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Abstract

In this paper, we study the continuous-time stochastic linear quadratic control problem with fi-
nancial applications, and we aim to minimize the constrained quadratic risk function, a convex
cost function, in both the wealth process and portfolio strategy in an incomplete market. By
the convex duality method, we construct the associated dual problem satisfied the necessary and
sufficient optimality conditions. There are four main approaches used to solve the stochastic lin-
ear quadratic control problem in this paper, such as primal HJB, dual HJB, primal FBSDE and
dual FBSDE, and the goal is to prove all four approaches have the same solutions of the problem.
Then, we discuss the quadratic risk minimization problem with both no control constraints and
cone-constraints and derive numerical solutions of each approach. For no control constraints and
cone-constraints problem, we model the asset dynamics with constant coefficients and determinis-
tic coefficients, respectively. We mainly use the numerical methods, the Runge-Kutta method and
the Euler method, to solve quadratic risk minimization problems. We also compare results of all
approaches intuitively and analytically by plotting paths of optimal processes and calculating the
mean squared errors and variances of differences between results. To compare all methods more
accurately and precisely, we check results with different values of coefficients. In the end, we study
how to solve the quadratic risk minimization problem under the stochastic factor model by primal
and dual HJB approaches.
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Chapter 1

Introduction

In the 1960s, the stochastic control was first introduced in papers to study the stochastic linear
regulators with engineering applications, for example, Davis [5] introduced this field. For the fi-
nancial applications, the stochastic control was developed enormously from the 1970s, especially
Robert Merton [20] [21] published two landmark papers about the Hamilton-Jacobi-Bellman equa-
tion and the requirement of an underlying Markov state process. Based on papers of Merton,
Zariphopoulou [26], Davis and Norman [6], Øksendal and Sulem [27] and many scholars had exten-
sive research on this topic. Karatzas and Shreve [12] also discussed the application of stochastic
control to financial problems in their monograph.

For stochastic linear quadratic control problem, its applications on mean-variance portfolio se-
lection problems were studied in many papers, see, e.g. Schweizer [23] and Yong and Zhou [25].
Without portfolio constraints, the stochastic maximum principle is used to solve the stochastic
linear quadratic problem and obtain the optimal control as linear feedback control of the wealth
process, where linear feedback control includes a solution of corresponding stochastic Ricatti equa-
tion. Also, the admissibility of optimal control depends on whether there are control constraints. If
there are no control constraints, linear feedback control is straightforwardly admissible; Otherwise,
it is more difficult to solve the stochastic linear quadratic control problem, and optimal control is
not a linear feedback control anymore. Lim and Zhou [19] and Hu and Zhou [10] introduced ap-
proaches used to solve unconstrained and constrained stochastic linear quadratic control problem
respectively.

Shreve and Xu [24] firstly adopted the stochastic duality theory of Bismut [2] to solve the con-
strained optimal investment problem. After that, the convex duality method was more used to
deal with incomplete market models, see, e.g. Karatzas et al. [11], Pearson and He [8] [9], Cvitanić
and Karatzas [3], but sometimes, it is difficult to obtain the associated dual problem. Labbé and
Heunis[15] introduced a simple and elegant method to construct the corresponding dual problem
without a prior hypothesis of the market. For convex stochastic linear quadratic control problems,
the convex duality method was often used to solve the utility maximization problems, for exam-
ple, Kramkov and Schachermayer [13] [14]. If the filtration is generated by standard Brownian
motions without control constraints, the dynamic optimization problem can be reformulated as
a static dual problem, and the optimal wealth process and the optimal control process can be
solved by the dual relation, the martingale property and the martingale representation theorem;
Otherwise, the convex duality method cannot solve the problem straightforwardly. There are vast
literatures on using the convex duality method to solve financial problems, see, e.g. Labbé and
Heunis[16], Czichowsky and Schweizer [4]. Moreover, the convex duality method can usually solve
the stochastic linear quadratic control problem more convenient since the dual problem is often
solved explicitly.

For forward backward stochastic differential equations, Øksendal and Sulem [28] demonstrated
that the optimal wealth process and the optimal control process are related to the adjoint optimal
adjoint processes from forward backward stochastic differential equations. Li and Zheng [18] stated
the necessary and sufficient optimality conditions for primal and dual stochastic linear quadratic
control problems and indicated the relationship between the optimal solutions through their cor-
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responding forward backward stochastic differential equations.

In this paper, we study the continuous-time stochastic linear quadratic control problem with fi-
nancial applications, and we aim to minimize the constrained quadratic risk function, a convex
cost function, in both the wealth process and portfolio strategy in an incomplete market. Here
we assume that portfolio strategy must take values in the closed convex set which is applicable to
include short selling, borrowing, and other trading restrictions, see [12]. This is mainly referred
to the article “Constrained Quadratic Risk Minimization via Forward and Backward Stochastic
Differential Equations” wrote by Li and Zheng [18]. Not similar with Li and Zheng [18], there are
four main approaches used to solve the stochastic linear quadratic control problem in this paper,
such as primal HJB, dual HJB, primal FBSDE and dual FBSDE, and the goal is to prove all four
approaches have the exact same solutions of the problem.

Following Li and Zheng [18], we construct primal and dual problems with necessary and suffi-
cient conditions. When there are no control constraints, we solve the quadratic risk minimization
problem with constant coefficients by all approaches, and we consider there is only one risky as-
set in the portfolio. For stochastic Ricatti equations, we use the Runge-Kutta method, inspired
by File and Bullo [7], to find numerical solutions. Primal FBSDE and dual FBSDE approaches
are also solved numerically; we first use the stochastic maximum principle obtain fully-coupled
FBSDEs, and convert them into terminal quadratic error minimization problems with piecewise
constant parameters to find numerical solutions. To compare all approaches, we plot sample paths
of optimal wealth processes and optimal control processes for each method on a graph to see if
they are close to each other and also compute the mean squared errors and variances of differences
between each method. Then, we check results with different values of coefficients to compare all
methods more accurately and precisely. When there are cone-constraints (no short selling), we
solve the quadratic risk minimization problem with deterministic coefficients by all approaches,
and we consider there are two risky assets in the portfolio. In this case, the convex duality method
becomes much more complicated. Especially for the dual HJB approach, we have to consider four
different situations of the quadratic risk minimization problem to find all solutions. In primal FB-
SDE and dual FBSDE approaches, we cannot use the stochastic maximum principle to replace the
optimal controls by other parameters anymore, so we assume optimal controls are also piecewise
constant and use numerical minimization to find the solutions. Instead of plotting the sample path
of optimal control processes for each method, since the dimension becomes two, we plot the paths
of errors of two controls for each approach.

Furthermore, we try to solve the quadratic risk minimization problem under the stochastic factor
model, where asset price has a random drift term and drift term follows the OU process. For this
topic, Alghalith [1] introduced general explicit solutions to the portfolio optimization problem.
Stochastic Ricatti equations become semi-linear PDEs, and we can find the associated BSDE rep-
resentations, viscosity solutions, inspired by Pham [22]. Due to the limited time, we only solved the
problem by primal HJB and dual HJB approaches, other approaches will be discussed in the future.

The paper is organized as follows: In Chapter 2, we set up the model and formulate the quadratic
risk minimization problem. In Chapter 3, we discuss the quadratic risk minimization problem
with constant coefficients and no control constraints under all approaches and compare results. In
Chapter 4, we discuss the quadratic risk minimization problem with deterministic coefficients and
cone-constraints under all approaches and compare results. In Chapter 5, we study how to solve
the quadratic risk minimization problem under stochastic factor model by primal and dual HJB
approaches.
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Chapter 2

Theoretical Framework

2.1 The Market Model and Optimization Problems

In this paper, we have the following settings:

• T > 0 denotes a fixed terminal time,

• {W (t); t ∈ [0, T ]} denotes a RN -valued standard Brownian motion with scalar entriesWm(t),m =
1, ..., N ,

• On a complete probability space (Ω,F ,P),

• {Ft} denotes the P-augmentation of the filtration FWt = σ(W (s), 0 ≤ s ≤ t) generated by
W ,

• P(0, T ;RN ) denotes the set of all RN -valued progressively measurable processes on [0, T ]×Ω,

• H2(0, T ;RN ) denotes the set of processes x in P(0, T ;RN ) satisfying E[
∫ T

0
|x(t)|2dt] <∞,

• S2(0, T ;RN ) denotes the set of processes x in P(0, T ;RN ) satisfying E[sup0≤t≤T |x2
t |] <∞

• SDE denotes stochastic differential equation,

• BSDE denotes backward stochastic differential equation,

• FBSDE denotes forward and backward stochastic differential equation,

• w is suppressed in SDEs and integrals, except in places where an explicit w is needed.

For the market model, we consider that the market is consisted of a bank account and N risky
assets, where

• Bank account has price {S0(t)} given by

dS0(t) = r(t)S0(t)dt, 0 ≤ t ≤ T, S0(0) = 1,

• N risky assets have prices {Sn(t)}, n = 1, ..., N given by

dSn(t) = Sn(t)

[
bn(t)dt+

N∑
m=1

σnm(t)dWm(t)

]
, 0 ≤ t ≤ T, Sn(0) > 0,

• r ∈ P(0, T ;R) denotes scalar interest rate,

• b ∈ P(0, T ;RN ) denotes vector of appreciation rates,

• σ ∈ P(0, T ;RN×N ) denotes volatility matrix, and σ are uniformly bounded.
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Especially for the volatility matrix σ(t), there exists a positive constant k such that

z>σ(t)σ>(t)z ≥ k|z|2

for all (z, w, t) ∈ RN × Ω × [0, T ], where z> is the transpose of z. This strong non-degeneracy
condition ensures that matrices σ(t), σ>(t) are invertible and uniformly bounded.

In the rest of the paper, we consider that there is a small investor with initial wealth x0 > 0
and a self-financing strategy. Define the set of admissible portfolio strategies by

A := {π ∈ H2(0, T ;RN ) : π(t) ∈ K for t ∈ [0, T ] a.e.}

where K ⊆ RN is a closed convex set containing 0 and π(t) is a portfolio process with each entry
πn(t), n for n = 1, ..., N . π(t) represents the amounts invested in the risky assets. Given any
π ∈ A, the investor’s total wealth Xπ should satisfy the following SDE{

dXπ(t) = [r(t)Xπ(t) + π>(t)σ(t)θ(t)]dt+ π>(t)σ(t)dW (t), 0 ≤ t ≤ T
Xπ(0) = x0,

(2.1.1)

where θ(t) = σ−1(t)[b(t)− r(t)1] represents the market price of risk at time t, which is uniformly
bounded, and 1 ∈ RN has all unit entries. A pair (X,π) is admissible when π(t) ∈ A and X is a
strong solution to SDE (2.1.1) with control process π(t).

Define the funtional J : A → R by

J(π) := E

[∫ T

0

f(t,Xπ(t), π(t))dt+ g(Xπ(T ))

]
,

where f : Ω× [0, T ]× R× RN → R is given by

f(w, t, x, π) :=
1

2
[Q(t)x2 + 2S>(t)xπ + π>R(t)π],

and g : Ω× R→ R is given by

g(w, x) :=
1

2
[ax2 + 2cx].

Following Li and Zheng [18], to ensure J is a convex functional of π, the random variables a, c ∈
L∞FT (R) should satisfy

0 < inf
w∈Ω

a(w) ≤ sup
w∈Ω

a(w) <∞.

The processes Q ∈ P(0, T ;R), S ∈ P(0, T ;RN ) and R ∈ P(0, T ;RN×N ), shown in f(w, t, x, π), are
uniformly bounded, and R(t) is a symmetric matrix. Also, the matrix(

Q(t) S>(t)
S(t) R(t)

)
is non-negative definite for all (w, t) ∈ Ω× [0, T ].

The quadratic risk minimization problem discussed in this paper is

Minimize J(π) subject to (X,π) admissible.

The optimal admissible control π̂ is obtain when J(π̂) ≤ J(π) for all π ∈ A.

Inspired by the work of Chantal and Andrew [17], we can construct the associated dual prob-
lem. Let B denote

B := R×H2(0, T ;R)×H2(0, T ;RN ),

we say X ∈ B if and only if

X(t) = x0 +

∫ t

0

Ẋ(τ)dτ +

∫ t

0

Λ>X(τ)dW (τ), 0 ≤ t ≤ T,
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where some (x0, Ẋ,ΛX) ∈ B. We then convert the quadratic risk minimization problem into a
primal optimization problem over the whole set B. For each X ≡ (x0, Ẋ,ΛX) ∈ B, define

U(X) := {π ∈ A such that Ẋ(t) = rX(t) + π>(t)σθ and ΛX(t) = σ>π(t) for ∀t ∈ [0, T ], P − a.e.}.

The set U(X) contains all admissible controls π ∈ A, which associated wealth process X is admis-
sible. Note that U(X) 6= ∅ if and only if (Ẋ,ΛX) ∈ S(t,X(t)) for (P⊗Leb)-a.e. (w, t) ∈ Ω× [0, T ],
where S is a set valued function defined by

S(w, t,X(t)) := {(v, s) : v = rx+ ξ>θ and [σ>]−1ξ ∈ K}.

Define the penalty function L : Ω× [0, T ]× R× R× RN → [0,∞] by

L(w, t, x, v, ξ) = f(w, t, x, [σ>]−1ξ) + ΨS(w,t,x)(v, ξ)

and the penalty function l0 : R→ [0,∞] by

l0(x) = Ψ{x0}(x),

where ΨU (u) is a penalty function which equals 0 if u is in set U and +∞ otherwise.

For X ∈ B, we define the cost functional as

Φ(X) := l0(x0) + E[g(XT )] + E

[∫ T

0

L(t,X(t), Ẋ(t),ΛX(t)dt

]
,

where Φ(X) = ∞ if X(0) 6= x0 or U(X) = ∅. The quadratic risk minimization problem can be
written as

Minimize Φ(X) subject to X ∈ B.

By the convex duality method, we construct the dual problem over the set B. Define the following
convex conjugate functions

m0(y) := sup
x∈R
{xy − l0(x)},

mT (w, y) := sup
x∈R
{−xy − g(w, x)},

M(w, t, y, s, γ) := sup
x,v∈R,ξ∈RN

{xs+ vy + ξ>γ − L(w, t, x, v, ξ)},

for all (w, t, y, s, γ) ∈ Ω× [0, T ]× R× R× RN . For each Y ≡ (y, Ẏ ,ΛY ) ∈ B, we define

Ψ(Y ) := m0(y) + E[mT (Y (T ))] + E

[∫ T

0

M(t, Y (t), Ẏ (t),ΛY (t))dt

]
.

Then, the associated dual problem is given by

Minimize Ψ(Y ) subject to Y ∈ B.

