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Abstract

With the evolution of the economies and the unloreseeable changes and crisis
that happened over the recent decades, negative interest rates have become more
and more relevant to the financial industry and economies nowadays. Interest rate
models that have once been viewed as disadvantaged due to the fact that they can
model negative rates have now become popular and are acting as useful foundations
of interest rate modelling.

Taking the well-established market models, the Libor Market Model (LMM) and
the Swap Markt Model (SMM) as the starting point, in this project we explored
the effectiveness of an extension of LMM and SMM, the Displaced Diffusion Market
Model (DDM). DDM has the advantage over LMM and SMM of being capable of
negative rates modelling. DDM can take negative forward rates and swap rates up
to the value of the chosen shift in the model. Our testing approach is comparing
the close form analytical swaption pricing formula result coming from the Displaced
Diffusion Swap Model (extension of SMM) with the simulated swaption pricing re-
sults from the Displaced Diffusion Forward Model (extension of LMM) with various
settlement dates, maturity dates and strike prices. The results are promising and
sound, demonstrating a strong connection between the DDI and DDS model. The
results also testified the effectiveness of the Displaced Diffusion Model to model

interest rates.
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1 Motivation

1.1 Negative rates
1.1.1 Monetary Policy

Monetary policy is a macroeconomic tool to influence nations’ economic activities and
is essential for saving economies from crisis. It is always used to facilitate the goal
from the government and most of the time in conjunction with fiscal policy to make
the changes in fiscal policy more effective. Fiscal policy refers to the government poli-
cies regarding taxation, government spending and budget management. Both fiscal and
monetary policy were once controlled together by government, however, many nations
made the decision to separate monetary policy from government entities and let central
banks take control of it. Many experience have also confirmed that central banks con-
trolling monetary policy independently leads to better economics outcomes hecause of

the minimisation of political influence in decision making.

For example, in the United States, Federal Reserve has the responsibility to monitor
monetary policy to achieve desirable economics goals. The goals mainly include in-
flation goals and unemployment goals, and are usually set by the Congress but the
government has no impact on how the Federal Reserve actually implements the policy

(2).

Monitoring interest rates and the quantitative easing tools are two main aspects of
monetary policy. The former tool is used to control inflation, usually to keep it within
a certain target range; the later tool is to control money circulation in the economy
and the level of liquidity in the economy. An expansionary monetary policy refers to a
decrease in interest rate and an action of quantitative easing. This is due to the fact that
when interest rate decreases, there is less incentive for economic agents to deposit their
money in a bank. Instead, they may alternatively choose to spend their money in the
economy. This in turn boosts GDP, lowers unemployment rate, and eventually increase
inflation in the economy, preferably to the desired target level of the government and the
central bank. In addition, quantitative easing actions inject liquidity into the economy
potentially through purchasing corporate bonds, and this can lead to an increased level
of money circulation. This also has the same effect on the economy as a decrease in
interest rate discussed previously. Contractionary Monetary Policy works in the opposite
way as the expansionary Monetary Policy. Monetary policy in the history had helped
nations overcome crisis, for instance, Fed implemented an aggressively monetary policy

to lead the nation out of Great Depression in the 30s.




1.1.2 The role of interest rates in the economy

Interest rate can be considered as the premium to be paid to the lender from the hor-
rower to compensate the risk of lending and the time value of money. In particular, if
the borrower is considered ‘risky’, then this compensation is higher, i.e. the borrower

will be charged a larger interest rate compared to a less risky counterparty (3).

Interest rates are usunally in percentage terms. For example, the interest rates on a loan
is quoted as a percentage of the loan principle. The earnings from banks or credit unions
on one's deposit account can also be considered in percentage terms, i.e. a proportion
of the money one deposited with the bank. Principles of interest rates can be cash or

other forms of asset which are tangible, such as vehicles, land and houses (3).

There are many kinds of interest rates, and the two main ones are simple interest rate
and compound interest rate. Simple interest rate is caleulated as follows: principle x
interest rate x time. Time is in the form of ‘fraction of year’. Compound interest rate

is calculated as follows: principle x [(1 + interest)™ — 1].

The evolution of interest rates is an interesting history. Interest rate typically can be
viewed as two categories: long-term rates and short-term rates. Bank rates are very
short-term loans since it is the rate at which central bank lends to commercial banks.
According to Bank of England’s database on official bank rate history, the bank rate
had long been above 10% for over 15 years in the last century. The official bank rate
was at 10.5% on 17" February 1975 and it was above 10% until 4" September 1991
at 10.38%. The bank rate subsequently went down all the way from above 10% to the

current rate of 0.1% (I)).

To get a clearer idea on the evolution of interest rates, I explored the evolutionary trend
of interest rate on OECD Data source. Below are two insightful plots produced by
OECD: short-term rate evolution and short-term rate forecast. The timeline for the
former plot is Jan 2007 - July 2021 and for the later is Q4 2021 - Q4 2022.

