + C ′(B),
P (d)

d−B

]
,

where d is the point where infK>B
P (K)
K−B is attained, and P (K) is the price of the Put option on

the same underlying with strike K.

Note that the upper and lower bounds we obtain are fully model-free. None assumption of under-
lying asset’s behaviour is needed since the dynamics of S is built up by the market information,
i.e. Call option prices on the market.

3.4 Barrier options

In the previous section, we have developed the optimal upper and lower bounds for the price of
Digital options. Let us now derive the value bounds for another path-dependent derivative, namely
single Barrier options. We will particularly focus on the upper bounds for up-and-in and up-and-
out Calls and Puts since the prices of down-and-in and down-and-out Barrier options could be
driven by ’up’ Barriers[13], and the lower bounds can be obtained by utilising the ’in-and-out’
parity.

Similar to the technique we used in the previous section, we aim to obtain the optimal value bounds
for Barrier options via the construction of a super-replicating strategy which bounds the payoff.
Then the optimal results can be proven by introducing the martingale property such that the
bounds can be actually obtained. In this section, only proofs of optimal value bounds for certain
Barrier options will be presented, proofs of rest of value bounds could be found in detail in [13].

3.4.1 Upper bounds of Barrier Call options

Up-and-in

We keep HB to be the same as the previous section. The payoff of the up-and-in Call Barrier with
strike K and maturity T = 1 is the same as that of a Call if the price of an underlying asset crosses
the Barrier B before T, and is zero otherwise, i.e.

(ST −K)+11{HB≤T}.

Note that if K ≥ B, then the payoff is simply the payoff of a Call. So we will consider the case

B > K. Recall that a(p,B) is the point where the infimum infK<B
C(K)
B−K can be reached.
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Proposition 3.4.1. For K < B, the optimal upper bound for the price of the up-and-in Barrier
Call option is {

C(K) , if a(p,B) ≤ K
B−K
B−a · C(a) , otherwise.

Proof. We construct a super-replicating strategy: long (B −K)/(B − β) unit of Call option with
strike β and short (β −K)/(B − β) unit of forward contract of the underlying asset whenever the
underlying crosses the Barrier. So we have

(S1 −K)+11{HB≤1} ≤
(B −K)

(B − β)
(S1 − β)+ +

(β −K)

(B − β)
(B − S1)11{HB≤1}, ∀β ∈ (K,B). (3.4.1)

This is because if (S1 ≤ K) or (HB > 1), then the left-hand side term reduces to zero and the
right-hand side term is positive. Also, if (S1 > K) and (HB ≤ 1), then (3.4.1) becomes the equality
for (S1 ≥ β). For K < S1 < β we then have the strict inequality.

We denote the price of this Barrier option to be CBarrier(B), and know the cost of a forward
contract is zero. By taking expectations we obtain

CBarrier(B) ≤ (B −K)

B − β
· C(β) + 0.

When we examined the upper bound in Proposition 3.3.2, we know the infimum of the first term
on the right-hand side above can be attained at β ≡ a(p,B) ∨K. According to Brown et al.[13],
we could build the price process S, which is a martingale, then we have

(S1 > a) ⊆ (HB ≤ 1) ⊆ (S1 ≥ a) ,

If a < K then (S1 −K)+11{HB≤1} = (S1 −K)+ and the equality holds in (3.4.1). If a ≥ K then
(S1 − a)+ = 0 on (HB > 1) and

(B −K)

(B − a)
(S1 − a)+ +

(a−K)

(B − a)
(B − S1) = (S1 −K)

on (HB ≤ 1). So we obtain the equality for β = a and for all possible values of S1 in (3.4.1).
Therefore we have shown that there is a price process for which the expected payoff of the option
equals the value bound we have advanced.

Up-and-out

The payoff of the up-and-out Barrier Call option is

(ST −K)+11{HB≥T}.

For K ≥ B the option will be knocked out for a positive payoff, so option always has zero value.

Proposition 3.4.2. For K < B, the optimal upper bound for the price of the up-and-out Barrier
Call option is

C(K)− C(B)− (B −K)p([B, ∞)) = C(K)− C(B) + (B −K)C ′(B)

And here we only consider the case that the price process of the underlying is discrete.
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3.4.2 Upper bounds of Barrier Put options

Up-and-in

In this section, the optimal upper bounds of Barrier Put options will be presented. The payoff of
an up-and-in Put option with strike K and maturity T = 1 is

(K − ST )+11{HB≤T}.

We will use the fact that the supremum supK<B
C(B)−P (K)

B−K can be attained at point α(p,B) [13].