The associated dual problem also can be reformulated as a stochastic control problem. We can
find that

m0 = x0y

mT (w, y) =
(y + c)2

2a

M(w, t, y, s, γ) = φ(t, s+ ry, σ[θy + γ]),

where φ is the conjugate function of f̃(w, t, x, π) = f(w, t, x, π) + ΨK(π), namely,

φ(w, t, α, β) := sup
x∈R,π∈K

{xα+ π>β − f(w, t, x, π)}.
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The dual control problem is therefore given by

Minimize Ψ̃(y, α, β) := m0(y) + E[mT (Y (T ))] + E

[∫ T

0

φ(t, α(t), β(t))dt

]
,

where Y satisfies{
dY (t) = [α(t)− rY (t)]dt+ [σ−1β(t)− θY (t)]>dW (t), 0 < t < T

Y (0) = y.
(2.1.2)

The dual control process for Y is (y, α, β) ∈ B, and Y (y,α,β) ∈ S2(0, T ;R). Note that the control
constraint is implicit for the dual problem, this is the reason why the convex duality method can
usually solve the stochastic linear quadratic control problem more convenient.
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Chapter 3

Quadratic Risk Minimization
without Control Constraints

In this chapter, we study the quadratic risk minimization problem without control constraints. We
assume that all coefficients are constant, K = RN , Q = 0 and S = 0.

3.1 HJB Method

The funtional J : A → R is defined by

J(π) := E

[∫ T

0

f(t,Xπ(t), π(t))dt+ g(Xπ(T ))

]
,

where f : Ω× [0, T ]× R× RN → R is given by

f(w, t, x, π) :=
1

2
π>R(t)π,

and g : Ω× R→ R is given by

g(w, x) :=
1

2
[ax2 + 2cx].

The quadratic risk minimization problem discussed in this paper is

Minimize J(π) subject to (X,π) admissible,

where X satisfies{
dXπ(t) = [rXπ(t) + π>(t)σθ]dt+ π>(t)σdW (t), 0 ≤ t ≤ T,
Xπ(0) = x0.

(3.1.1)

Define value function V (t, x) by

V (t, x) = inf
π
E

[∫ T

0

f(t,Xπ(t), π(t))dt+ g(Xπ(T ))
∣∣∣Xπ(0) = x0

]
.

By Dynamic Programming Principle, we can drive the HJB equation,{
∂V
∂t + infπ{LπV + f(t, x, π)} = 0,

V (T, x) = g(x),

where Lπ is the operator defined by

LπV = (rx+ π>σθ)Vx +
1

2
π>σσ>πVxx.
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Substituting f(t, x, π) and g(x) into the HJB equation above, we obtain that{
∂V
∂t + rxVx + infπ{π>σθVx + 1

2π
>σσ>πVxx + 1

2π
>Rπ} = 0,

V (T, x) = 1
2 [ax2 + 2cx].

To find the optimal π̂, we obtain the first-order condition is

(σθ)>Vx + π>σσ>Vxx + π>R = 0.

Since R is a symmetric matrix, we can obtain that (σσ>Vxx + R) = (σσ>Vxx + R)>. Assume
that (σσ>Vxx + R) is invertible, so we know that ((σσ>Vxx + R)−1)> = ((σσ>Vxx + R)>)−1 =
(σσ>Vxx +R)−1. Thus, the optimal control π̂ is equal to −(σσ>Vxx +R)−1(σθ)Vx.

Then the value function V satisfies:{
∂V
∂t + rxVx − 1

2 (σθ)>(σσ>Vxx +R)−1(σθ)V 2
x = 0,

V (T, x) = 1
2 [ax2 + 2cx].

(3.1.2)

To solve this nonlinear HJB PDE, we assume that V (t, x) = v0(t) + v1(t)x+ v2(t)x2. Substituting
V (t, x) into the HJB equation (3.1.2), we obtain that

∂tv0(t)− 1
2 (σθ)>(2σσ>v2(t) +R)−1(σθ)v2

1(t) = 0,

∂tv1(t) + rv1(t)− 2(σθ)>(2σσ>v2(t) +R)−1(σθ)v1(t)v2(t) = 0,

∂tv2(t) + 2rv2(t)− 2(σθ)>(2σσ>v2(t) +R)−1(σθ)v2
2(t) = 0,

with terminal conditions v0(T ) = 0, v1(T ) = c and v2(T ) = 1
2a.

We can find that the ODE of v2(t) satisfies a Riccati equation, and cannot get closed-form solution.
It has to be solved numerically by using the Runge-Kutta method. First of all, we reformulate the
ODE as an initial condition problem. Let τ = T − t, then the ODE becomes{

−∂τv2(τ) + 2rv2(τ)− 2(σθ)>(2σσ>v2(τ) +R)−1(σθ)v2
2(τ) = 0,

v2(0) = 1
2a.

Following the approach introduced in File and Bullo [7], we divide the interval [0, T ] into N equal
subintervals, where τi = 0 + is, i = 0, ..., n. Thus, the general numerical solution of the ODE is

v2(τi+1) = v2(τi) +
1

6
(k1 + 2k2 + 2k3 + k4),

where 

k1 = sf(τi, v2(ti)),

k2 = sf(τi + s
2 , v2(τi) + k1

2 ),

k3 = sf(τi + s
2 , v2(τi) + k2

2 ),

k4 = sf(τi + s, v2(τi) + k3),

f(τ, v2) = (2r − 2(σθ)>(2σσ>v2(τ) +R)−1(σθ)v2(τ))v2(τ).

Then, we use the solution above to solve the ODEs of v1(t) and v0(t), recall that
∂tv1(t) + rv1(t)− 2(σθ)>(2σσ>v2(t) +R)−1(σθ)v1(t)v2(t) = 0,

v1(T ) = c,

∂tv0(t)− 1
2 (σθ)>(2σσ>v2(t) +R)−1(σθ)v2

1(t) = 0, v0(T ) = 0,

and we obtain that {
v1(0) = ce

∫ T
0
r−2(σθ)>(2σσ>v2(t)+R)−1(σθ)v2(t)dt,

v0(0) = − 1
2

∫ T
0

(σθ)>(2σσ>v2(t) +R)−1(σθ)v2
1(t)dt.
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Recall that

π̂ = −(σσ>Vxx +R)−1(σθ)Vx

and {
Vxx = 2v2(t),

Vx = v1(t) + 2v2(t)x,

so

π̂(t) = −(2σσ>v2(t) +R)−1(σθ)(v1(t) + 2v2(t)X π̂(t)).

We insert the optimal π̂ into the SDE of total wealth Xπ (3.1.1),

dX π̂(t) = [rX π̂(t)− (σθ)>(2σσ>v2(t) +R)−1(σθ)(v1(t) + 2v2(t)X π̂(t))]dt

− (σθ)>(2σσ>v2(t) +R)−1σ(v1(t) + 2v2(t)X π̂(t))dW (t)

= [rX π̂(t)− (σθ)>(σσ> + (2v2(t))−1R)−1(σθ)Z(t)]dt

− (σθ)>(σσ> + (2v2(t))−1R)−1σZ(t)dW (t),

where Z(t) = X π̂(t) + h(t), 0 < t < T . Define h(t) = v1(t)
2v2(t) with terminal condition h(T ) = c

a .

Then, we can find that

ht(t)− rh(t) = 0

and

h(t) =
v1(t)

2v2(t)
=
c

a
e−r(T−t).

Also, the process Z(t) = X π̂(t) + h(t) with initial condition Z(0) = x0 + c
ae
−rT . By Ito’s lemma,

we obtain that

dZ(t) = [r −A(t)θ]Z(t)dt−A(t)Z(t)dW (t),

where A(t) = (σθ)>(σσ> + (2v2(t))−1R)−1σ, which is the expression for a geometric Brownian
motion, with solution

Z(t) = Z(0)e
∫ t
0
r−A(u)θ− 1

2A(u)A>(u)du−
∫ t
0
A(u)dW (u).

Therefore, we can find the optimal wealth process X π̂(t),

X π̂(t) = (x0 +
c

a
e−rT )e

∫ t
0
r−A(u)θ− 1

2A(u)A>(u)du−
∫ t
0
A(u)dW (u) − c

a
e−r(T−t). (3.1.3)

3.2 Dual HJB Method

The dual control problem is given by

Minimize Ψ̃(y, α, β) := m0(y) + E[mT (Y (T ))] + E

[∫ T

0

φ(t, α(t), β(t))dt

]
,

where Y satisfies{
dY (t) = [α(t)− rY (t)]dt+ [σ−1β(t)− θY (t)]>dW (t), 0 < t < T,

Y (0) = y.
(3.2.1)

Define dual value function Ṽ (t, y) by

Ṽ (t, y) = inf
α,β

E

[
mT (Y (T )) +

∫ T

0

φ(t, α(t), β(t))dt
∣∣∣Y (0) = y

]
,
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and we can find the relationship between the primal value function and dual value function is

Ṽ (t, y) = sup
x∈R
{−V (t, x)− xy},

V (t, x) = inf
y∈R
{−Ṽ (t, y)− xy}.

The minimum point is obtained by solving

0 = −x− ∂

∂y
Ṽ (t, y). (3.2.2)

There exists an unique y solving the equation above, write it y = y(t, x). Therefore, we have

V (t, x) = −xy(t, x)− Ṽ (t, y(t, x))

and then, we obtain that

Vt = −x∂y
∂t
− Ṽt − Ṽy

∂y

∂t

= (−x− Ṽy)
∂y

∂t
− Ṽt

= −Ṽt,

Vx = −y − x∂y
∂x
− Ṽy

∂y

∂x

= (−x− Ṽy)
∂y

∂x
− y

= −y,

and

Vxx = −∂y
∂x
.

From the first-order condition (3.2.2), we know that

∂

∂x
(−x− ∂

∂y
Ṽ (t, y)) = −1− Ṽyy

∂y

∂x
,

⇒

∂y

∂x
= − 1

Ṽyy
.

By Dynamic Programming Principle, we can drive the dual HJB equation,{
∂Ṽ
∂t + infα,β{Lα,βṼ + φ(t, α, β)} = 0,

Ṽ (T, y) = mT (Y (T )),

where Lα,β is the operator defined by

Lα,βṼ = (α− ry)Ṽy +
1

2
[σ−1β − θy]>[σ−1β − θy]Ṽyy.

Substituting φ(t, α, β) and mT (Y (T )) into the HJB equation above, we obtain that
∂Ṽ
∂t + infα,β{(α− ry)Ṽy+

1
2 [σ−1β − θy]>[σ−1β − θy]Ṽyy + supx,π{xα+ π>β − 1

2π
>Rπ}} = 0,

Ṽ (T, y) = (y+c)2

2a .
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Then, we know that α must be 0, otherwise, supx{xα} = ∞. The optimal π̂ can be find by the
first order condition,

β> − π>R = 0.

Therefore π̂ = R−1β, and the HJB equation becomes
∂Ṽ
∂t − ryṼy + 1

2θ
>θy2Ṽyy

+ infβ{ 1
2 [(σ−1β)>(σ−1β)− (σ−1β)>θy − θ>(σ−1β)y]Ṽyy + 1

2β
>R−1β} = 0,

Ṽ (T, y) = (y+c)2

2a .

To find the optimal β̂, we obtain the first-order condition is

β>σ−1>σ−1Ṽyy − θ>σ−1yṼyy + β>R−1 = 0.

Assume that (σ−1>σ−1Ṽyy + R−1) is invertible, so we know that ((σ−1>σ−1Ṽyy + R−1)−1)> =

((σ−1>σ−1Ṽyy +R−1)>)−1 = (σ−1>σ−1Ṽyy +R−1)−1. Since R is a symmetric matrix and invert-

ible, we can obtain that (σ−1>σ−1Ṽyy +R−1) = (σ−1>σ−1Ṽyy +R−1)>. Thus, optimal control β̂

is equal to (σ−1>σ−1Ṽyy +R−1)−1(σ−1>θ)yṼyy.

Dual value function Ṽ satisfies:{
∂Ṽ
∂t − ryṼy + 1

2θ
>θy2Ṽyy − 1

2 (σ−1>θ)>(σ−1>σ−1Ṽyy +R−1)−1(σ−1>θ)y2Ṽ 2
yy = 0,

Ṽ (T, y) = (y+c)2

2a .
(3.2.3)

Substituting y, Ṽy, Ṽyy, Ṽt into the equation above, we can find that

−∂V
∂t
− r(−Vx)(−x) +

1

2
θ>θ(−Vx)2V −1

xx

− 1

2
(σ−1>θ)>(σ−1>σ−1V −1

xx +R−1)−1(σ−1>θ)(−Vx)2V −2
xx = 0

⇒
∂V

∂t
+ rxVx −

1

2
(σθ)>(σσ>Vxx +R)−1(σθ)V 2

x = 0 (primal HJB equation)

and

V (T, x) = inf
y∈R
{−xy − Ṽ (T, y)}

= inf
y∈R
{−xy − (y + c)2

2a
}

= −x(−ax− c)− (−ax− c+ c)2

2a

=
1

2
ax2 + cx.

These prove the relationship between the primal and dual problems. Next, to solve the nonlinear
dual HJB PDE, we assume that Ṽ (t, y) = ṽ0(t) + ṽ1(t)y + ṽ2(t)y2. Substituting Ṽ (t, y) into the
dual HJB equation (3.2.3), we obtain that

∂tṽ0(t) = 0,

∂tṽ1(t)− rṽ1(t) = 0,

∂tṽ2(t)− 2rṽ2(t) + (σθ)>(2Rṽ2(t) + σσ>)−1(σθ)ṽ2(t) = 0,

with terminal conditions ṽ0(T ) = c2

2a , ṽ1(T ) = c
a and ṽ2(T ) = 1

2a .

Straightforwardly, the corresponding solutions of first two ODES are{
ṽ0(0) = c2

2a ,

ṽ1(0) = c
ae
−rT .
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We can find that the ODE of ṽ2(t) satisfies a Riccati equation, and cannot get closed-form solution.
It has to be solved numerically by using the Runge-Kutta method. Similar with Section 3.1, we
reformulate the ODE as an initial condition problem. Let τ = T − t, then the ODE becomes{

−∂τ ṽ2(τ)− 2rṽ2(τ) + (σθ)>(2Rṽ2(τ) + σσ>)−1(σθ)ṽ2(τ) = 0,

ṽ2(0) = 1
2a ,

and we divide the interval [0, T ] into N equal subintervals, where τi = 0 + is, i = 0, ..., n. Thus,
the general numerical solution of the ODE is

ṽ2(τi+1) = ṽ2(τi) +
1

6
(k̃1 + 2k̃2 + 2k̃3 + k̃4),

where 

k̃1 = sf̃(τi, ṽ2(τi)),

k̃2 = sf̃(τi + s
2 , ṽ2(τi) + k̃1

2 ),

k̃3 = sf̃(τi + s
2 , ṽ2(τi) + k̃2

2 ),

k̃4 = sf̃(τi + s, ṽ2(τi) + k̃3),

f̃(τ, ṽ2) = ((σθ)>(2Rṽ2(τ) + σσ>)−1(σθ)− 2r)ṽ2(τ).

Recall that

β̂ = (σ−1>σ−1Ṽyy +R−1)−1(σ−1>θ)yṼyy,

α̂ = 0,

and

Ṽyy = 2ṽ2(t),

so

β̂(t) = 2(2σ−1>σ−1ṽ2(t) +R−1)−1(σ−1>θ)Y (y,α̂,β̂)(t)ṽ2(t).

We insert the optimal β̂ and α̂ into the SDE of Y (y,α,β) (3.2.1),

dY (y,α̂,β̂)(t) = −rY (y,α̂,β̂)(t)dt− Ã>(t)Y (y,α̂,β̂)(t)dW (t),

where Ã(t) = σ>(2Rṽ2(t)+σσ>)−1σθ with initial condition Y (y,α̂,β̂)(0) = y, which is the expression
for a geometric Brownian motion, with solution

Y (y,α̂,β̂)(t) = ye−
∫ t
0

(r+ 1
2 Ã
>(u)Ã(u))du−

∫ t
0
Ã>(u)dW (u).