We discovered that the evolution of interest rates are similar for almost all nations, al-
though the actual interest rates differ from nation to nation. We selected three nations
for illustration purposes: Japan, United Kingdom and United States. In Figureit
shows the general trend of short-term interest: it decreased from pre-2008 level to the
current level which is around 0%. Japan (blue) has a low interest rate throughout this
selected period, and it has negative interest currently (in August 2021) at around -0.1%.
United Kingdom (Red) has a base rate of 0.1%, and it has dropped sharply from around
6% in 2007 and 2008. Although interesting rates of United States has a peak in interest

rate around 2019, the overall trend is similar to the other two. From here we can see
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Figure 1.1: Short term interest rate from Jan 2007 to July 2021.

Red: United Kingdom; Purple: United States; Blue: Japan.
Source: OECD (2021), Short-term interest rates (indicator). doi: 10.1787/2¢c37d77-en

(Accessed on 07 August 2021)(4)

that the economies now have much lower interest rates, and even negative rates.
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Figure 1.2: Short term interest rate forecast from Q4 2021 to Q4 2022
Source:  OECD (2021), Short-term interest rates forecast (indicator). doi:

10.1787/9446e151-en (Accessed on 07 August 2021)(5)

In addition, according to OECD data on short-term rate forecast, as shown in Figure
more than 22 countries and nations will have a negative interest rate during Q4 of
2021 and Q4 of 2022. Couple of decades back, people view interest rate models that
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allow negative rates to be ineffective, since economies back then did not have a negative
interest rate or any sign of having one in the future. However, nowadays, having an
interest model that can properly capture the current interest rate level and negative
rates is important. There are many existing models which does not have this ability of
capturing a negative interest rate: interest rates are typically bounded below at zero in
these models. Again, this is because these models are created a while back when interest

rates were significantly different from zero.

On the other hand, an interest rate models that allows negative interest rates does
not necessarily mean that it is effective and useful — this motivates us to explore the
effectiveness of one of the interest rate models that allows negative rates and test its

accuracy of pricing derivatives, in this case, swaptions.

1.2 Derivatives and derivatives pricing

There are many financial instruments and derivatives in the financial world to allow
investors to choose from based on their taste of the economy, risk appetite as well as
investment goals. Some of the most common derivatives are vanilla options, forward
contract, future contract and swaps. In addition, these popular derivatives are mostly

written on underlvings including commodities, currencies, interest rates, stocks and

bonds (7).

In comparison to investing in the actual underlyings, derivatives give investors an op-
portunity to ‘leverage’ up their positions with their capital, and be exposed to a better
porfolio PnL. movement when there are changes in the underlying prices. Apart from
this beneficial feature, derivatives are also a great hedging tool for corporations and
investors to protect themselves from large losses. For example, airline companies may
enter a call option for fuels to protect themselves from a sudden rise of fuel prices; an
investor who holds large amount of Apple stock and speculates that the stock price may
go down can by put option on Apple stock to hedge his portfolio position. Lastly, deriva-
tives provide investors a chance to enter a position with a non-tradable underlying: for

instance, buying an option that is written on carbon emission or weather.

In this thesis, we focus on one type of derivatives, namely swaptions. We are motivated
to figure out how Displaced Diffusion Market Model can connect caplet market (DDF

model) and swaption market (DDS model) and if it can price swaptions reasonably well.

Below is a brief overview of three important and popular derivatives in the financial

world.

e Swaps are derivatives that allows two parties to exchange cash flows of the finan-

cial instruments they are holding. In particular, interest rate swaps are derivatives
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for two parties to exchange the interest rates (cash flows) that one of the parties is
paying between two differently indexed legs with a fixed swap rate, starting from

a agreed future point in time.

For example, the two parties of the Interest Rate Swap (IRS) agree at time ¢
that they are going to exchange cash flows at a swap rate K on future dates
Tos1,Tosn, ... 15, with T; — T;_; = 7;. Then one party is going to pay the ‘fixed
leg payment’ 7; K and the other party is paying the ‘floating rate payment’ which
is ;L(T;—1,T;) at time T;. After taking expectation on the floating rate payment,
this payment becomes ]E"‘(T,-L(T}_l,’l})) = 7 F(T,,T;—1.T;). Note that in this
case the first reset date will be T,,.

From perspective of the party that is receiving the fixed leg payment, the swap is

called the ‘receiver swap'. It is called ‘payer swap’ for the other party.

We learnt in the lectures (10) that there are three possible formulas for the forward

swap rate:

P(t, T,) — P(1,T5)

Sap = =3 P

Zi=u+l T,'P(f.,fl‘)

g
7P(t,T})

Sap = Z wi(t)Fi(t),  wi(t) = ——————— 1.1

i=a+1 Z;':rx+1TJ'P(3~IJ') (-1

] 1

S 1= Ilican tmm

e} - i 1
Ei=r.t+l 1 Hi=rx+l 1+T_i-F_i-iLi

Swap spread refers to the difference between the fixed rate in the swap and the
corresponding floating rate in the swap. One interesting fact was pointed out in
one of the recent studies by N Boyarchenko, P Gupta, N Steele and J Yen: there
could be a negative swap spread in some trades. A negative swap spread could
lead to arbitrage opportunities if interest rate volatility is the only source of risk
in the trade @D According to N Boyarchenko, P Gupta, N Steele and J Yen (]E[]
there are many other factors that affect swap spread, such as counterparty risk

and regulatory changes.