Proposition 3.4.3. For K < B, the optimal upper bound for the price of the up-and-in Barrier
Put option is {

P (K) , if α(p,B) > K
K−α
B−α · C(B) + B−K

B−α · P (α) , otherwise,

where P (K) is the price of the Put option with strike K. For B ≤ K, the optimal upper bound is

C(K) +
K −B
B − a

· C(a).

Proof. For K < B, we build a super-replicating strategy: long K−β
B−β unit of a Call option with

strike B and B−K
B−β unit of a Put option with strike β, also short β−K

B−β unit of a forward contract of
the underlying asset whenever the underlying crosses the Barrier. So we have

(K−S1)+11{HB≤1} ≤
(K − β)

(B − β)
(S1−B)+ +

(B −K)

(B − β)
(β−S1)+ +

(K − β)

(B − β)
(B−S1)11{HB≤1}. (3.4.2)

By taking the expectation on both sides, the construction of martingale S and choice of β = α∨K,
we obtain the desired result, including equality.

For B ≤ K, we transfer (3.4.2) into the following inequality[13]

(K − S1)+11{HB≤1} ≤ (S1 −K)+ +
(K −B)

(B − β)
(S1 − β)+ +

(K − β)

(B − β)
(B − S1)11{HB≤1}. (3.4.3)

The optimal choice of β is β = α. By constructing a martingale S as we did in the proof of
Proposition 3.3.2, we can show the equality in (3.4.3).

Up-and-out

The payoff of an up-and-out Put option is

(K − ST )+11{HB>T}.

Proposition 3.4.4. For K < B, the optimal upper bound for the price of the up-and-in Barrier
Put option is P (K). For B ≤ K, the bound is

P (B) + (K −B)(1 + C ′(B)).

3.4.3 Lower bounds of Barrier options

Let us recall the ’in-and-out’ parity.

(ST −K)+11{HB≤T} = (ST −K)+ − (ST −K)+11{HB>T} (3.4.4)

If we substitute (3.4.4) into the left-hand side of (3.4.1), we obtain

(S1 −K)+ − (S1 −K)+11{HB>1} ≤
(B −K)

(B − β)
(S1 − β)+ +

(β −K)

(B − β)
(B − S1)11{HB≤1}
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By taking the expectation on both sides and the knowledge of minimum point of B−K
B−β · C(β), we

obtain

C(K)− B −K
B − a

· C(a) ≤ E[(S1 −K)+11{HB≤1}]

Thus, we deduce the optimal lower bound for the up-and-out Barrier Call option. A similar
technique can also obtain the bound for the up-and-in.

Proposition 3.4.5. For K < B, the optimal lower bound for the price of the up-and-in Barrier
Call option is

C(B)− (B −K)C ′(B).

For B ≤ K, the lower bound is C(K).

Note that the up-and-out Call becomes worthless when K ≥ B. Furthermore, if a ≤ K < B, then
the lower bound we deduced becomes negative. So the lower bound in these two cases is 0.

Proposition 3.4.6. For K < a < B, the optimal lower bound for the price of the up-and-out
Barrier Call option is

C(K)− B −K
B − a

· C(a)

Similarly, to derive optimal lower bounds for Barrier Puts, we use the following ’in-and-out’ parity:

(K − ST )+11{HB≤T} = (K − ST )+ − (K − ST )+11{HB>T}

Proposition 3.4.7. The optimal lower bound for the price of the up-and-in Barrier Put option
is[13] {

0 , if K < B,

P (K)− P (B)− (K −B)(1 + C ′(B)) , if B ≤ K.

The optimal lower bound for the price of the up-and-out Barrier Put option for K < B is{
0 , if K < α,

P (K)− K−α
B−α · C(B)− B−K

B−α · P (α) , otherwise.

And when B ≤ K, the lower bound is

K − S0 −
K −B
B − a

· C(a).

3.4.4 Optimal bounds for other kind of Barrier options

In addition, we will summarise the optimal value bounds for other kinds of Barrier options in
discrete sense, according to Brown et al.[13].

Lemma 3.4.8. For B < S0 and HB = inf{t : St ≤ B < S0}, we define d(p,B) and δ(p,B) to

be the points where the infimum infK>B
P (K)
K−B and infK>B

P (B)−C(K)
K−B can be obtained respectively,

then we have

P(HB ≤ 1) ≤ P (d)

d−B
,

and

P(HB ≤ 1) ≥ P(S1 ≤ B) +
P (B)− C(δ)

δ −B
.
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Proposition 3.4.9. The optimal upper and lower value bounds for ’down-and-in’ and ’down-and-
out’ Barrier Call and Put options are as follows:

(i) The optimal value bound for ’down-and-in’ Call option for K ≤ B is[
C(K)− C(B) + (B −K) · C ′(B), P (K) +

B −K
d−B

· P (d)

]
.