Recall that

X π̂(t) = −Ṽy(t, Y (y,α̂,β̂)(t)),

Vxx = 2v2(t) =
1

Ṽyy
=

1

2ṽ2(t)
,

y = −Vx = −(v1(t) + 2xv2(t)),

h(t) =
v1(t)

2v2(t)
=
c

a
e−r(T−t),

A(t) = (σθ)>(σσ> + (2v2(t))−1R)−1σ,

ṽ1(0) =
c

a
e−rT ,

and

Ṽy = ṽ1(t) + 2yṽ2(t),
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so

X π̂(t) = −(
c

a
e−r(T−t) + 2ṽ2(t)ye−

∫ t
0

(r+ 1
2 Ã
>(u)Ã(u))du−

∫ t
0
Ã>(u)dW (u))

= − c
a
e−r(T−t) + (x0 +

v1(0)

2v2(0)
)
v2(0)

v2(t)
e−

∫ t
0

(r+ 1
2 Ã
>(u)Ã(u))du−

∫ t
0
Ã>(u)dW (u).

From the ODE of v2(t),

∂tv2(t) + 2rv2(t)− 2(σθ)>(2σσ>v2(t) +R)−1(σθ)v2
2(t) = 0,

we can know that
v2(0)

v2(t)
= e

∫ t
0

2r−A(u)θdu,

and we also find that A(t) = Ã>(t). Thus,

X π̂(t) = (x0 +
c

a
e−rT )e

∫ t
0
r−A(u)θ− 1

2A(u)A>(u)du−
∫ t
0
A(u)dW (u) − c

a
e−r(T−t). (3.2.4)

Finally, we obtain the exact same solution with primal HJB approach.

3.3 FBSDE Method

Given any admissible control π ∈ A and solution Xπ to the SDE (3.1.1), the associated adjoint
equation in unknown processes p1 ∈ S2(0, T ;R) and q1 ∈ H2(0, t;RN ) is the following linear BSDE{

dp1(t) = −rp1(t)dt+ q>1 (t)dW (t),

p1(T ) = −aXπ(T )− c.

From Pham [22], we know that there exists a unique solution (p1, q1) to the BSDE above. Also,
from Li and Zheng [18], we have the following theorem.

Theorem 3.3.1 (Primal problem and associated FBSDE). let π̂ ∈ A. Then π̂ is optimal for the
primal problem if and only if the solution (X π̂, p̂1, q̂1) of FBSDE

dX π̂(t) = [r(t)X π̂(t) + π̂>(t)σ(t)θ(t)]dt+ π̂>(t)σ(t)dW (t)

X π̂(0) = x0

dp̂1(t) = [−r(t)p̂1(t) +Q(t)X π̂(t) + S>(t)π̂(t)]dt+ q̂>1 (t)dW (t)

p̂1(T ) = −aX π̂(T )− c

satisfies the condition

[π̂> − π>]
[
p̂1(t)σ(t)θ(t) + σ(t)q̂1(t) + S(t)X π̂(t) +R(t)π̂(t)

]
≥ 0

for (P⊗ Leb)-a.e. (w, t) ∈ Ω× [0, T ] and π ∈ K.

For the assumptions in this chapter, the FBSDE then becomes
dX π̂(t) = [rX π̂(t) + π̂>(t)σθ]dt+ π̂>(t)σdW (t),

X π̂(0) = x0,

dp̂1(t) = −rp̂1(t)dt+ q̂>1 (t)dW (t),

p̂1(T ) = −aX π̂(T )− c,

(3.3.1)

and the condition becomes
p̂1(t)σθ + σq̂1(t) +Rπ̂(t) = 0.

Therefore, we can find the optimal control π̂ is

π̂(t) = −R−1(p̂1(t)σθ + σq̂1(t)).
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Substituting π̂(t) into the FBSDE (3.3.1), we can get a fully-coupled linear FBSDE,
dX π̂(t) = [rX π̂(t)− (p̂1(t)σθ + σq̂1(t))>R−1σθ]dt− (p̂1(t)σθ + σq̂1(t))>R−1σdW (t),

X π̂(0) = x0,

dp̂1(t) = −rp̂1(t)dt+ q̂>1 (t)dW (t),

p̂1(T ) = −aX π̂(T )− c.

To solve this fully-coupled linear FBSDE, we assume p̂1(0) = p0 and q̂1(t) = q̂1 are piecewise
constant and given, then we solve the following system

dX π̂(t) = [rX π̂(t)− (p̂1(t)σθ + σq̂1)>R−1σθ]dt− (p̂1(t)σθ + σq̂1)>R−1σdW (t),

X π̂(0) = x0,

dp̂1(t) = −rp̂1(t)dt+ q̂>1 dW (t),

p̂1(0) = p0.

(3.3.2)

Then, the equations above become linear SDEs. Also, we can find that the terminal condition

p̂1(T ) = −aX π̂(T )− c

is equivalent to
E[(p̂1(T ) + aX π̂(T ) + c)2] = 0.

Now consider the following optimal control problem:

min
p0,q̂1

J(p0, q̂1) := E[(p̂1(T ) + aX π̂(T ) + c)2].

To solve this optimal control problem numerically, we divide interval [0, T ] by m intervals with
step size h = T/m and grid points ti = hi, i = 0, 1, ...,m. Assume on the subinterval [ti, ti+1),
control q̂1 is taken constant, say that q̂1i, for i = 0, 1, ...,m− 1. Use the Euler method to discretize
SDEs (3.3.2) as 

X π̂(ti+1) = X π̂(ti) + [rX π̂(ti)− (p̂1(ti)σθ + σq̂1i)
>R−1σθ]h

−(p̂1(ti)σθ + σq̂1i)
>R−1σ

√
hξi,

X π̂(0) = x0,

p̂1(ti+1) = p̂1(ti)− rp̂1(ti)h+ q̂>1i
√
hξi,

p̂1(0) = p0,

(3.3.3)

for i = 0, 1, ...,m − 1, where ξi, i = 0, 1, ...,m − 1, are independent standard normal variables in
RN . We now solve the optimal control problem as follows:

min
p0,q̂10,...,q̂1m−1

J(p0, q̂10, ..., q̂1m−1) := E[(p̂1(tm) + aX π̂(tm) + c)2]

subject to the discretized SDE above.

After we obtain the optimal values of p0, q̂10, ..., q̂1m−1, we can find the optimal control π̂(t) nu-
merically,

π̂(ti) = −R−1(p̂1(ti)σθ + σq̂1i), for i = 0, 1, ...,m− 1,

where p̂1(ti) follows the discretized SDE (3.3.3). The corresponding optimal wealth process X π̂(t)
can be obtained by the discretized SDE (3.3.3).

3.4 Dual FBSDE Method

Given any admissible control (y, α, β) ∈ B and solution Y (y,α,β) to the SDE (3.2.1), the associated
adjoint equation in unknown processes p2 ∈ S2(0, T ;R) and q2 ∈ H2(0, t;RN ) is the following
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linear BSDE {
dp2(t) = [rp2(t) + q>2 (t)θ]dt+ q>2 (t)dW (t)

p2(T ) = −Y
(y,α,β)(T )+c

a

From Pham [22], we know that there exists a unique solution (p2, q2) to the BSDE above. Also,
from Li and Zheng [18], we have the following assumption and theorem.

Assumption 3.4.1. let (α̂, β̂) be given and α, β be any admissible control. Then there exists a

Z ∈ P(0, T ;R) satisfying E[
∫ T

0
|Z(t)|dt] <∞ and

Z(t) ≥ φ(t, α̂(t) + εα(t), β̂(t) + εβ(t))− φ(t, α̂(t), β̂(t))

ε

for (P⊗ Leb)-a.e. (w, t) ∈ Ω× [0, T ] and ε ∈ (0, 1].

Theorem 3.4.2 (Dual problem and associated FBSDE). let (ŷ, α̂, β̂) ∈ B satisfy assumption

above. Then (ŷ, α̂, β̂) is optimal for the dual problem if and only if the solution (Y (ŷ,α̂,β̂), p̂2, q̂2) of
FBSDE

dŶ (ŷ,α̂,β̂)(t) =
[
α̂(t)− r(t)Y (ŷ,α̂,β̂)(t)

]
dt+

[
σ−1(t)β̂(t)− θ(t)Y (ŷ,α̂,β̂)(t)

]>
dW (t)

Y (ŷ,α̂,β̂)(0) = ŷ

dp̂2(t) = [r(t)p̂2(t) + q̂>2 (t)θ(t)]dt+ q̂>2 (t)dW (t)

p̂2(T ) = −Y
(ŷ,α̂,β̂)(T )+c

a

satisfies the conditions 
p̂2(0) = x0

[σ>]−1(t)q̂2(t) ∈ K(
p̂2(t), [σ>]−1(t)q̂2(t)

)
∈ ∂φ(α̂(t), β̂(t))

for (P⊗ Leb)-a.e. (w, t) ∈ Ω× [0, T ].

For the assumptions in this chapter, we can know that α(t) = 0 and φ(t, β) = 1
2β
>R−1β for the

dual problem. The FBSDE then becomes
dŶ (ŷ,α̂,β̂)(t) = −rY (ŷ,α̂,β̂)(t)dt+

[
σ−1β̂(t)− θY (ŷ,α̂,β̂)(t)

]>
dW (t),

Y (ŷ,α̂,β̂)(0) = ŷ,

dp̂2(t) = [rp̂2(t) + q̂>2 (t)θ]dt+ q̂>2 (t)dW (t),

p̂2(T ) = −Y
(ŷ,α̂,β̂)(T )+c

a .

(3.4.1)

We can solve the problem by the stochastic maximum principle. In this case, the Hamiltonian
takes the form

H(y, β, p2, q2) = −ryp2(t)− [σ−1β(t)− θy]>q2(t) +
1

2
β>(t)R−1β(t).

Let β̂ ∈ A be a candidate for the optimal control, and Y (ŷ,α̂,β̂) and (p̂2, q̂2) be the corresponding
processes. Then,

H(y, β, p̂2, q̂2) = −ryp̂2(t) + y>θ>q̂2(t)− β>(t)(σ−1)>q̂2(t) +
1

2
β>(t)R−1β(t).

We see that β̂ is optimal if and only if

−q̂>2 (t)σ−1 + β̂>(t)R−1 = 0, 0 ≤ t ≤ T, a.s.,

⇒
β̂(t) = R(σ>)−1q̂2(t).
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Substituting β̂(t) into the FBSDE (3.4.1), we can get a fully-coupled linear FBSDE,
dŶ (ŷ,α̂,β̂)(t) = −rY (ŷ,α̂,β̂)(t)dt+

[
σ−1R(σ>)−1q̂2(t)− θY (ŷ,α̂,β̂)(t)

]>
dW (t),

Y (ŷ,α̂,β̂)(0) = ŷ,

dp̂2(t) = [rp̂2(t) + q̂>2 (t)θ]dt+ q̂>2 (t)dW (t),

p̂2(T ) = −Y
(ŷ,α̂,β̂)(T )+c

a .

Recall that p̂2(0) = x0, to solve this fully-coupled linear FBSDE, we assume ŷ = y0 and q̂2(t) = q̂2

are piecewise constant and given, then we solve the following system
dŶ (ŷ,α̂,β̂)(t) = −rY (ŷ,α̂,β̂)(t)dt+

[
σ−1R(σ>)−1q̂2 − θY (ŷ,α̂,β̂)(t)

]>
dW (t),

Y (ŷ,α̂,β̂)(0) = y0,

dp̂2(t) = [rp̂2(t) + q̂>2 θ]dt+ q̂>2 dW (t),

p̂2(0) = x0.

(3.4.2)

Then, the equations above become linear SDEs. Also, the terminal condition

p̂2(T ) = −Y
(ŷ,α̂,β̂)(T ) + c

a

is equivalent to

E[(p̂2(T ) +
Y (ŷ,α̂,β̂)(T ) + c

a
)2] = 0.

Now consider the following optimal control problem:

min
y0,q̂2

J(y0, q̂2) := E[(p̂2(T ) +
Y (ŷ,α̂,β̂)(T ) + c

a
)2].

To solve this optimal control problem numerically, we divide interval [0, T ] by m intervals with
step size h = T/m and grid points ti = hi, i = 0, 1, ...,m. Assume on the subinterval [ti, ti+1),
control q̂2 is taken constant, say that q̂2i, for i = 0, 1, ...,m− 1. Use the Euler method to discretize
SDEs (3.4.2) as 

Ŷ (ŷ,α̂,β̂)(ti+1) = Ŷ (ŷ,α̂,β̂)(ti)− rY (ŷ,α̂,β̂)(ti)h

+
[
σ−1R(σ>)−1q̂2i − θY (ŷ,α̂,β̂)(ti)

]>√
hξi,

Y (ŷ,α̂,β̂)(0) = y0,

p̂2(ti+1) = p̂2(ti) + [rp̂2(ti) + q̂>2iθ]h+ q̂>2i
√
hξi,

p̂2(0) = x0,

(3.4.3)

for i = 0, 1, ...,m − 1, where ξi, i = 0, 1, ...,m − 1, are independent standard normal variables in
RN . We now solve the optimal control problem as follows:

min
y0,q̂20,...,q̂2m−1

J(y0, q̂20, ..., q̂2m−1) := E[(p̂2(tm) +
Y (ŷ,α̂,β̂)(tm) + c

a
)2]

subject to the discretized SDE above.

After we obtain the optimal values of y0, q̂20, ..., q̂2m−1, we can find the optimal controls ŷ and
β̂(t) respectively,

ŷ = y0,

β̂(ti) = R(σ>)−1q̂2i, for i = 0, 1, ...,m− 1.

From Li and Zheng [18], we have another theorem to help us find the optimal control π̂(t) and the
optimal wealth process X π̂(t).
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Theorem 3.4.3 (From dual problem to primal problem). Suppose that (ŷ, α̂, β̂) is optimal for the

dual problem. Let (Y (ŷ,α̂,β̂), p̂2, q̂2) be the associated process that satisfies the FBSDE and condition
above. Define

π̂(t) := (σ>)−1q̂2, t ∈ [0, T ].

Then π̂ is the optimal control for the primal problem with initial wealth x0. The optimal wealth
process and associated adjoint processes are given by

X π̂(t) = p̂2(t)

p̂1(t) = Y (ŷ,α̂,β̂)(t)

q̂1(t) = σ−1(t)β̂(t)− θ(t)Y (ŷ,α̂,β̂)(t) for ∀t ∈ [0, T ].

Therefore, we can find the optimal control π̂(t) and the optimal wealth process X π̂(t) numerically,

π̂(ti) = (σ>)−1q̂2i, for i = 0, 1, ...,m− 1,

X π̂(ti) = p̂2(ti), for i = 0, 1, ...,m,

where p̂2(ti) follows the discretized SDE (3.4.3).

3.5 Comparison

In the sections above, we discuss solving the optimal control π̂(t) and the optimal wealth process
X π̂(t) by primal HJB method, dual HJB method, primal FBSDE method and dual FBSDE method
respectively. This section will prove that all methods have same results.