Caps have the following discounted payoff:

a + a +
3 D(t,:l‘,-)r,-(L[T,-_l,:{‘,-) - K) = ¥ D(t.T) (F,-(il‘,-_l) - K) (1.2)
i=a+1 i=a+1
Relating to the swaps that are described above, caps can be seen as a payer IRS
where each exchange payment is executed only if it has positive value from the
long party’s perspective (10). Similarly, floors follow a similar logic but instead of

mimicking the payer IRS, it is the positive payvotfs of the receiver IRS.
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Caplet refers to each of the individual components in a cap, i.e. the payoff is
D(t, Ti)Ti(L(Ti—l. Ti)—K)+ = D(E.IE)T:'(R(Ti—l)—K) - for each of them. There-
fore, if we know the whole distribution of future rates, we can evaluate each caplet
separately and add all the corresponding values together to obtain the final cap

price.

e Swaptions are options to enter a payer or receiver IRS at a pre-agreed future

point in time. In the payver swaption case, the pavoff of this derivative is:
D(tn I}I)Crx‘:ﬂ(]}x}(k rx‘:'j’(:l‘rx) - I{}-'_

g +

=D(t,T,) ( > P(Ta,T)7i (F(Ta, Tia, T) — K)) (1.3)
t=a+1

However, we can see from the above formula that the swaption price is not additive:

it cannot to decomposed in to separate parts and sum them all together. Instead,

in order to accurately price swaptions one needs to obtain the correlation between
future rates (10).

1.3 Choosing interest rate models

We have discussed in the last section the importance of the dynamics of future rates
when pricing derivatives like caplets and swaptions. We now move on to discuss some
possible choices of interest rate model that we can use to model the dynamics of those

future rates.

There are a few choices that could be considered.

e Firstly, we can choose to model short rates r;.
Short rates are rates at which one can borrow or lend money for a very short
period of time. This is a valid modelling approach due to the fact that the zero
coupon bond curve can be derived completely from the characteristics of the dy-
namic of the short rate ry, i.e. the zero coupon curve formula is: 7' — P(1,T) =
]E?exp (— LT ?‘Sds) that contains r, as an input. Some famous short rate models

include
1. Endogenons Models
(a) Vasicek Model (1977): dz, = k(8 — x;)dt + odW,, o= (k,0,0);

(b) Cox-Ingersoll-Ross model (CIR,1985): dx, = k(8—x;)dt+a/adW;,
(k,0,0), 2kO > a?.

2. Exogenous Models

(a) Hull-White (Extended Vasicek): dx; = k(0(t) — x;)dt + odWy;

13




(b) Hull-White (Extended CIR): dr, = k(#(t) — x,)dt + o /x,dW;.

In general, Endogenous Models take zero curve and model volatility as outputs,
whereas exogenous models take the zero curve as an input of the model . The
calibration of endogeous models are usually poor since it does not produce the
inverted shape of the zero curve as an output. On the other hand, exogenous
model have a perfect inverted zero curve since it is given as an input of the model.
Therefore, exogenous models give better fit of market rates (10). As mentioned in
lectures (10), the basic sirategy to transform an endogenous model into an exoge-
nous model is to turn the parameters in the endogenous models into time-varying
parameters. For example, in the example models given above, we can see that the
Extended Vasicek model uses a time-varying parameter #(f) instead of the fixed

parameter used in the Vasicek model #.

Despite the high level of analytical tractability | short rate models have several
disadvantages. Some disadvantages of the Vasicek Model (1977) include that it
assumes constant volatility, thus there is no term structure of volatility; and it
assumes short rates to be perfeetly correlated (13). The CIR model (and also the
extended CIR model) was also challenged by Pearson and Sun (1994) for its
large errors in pricing of the Treasury market (bills). In general, short rate models
give poor calibration results for large number of caplets and swaptions, although
this can be improved by using multi-factor models for . In addition, market views
and quotes cannot be fully and accurately expressed by these short rate models
due to the limited number of the model parameters (10). More importantly, short
rate models lack consistency in the pricing of some basic financial derivatives like
caplets and swaptions with the universally used prices derived from Black’s formula

ﬂLﬁD. Thus, we want to consider several other models for interest rates.

We can alternatively choose to model forward rates F(t,T,5).

The most significant practical advantage of Market Models compared to short-rate
models is that thev specify specific arbitrage-free dynamics on forward rates and
swap rates, although those models are of high level of computational difficulty due
to high dimensionality of the dynamics (14).

1. Libor Market Model (LMM)
LMM is the most popular market model in the academia and was developed
by Brace, Gatarek and Musiela (1997) (9), Musiela and Rutkowski (1997)
(21), Goldys (1997) and Miltersen, Jamshidian (1997) (18), Sandmann
and Sondermann (1997) (20). LMM is also called ‘log-normal forward-Libor
or Linear model’. This is due to the fact that the dynamics of F' follows a

geometric Brownian Motion under the corresponding measure QF, which is

14




the forward arbitrage free measure (9). The dynamic of forward rates is:
dF(t) = op () Fp(t)dWi(t), Fi(0), QF (1.4)

The advantage of LMM is that it is consistent with the Black formula for

caplets.