For B < K the bound is[
0,

(δ ∨K)−K
(δ ∨K)−B

· P (B) +
K −B

(δ ∨K)−B
· C(δ ∨K)

]
.

(ii) The optimal value bound for ’down-and-out’ Call option is: for K < B,[
S0 −K −

B −K
d−B

· P (d), C(B)− (B −K) · C ′(B)

]
,

for B ≤ K [
C(K)− (δ ∨K)−K

(δ ∨K)−B
· P (B)− K −B

(δ ∨K)−B
· C(δ ∨K), C(K)

]
.

(iii) For B < K, the optimal value bound for ’down-and-in’ Put option is[
P (B) + (K −B)(1 + C ′(B)),

K −B
(d ∧K)−B

· P (d ∧K)

]
.

For K ≤ B, the price of ’down-and-in’ simply becomes the price of a put.

(iv) For B < K, the optimal value bound for ’down-and-out’ Put option is[
P (K)− K −B

(d ∧K)−B
· P (d ∧K), P (K)− P (B)− (K −B)(1 + C ′(B))

]
.

For K ≤ B, the price of ’down-and-in’ reduces to zero.

3.5 Numerical Implementations

3.5.1 Introduction

In this section, we will numerically implement the value bounds for some path-dependent options.
We initialise the condition that the underlying asset price S0 = 2.5 and the maturity of options
T = 1 year, with zero interest rate and no dividend.

We will first construct an arbitrage-free SVI volatility surface introduced by Gatheral and Jacquier[17],
then compute the Black-Scholes Call and Put prices, which we assume to be the market prices,
in order to obtain the value bounds for those options based on theoretical results in the previ-
ous sections. Then we will use Monte-Carlo simulation to compute the values of options under
Black-Scholes model, and CEV(constant elasticity of variance) model as Browns et al. did in [13],
thereby examining whether values actually lie within the bounds obtained.
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3.5.2 Barrier options

Black-Scholes Model

Since the interest rate is assumed to be zero, we will first use the following Black-Scholes model to
simulate the Barrier option prices.

dSt = σ(K)Stdt (3.5.1)

Before computing the optimal value bounds, we need the volatilities in (3.5.1) and use them to
simulate Call and Put prices with different strikes. We follow Gatheral and Jacquier[alt.01], who
introduced the SVI volatility surface, to generate arbitrage-free volatilities which exhibit similar
behaviours as the market, as shown below. We assume these values are true volatilities of the
prices of the underlying asset with different strikes in the market.

Figure 3.1: SVI arbitrage-free volatilities.

Then we use the Black-Scholes analytical solutions to compute the Call and Put option prices with
the corresponding strikes and volatilities we obtained, which are assumed to be real market prices.
Note that the purpose of this numerical implementation is to examine whether the optimal bounds
we derived in previous sections are valid under some models. So even if the market prices are not
’real’, the effectiveness of value bound can still be proven as long as the environment where we are
working represents the similar behaviours as the real market and is rational.

Figure 3.2: Black-Scholes Call and Put option prices.

Now we use the Monte-Carlo simulation to generate the ’up-and-in’ and ’up-and-out’ Barrier Call
and Put options respectively. The time of simulations is M = 100000, and the time step is 1/250
year. We define the initial underlying asset to be S0 = 2.5 and Barrier B = 2.6. At the same

time we calculate C ′(B) by central difference method, a and α by solving arg minK<B
C(K)
B−K and

arg maxK<B
C(B)−P (K)

B−K respectively. Then we use the formulas in Section 3.4 to compute the
theoretical optimal upper and lower bounds for the values of those Barrier options. The results
are shown in Figure 3.3.
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Figure 3.3: Optimal value bounds for ’up-and-in’ and ’up-and-out’ Calls and Puts under BS model.

In Figure 3.3 we observe that the prices simulated under the Black-Scholes model lie perfectly
well within the theoretical value bounds. We notice that the upper and lower bounds coincide
when K > B for ’up-and-in’ Call, this is because the option reduces to a simple Call for K > B.
Moreover, the ’up-and-out’ Call is knocked out when K > B. Other seemingly coincidences of
value bounds for two Barrier Puts result from small values of these bounds, which are close to zero.
We also consider the case that the volatility that we use to price options is not consistent with
the market information. For example, we assume that the volatility is always a constant σ = 0.2
and never changes, and use it price all Barrier options above with different strikes, then check the
connection between the optimal bounds and the simulation results.