To compare their results, we can firstly solve the Riccati equations of v2(t) and ṽ2(t) numeri-
cally at the same grid points as the FBSDE method and the dual FBSDE method. Then, we solve
numerical optimization problems to find p0, q̂10, ..., q̂1m−1 in primal FBSDE and y0, q̂20, ..., q̂2m−1

in dual FBSDE respectively. To solve these numerical optimization problems, we need to gener-
ate sample paths M times using the same parameters, then compute the expected value of the
objective cost function, and update to get new parameters. The parameters are optimal solutions
when the expected value of the objective cost function is close to 0. After these calculations, we
can determine the optimal wealth process X π̂(t) and optimal control π̂(t) under each approach by
generating a set of independent standard normal variables on each subinterval and using parame-
ters we obtained from previous calculations.

To compare the results intuitively, we assume that r = 0.01, b = 0.04, σ = 0.5, R = 50, a =
2, c = 10, x0 = 100, T = 1 and there is only one stock. Then, we can plot sample paths of the
optimal wealth process X π̂(t) and optimal control π̂(t) under each method on a graph to see if
they are close to each other, and also compute the mean squared errors and variances of differ-
ences between results of each method. In all comparisons, we let the the primal HJB approach
be benchmark approach, and compare the result of chosen approach with the result of the primal
HJB approach. Figure 3.1, 3.2 and 3.3 illustrate the optimal wealth process X π̂(t) and control π̂(t)
under different approaches with different step sizes. Table 3.1, 3.2 and 3.3 record the statistical
information of differences between results of each methods with different step sizes.

Firstly, we can straightforwardly find that the differences between results of each approach are
very close to 0 from plots and statistical information. For example, the mean squared errors of
difference between optimal wealth processes X π̂(t) from primal HJB and FBSDE with step size
h = 0.025 is 1.070 × 10−4, and there is only few gap between optimal wealth processes X π̂(t)
in Figure 3.3(a). In Figure 3.1(b) 3.2(b) and 3.3(b), we cannot see the optimal controls π̂(t)
under primal HJB method. The reason is that the results of primal and dual HJB methods are
almost identical, so the path under dual HJB method overlaps on the path under primal HJB
method. For primal and dual FBSDE methods, Figure 3.2(b) and 3.3(b), the optimal control π̂(t)
fluctuates more than the optimal control π̂(t) under primal and dual HJB methods, since we use
the numerical optimization to solve the whole problem in primal and dual FBSDE methods, but
only use the numerical method to solve part of the problem in primal and dual HJB methods.
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Furthermore, we can easily find that the differences between results of each method are gradually
smaller when the step size is decreasing and the number of grid points is increasing, for example,
the mean squared errors of difference between optimal wealth processes X π̂(t) from primal HJB
approach and FBSDE approach reduces 1.6223 × 10−4 when the step size h = 0.05 decreases to
h = 0.0125.

To compare results more carefully, we check results with different values of coefficients r = 0.03, b =
0.1, σ = 0.7, R = 10, a = 1, c = 15. Figure 3.4, 3.5 and 3.6 show the optimal wealth process X π̂(t)
and control π̂(t) under different approaches with new coefficients and different step sizes. Table
3.4, 3.5 and 3.6 record the statistical information of differences between results of each method
with different step sizes and new coefficients. After we change the values of coefficients, we can
find that the mean squared errors and variances of differences between results of all methods have
obvious increases, for example, the mean squared errors of optimal wealth processes X π̂(t) from
primal HJB and FBSDE increase 3.20763× 103 with the step size h = 0.0125. It also can be seen
from Figure 3.4, 3.5 and 3.6. For the optimal wealth processes X π̂(t) under all approaches, they
are not always very close to each other anymore, but they have the same upward trend in total.
From the statistical information, Table 3.4, 3.5 and 3.6, the mean squared errors and variances
are still quite small, lower than 10−2, and decreasing when the step size becomes smaller. In sum,
four approaches will give us the same results of the optimal control π̂(t) and the optimal wealth
process X π̂(t).

(a) Optimal wealth process Xπ̂(t) (b) Optimal control π̂(t)

Figure 3.1: Comparison without control constraints at step size h = 0.05

(a) Optimal wealth process Xπ̂(t) (b) Optimal control π̂(t)

Figure 3.2: Comparison without control constraints at step size h = 0.025
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(a) Optimal wealth process Xπ̂(t) (b) Optimal control π̂(t)

Figure 3.3: Comparison without control constraints at step size h = 0.0125

(a) Optimal wealth process Xπ̂(t) (b) Optimal control π̂(t)

Figure 3.4: Comparison without control constraints with new coefficients (h = 0.05)

(a) Optimal wealth process Xπ̂(t) (b) Optimal control π̂(t)

Figure 3.5: Comparison without control constraints with new coefficients (h = 0.025)

(a) Optimal wealth process Xπ̂(t) (b) Optimal control π̂(t)

Figure 3.6: Comparison without control constraints with new coefficients (h = 0.0125)
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Optimal wealth process X π̂(t) Optimal control π̂(t)
Approach MSE Variance MSE Variance

HJB 0 0 0 0
Dual HJB 1.767× 10−5 1.834× 10−6 7.545× 10−16 1.311× 10−16

FBSDE 2.176× 10−4 2.154× 10−4 1.583× 10−7 1.362× 10−7

Dual FBSDE 2.181× 10−4 2.163× 10−4 4.095× 10−9 4.055× 10−9

Table 3.1: MSE and variances of differences without control constraints at step size h = 0.05

Optimal wealth process X π̂(t) Optimal control π̂(t)
Approach MSE Variance MSE Variance

HJB 0 0 0 0
Dual HJB 1.010× 10−5 1.319× 10−6 7.092× 10−16 1.598× 10−16

FBSDE 1.070× 10−4 1.505× 10−4 5.765× 10−8 5.460× 10−7

Dual FBSDE 1.060× 10−4 1.505× 10−4 9.647× 10−9 5.134× 10−9

Table 3.2: MSE and variances of differences without control constraints at step size h = 0.025

Optimal wealth process X π̂(t) Optimal control π̂(t)
Approach MSE Variance MSE Variance

HJB 0 0 0 0
Dual HJB 7.135× 10−6 1.216× 10−6 7.420× 10−16 1.666× 10−16

FBSDE 5.537× 10−5 4.361× 10−5 2.880× 10−8 2.708× 10−8

Dual FBSDE 5.567× 10−5 4.368× 10−5 2.022× 10−8 1.355× 10−8

Table 3.3: MSE and variances of differences without control constraints at step size h = 0.0125

Optimal wealth process X π̂(t) Optimal control π̂(t)
Approach MSE Variance MSE Variance

HJB 0 0 0 0
Dual HJB 4.717× 10−4 2.364× 10−5 1.213× 10−12 2.305× 10−13

FBSDE 8.632× 10−3 6.497× 10−3 1.942× 10−4 1.809× 10−4

Dual FBSDE 9.009× 10−3 6.421× 10−4 3.214× 10−5 9.850× 10−6

Table 3.4: MSE and variances of differences with no constraints and new coefficients (h = 0.05)

Optimal wealth process X π̂(t) Optimal control π̂(t)
Approach MSE Variance MSE Variance

HJB 0 0 0 0
Dual HJB 1.205× 10−4 3.025× 10−6 3.996× 10−13 4.580× 10−14

FBSDE 7.831× 10−3 7.752× 10−3 5.459× 10−5 4.813× 10−5

Dual FBSDE 8.007× 10−3 7.951× 10−3 9.142× 10−6 7.077× 10−6

Table 3.5: MSE and variances of differences with no constraints and new coefficients (h = 0.025)

Optimal wealth process X π̂(t) Optimal control π̂(t)
Approach MSE Variance MSE Variance

HJB 0 0 0 0
Dual HJB 3.051× 10−5 3.842× 10−7 3.455× 10−13 4.449× 10−14

FBSDE 3.263× 10−3 3.231× 10−3 4.012× 10−5 3.895× 10−5

Dual FBSDE 3.280× 10−3 3.249× 10−3 3.693× 10−5 3.289× 10−5

Table 3.6: MSE and variances of differences with no constraints and new coefficients (h = 0.0125)
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Chapter 4

Quadratic Risk Minimization with
Cone-Constraints

In this chapter, we study the quadratic risk minimization problem with cone-constraints (no short
selling). We assume that all coefficients are deterministic, K = R2

+.

4.1 HJB Method

The funtional J : A → R is defined by

J(π) := E

[∫ T

0

f(t,Xπ(t), π(t))dt+ g(Xπ(T ))

]
,

where f : Ω× [0, T ]× R× RN → R is given by

f(w, t, x, π) :=
1

2
[Qx2 + 2S>xπ + π>Rπ],

and g : Ω× R→ R is given by

g(w, x) :=
1

2
[ax2 + 2cx].

The quadratic risk minimization problem discussed in this paper is

Minimize J(π) subject to (X,π) admissible,

where X satisfies{
dXπ(t) = [rXπ(t) + π>(t)σθ]dt+ π>(t)σdW (t), 0 ≤ t ≤ T,
Xπ(0) = x0.

(4.1.1)

Define value function V (t, x) by

V (t, x) = inf
π
E

[∫ T

0

f(t,Xπ(t), π(t))dt+ g(Xπ(T ))
∣∣∣Xπ(0) = x0

]
.

By Dynamic Programming Principle, we can drive the HJB equation,{
∂V
∂t + infπ{LπV + f(t, x, π)} = 0,

V (T, x) = g(x),

where Lπ is the operator defined by

LπV = (rx+ π>σθ)Vx +
1

2
π>σσ>πVxx.
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Substituting f(t, x, π) and g(x) into the HJB equation above, we obtain that{
∂V
∂t + rxVx + 1

2Qx
2 + infπ{π>σθVx + 1

2π
>σσ>πVxx + S>xπ + 1

2π
>Rπ} = 0,

V (T, x) = 1
2 [ax2 + 2cx].

To find the optimal π̂, we obtain the first-order condition is

(σθ)>Vx + π>σσ>Vxx + S>x+ π>R = 0.

Since R is a symmetric matrix, we can obtain that (σσ>Vxx +R) = (σσ>Vxx +R)>. Assume that
(σσ>Vxx+R) is invertible, so ((σσ>Vxx+R)−1)> = ((σσ>Vxx+R)>)−1 = (σσ>Vxx+R)−1. Due to
K = R2

+, the optimal control cannot take negative values, so π̂ = (−(σσ>Vxx+R)−1(σθVx+Sx))+.

Then, the value function V satisfies:{
∂V
∂t + rxVx + 1

2Qx
2 + 1

2 (−(σθVx + Sx)>(σσ>Vxx +R)−1)+(σθVx + Sx) = 0,

V (T, x) = 1
2 [ax2 + 2cx].

(4.1.2)

The value function (4.1.2) is much more complicated to be solved by assuming V (t, x) is in the
general case, V (t, x) = v0(t) + v1(t)x + v2(t)x2. Therefore, to simplify this function, we assume
that c = 0 and V (t, x) = v2(t)x2 to solve this nonlinear HJB PDE. Substituting V (t, x) into the
HJB equation (4.1.2), we can obtain that

∂tv2(t) + 2rv2(t) +
1

2
Q+

1

2
(−(2σθv2(t) + S)>(2σσ>v2(t) +R)−1)+(2σθv2(t) + S) = 0

with terminal conditions v2(T ) = 1
2a.

We can find that the ODE of v2(t) satisfies a Riccati equation, and cannot get closed-form solution.
It has to be solved numerically by using the Runge-Kutta method. First of all, we reformulate the
ODE as an initial condition problem. Let τ = T − t, then the ODE becomes{
−∂tv2(τ) + 2rv2(τ) + 1

2Q+ 1
2 (−(2σθv2(τ) + S)>(2σσ>v2(τ) +R)−1)+(2σθv2(τ) + S) = 0

v2(0) = 1
2a

Following the approach introduced in File and Bullo [7], we divide the interval [0, T ] into N equal
subintervals, where τi = 0 + is, i = 0, ..., n. Thus, the general numerical solution of the ODE is

v2(τi+1) = v2(τi) +
1

6
(k1 + 2k2 + 2k3 + k4),

where

k1 = sf(τi, v2(ti)),

k2 = sf(τi + s
2 , v2(τi) + k1

2 ),

k3 = sf(τi + s
2 , v2(τi) + k2

2 ),

k4 = sf(τi + s, v2(τi) + k3),

f(τ, v2) = 2rv2(τ) + 1
2Q+ 1

2 (−(2σθv2(τ) + S)>(2σσ>v2(τ) +R)−1)+(2σθv2(τ) + S).

Recall that
π̂ = (−(σσ>Vxx +R)−1(σθVx + Sx))+

and {
Vxx = 2v2(t),

Vx = 2v2(t)x,

so
π̂(t) = (−(2σσ>v2(t) +R)−1(2σθv2(t) + S)X π̂(t))+.
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We insert the optimal π̂ into the SDE of total wealth Xπ (4.1.1),

dX π̂(t) = [rX π̂(t) + (−X π̂(t)(2σθv2(t) + S)>(2σσ>v2(t) +R)−1)+(σθ)]dt

+ (−X π̂(t)(2σθv2(t) + S)>(2σσ>v2(t) +R)−1)+σdW (t),

and we can find that the optimal wealth process X π̂(t) follows a geometric Brownian motion.
Assuming the initial value of optimal wealth process x0 is positive, then the optimal wealth process
X π̂(t) is positive for all time t, 0 < t < T . Therefore, the optimal control π̂ can be written in the
form,

π̂(t) = (−(2σσ>v2(t) +R)−1(2σθv2(t) + S))+X π̂(t).

The SDE of the optimal wealth process X π̂(t) becomes

dX π̂(t) = [r + (−(2σθv2(t) + S)>(2σσ>v2(t) +R)−1)+(σθ)]X π̂(t)dt

+ (−(2σθv2(t) + S)>(2σσ>v2(t) +R)−1)+σX π̂(t)dW (t)

= [r +A(t)θ]X π̂(t)dt+A(t)X π̂(t)dW (t),

where A(t) = (−(2σθv2(t) + S)>(2σσ>v2(t) + R)−1)+σ, and the corresponding solution is given
by

X π̂(t) = x0e
∫ t
0
r+A(u)θ− 1

2A(u)A>(u)du+
∫ t
0
A(u)dW (u). (4.1.3)

4.2 Dual HJB Method

The dual control problem is given by

Minimize Ψ̃(y, α, β) := m0(y) + E[mT (Y (T ))] + E

[∫ T

0

φ(t, α(t), β(t))dt

]
,

where Y satisfies {
dY (t) = [α(t)− rY (t)]dt+ [σ−1β(t)− θY (t)]>dW (t),

Y (0) = y.
(4.2.1)

Define dual value function Ṽ (t, y) by

Ṽ (t, y) = inf
α,β

E

[
mT (Y (T )) +

∫ T

0

φ(t, α(t), β(t))dt
∣∣∣Y (0) = y

]
,

and we can find the relationship between the primal value function and dual value function is

Ṽ (t, y) = sup
x∈R
{−V (t, x)− xy},

V (t, x) = inf
y∈R
{−Ṽ (t, y)− xy}.