However, according to many recent studies and market data, it was found
that the basic assumption of the ‘log-normality’ of forward rates of LMM is
violated due to the volatility skew that is observed by the market of cap-
s/fHoors and swaps (6). Moreover, the ‘log-normality’ characteristics assumed
in LMM is not at all necessary due to the fact that forward rates are not
tradable in the market - the dynamics of forward rate do not have to have
zero drift under numeraire pairs (17). Another main disadvantage of LMM

is that since F} s are log-normal, they cannot be negative.

There are some market models under which the dynamics of forward rates
are not geometric Brownian Motion martingale. Apart from the Displaced
Diffusion Market Model that we are going to discuss shortly, there is one
other useful model that is worth mentioning - if we take a Brownian Motion
martingale instead, we will arrive at the Bachelier market model (BMM)

which has the following dynamics:
dFi(t) = op(t)dWi(t), Fi(0), QF (1.5)

This model implies normally distributed forward rates that can take negative

values.

2. Swap Market Model

As mentioned above, LMM is consistent with Black’s formula when pricing
caplets and floorlets. On the other hand, swap market model (SMM) is
consistent with Black's formula for swaptions. Although LMM is, up until
now, the most popular market model and is studied the most, some authors
hold an alternative view about the usefulness of LMM: for example, Huang
and Scaillet (2003) claimed that Swap market model (SMM) is a theoretically
and practically better model (16). Similar to LMM, SMM also assumes log-
normality of the swap rates, and the dynamics of swap rates are described
as:

dS, a(t) = ﬂ'u‘g(ﬂ)S{x‘=-g(ﬂ)dI’[;£x‘:3, Q*F  (SMM) (1.6)

A more comprehensive introduction of the SMM is written in Section 4.1.

3. Displaced Diffusion Market Model




Displace diffusion model is useful due to the fact that it allows us to obtain
models that have properties ranging from Libor market model (LMM) to
Bachelier market model (BMM) (10).

Displace diffusion model is decribed as follows (Note that W; is a standard

brownian motion under measure )*):

dF;(t) = o3 (1) (Fi(1)—ap)dW;(t), where ap is a constant deterministic shift.
(1.7)
When taking limits on F;, we can recover the LMM and BMM.

(a) For very small F}, i.e. F; =0, becomes
dF;(1) = o9(t) (F;(1) — ap) dW;(t) &= —oa(t)apdWi(t) (1.8)

which corresponds to BMM.

(b) And when F; is very large and positive, i.e. F; — +o0, || becomes
dE;(t) = oi(t) (Fi(t) — ap) dW;(t)

= 0,(t)Fi(t) (1 - ;—{‘“”) dW;(t) (1.9)

~ o (1) Fi(t)dWi(t)

which corresponds to LMM. Please note that here we have used the fact

that F;{II) — 0 as F; — +0c.

This model allows negative rates by choosing ap < 0. In fact, the model can
attain negative rates down to level ap. Since ayp is a shift on the forward rate,
intuitively it should be not be too bhig in absolute value. One can interpret

a e as a constant real number which is bigger than -0.5.

1.4 Structure of the thesis

The thesis is written in the following structure: Chapter 2 summarises all the useful
notations that appear in the subsequent Chapters. Chapter 3 is the derivation of for-
ward rate dynamics under different measures in the Displaced Diffusion Forward model
(DDF). Chapter 4 derives the analytical formula of swaptions in the Displaced Diffusion
Swaption model (DDS). Chapter 5 is the procedure of Monte Carlos simulation of the
DDF model and it describes how the DDF model (aka.Caplet model) can be connected
with the DDS model (aka.Swaption model). The pricing results of swaptions under DDF
and DDS models are summerised in Chapter 6, and the analysis of the discrepancies
between the results are written in Chapter 7. This thesis is written based heavily

on the concepts in lecture notes (10) written by Prof. Damiano Brigo.
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2 Notations

In this section some useful notations are summarised for convenience.

e Forward rate Fj(f) = F(t,T_1,T}) describes the forward rate between time

Ti—1 — 1} seen at time t, with F'(t, Th—1,T}) = ﬁ[%};}l} —1).

o Volatilities in different models o, 5 refers to the volatility in the Displaced
Diffusion model for swaption, and o refers to the volatility in the Displaced

Diffusion model for Forward Rates.
e Measure QF denotes the Tj-forward measure.

e Standard brownian motion Wg refers to the standard brownian motion under

measure Q' at time T}.

e Chosen constant shift oy denotes the chosen constant shift in the forward rate
Displaced Diffusion model and ag denotes the chosen constant shift in the swap

rate Displaced Diffusion model

e Different Models DDF model represents the Displaced Diffusion Forward model

and DDS model represents the Displaced Diffusion Swap model.