Figure 3.4: Optimal value bounds for ’up-and-in’ and ’up-and-out’ Calls and Puts under BS model
with constant volatility σ = 0.2.

As we can see, the prices simulated with constant volatility more or less cross the theoretical
optimal value bounds. This means, for instance, some arbitrage opportunities appear when the
simulated price is above the optimal upper bound because we overprice the option. So volatilities
we use should always be consistent with the market information.
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CEV model

We now use another model which was introduced by [16], called Constant elasticity of variance
model(CEV):

dSt = σ(K)
√
Stdt,

where the elasticity is chosen to be -1. Similarly, we use this model to simulate the prices of four
Barrier options above, then compare these value with the corresponding theoretical optimal value
bounds. The results are summarised in Figure 3.5.

Figure 3.5: Optimal value bounds for ’up-and-in’ and ’up-and-out’ Calls and Puts under CEV
model.

Optimal value bounds for other Barrier options

Moreover, we also simulate the prices of ’down-and-in’ and ’down-and-out’ Barrier Call and Put
options respectively under the BS model, and compute their optimal value bounds according to
Proposition 3.4.9, for the sake of completeness. The Barrier we set for those options is B = 2.4.

Figure 3.6: Optimal value bounds for ’down-and-in’ and ’down-and-out’ Calls and Puts under BS
model.
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It is obvious to see the prices lie within the bound. The reason for the coincidence of upper and
lower bounds for ’down-and-in’ Barrier Put option is that for K < B, the Barrier option reduces
to a simple Put option.

3.5.3 Digital option

We also compute the optimal upper and lower bounds for Digital options in two cases that 2.5 =
S0 < B = 2.6 and S0 > B = 2.4, according to Section 3.3. The prices of options are again
simulated by the Black-Scholes model. As we can see below, the prices of Digital options lie within
the theoretical optimal value bounds.

Figure 3.7: Optimal value bounds for Digital options under BS model for S0 > B and S0 < B.

3.6 Conclusion

In this chapter, we demonstrated the methods of robust pricing for Lookback, Digital and Barrier
path-dependent options. By utilising the Vanilla prices in the market, we are able to produce the
optimal value bounds for these options. Then, some of these theoretical value bounds were verified
under the Black-Scholes and CEV models by numerical implementations.

Also, the consequence of using constant volatility that is independent of market information was
presented in an example. Therefore we generated volatilities based on SSVI to examine this model-
indenpendent method.



Conclusion

In this thesis, we studied three methods of robust pricing. Although a few assumptions were still
proposed, these methods have significantly reduced the dependence of obtained value bounds on
deterministic models, thereby reducing the model risk. We first explored how to derive optimal
upper and lower bounds for derivatives by assuming a volatility band and utilising BSB equation.
Then we introduced the Lagrangian UVM to find the optimal combination of hedging instruments
for the best possible value bounds. The properties and theorems of optimal transport problems
and martingale optimal transport were discussed, so we were able to reduce the MOT into linear
programs: the primal and the dual problem. Then we studied the methods of solving LP to obtain
optimal value bounds. Finally, the robust approaches to pricing path-dependent options such as
the Lookback, Digital and Barrier options have also been studied.

The only inputs we needed to generate robust value bounds were market Vanilla prices since all of
these methods are exogenous. In our numerical implementations, the prices of the actual deriva-
tives indeed lied within the value bounds generated by these three methods. In the comparison
between numerical performances of UVM and MOT, we found that the methods based on more
assumptions may produce a better/narrower value bounds. In contrast with MOT, which needs
fewer assumptions, UVM requires that the actual volatility lies within the predetermined volatility
band and the discounted underlying price process is a true martingale under some EMMs. So
we should carefully balance the robustness and model assumptions when pricing derivatives, since
narrower value bounds are based on the assumptions that may be violated and not correctly de-
scribe the real world, while too wide bounds are without any practical use.

The additional study could be put on the calibration of the volatility band in UVM since the width
of the band indeed influence the final results. The MOT primal problem is difficult to solve since
the quantisation points of implied probability measures obtained from the market may not have
the same mean and the implied probability marginals may not be in a martingale measure. So
possible alternative numerical methods of solving the MOT dual worth investigating. Moreover,
the numerical methods discussed in this thesis are mostly in the discrete sense, so further research
on their continuous version and the corresponding effects may be beneficial to the field of robust
option pricing.
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