The minimum point is obtained by solving

0 = −x− ∂

∂y
Ṽ (t, y). (4.2.2)

There exists a unique y solving the equation above, write it y = y(t, x). Therefore, we have

V (t, x) = −xy(t, x)− Ṽ (t, y(t, x))
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and then, we obtain that

Vt = −x∂y
∂t
− Ṽt − Ṽy

∂y

∂t

= (−x− Ṽy)
∂y

∂t
− Ṽt

= −Ṽt,

Vx = −y − x∂y
∂x
− Ṽy

∂y

∂x

= (−x− Ṽy)
∂y

∂x
− y

= −y,

and

Vxx = −∂y
∂x
.

From the first-order condition (4.2.2), we know that

∂

∂x
(−x− ∂

∂y
Ṽ (t, y)) = −1− Ṽyy

∂y

∂x
,

⇒
∂y

∂x
= − 1

Ṽyy
.

By Dynamic Programming Principle, we can drive the dual HJB equation,{
∂Ṽ
∂t + infα,β{Lα.βṼ + φ(t, α, β)} = 0,

Ṽ (T, y) = mT (Y (T )),

where Lα,β is the operator defined by

Lα,βṼ = (α− ry)Ṽy +
1

2
[σ−1β − θy]>[σ−1β − θy]Ṽyy.

Substituting φ(t, α, β) and mT (Y (T )) into the HJB equation above, we obtain that
∂Ṽ
∂t + infα,β{(α− ry)Ṽy + 1

2 [σ−1β − θy]>[σ−1β − θy]Ṽyy+

supx,π{xα+ π>β − 1
2 [Qx2 + 2S>xπ + π>Rπ]}} = 0,

Ṽ (T, y) = (y+c)2

2a .

(4.2.3)

Then, let π̂ be the optimal value of π, then the sup term in HJB equation becomes

sup
x
{xα+ π̂>β − 1

2
[Qx2 + 2S>xπ̂ + π̂>Rπ̂]},

and the optimal x̂ can be found by the first order condition,

α−Qx− S>π̂ = 0.

Therefore, x̂ = Q−1(α − S>π̂). To find the optimal π̂, we substitute the optimal x̂ back to the
equation above,

sup
π
{π>β − 1

2
π>Rπ +

1

2
Q−1(α− S>π)2},

and the first order condition is

β> − π>R−Q−1(α− S>π)S> = 0.
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Therefore π̂ = ((R−Q−1SS>)−1(β −Q−1αS))+, and the HJB equation (4.2.3) becomes
∂Ṽ
∂t − ryṼy + 1

2θ
>θy2Ṽyy + infα,β {αṼy + 1

2 [(σ−1β)>(σ−1β)− (σ−1β)>θy − θ>(σ−1β)y]Ṽyy

+ 1
2Q
−1α2 + 1

2 ((β −Q−1αS)>(R−Q−1SS>)−1)+(β −Q−1αS)} = 0,

Ṽ (T, y) = (y+c)2

2a .

To simplify the dual HJB equation, we assume that Q = 0 and S = 0, therefore α̂ = 0, and then

π̂ = (R−1β)+,

and the HJB equation (4.2.3) becomes
∂Ṽ
∂t − ryṼy + 1

2θ
>θy2Ṽyy + infβ { 1

2 [(σ−1β)>(σ−1β)− (σ−1β)>θy − θ>(σ−1β)y]Ṽyy

+ 1
2 (β>R−1)+β} = 0,

Ṽ (T, y) = (y+c)2

2a .

The first order condition for β̂ is

β>σ−1>σ−1Ṽyy − θ>σ−1yṼyy + (β>R−1)+ = 0.

In this case, let β>R−1 = (β>R−1
1 , β>R−1

2 ), where R−1
i represent the ith column of R−1 for

i = 1, 2. Then, we need to consider four different cases, (β>R−1)+ = β>R−1, (β>R−1)+ = 0,
(β>R−1)+ = (β>R−1

1 , 0) and (β>R−1)+ = (0, β>R−1
2 ). Therefore, we can know that

β̂ = (σ−1>σ−1Ṽyy +R−1)−1(σ−1>θ)yṼyy for (β>R−1)+ = β>R−1,

β̂ = σθy for (β>R−1)+ = 0,

β̂ =
(

(σ−1>σ−1)1Ṽyy +R−1
1 , (σ−1>σ−1)2Ṽyy

)−1

(σ−1>θ)yṼyy for (β>R−1)+ = (β>R−1
1 , 0),

β̂ =
(

(σ−1>σ−1)1Ṽyy, (σ
−1>σ−1)2Ṽyy +R−1

2

)−1

(σ−1>θ)yṼyy for (β>R−1)+ = (0, β>R−1
2 ),

where (σ−1>σ−1)i represents the ith column of (σ−1>σ−1) for i = 1, 2.

For the first case, (β>R−1)+ = β>R−1, the dual value function Ṽ satisfies:{
∂Ṽ
∂t − ryṼy + 1

2θ
>θy2Ṽyy − 1

2 (σ−1>θ)>(σ−1>σ−1Ṽyy +R−1)−1(σ−1>θ)y2Ṽ 2
yy = 0,

Ṽ (T, y) = (y+c)2

2a .

We can find that it is the exact same with the dual HJB equation at Section 3.2 with similar
conditions, so we know the dual HJB equation can be converted into the primal HJB equation.
Next, similar with Section 4.1, the dual value function is hard to be solved by assuming Ṽ (t, y)
is in the general case. We assume that c = 0 and Ṽ (t, y) = ṽ2(t)y2 to simplify the equation.
Substituting Ṽ (t, y) into the dual HJB equation above, we obtain that

∂tṽ2(t)− 2rṽ2(t) + (σθ)>(2Rṽ2(t) + σσ>)−1(σθ)ṽ2(t) = 0,

with terminal conditions ṽ2(T ) = 1
2a .

The ODE of ṽ2(t) satisfies a Riccati equation, and cannot get closed-form solution. It has to
be solved numerically by using the Runge-Kutta method. Similar with Section 3.2, we reformulate
the ODE as an initial condition problem. Let τ = T − t, then the ODE becomes{

−∂τ ṽ2(τ)− 2rṽ2(τ) + (σθ)>(2Rṽ2(τ) + σσ>)−1(σθ)ṽ2(τ) = 0,

ṽ2(0) = 1
2a ,

and we divide the interval [0, T ] into N equal subintervals, where τi = 0 + is, i = 0, ..., n. Thus,
the general numerical solution of the ODE is

ṽ2(τi+1) = ṽ2(τi) +
1

6
(k̃1 + 2k̃2 + 2k̃3 + k̃4),
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where 

k̃1 = sf̃(τi, ṽ2(τi)),

k̃2 = sf̃(τi + s
2 , ṽ2(τi) + k̃1

2 ),

k̃3 = sf̃(τi + s
2 , ṽ2(τi) + k̃2

2 ),

k̃4 = sf̃(τi + s, ṽ2(τi) + k̃3),

f̃(τ, ṽ2) = ((σθ)>(2Rṽ2(τ) + σσ>)−1(σθ)− 2r)ṽ2(τ).

Recall that
β̂ = (σ−1>σ−1Ṽyy +R−1)−1(σ−1>θ)yṼyy,

α̂ = 0,

and
Ṽyy = 2ṽ2(t),

so
β̂(t) = 2(2σ−1>σ−1ṽ2(t) +R−1)−1(σ−1>θ)Y (y,α̂,β̂)(t)ṽ2(t).

We insert the optimal β̂ and α̂ into the SDE of Y (y,α,β) (4.2.1),

dY (y,α̂,β̂)(t) = −rY (y,α̂,β̂)(t)dt− Ã>(t)Y (y,α̂,β̂)(t)dW (t),

where Ã(t) = σ>(2Rṽ2(t)+σσ>)−1σθ with initial condition Y (y,α̂,β̂)(0) = y, which is the expression
for a geometric Brownian motion, with solution

Y (y,α̂,β̂)(t) = ye−
∫ t
0

(r+ 1
2 Ã
>(u)Ã(u))du−

∫ t
0
Ã>(u)dW (u).

Recall that
X π̂(t) = −Ṽy(t, Y (y,α̂,β̂)(t)),

Vxx = 2v2(t) =
1

Ṽyy
=

1

2ṽ2(t)
,

y = −Vx = −(2xv2(t)),

A(t) = −(σθ)>(σσ> + (2v2(t))−1R)−1σ for Q = 0, S = 0 and π̂ > 0,

and
Ṽy = 2yṽ2(t),

so

X π̂(t) = −(2v2(t))−1(−2v2(0)x0)e−
∫ t
0

(r+ 1
2 Ã
>(u)Ã(u))du−

∫ t
0
Ã>(u)dW (u)

=
v2(0)

v2(t)
x0e
−

∫ t
0

(r+ 1
2 Ã
>(u)Ã(u))du−

∫ t
0
Ã>(u)dW (u).

From the ODE of v2(t), when Q = 0, S = 0 and π̂ > 0,

∂tv2(t) + 2rv2(t)− 2(σθ)>(2σσ>v2(t) +R)−1(σθ)v2
2(t) = 0,

we can know that
v2(0)

v2(t)
= e

∫ t
0

2r+A(u)θdu,

and we also find that A(t) = −Ã>(t). Thus,

X π̂(t) = x0e
∫ t
0
r+A(u)θ− 1

2A(u)A>(u)du+
∫ t
0
A(u)dW (u). (4.2.4)

We obtain the exact same solution with primal HJB approach for Q = 0, S = 0 and π̂ > 0.

For the second case, (β>R−1)+ = 0, the dual value function Ṽ satisfies:{
∂Ṽ
∂t − ryṼy = 0,

Ṽ (T, y) = (y+c)2

2a .
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Substituting y, Ṽy, Ṽt into the equation above, we can find that{
−∂V∂t − r(−Vx)(−x) = 0

Ṽ (T, y) = (y+c)2

2a

(4.2.5)

and

V (T, x) = inf
y∈R
{−xy − Ṽ (T, y)}

= inf
y∈R
{−xy − (y + c)2

2a
}

= −x(−ax− c)− (−ax− c+ c)2

2a

=
1

2
ax2 + cx

⇒ {
∂V
∂t + rxVx = 0,

V (T, x) = 1
2 [ax2 + 2cx].

which is the HJB equation for primal problems when Q = 0, S = 0 and π̂ = 0. Next, to solve the
dual HJB PDE, if c = 0, we assume that Ṽ (t, y) = ṽ2(t)y2. Substituting Ṽ (t, y) into the dual HJB
equation (4.2.5), we obtain that

∂tṽ2(t)− 2rṽ2(t) = 0,

with terminal condition ṽ2(T ) = 1
2a . Therefore, we can obtain that ṽ2(0) = 1

2ae
−2rT .

Recall that
β̂ = σθY (y,α̂,β̂)(t)

and
α̂ = 0,

we insert the optimal β̂ and α̂ into the SDE of Y (y,α,β) (4.2.1),

dY (y,α̂,β̂)(t) = −rY (y,α̂,β̂)(t)dt,

with initial condition Y (y,α̂,β̂)(0) = y. It is straightforward to obtain the solution,

Y (y,α̂,β̂)(t) = ye−rt.

Recall that
X π̂(t) = −Ṽy(t, Y (y,α̂,β̂)(t)),

Vxx = 2v2(t) =
1

Ṽyy
=

1

2ṽ2(t)
,

y = −Vx = −(2xv2(t)),

and
Ṽy = 2yṽ2(t),

so

X π̂(t) = −(2v2(t))−1(−2v2(0)x0)e−rt

=
v2(0)

v2(t)
x0e
−rt.

From the ODE of v2(t) when Q = 0, S = 0 and π̂ = 0,

∂tv2(t) + 2rv2(t) = 0,
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we can know that
v2(0)

v2(t)
= e2rt.

Thus,

X π̂(t) = x0e
rt. (4.2.6)

We obtain the exact same solution with primal HJB approach for Q = 0, S = 0 and π̂ = 0.

For the third case, (β>R−1)+ = (β>R−1
1 , 0), the dual value function Ṽ satisfies:

∂Ṽ
∂t − ryṼy + 1

2θ
>θy2Ṽyy

− 1
2 (σ−1>θ)>

(
(σ−1>σ−1)1Ṽyy +R−1

1 , (σ−1>σ−1)2Ṽyy

)−1

(σ−1>θ)y2Ṽ 2
yy = 0,

Ṽ (T, y) = (y+c)2

2a .

(4.2.7)

Substituting y, Ṽy, Ṽyy, Ṽt into the equation above, we can find that

−∂V
∂t
− r(−Vx)(−x) +

1

2
θ>θ(−Vx)2V −1

xx

− 1

2
(σ−1>θ)>

(
(σ−1>σ−1)1Ṽ

−1
xx +R−1

1 , (σ−1>σ−1)2Ṽ
−1
xx

)−1

(σ−1>θ)(−Vx)2Ṽ −2
xx = 0

⇒

∂V

∂t
+ rxVx −

1

2
((σθ)1, 0)

(
(σσ>)1Vxx +R1, (σσ

>)2Vxx
)−1

(σθ)V 2
x = 0

(primal HJB equation)

and

V (T, x) = inf
y∈R
{−xy − Ṽ (T, y)}

= inf
y∈R
{−xy − (y + c)2

2a
}

= −x(−ax− c)− (−ax− c+ c)2

2a

=
1

2
ax2 + cx.

These prove the relationship between the primal and dual problems. Next, to solve the nonlinear
dual HJB PDE, we assume that c = 0 and Ṽ (t, y) = ṽ2(t)y2. Substituting Ṽ (t, y) into the dual
HJB equation (4.2.7), we obtain that

∂tṽ2(t)− 2rṽ2(t) + ((σθ)1, 0)
(
2R1ṽ2(t) + (σσ>)1, (σσ

>)2

)−1
(σθ)ṽ2(t) = 0,

with terminal conditions ṽ2(T ) = 1
2a , where (σσ>)i and Ri represent the ith column of (σσ>) and

R respectively for i = 1, 2.

We can find that the ODE of ṽ2(t) satisfies a Riccati equation, and cannot get closed-form so-
lution. It has to be solved numerically by using the Runge-Kutta method. We reformulate the
ODE as an initial condition problem. Let τ = T − t, then the ODE becomes{

−∂τ ṽ2(τ)− 2rṽ2(τ) + ((σθ)1, 0)
(
2R1ṽ2(τ) + (σσ>)1, (σσ

>)2

)−1
(σθ)ṽ2(τ) = 0,

ṽ2(0) = 1
2a ,

and we divide the interval [0, T ] into N equal subintervals, where τi = 0 + is, i = 0, ..., n. Thus,
the general numerical solution of the ODE is

ṽ2(τi+1) = ṽ2(τi) +
1

6
(k̃1 + 2k̃2 + 2k̃3 + k̃4),
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where 

k̃1 = sf̃(τi, ṽ2(τi)),

k̃2 = sf̃(τi + s
2 , ṽ2(τi) + k̃1

2 ),

k̃3 = sf̃(τi + s
2 , ṽ2(τi) + k̃2

2 ),

k̃4 = sf̃(τi + s, ṽ2(τi) + k̃3),

f̃(τ, ṽ2) = (((σθ)1, 0)
(
2R1ṽ2(τ) + (σσ>)1, (σσ

>)2

)−1
(σθ)− 2r)ṽ2(τ).