3 Deriving the Displaced Diffusion Forward Model: Dy-

namics of forward rates under different measures

Similar to the LMM, we expect the Displaced Diffusion Forward Model (DDF Model)
introduced in this chapter to be able to price caplets/floorlets accurately as in LMM.
This is because DDF Model can produce a closed-form formula for caplets/floorlets
prices consistent when the Black's formula just as LMM. As the focus of this thesis is
on pricing swaptions, we are not going to go into details of the caplet pricing under the
DDF Model.

3.1 Introduction to Forward Rates under different measures

Timeline Illustration of the dynamic of forward rates:

t Ti o T T; Tina

e

——
Fia F; Fiza

As illustrated in the timeline above, when using measure (J*, the forward rate F} is a mar-
tingale. This means that between time 7; _; and T, we have dF;(t) = o;(t) (Fi(t) — ar)dW;(t),
where 1W; is a standard brownian motion. However, the forward rate F is not a martin-

gale in any other cases under this measure. Instead, we have the following dynamics

dFi 1 = pi_qyoi1 (Fi(t) — ap)dW;_; (3.1)
dF; . = ﬂ-;+10’:'+1 (Fis(t) — ar) f“’vfﬂ (3.2)

for time T; o — T; 1 and T; — T;.1 respectively. In summary, we have a drift term
i in the dynamic of forward rate F' when the forward rate Fj. is not measured under
Q*. Thus, we want to use the change of numeraire method to work out the dynamic of
Fy under measure (' for k£ # i. For simplicity, we assume the shift is the same for all
forward rates, and denote the shift by ap. Of course, this assumption is a very strong

one and may cause biases or inaccuracies in the model results.

3.2 Change of numeraire method to determine the dynamic of £;

Now we try to work out the dynamics of F. under T;-forward measure Q. As stated
above, the dynamics under the Ti-forward measure has no drift. Therefore, all we need
to do is to figure out the dynamic of Fj. for k # i. Here we follow the steps described in
Lecture Notes (10).

Suppose first that ¢ < k. We use the change of numeraire toolkit which provides

a formula to relate standard Brownian Motions under two different numeraires (say 7
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and S). We have the following formula:

(3.3)

. . DC(S)  DCW)\"
de:de-’—p( ) _ ()) dt

5 t L J",:

Note that ‘DC’ stands for ‘Vector Diffusion Coefficient’. For clarity, we can view DC as
a linear operator of the diffusion part of a stochastic process. For example, if we have a

process X; which has the following dynamic in differentiated form
dX; = adt +vdZ; (3.4)

where a is some function of X or some constant, then the row vector v is the ‘DC’ term
of X;. In other words, we can view dZ; as a column vector of Brownian Motion and DC
is the linear operator that attach the corresponding diffusion term to each dZ; (10)). For
instance, if at time one we have dX; = oy XlaiZl] as the column vector d.X;, then the
DC term is

DC(Xy) = [01X1,0,0,...,0] = o1 F1e1 (3.F

w
o
—

With the above, now we see that 1| can be re-written as

4z = dz{' ~ p(DC(n( )"

DC(S)  DOW) _ _ DCnT
S, 0 DC(In(S)) — DC(In(U)) 6

= DC(In(S) — n(U))

= Do)

Here we use S = P(-, 1)) and U = P(-,T;) to obtain the following relationship:

e T
dz} = dzj — pDC (m (‘;(( i")) )) dt (3.7)

Now we can see that

L (POTY | ( PUT) PTiey) P T)
"\Pa1) ) T M\ P T Pt Tha) T P(LTY)

1 1 1
=In -
(1 + () 14+ m B (t) 14 T:'+1Fi+1(ﬂ))

( 1 ) (3.8)
=In .
j=inn (14 7 Fj(t)

k
== ) In(l+7F(1)

J=i+1

where 7. = T). — Tj._1 denotes the time lag between the two bond maturities. In the sec-
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ond equality, we used the definition of forward rate F(t, T, S) = Fs(t) = =5 (% - 1) =
% (S =T)Fg(T)+1for T" < S. Note that this relationship between forward rates
and zero-coupon bond prices is model-independent. Therefore, by the linearity of ‘DC’,

we have the following result

P(t,T;) k
DC'In (P{t.:l‘,-}) = —chzzi;llnu + 7 Fj(t))

k

_ Z DC1n(1 + 7;F;(1))
J=i+l
Y DO+ 7 Fy(t))

L+ 75 F5(t)
_ Fi(t))
o _z: TJIJFTJ Fi(1)

() (Fj(t) — arF)e;
=_,ZTJ 1+TJFJ(1¢) :

I M

where e; refers to a vector of the form [0 0---1-- -U]T, with 1 in the j-th entry and
0 in all other entries Note that the vector diffusion coefficient ‘DC’ of Fj is
7 (t)(F;(t) — ap)e; by definition of the dynamic of F; under DDM. Substituting the
above 1esu.lt into we obtain the following expression:

103103 I‘}—ar)t
1 +TJ‘F}('J

k
a'.Zi‘:de-l—p Z TJ

j=i+l

(3.10)

In order to obtain the k& — th row of dZ,, i.e. the dynamic of Z, at time T}, we pre-

multiply both sides of (3.10]) by e{. As a result, we obtain the following dynamic of
dzk:

. ; k —ap)e;
dZ} = dZi + [pry prz-- - Pl Z 1 + - F( 5 Lt
J=i+l J
(3.11)
—dZi + Z ’)_”F)””Jr
* 1+TJ j(t)

J=i+l

Finally, we substitute into the original equation of the model (model definition)
db. = oy (Fr. — ap) de. we get

k
. (1) —
dFy = on (Fi —ap) [ dzi+ Y 72 )1+T) E”)")”“ir (3.12)
J

J=i+l

which is the dynamic of the forward rate with maturity T under the forward measure
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Q* when i < k.