Recall that

β̂ =
(

(σ−1>σ−1)1Ṽyy +R−1
1 , (σ−1>σ−1)2Ṽyy

)−1

(σ−1>θ)yṼyy,

α̂ = 0,

and

Ṽyy = 2ṽ2(t),

so

β̂(t) = 2
(

2(σ−1>σ−1)1ṽ2(t) +R−1
1 , 2(σ−1>σ−1)2ṽ2(t)

)−1

(σ−1>θ)Y (y,α̂,β̂)(t)ṽ2(t).

We insert the optimal β̂ and α̂ into the SDE of Y (y,α,β) (4.2.1),

dY (y,α̂,β̂)(t) = −rY (y,α̂,β̂)(t)dt− Ã>(t)Y (y,α̂,β̂)(t)dW (t),

where Ã(t) = σ>
(
2R1ṽ2(t) + (σσ>)1, (σσ

>)2

)−1
((σθ)1, 0)> with initial condition Y (y,α̂,β̂)(0) = y,

which is the expression for a geometric Brownian motion, with solution

Y (y,α̂,β̂)(t) = ye−
∫ t
0

(r+ 1
2 Ã
>(u)Ã(u))du−

∫ t
0
Ã>(u)dW (u).

Recall that

X π̂(t) = −Ṽy(t, Y (y,α̂,β̂)(t)),

Vxx = 2v2(t) =
1

Ṽyy
=

1

2ṽ2(t)
,

y = −Vx = −(2xv2(t)),

A(t) = (−(2σθv2(t))>(2σσ>v2(t) +R)−1)+σ, for Q = 0 and S = 0,

and

Ṽy = 2yṽ2(t),

so

X π̂(t) = −(2v2(t))−1(−2v2(0)x0)e−
∫ t
0

(r+ 1
2 Ã
>(u)Ã(u))du−

∫ t
0
Ã>(u)dW (u)

=
v2(0)

v2(t)
x0e
−

∫ t
0

(r+ 1
2 Ã
>(u)Ã(u))du−

∫ t
0
Ã>(u)dW (u).

From the ODE of v2(t), when Q = 0 and S = 0,

∂tv2(t) + 2rv2(t) +
1

2
(−(2σθv2(t))>(2σσ>v2(t) +R)−1)+(2σθv2(t)) = 0,

we can know that
v2(0)

v2(t)
= e

∫ t
0

2r+A(u)θdu,

and we also find that A(t) = −Ã>(t) when π̂ = (π̂1, 0)>. Thus,

X π̂(t) = x0e
∫ t
0
r+A(u)θ− 1

2A(u)A>(u)du+
∫ t
0
A(u)dW (u). (4.2.8)

33



We obtain the exact same solution with primal HJB approach for Q = 0, S = 0 and π̂ = (π̂1, 0)>.

For the last case, (β>R−1)+ = (0, β>R−1
2 ), the dual value function Ṽ satisfies:

∂Ṽ
∂t − ryṼy + 1

2θ
>θy2Ṽyy

− 1
2 (σ−1>θ)>

(
(σ−1>σ−1)1Ṽyy, (σ

−1>σ−1)2Ṽyy +R−1
2

)−1

(σ−1>θ)y2Ṽ 2
yy = 0,

Ṽ (T, y) = (y+c)2

2a .

(4.2.9)

Substituting y, Ṽy, Ṽyy, Ṽt into the equation above, we can find that

−∂V
∂t
− r(−Vx)(−x) +

1

2
θ>θ(−Vx)2V −1

xx

− 1

2
(σ−1>θ)>

(
(σ−1>σ−1)1Ṽ

−1
xx , (σ

−1>σ−1)2Ṽ
−1
xx +R−1

2

)−1

(σ−1>θ)(−Vx)2Ṽ −2
xx = 0

⇒
∂V

∂t
+ rxVx −

1

2
(0, (σθ)2)

(
(σσ>)1Vxx, (σσ

>)2Vxx +R2

)−1
(σθ)V 2

x = 0

(primal HJB equation)

and

V (T, x) = inf
y∈R
{−xy − Ṽ (T, y)}

= inf
y∈R
{−xy − (y + c)2

2a
}

= −x(−ax− c)− (−ax− c+ c)2

2a

=
1

2
ax2 + cx.

These prove the relationship between the primal and dual problems. Next, to solve the nonlinear
dual HJB PDE, we assume that c = 0 and Ṽ (t, y) = ṽ2(t)y2. Substituting Ṽ (t, y) into the dual
HJB equation (4.2.9), we obtain that

∂tṽ2(t)− 2rṽ2(t) + (0, (σθ)2)
(
(σσ>)1, 2R2ṽ2(t) + (σσ>)2

)−1
(σθ)ṽ2(t) = 0,

with terminal conditions ṽ2(T ) = 1
2a , where (σσ>)i and Ri represent the ith column of (σσ>) and

R respectively for i = 1, 2.

We can find that the ODE of ṽ2(t) satisfies a Riccati equation, and cannot get closed-form so-
lution. It has to be solved numerically by using the Runge-Kutta method. We reformulate the
ODE as an initial condition problem. Let τ = T − t, then the ODE becomes{

−∂τ ṽ2(τ)− 2rṽ2(τ) + (0, (σθ)2)
(
(σσ>)1, 2R2ṽ2(τ) + (σσ>)2

)−1
(σθ)ṽ2(τ) = 0,

ṽ2(0) = 1
2a ,

and we divide the interval [0, T ] into N equal subintervals, where τi = 0 + is, i = 0, ..., n. Thus,
the general numerical solution of the ODE is

ṽ2(τi+1) = ṽ2(τi) +
1

6
(k̃1 + 2k̃2 + 2k̃3 + k̃4),

where 

k̃1 = sf̃(τi, ṽ2(τi)),

k̃2 = sf̃(τi + s
2 , ṽ2(τi) + k̃1

2 ),

k̃3 = sf̃(τi + s
2 , ṽ2(τi) + k̃2

2 ),

k̃4 = sf̃(τi + s, ṽ2(τi) + k̃3),

f̃(τ, ṽ2) = ((0, (σθ)2)
(
(σσ>)1, 2R2ṽ2(τ) + (σσ>)2

)−1
(σθ)− 2r)ṽ2(τ).

34



Recall that

β̂ =
(

(σ−1>σ−1)1Ṽyy, (σ
−1>σ−1)2Ṽyy +R−1

2

)−1

(σ−1>θ)yṼyy,

α̂ = 0,

and

Ṽyy = 2ṽ2(t),

so

β̂(t) = 2
(

2(σ−1>σ−1)1ṽ2(t), 2(σ−1>σ−1)2ṽ2(t) +R−1
2

)−1

(σ−1>θ)Y (y,α̂,β̂)(t)ṽ2(t).

We insert the optimal β̂ and α̂ into the SDE of Y (y,α,β) (4.2.1),

dY (y,α̂,β̂)(t) = −rY (y,α̂,β̂)(t)dt− Ã>(t)Y (y,α̂,β̂)(t)dW (t),

where Ã(t) = σ>
(
(σσ>)1, 2R2ṽ2(t) + (σσ>)2

)−1
(0, (σθ)2)> with initial condition Y (y,α̂,β̂)(0) = y,

which is the expression for a geometric Brownian motion, with solution

Y (y,α̂,β̂)(t) = ye−
∫ t
0

(r+ 1
2 Ã
>(u)Ã(u))du−

∫ t
0
Ã>(u)dW (u).

Recall that

X π̂(t) = −Ṽy(t, Y (y,α̂,β̂)(t)),

Vxx = 2v2(t) =
1

Ṽyy
=

1

2ṽ2(t)
,

y = −Vx = −(2xv2(t)),

A(t) = (−(2σθv2(t))>(2σσ>v2(t) +R)−1)+σ for Q = 0 and S = 0,

and

Ṽy = 2yṽ2(t),

so

X π̂(t) = −(2v2(t))−1(−2v2(0)x0)e−
∫ t
0

(r+ 1
2 Ã
>(u)Ã(u))du−

∫ t
0
Ã>(u)dW (u)

=
v2(0)

v2(t)
x0e
−

∫ t
0

(r+ 1
2 Ã
>(u)Ã(u))du−

∫ t
0
Ã>(u)dW (u).

From the ODE of v2(t), when Q = 0 and S = 0,

∂tv2(t) + 2rv2(t) +
1

2
(−(2σθv2(t))>(2σσ>v2(t) +R)−1)+(2σθv2(t)) = 0,

we can know that
v2(0)

v2(t)
= e

∫ t
0

2r+A(u)θdu,

and we also find that A(t) = −Ã>(t) when π̂ = (0, π̂2)>. Thus,

X π̂(t) = x0e
∫ t
0
r+A(u)θ− 1

2A(u)A>(u)du+
∫ t
0
A(u)dW (u). (4.2.10)

We obtain the exact same solution with primal HJB approach for Q = 0, S = 0 and π̂ = (0, π̂2)>.
In the problem with cone-constraints, we can find that solving the dual problem is not more
convenient than solving the primal problem. As we can see from this chapter, we have to discuss
four different cases of the dual problem due to K = R2

+. If the dimension is higher, N > 2, there
will be more different cases need to be studied. To sum up, the results of dual HJB method are
same with the results of primal HJB method in all different cases.
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4.3 FBSDE Method

For the conditions in this chapter, the FBSDE then becomes
dX π̂(t) = [rX π̂(t) + π̂>(t)σθ]dt+ π̂>(t)σdW (t),

X π̂(0) = x0,

dp̂1(t) = [−rp̂1(t) +QX π̂(t) + S>π̂(t)]dt+ q̂>1 (t)dW (t),

p̂1(T ) = −aX π̂(T )− c,

(4.3.1)

and the condition in Theorem 3.3.1 becomes

π̂>[p̂1(t)σθ + σq̂1(t) + SX π̂(t) +Rπ̂(t)] = 0.

To solve this FBSDE, we assume π̂(t) = π̂, p̂1(0) = p0 and q̂1(t) = q̂1, where π̂(t) and q̂1(t) are
piecewise constant and given. Then, we solve the following system

dX π̂(t) = [rX π̂(t) + π̂>σθ]dt+ π̂>σdW (t),

X π̂(0) = x0,

dp̂1(t) = [−rp̂1(t) +QX π̂(t) + S>π̂]dt+ q̂>1 dW (t),

p̂1(0) = p0,

(4.3.2)

with condition
π̂>[p̂1(t)σθ + σq̂1 + SX π̂(t) +Rπ̂] = 0.

The equations above become linear SDEs. Also, we can find that the terminal condition

p̂1(T ) = −aX π̂(T )− c

is equivalent to
E[(p̂1(T ) + aX π̂(T ) + c)2] = 0.

Now consider the following optimal control problem:

min
π̂,p0,q̂1

J(π̂, p0, q̂1) := E[(p̂1(T ) + aX π̂(T ) + c)2].

To solve this optimal control problem numerically, we divide interval [0, T ] by m intervals with
step size h = T/m and grid points ti = hi, i = 0, 1, ...,m. Assume on the subinterval [ti, ti+1), π̂
and q̂1 are taken constant, say that π̂i and q̂1i, for i = 0, 1, ...,m − 1. Use the Euler method to
discretize SDEs (4.3.2) as

X π̂(ti+1) = X π̂(ti) + [rX π̂(ti) + π̂>i σθ]h+ π̂>i σ
√
hξi,

X π̂(0) = x0,

p̂1(ti+1) = p̂1(ti)− [rp̂1(ti)−QX π̂(ti)− S>π̂i]h+ q̂>1i
√
hξi,

p̂1(0) = p0,

(4.3.3)

with condition
π̂>i [p̂1(ti)σθ + σq̂1i + SX π̂(ti) +Rπ̂i] = 0,

for i = 0, 1, ...,m − 1, where ξi, i = 0, 1, ...,m − 1, are independent standard normal variables in
RN . We now solve the optimal control problem as follows:

min
π̂0,...,π̂m−1,p0,q̂10,...,q̂1m−1

J(π̂0, ..., π̂m−1, p0, q̂10, ..., q̂1m−1) := E[(p̂1(tm) + aX π̂(tm) + c)2]

subject to the discretized SDE above.

After we obtain the optimal values of π̂0, ..., π̂m−1, p0, q̂10, ..., q̂1m−1, we can find the corresponding
discrete optimal wealth process X π̂(t) by the discretized SDE (4.3.3).
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4.4 Dual FBSDE Method

For the conditions in this chapter, the dual FBSDE becomes
dŶ (ŷ,α̂,β̂)(t) =

[
α̂(t)− rY (ŷ,α̂,β̂)(t)

]
dt+

[
σ−1β̂(t)− θY (ŷ,α̂,β̂)(t)

]>
dW (t),

Y (ŷ,α̂,β̂)(0) = ŷ,

dp̂2(t) = [rp̂2(t) + q̂>2 (t)θ]dt+ q̂>2 (t)dW (t),

p̂2(T ) = −Y
(ŷ,α̂,β̂)(T )+c

a .

(4.4.1)

Now there are two controls in the SDE of dual wealth process Ŷ (ŷ,α̂,β̂)(t) (4.2.1), therefore we
cannot use the same method with Section 3.4. From the second condition in Theorem 3.4.2, we
can know that [σ>]−1q̂2(t) should be non-negative for all time t, 0 < t < T . To simplify the dual
FBSDE (4.4.1), we assume Q = 0 and S = 0, then α̂ = 0 and the dual FBSDE (4.4.1) becomes

dŶ (ŷ,α̂,β̂)(t) = −rY (ŷ,α̂,β̂)(t)dt+
[
σ−1β̂(t)− θY (ŷ,α̂,β̂)(t)

]>
dW (t),

Y (ŷ,α̂,β̂)(0) = ŷ,

dp̂2(t) = [rp̂2(t) + q̂>2 (t)θ]dt+ q̂>2 (t)dW (t),

p̂2(T ) = −Y
(ŷ,α̂,β̂)(T )+c

a .

To satisfy the third condition in Theorem 3.4.2, we solve the problem by the stochastic maximum
principle. In this case, the Hamiltonian takes the form

H(y, β, p2, q2) = −ryp2(t)− [σ−1β(t)− θy]>q2(t) +
1

2
(β>(t)R−1)+β(t).

Let β̂ ∈ A be a candidate for the optimal control, and Y (ŷ,α̂,β̂) and (p̂2, q̂2) be the corresponding
processes. Then,

H(y, β, p̂2, q̂2) = −ryp̂2(t) + y>θ>q̂2(t)− β>(t)(σ−1)>q̂2(t) +
1

2
(β>(t)R−1)+β(t).

We see that β̂ is optimal if and only if

−q̂>2 (t)σ−1 + (β̂>(t)R−1)+ = 0, 0 ≤ t ≤ T, a.s. .

To solve this dual FBSDE, let p̂2(0) = x0, we assume β̂(t) = β̂, ŷ = y0 and q̂2(t) = q̂2, where β̂(t)
and q̂2(t) are piecewise constant and given. Then, we solve the following system

dŶ (ŷ,α̂,β̂)(t) = −rY (ŷ,α̂,β̂)(t)dt+
[
σ−1β̂ − θY (ŷ,α̂,β̂)(t)

]>
dW (t),

Y (ŷ,α̂,β̂)(0) = y0,

dp̂2(t) = [rp̂2(t) + q̂>2 θ]dt+ q̂>2 dW (t),

p̂2(0) = x0,

(4.4.2)

with conditions [σ>]−1q̂2 ≥ 0 and −q̂>2 σ−1 + (β̂>R−1)+ = 0. Then, the equations above become
linear SDEs. Also, the terminal condition

p̂2(T ) = −Y
(ŷ,α̂,β̂)(T ) + c

a

is equivalent to

E[(p̂2(T ) +
Y (ŷ,α̂,β̂)(T ) + c

a
)2] = 0.

Now consider the following optimal control problem:

min
β̂,y0,q̂2

J(β̂, y0, q̂2) := E[(p̂2(T ) +
Y (ŷ,α̂,β̂)(T ) + c

a
)2].
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To solve this optimal control problem numerically, we divide interval [0, T ] by m intervals with
step size h = T/m and grid points ti = hi, i = 0, 1, ...,m. Assume on the subinterval [ti, ti+1),

controls β̂, q̂2 are taken constant, say that β̂i, q̂2i, for i = 0, 1, ...,m− 1. Use the Euler method to
discretize SDEs (4.4.2) as

Ŷ (ŷ,α̂,β̂)(ti+1) = Ŷ (ŷ,α̂,β̂)(ti)− rY (ŷ,α̂,β̂)(ti)h+
[
σ−1β̂i − θY (ŷ,α̂,β̂)(ti)

]>√
hξi,

Y (ŷ,α̂,β̂)(0) = y0,

p̂2(ti+1) = p̂2(ti) + [rp̂2(ti) + q̂>2iθ]h+ q̂>2i
√
hξi,

p̂2(0) = x0,

(4.4.3)

with conditions [σ>]−1q̂2i ≥ 0 and −q̂>2iσ−1 + (β̂>i R
−1)+ = 0, for i = 0, 1, ...,m − 1, where ξi, i =

0, 1, ...,m−1, are independent standard normal variables in RN . We now solve the optimal control
problem as follows:

min
β̂0,...,β̂m−1,y0,q̂20,...,q̂2m−1

J(β̂0, ..., β̂m−1, y0, q̂20, ..., q̂2m−1) := E[(p̂2(tm) +
Y (ŷ,α̂,β̂)(tm) + c

a
)2]

subject to the discretized SDE (4.4.3).

After we obtain the optimal values of β̂0, ..., β̂m−1, y0, q̂20, ..., q̂2m−1, we can find the optimal control
π̂(t) and the optimal wealth process X π̂(t) numerically, from Theorem 3.4.3,

π̂(ti) = (σ>)−1q̂2i, for i = 0, 1, ...,m− 1,

X π̂(ti) = p̂2(ti), for i = 0, 1, ...,m,

where p̂2(ti) follows the discretized SDE (4.4.3).

4.5 Comparison

In the sections above, we discuss solving the optimal control π̂(t) and the optimal wealth process
X π̂(t) by primal HJB method, dual HJB method, primal FBSDE method and dual FBSDE method
respectively. This section will prove that all methods have same results.

To compare their results, we can firstly solve the Riccati equations of v2(t) and ṽ2(t) numer-
ically at same grid points as the FBSDE method and the dual FBSDE method. Then, we
solve numerical optimization problems to find π̂0, ..., π̂m−1, p0, q̂10, ..., q̂1m−1 in primal FBSDE and
β̂0, ..., β̂m−1, y0, q̂20, ..., q̂2m−1 in dual FBSDE respectively. To solve these numerical optimization
problems, we need to generate sample paths M times using the same parameters, then compute
the expected value of the objective cost function, and update to get new parameters. The param-
eters are optimal solutions when the expected value of the objective cost function is close to 0.
After these calculations, we can determine the optimal wealth process X π̂(t) and optimal control
π̂(t) under each approach by generating a set of independent standard normal variables on each
subinterval and using parameters we obtained from previous calculations.

To compare the results intuitively, we assume that r = 0.01, b =

(
0.04
0.03

)
, σ =

(
0.5 0.01
0.01 0.4

)
,

R =

(
100 −10
−20 80

)
, a = −2, c = 0, x0 = 100, T = 1 and there are two stocks. Then, we can plot

sample paths of the optimal wealth process X π̂(t) under each method on a graph to see if they
are close to each other, and also compute the mean squared errors and variances of differences
between results of each method. For the optimal control π̂(t), we plot the paths of errors of two
controls for each method. In all comparisons, we let the the primal HJB approach be benchmark
approach, and compare the result of chosen approach with the result of the primal HJB approach.
Figure 4.1, 4.2 and 4.3 show the optimal wealth process X π̂(t) and errors of optimal controls π̂(t)
under different approaches with different step sizes. Table 4.1, 4.2 and 4.3 record the statistical
information of differences between results of each methods with different step sizes.

38



Firstly, it is straightforward to find that the optimal wealth processes X π̂(t) under all approaches
are very close in Figure 4.1(a) and the mean squared errors of differences between results are almost
smaller than 6 × 10−4, shown in Table 4.1. Also, from statistical information, the mean squared
errors and variances of differences between errors of optimal control π̂(t) are all close to 0, such as
the mean squared errors from primal HJB and FBSDE with step size h = 0.025 are 2.736× 10−9

and 1.110 × 10−8 respectively. As we can see from Figure 4.1(b), 4.2(b) and 4.3(b), the path of
the error of optimal control π̂1(t) under dual HJB method is not shown, and the error of optimal
control π̂2(t) under dual HJB method is almost straight line around 0. The reason is that the
errors of optimal control π̂(t) under dual HJB method are too small, so the path of the error of
optimal control π̂2(t) overlaps on the path of the error of optimal control π̂1(t), and looks like a
straight line. Similar with the results at Section 3.5, for primal and dual FBSDE methods, we find
that the errors of optimal control π̂(t) fluctuates more, shown in Figure 4.1(b), 4.2(b) and 4.3(b),
since we use the numerical optimization to solve the whole problem, but only use the numerical
method to solve part of the problem in primal and dual HJB methods. Furthermore, we can easily
find that the mean squared errors and variances of differences between results of each method are
gradually decreasing when the step size is decreasing and the number of grid points is increasing.
For example, the mean squared errors of difference between optimal wealth processes X π̂(t) from
primal HJB approach and dual HJB approach reduces 4.4694× 10−14 when the step size h = 0.05
decreases to h = 0.0125.

To compare results more accurately and precisely, we check results with different values of co-

efficients r = 0.03, b =

(
0.1
0.08

)
, σ =

(
0.7 0.03
0.03 0.1

)
, R =

(
50 −30
−10 70

)
, a = −4 . Figure 4.4,

4.5 and 4.6 show the optimal wealth process X π̂(t) and the errors of optimal control π̂(t) with
different step sizes and new coefficients. Table 4.4, 4.5 and 4.6 record the statistical information of
differences between results of each method with different step sizes and new coefficients. We can
find that the differences between the errors of optimal control π̂(t) and the optimal wealth process
X π̂(t) are quite obvious, especially for FBSDE approach and dual FBSDE approach, in Figure 4.4,
4.5 and 4.6. For the optimal wealth process X π̂(t), the mean squared errors of difference between
primal HJB approach and FBSDE approach becomes 2.383×10−1 with step size h = 0.0125, which
is a substantial error. Unlike Section 3.5, different values of coefficients will give us results under
various degrees of accuracy in this case. Therefore, assuming parameters are piecewise constant is
not the best method to solve FBSDE and dual FBSBE at Section 4.3 and 4.4. To sum up, we can
demonstrate that, without any error from numerical methods, all approach will give us the same
results of the optimal control π̂(t) and the optimal wealth process X π̂(t) .

(a) Optimal wealth process Xπ̂(t) (b) Errors of optimal control π̂(t)

Figure 4.1: Comparison with cone-constraints at step size h = 0.05

Optimal wealth process X π̂(t) Error of optimal control π̂1(t) Error of optimal control π̂2(t)
Approach MSE Variance MSE Variance MSE Variance

HJB 0 0 0 0 0 0
Dual HJB 4.733× 10−13 2.992× 10−13 1.664× 10−19 1.086× 10−19 1.664× 10−19 1.086× 10−19

FBSDE 3.498× 10−4 3.200× 10−4 1.399× 10−8 9.499× 10−9 1.565× 10−8 9.549× 10−9

Dual FBSDE 4.595× 10−4 3.510× 10−4 2.402× 10−7 2.256× 10−7 4.554× 10−8 1.022× 10−8

Table 4.1: MSE and variances of differences with cone-constraints at step size h = 0.05
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(a) Optimal wealth process Xπ̂(t) (b) Errors of optimal control π̂(t)

Figure 4.2: Comparison with cone-constraints at step size h = 0.025

(a) Optimal wealth process Xπ̂(t) (b) Errors of optimal control π̂(t)

Figure 4.3: Comparison with cone-constraints at step size h = 0.0125

(a) Optimal wealth process Xπ̂(t) (b) Errors of optimal control π̂(t)

Figure 4.4: Comparison with cone-constraints with new coefficients (h = 0.05)

(a) Optimal wealth process Xπ̂(t) (b) Errors of optimal control π̂(t)

Figure 4.5: Comparison with cone-constraints with new coefficients (h = 0.025)
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(a) Optimal wealth process Xπ̂(t) (b) Errors of optimal control π̂(t)

Figure 4.6: Comparison with cone-constraints with new coefficients (h = 0.0125)

Optimal wealth process X π̂(t) Error of optimal control π̂1(t) Error of optimal control π̂2(t)
Approach MSE Variance MSE Variance MSE Variance

HJB 0 0 0 0 0 0
Dual HJB 1.140× 10−13 7.341× 10−14 4.594× 10−20 3.008× 10−20 4.594× 10−20 3.008× 10−20

FBSDE 1.732× 10−3 1.040× 10−3 2.736× 10−9 1.949× 10−9 1.110× 10−8 1.037× 10−8

Dual FBSDE 1.860× 10−3 1.054× 10−3 4.758× 10−9 1.952× 10−9 1.998× 10−8 1.596× 10−8

Table 4.2: MSE and variances of differences with cone-constraints at step size h = 0.025

Optimal wealth process X π̂(t) Error of optimal control π̂1(t) Error of optimal control π̂2(t)
Approach MSE Variance MSE Variance MSE Variance

HJB 0 0 0 0 0 0
Dual HJB 2.636× 10−14 1.762× 10−14 1.135× 10−20 7.656× 10−21 1.135× 10−20 7.654× 10−21

FBSDE 5.641× 10−4 5.613× 10−4 2.184× 10−9 1.822× 10−9 7.258× 10−9 6.765× 10−9

Dual FBSDE 5.575× 10−4 5.576× 10−4 5.854× 10−9 4.580× 10−9 7.788× 10−9 6.723× 10−9

Table 4.3: MSE and variances of differences with cone-constraints at step size h = 0.0125

Optimal wealth process X π̂(t) Error of optimal control π̂1(t) Error of optimal control π̂2(t)
Approach MSE Variance MSE Variance MSE Variance

HJB 0 0 0 0 0 0
Dual HJB 2.567× 10−9 1.674× 10−9 1.477× 10−13 9.990× 10−14 3.479× 10−14 2.353× 10−14

FBSDE 1.508× 10−1 6.088× 10−2 1.370× 10−5 7.610× 10−6 1.071× 10−5 9.703× 10−6

Dual FBSDE 4.164× 10−2 3.508× 10−2 1.720× 10−5 7.759× 10−6 1.133× 10−5 9.800× 10−6

Table 4.4: MSE and variances of differences with constraints and new coefficients (h = 0.05)

Optimal wealth process X π̂(t) Error of optimal control π̂1(t) Error of optimal control π̂2(t)
Approach MSE Variance MSE Variance MSE Variance

HJB 0 0 0 0 0 0
Dual HJB 5.682× 10−10 3.964× 10−10 3.749× 10−14 2.665× 10−14 8.829× 10−15 6.278× 10−15

FBSDE 2.391× 10−1 2.382× 10−1 2.462× 10−5 2.394× 10−5 1.068× 10−5 1.065× 10−5

Dual FBSDE 2.782× 10−1 2.396× 10−1 5.027× 10−5 4.731× 10−5 1.479× 10−5 1.479× 10−5

Table 4.5: MSE and variances of differences with constraints and new coefficients (h = 0.025)

Optimal wealth process X π̂(t) Error of optimal control π̂1(t) Error of optimal control π̂2(t)
Approach MSE Variance MSE Variance MSE Variance

HJB 0 0 0 0 0 0
Dual HJB 1.159× 10−10 9.370× 10−11 8.227× 10−15 6.700× 10−15 1.938× 10−15 1.578× 10−15

FBSDE 2.383× 10−1 1.230× 10−1 3.011× 10−5 2.996× 10−5 7.253× 10−6 7.223× 10−6

Dual FBSDE 1.254× 10−1 9.953× 10−2 3.011× 10−5 2.996× 10−5 1.138× 10−5 1.122× 10−5

Table 4.6: MSE and variances of differences with constraints and new coefficients (h = 0.0125)
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Chapter 5

Quadratic Risk Minimization
under Stochastic Factor Model

In this chapter, we study the quadratic risk minimization problem under the stochastic factor
model. The asset price Sn(t) has drift term H(t), and H(t) follows OU process.{

dSn(t) = Sn(t) [H(t)dt+ σ(t)dW (t)]

dH(t) = k(Ĥ −H(t))dt+ σ1dW1

where Ĥ is a vector, k and σ1 are square matrices, W and W1 are independent vector standard
Brownian motions. Therefore, we can know that θ(t) = σ−1(t)[H(t) − r(t)1] in this assumption.
Also, we assume that all coefficients are constant, K = Rn, Q = 0 and S = 0.

5.1 HJB Method

The funtional J : A → R is defined by

J(π) := E

[∫ T

0

f(t,Xπ(t,Ht), π(t,Ht))dt+ g(Xπ(T,HT ))

]
,

where f : Ω× [0, T ]× R× RN → R is given by

f(w, t, x, π) :=
1

2
π>Rπ,

and g : Ω× R→ R is given by

g(w, x) :=
1

2
[ax2 + 2cx].

The quadratic risk minimization problem discussed in this paper is

Minimize J(π) subject to (X,π) admissible,

where X satisfies{
dXπ(t,Ht) = [rXπ(t,Ht) + π>(t,Ht)σθ(t)]dt+ π>(t,Ht)σdW (t), 0 ≤ t ≤ T
Xπ(0, h) = x0.

(5.1.1)

Define value function V (t, x, h) by

V (t, x, h) = inf
π
E

[∫ T

0

f(t,Xπ(t,Ht), π(t,Ht))dt+ g(Xπ(T,HT ))
∣∣∣Xπ(0, h) = x0, H(0) = h

]
.

By Dynamic Programming Principle, we can drive the HJB equation,{
∂V
∂t + infπ{LπV + f(t, x, π)} = 0,

V (T, x, h) = g(x),
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where Lπ is the operator defined by

LπV = (rx+ π>σθ)Vx +
1

2
π>σσ>πVxx + k(Ĥ − h)Vh +

1

2
σ1σ

>
1 Vhh.