Suppose now that i > k. Analogously to the above case where i < k, now with
S=P(-T1T;)and U = P(-,1T}):

o T
dz} = dzf — pDC (m (;)((j)))) dt (3.13)
Ak

Then, by following the same reasoning as ||| we have

PUT)\ _ N~ g s
1n(P“‘Tk))f > In(1+ 7 F(1))

gk (3.14)
P(n,'f}-)) : L(1)(Fy(t) — ap)e; '
= DC In — = — T,
(P(t,jk) J_:Zk;l ! 1+ 5 F5 (1)
Substituting the above result into , we obtain the following expression:
! (t) — a-p)e.T
dZ} = dzZf + L dt
g 2:\;1 1 + TJFJ D)
. (3.15)
1ZF = dZi—p S B —ar)ey
= a d dt
/ ng 1 + (D)

Finally, by calculating the k — th row of dZ*, we obtain the following dynamic of dZ*:

k

k_ t I‘} } ‘11"}.0& .J
AZy = dZ; - j=2:':+1 & 1 + 7 F5(t) @
E (3.16)
i (t) — «
T (dz}r\ . J-=Z:'J;1 K )1 + Ti f;)pk i

In summary, the dynamics of F;, under forward measure ' is:
dFy(t) = p¥ (t, F(1)) ox(Fy — ap)dt 4 op(t) (Fi(t) — ap)dZL(t) fori<k
dFy(t) = on(t) (Fe(t) — ap)dZE(t) fori=k (3.17)
dFy(t) = —pj. (t, F(1)) ok (Fi — a)dt + ox (1) (Fr(t) — )dZ}(t) for i >k

m _U'(5}(F'{L}—f-tk'}f':r1"
g=n+1"1 147 F;(t)

where we set p = >
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3.3 Existence and uniqueness of solutions

Now we set X () = F'(t) — ap. Then the dynamic of dX;(t) is therefore the following:

dXp(t) = p¥ (1, X (1)) o Xpdt + o () X1 (1)dZ1(t)  for i < k
dXp(t) = op () Xi(t)dZE(t) fori=Fk (3.18)
dXp(t) = —pb (t, X (1)) 03 Xpdt + o (1) X (1)dZ1 (1) for i > k

Under this substitution, Xp(t) is the same as the process under the LIBOR Marker
Model (LMM).

Case 1: i = k. The existence and uniqueness of solution is guaranteed since the
dynamic is a GBM process with zero drift.

Case 2: i < k. We apply Ito's formula on In X (f) to get

T ()X (E)
1+ 7 F(t)

ke .
dn X (t) = on(t) S 2% dt — gkg)zdn + o3 ()dZx(t) (3.19)

J=i+1

2
The diffusion coefficient o1 (t) is deterministic and bounded, and U“.(;} is uniformly
bounded from below. In addition, for the first term in iI we have two cases to

consider:

o fap > -1/r, 0 < nX;)/(1+ 7,F;(t) = 7;(F;(t) — ar) /(1 + 7;F;(1)) < 1, so
the drift term is also bounded. Since 7 is a time period that is a proportion of
one vear, 7 < 1. Thus, % > 1 and in turn —% < —1. This means that ar > —1in
the upper bound case and ap > —oc in the lower bound case, and it is satisfied

by the definition of ap which is a shift on the forward rate F.

e If the condition of ey > —1/7 is not satisfied, the drift is still bounded if o and
are finite, which are centainly the case by the construction of ap and 7. In reality,
since ap is the shift applied on forward rates, and 7 is a vear fraction which is

typically less than 1, ap > —1/7 is satisfied almost with certainty.

Case 3: i > k. We apply Ito's formula on In X(f) again to get

pi 70 (1) X;(t) gt — ak(n)Q

dIn Xp.(t) = —or(t) Tr 5 B(0) g

j=k+1

At + o (t)dZ (t) (3.20)

Following the same reasoning as in case 2, we can see that the drift and diffusion terms

are bounded.

In summary, the existence and uniqueness of a strong solution to the SDE

in (3.18) is guaranteed.
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4 Displaced Diffusion Swap Model: Pricing swaptions through

the analytical Black’s formula

4.1 The Black formula under Swap Market Model

In Section we have mentioned that LMM is a useful market model to price caplets
and floorlets. However, since market options on interest rates are divided into two differ-
ent markets — the cap/floor market and the swap market, LMM is not the only market
model that has been largely used. To obtain swaption pricing results using LMM, one
needs to use techniques such as drift freezing to obtain an approximation. On the other
hand, the Swap Market Model (SMM) is considered as a better market model to manage

swaptions.

As in the lecture notes (10), the SMM works as follows:
we consider a payer swaption with first reset in T,, and paying at time Ty, 11, Tho0,. .., T3

and a fixed rate K. The pavoff can be written as

g
(Sas(Ta) = K)" Y nP(T..T) (4.1)

i=o+1

Then, when we take C,, 5(t) = EI’;“ 1 7P(t,T;) as the numeraire, the forward swap
rate S, g is a martingale under this numeraire and the correponding measure Q**. For
completeness, the numeraire C,, 5(f) is called Present Value per Basis Point (PVPBP),
PV01 or DV01. Therefore, we have

Pt Ta) — P(t,Tg) _ P(t,Ta) — Pt Tp)
Eiﬁ:r.t+1 TIP(P:‘ 11) - Oﬂ‘ﬁ(t)

Sr.t,.‘")’(t) = (42)

In turn we get
A8 p(1) = Ta (D) Su s(AWS?, Q™ (SMM) (4.3)

which is the swap market model. In this model, we can obtain a closed-form analytical

pricing formula for swaptions:

Swaption Price = E¥

g
B(0) QR
B(T.) ; 7iP(To, T) (Sa,p(Ta) — K) }

Cr.t‘:'j’(ﬂ)
Crt,."j’ ( j;t}
= Cas(0E™ [(Sas(Ta) - K)7]
= Cr.t‘:'ﬂ(n) [Srtd(ﬂ)q)(dl) - 'K'(IJ(dZ)]

s [ Cos(Ta) (Sap(Th) - K)+] (4.4)




Sa.800) 1o
nr“_ iET‘*Ui.:’i{T‘*}

VTava 3(Ta)

In

where dq 2 = and ?_-‘i‘.‘.-j,(T) =7 fnT (00 3(t))? dt.

4.2 Displaced Diffusion Swap (DDS) Model

As mentioned in Chapter 3, the DDF model should be a safe choice for the caplet market.
We now want to link the DDS model, which should be effective for the swaption pricing,
to the DDF model. We want to see if the pricing results are consistent in DDF model

and DDS model for swaptions.

4.2.1 The dynamic of S, 3

Now we fix o and J and consider a swaption with underlying S, 5 and try to work out the
dynamic of 5, 5 under the Displaced Diffusion model. Firstly, we set S, 5 = X, 5+ ag,
where ag is a constant shift that we choose for the model. Since under our assumption,

Xopis log—normal it follows a GBM with zero drift, which is identical to the dynamic

ofulgln , lLe.

erx,."')’ = Ur.t,."')’X rx,."i’(ﬂ'vn @u‘:’i’ (45)
Then, since «g is a constant shift, we observe that dS = dX | which gives

dS, a8 = Tajb X o3 dW

) (4.6
= On,j3 (er‘:'i - ‘15) (‘”'V‘ @u,.‘ﬁ }

and this is the dynamic of S, 5 in the Displaced Diffusion model under the swap measure

@u,:'j’

4.2.2 Swaptions Pricing

Now we go on to price Swaptions under the Displaced Diffusion model using the dy-
namics described in . We apply the change of numeraire toolkit, where we set

f a1 TilP(Th, ) = Co 5(Th) as the numeraire:

Swaption Price = E¥

Z 7P (T, T3) (Sa, J,x)—hﬁ}

f a+l
- s {7((1”))(* (Ta) (Saa(Ta) — K) ]
= Ca (0 )JE”“"? [(Sas(Ta) = K)'] (4.7)
= Co s (OE? [(S, 5(Ts) — as — K + ag) ]
= Coa s (0E™ [((Sa,5(Ta) — as) — (K — as))]
= Cas(0)E™ [(Xq ( ) — (K —ag))"]
= Ca5(0) [Xa 5(0)2(d1) — (K — ag)®(d2)]
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N, 5000 | g 2
T iET“va.:'i{T“}

2 ey 1 T
ream M vas(l) =1 fy (0
the assumption that X, 5 is log-normal in the calculation.

Ir

.3(15))2 dt. Again, we are using

)

where d; o =

Therefore, from (4.7 we can conclude that the swaption price under the Displaced Diffu-
sion model has a closed form formula, and it can be interpreted as Black FormulaForSwaption
(erx‘ T 3y K - g, Xu,."i’(n) =« uc,.‘":’(n) - ‘1'5')-

There is a special case of the analytical pricing formula (4.7)): there could be situations
in which the strike K — ag is less than the zero. In this case, the expectation is no
longer an option since it is always positive: X, 5 > 0 and —(K — ag) > 0. Instead, it

becomes a forward contract. To express it numerically, we have, when K — ag < 0:

Swaption Price = Crx‘,-a’(U)JE”"'j [(Xu".-g(’i’}x} — (K - r]r_g*}}+]
= Crx‘.'?(o)Eu‘ﬁ [er,."i’(ii}x) - (I\, - ‘IS)] (48)
= Crx‘.'?(o) [Xuc,."i\’(n} - (-'K - ‘IS}]

Since in this case there is no ‘option’ embedded in the swaption anymore, it makes the
situation less interesting from this thesis's perspective. Therefore, we tried to avoid this

situation by choosing the parameters wisely.