Substituting f(t, x, π) and g(x) into the HJB equation above, we obtain that{
∂V
∂t + rxVx + k(Ĥ − h)Vh + 1

2σ1σ
>
1 Vhh + infπ{π>σθVx + 1

2π
>σσ>πVxx + 1

2π
>Rπ} = 0,

V (T, x, h) = 1
2 [ax2 + 2cx].

To find the optimal π̂, we obtain the first-order condition is

(σθ)>Vx + π>σσ>Vxx + π>R = 0.

Since R is a symmetric matrix, we can obtain that (σσ>Vxx + R) = (σσ>Vxx + R)>. Assume
that (σσ>Vxx + R) is invertible, so we know that ((σσ>Vxx + R)−1)> = ((σσ>Vxx + R)>)−1 =
(σσ>Vxx +R)−1. Thus, the optimal control π̂ is equal to −(σσ>Vxx +R)−1(σθ)Vx.

Then the value function V satisfies:{
∂V
∂t + rxVx + k(Ĥ − h)Vh + 1

2σ1σ
>
1 Vhh − 1

2 (σθ)>(σσ>Vxx +R)−1(σθ)V 2
x = 0,

V (T, x, h) = 1
2 [ax2 + 2cx].

(5.1.2)

It is too complicated to solve this nonlinear HJB PDE by assuming V (t, x, h) is the most general
case, V (t, x, h) = v0(t, h) + v1(t, h)x+ v2(t, h)x2. Therefore, we assume that c = 0 and V (t, x, h) =
v2(t, h)x2. Substituting V (t, x, h) into the HJB equation (5.1.2), we obtain that

∂tv2(t, h) + 2rv2(t, h) + k(Ĥ − h)∂hv2(t, h) +
1

2
σ1σ

>
1 ∂hhv2(t, h)

− 2(σθ(t))>(2σσ>v2(t, h) +R)−1(σθ(t))v2
2(t, h) = 0,

with terminal condition v2(T ) = 1
2a.

It is obvious to find that there is no the closed-form solution for v2(t, h), so we try to solve
the non nonlinear PDE by the extension of Feynman-Kac formula for semi-linear PDE, inspired
by Pham [22, Proposition 6.3.2, page 145]. For this method, we can obtain a BSDE representation
of solution, which is the viscosity solution. As a result, more details are left to be discussed in the
future.

Recall that
π̂ = −(σσ>Vxx +R)−1(σθ)Vx

and {
Vxx = 2v2(t, h)

Vx = 2v2(t, h)x,

so
π̂(t,Ht) = −(2σσ>v2(t,Ht) +R)−1(σθ(t))2v2(t,Ht)X

π̂(t,Ht)

We insert the optimal π̂ into the SDE of total wealth Xπ (5.1.1),

dX π̂(t,Ht) = [rX π̂(t,Ht)− (σθ(t))>(2σσ>v2(t,Ht) +R)−1(σθ(t))(2v2(t,Ht)X
π̂(t,Ht))]dt

− (σθ(t))>(2σσ>v2(t,Ht) +R)−1σ(2v2(t,Ht)X
π̂(t,Ht))dW (t)

= [r −A(t,Ht)θ(t)]X
π̂(t,Ht)dt−A(t,Ht)X

π̂(t,Ht)dW (t)

where A(t,Ht) = 2(σθ(t))>(2σσ>v2(t,Ht) + R)−1(σ)v2(t,Ht), and the corresponding solution is
given by

X π̂(t,Ht) = x0e
∫ t
0
r−A(u,Hu)θ(u)− 1

2A(u,Hu)A>(u,Hu)du−
∫ t
0
A(u,Hu)dW (u)
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5.2 Dual HJB Method

The dual control problem is given by

Minimize Ψ̃(y, α, β) := m0(y) + E[mT (Y (T,HT ))] + E

[∫ T

0

φ(t, α(t,Ht), β(t,Ht))dt

]
,

where Y satisfies{
dY (t,Ht) = [α(t,Ht)− rY (t,Ht)]dt+ [σ−1β(t,Ht)− θ(t)Y (t,Ht)]

>dW (t),

Y (0, h) = y.
(5.2.1)

Define dual value function Ṽ (t, y, h) by

Ṽ (t, y, h) = inf
α,β

E

[
mT (Y (T,HT )) +

∫ T

0

φ(t, α(t,Ht), β(t,Ht))dt
∣∣∣Y (0, h) = y,H(0) = h

]
,

and we can find the relationship between the primal value function and dual value function is

Ṽ (t, y, h) = sup
x∈R
{−V (t, x, h)− xy},

V (t, x, h) = inf
y∈R
{−Ṽ (t, y, h)− xy}.

The minimum point is obtained by solving

0 = −x− ∂

∂y
Ṽ (t, y, h). (5.2.2)

There exists an unique y solving the equation above, write it y = y(t, x). Therefore, we have

V (t, x, h) = −xy(t, x)− Ṽ (t, y(t, x), h)

and then, we obtain that

Vt = −x∂y
∂t
− Ṽt − Ṽy

∂y

∂t

= (−x− Ṽy)
∂y

∂t
− Ṽt

= −Ṽt,

Vx = −y − x∂y
∂x
− Ṽy

∂y

∂x

= (−x− Ṽy)
∂y

∂x
− y

= −y,

Vxx = −∂y
∂x
,

Vh = −Ṽh,

and

Vhh = −Ṽhh.

From the first-order condition (5.2.2), we know that

∂

∂x
(−x− ∂

∂y
Ṽ (t, y, h)) = −1− Ṽyy

∂y

∂x
,
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⇒
∂y

∂x
= − 1

Ṽyy
.

By Dynamic Programming Principle, we can drive the dual HJB equation,{
∂Ṽ
∂t + infα,β{Lα,βṼ + φ(t, α, β)} = 0,

Ṽ (T, y, h) = mT (Y (T,HT )),

where Lα,β is the operator defined by

Lα,βṼ = (α− ry)Ṽy +
1

2
[σ−1β − θy]>[σ−1β − θy]Ṽyy + k(Ĥ − h)Ṽh +

1

2
σ1σ

>
1 Ṽhh.

Substituting φ(t, α, β) and mT (Y (T,HT )) into the HJB equation above, we obtain that
∂Ṽ
∂t + k(Ĥ − h)Ṽh + 1

2σ1σ
>
1 Ṽhh + infα,β{(α− ry)Ṽy+

1
2 [σ−1β − θy]>[σ−1β − θy]Ṽyy + supx,π{xα+ π>β − 1

2π
>Rπ}} = 0,

Ṽ (T, y, h) = (y+c)2

2a .

Then, we know that α must be 0, otherwise, supx{xα} = ∞. The optimal π̂ can be find by the
first order condition,

β> − π>R = 0.

Therefore π̂ = R−1β, and the HJB equation becomes
∂Ṽ
∂t − ryṼy + 1

2θ
>θy2Ṽyy + k(Ĥ − h)Ṽh + 1

2σ1σ
>
1 Ṽhh

+ infβ{ 1
2 [(σ−1β)>(σ−1β)− (σ−1β)>θy − θ>(σ−1β)y]Ṽyy + 1

2β
>R−1β} = 0,

Ṽ (T, y, h) = (y+c)2

2a .

To find the optimal β̂, we obtain the first-order condition is

β>σ−1>σ−1Ṽyy − θ>σ−1yṼyy + β>R−1 = 0.

Assume that (σ−1>σ−1Ṽyy + R−1) is invertible, so we know that ((σ−1>σ−1Ṽyy + R−1)−1)> =

((σ−1>σ−1Ṽyy +R−1)>)−1 = (σ−1>σ−1Ṽyy +R−1)−1. Since R is a symmetric matrix and invert-

ible, we can obtain that (σ−1>σ−1Ṽyy +R−1) = (σ−1>σ−1Ṽyy +R−1)>. Thus, optimal control β̂

is equal to (σ−1>σ−1Ṽyy +R−1)−1(σ−1>θ)yṼyy.

Dual value function Ṽ satisfies:
∂Ṽ
∂t − ryṼy + 1

2θ
>θy2Ṽyy + k(Ĥ − h)Ṽh + 1

2σ1σ
>
1 Ṽhh

− 1
2 (σ−1>θ)>(σ−1>σ−1Ṽyy +R−1)−1(σ−1>θ)y2Ṽ 2

yy = 0,

Ṽ (T, y, h) = (y+c)2

2a .

(5.2.3)

Substituting y, Ṽy, Ṽyy, Ṽt, Ṽh, Ṽhh into the equation above, we can find that

−∂V
∂t
− r(−Vx)(−x) +

1

2
θ>θ(−Vx)2V −1

xx − k(Ĥ − h)Vh −
1

2
σ1σ

>
1 Vhh

−1

2
(σ−1>θ)>(σ−1>σ−1V −1

xx +R−1)−1(σ−1>θ)(−Vx)2V −2
xx = 0

⇒
∂V

∂t
+ rxVx + k(Ĥ − h)Vh +

1

2
σ1σ

>
1 Vhh −

1

2
(σθ)>(σσ>Vxx +R)−1(σθ)V 2

x = 0

(primal HJB equation)
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and

V (T, x, h) = inf
y∈R
{−xy − Ṽ (T, y, h)}

= inf
y∈R
{−xy − (y + c)2

2a
}

= −x(−ax− c)− (−ax− c+ c)2

2a

=
1

2
ax2 + cx.

These prove the relationship between the primal and dual problems. Next, to make the nonlinear
dual HJB PDE more solvable, we assume that c = 0 and Ṽ (t, y, h) = ṽ2(t, h)y2. Substituting
Ṽ (t, y, h) into the dual HJB equation (5.2.3), we obtain that

∂tṽ2(t, h)− 2rṽ2(t, h) + k(Ĥ − h)∂hṽ2(t, h) +
1

2
σ1σ

>
1 ∂hhṽ2(t, h)

+(σθ)>(2Rṽ2(t, h) + σσ>)−1(σθ)ṽ2(t, h) = 0

with terminal condition ṽ2(T ) = 1
2a .

It is obvious to find that there is no the closed-form solution for ṽ2(t, h), so we try to solve
the non nonlinear PDE by the extension of Feynman-Kac formula for semi-linear PDE, inspired
by Pham [22, Proposition 6.3.2, page 145]. For this method, we can obtain a BSDE representation
of solution, which is the viscosity solution. More details leave to be discussed in the future.

Recall that

β̂ = (σ−1>σ−1Ṽyy +R−1)−1(σ−1>θ)yṼyy,

α̂ = 0,

and

Ṽyy = 2ṽ2(t, h),

so

β̂(t,Ht) = 2(2σ−1>σ−1ṽ2(t,Ht) +R−1)−1(σ−1>θ(t))Y (y,α̂,β̂)(t,Ht)ṽ2(t,Ht).

We insert the optimal β̂ and α̂ into the SDE of Y (y,α,β) (5.2.1),

dY (y,α̂,β̂)(t,Ht) = −rY (y,α̂,β̂)(t,Ht)dt− Ã>(t,Ht)Y
(y,α̂,β̂)(t,Ht)dW (t),

where Ã(t,Ht) = σ>(2Rṽ2(t,Ht) + σσ>)−1σθ(t) with initial condition Y (y,α̂,β̂)(0, h) = y. We can

find that the SDE of Y (y,α̂,β̂) is the expression for a geometric Brownian motion, and the associated
solution is

Y (y,α̂,β̂)(t,Ht) = ye−
∫ t
0

(r+ 1
2 Ã
>(u,Hu)Ã(u,Hu))du−

∫ t
0
Ã>(u,Hu)dW (u).

Recall that

X π̂(t,Ht) = −Ṽy(t, Y (y,α̂,β̂)(t,Ht)),

Vxx = 2v2(t,Ht) =
1

Ṽyy
=

1

2ṽ2(t,Ht)
,

y = −Vx = −2xv2(t,Ht),

A(t,Ht) = (σθ(t))>(σσ> + (2v2(t,Ht))
−1R)−1σ,

and

Ṽy = 2yṽ2(t,Ht),
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so

X π̂(t,Ht) = −2ṽ2(t,Ht)ye
−

∫ t
0

(r+ 1
2 Ã
>(u,Hu)Ã(u,Hu))du−

∫ t
0
Ã>(u,Hu)dW (u)

= x0
v2(0, h)

v2(t,Ht)
e−

∫ t
0

(r+ 1
2 Ã
>(u,Hu)Ã(u,Hu))du−

∫ t
0
Ã>(u,Hu)dW (u).

We also find that A(t,Ht) = Ã>(t,Ht) and v2(0,h)
v2(t,Ht)

= e
∫ t
0

2r−A(u,Hu)θ(u)du. Thus,

X π̂(t,Ht) = x0e
∫ t
0

2r−A(u,Hu)θ(u)due−
∫ t
0

(r+ 1
2A(u,Hu)A>(u,Hu))du−

∫ t
0
A(u,Hu)dW (u)

= x0e
∫ t
0
r−A(u,Hu)θ(u)− 1

2A(u,Hu)A>(u,Hu)du−
∫ t
0
A(u,Hu)dW (u).

Finally, we obtain the exact same solution with primal HJB approach.
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Chapter 6

Conclusion and Open Questions

In this paper, we study the continuous-time stochastic linear quadratic control problem with fi-
nancial applications, and we aim to minimize the constrained quadratic risk function, a convex
cost function, in both the wealth process and portfolio strategy in an incomplete market. By
the convex duality method, we construct the associated dual problem satisfied the necessary and
sufficient optimality conditions. There are four main approaches used to solve the stochastic lin-
ear quadratic control problem in this paper, such as primal HJB, dual HJB, primal FBSDE and
dual FBSDE, and the goal is to prove all four approaches have the same solutions of the problem.
Then, we discuss the quadratic risk minimization problem with both no control constraints and
cone-constraints and derive numerical solutions of each approach. For no control constraints and
cone-constraints problem, we model the asset dynamics with constant coefficients and determinis-
tic coefficients, respectively. We also compare results of all approaches intuitively and analytically
by plotting paths of optimal processes and calculating the mean squared errors and variances of
differences between results. We find that the differences between each approach are very close to
zero from plots. The differences between each method are gradually smaller when the step size is
decreasing, and the number of grid points is increasing.

Moreover, we check results with different values of coefficients to compare all methods more ac-
curately and precisely. Since we use the numerical method and assume parameters are piecewise
constant, different coefficients give us results under various degrees of accuracy. However, we
demonstrate that, without any error from numerical methods, all approaches give us the same
results of optimal wealth process and optimal control process. In the end, we solve the quadratic
risk minimization problem under the stochastic factor model, where asset price has a random drift
term and drift term follows the OU process. Due to the limited time, we only solve the problem
by primal HJB and dual HJB approaches, and we prove these two approaches are equivalent by
showing the same semi-analytic solution.

For the improvement of this paper, we first can continue to solve the quadratic risk minimiza-
tion problem under stochastic factor model by using primal FBSDE and dual FBSDE approaches
and compare results with solutions of primal and dual HJB approaches. Also, we can use more dif-
ferent values of coefficients to check whether solutions of each approach remain close to each other.
There are still many open questions. For example, can solutions of each approach remain close
when coefficients become random coefficients? Can solutions of each approach remain close when
the quadratic risk minimization problem under the stochastic factor model has cone-constraints?
Can solutions of each approach remain close when the quadratic risk minimization problem is
under the stochastic volatility model? In the future, we will discuss these problems.
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