Subsequently we are going to compare the swaption price results calculated from this
formula with the Monte Carlo simulation results based on the DD-Forward model de-
scribed in the next chapter. Note that prior to the comparison of results, we tested the
accuracy of this closed-form swaption formula by setting volatility very close to zero
and computing the intrinsic value as well as the value of this pricing formula (4.7). We
found the results to be accurate up to the 11th decimal place, which is a very high level

of accuracy.

4.3 Connecting Forward rate F' and Swap rate S in the Displaced
Diffusion Model through volatility v2 ,(7,,) and shift ag

4.3.1 Volatility under DDM

If we do an integration on the Black-Scholes Volatility component in the Libor Market
Model (LMM) as in the lecture notes (L0)), we can see that:
Ta Ta T.
[ sttt = [ oasdWas 0ons @dWas() = [ (10 Xas(®) (dIn Xas0)
0 0 0 (4.9)
The same relationship holds under the Displaced Diffusion model due to the dynamics
of X, g stated in (4.5). X, 5 in the Displaced Diffusion Model is also log-normal, just
as S, 5 in the Libor Market Model.




Under the Displaced Diflusion Model, we can do something analogously, where S, g is

approximated by weighted average of forward rates.

)
Sap(t) = Y wilt)Fi(t)
i=a+1
'“’.i(t) = “’.I'(Ex-l—l (”! Fr1+2 (r)‘ ] Eg(f)} (410)

i 1
Ti Hj=r.t+l 1+ F;(t)

T8 % 1
Zk=r1+l Tk Hj:u-l—l 14+ Fy(t

We then use the ‘Freezing the w's at time (' technique to get

3 g
Saplt) = > wil)Fx(t) = Y wil0)Fi(t) (4.11)
i=o+1 i=a+1

the reasoning behind this approximation is that we can view the variability of the w's to
be much smaller than the variability of the F’s. Note that the swap rate computed from
is the same at time 0 with the swap rate computed from . This quantity is
going to be our choice for the strike K since we want to price at-the-money swaptions

due to the paratemerisation we choose for the volatilities (described in Section.

Now we differentiate S, 5(t) in (4.11) to obtain the dynamic of dS. g

A =3
dSap = Y wi0)dF = (...)dt+ Y wi(0)oi(t) (Fi(t) — ap)dZi(t) (4.12)
i=o+1 i=a+1

We can then observe that dX, s(f) is the same as dS,, 5 in (4.12), due to the fact that

Xap =843 — ag and ag is a constant so dag = 0. Thus, we have

=3 5
dXop=d(Sap — ag) = Z wi(0)dF; = (...)dl + Z w; (0)al (1) (Fi(t) — ap) dZi(t)
i=a+1 i=a+1
g 3
= > wi(0)dF; = (.. )dt+ Y wi(0)o] (1) X T dZi(t)
i=a+1 i=a+1

(4.13)
where we used the fact that X¥ = Fi(t) — ar. From 4.13) we get the relationship

between the two rates X (Forward rate) and X, (Swap rate).
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The differentiated form of the quadratic variation of X,, 5 therefore is

8
dX, g(t)dX, 5(t) = Z w; (0)oy(t) (Fi(t) — ap) dZ;w;(0)o;(t) (F;(t) — ap) dZ;
i, j=0+l1
a
Z wi (0)w; (0)(Fi(t) — ar)(F;(t) — ar)pijoi(t)o;(t)dt
i J=o+1
I}
D wi0)w;(0)XF (1) X[ (1)pi joi(t)o(t)dt

ij=o+l

(4.14)
Here, we have used the fact that dZ;dZ; = p; jdt in calculating the last equality. By

applying the Ito's formula, we can get the quadratic covariation of dIn X, 5(t) is

i-X{.t S\t tX{.t g\t
(@0 Xap(0) (10 X)) = G2 et

_ Ef;=u+1 w;i (0w (0)(Fi(t) — ap)(Fj(t) —ap)p; joi(t)o;(t) "
~ el dt

o3
30 —arr wilO)w;(0) X[ (1) XT (1) pijoi (t)o; (¢)
= e dt

a3

(4.15)
Now we can introduce another approximation which is freezing the F;(t)'s and Fj(t)'s

to time zero:

Efj:u+l w;(0)w;(0)(Fi(0) — ap)(F5(0) — ar)pi;

(d In Xr.t,:')’(r‘)) (d In Xr.t,:':’(t)) = X2 ; {;I'I-(t)ﬂ'j(f)dﬁ
g r X F
D wil 0w (0) XS (0)X 7 (0)ps
S <2 : L—=0i(t)o (t)dt
(4.16)

and now we can see that the o’s are the only time-dependent functions in the formula.
We are in a great position to compute the time-averaged percentage variance of X, g
under the Displaced Diffusion model (DDM).

Volatility in DDM Swaption Formula

T
(U“D‘.?'M)Q = %/ (d In Xr.t,:')’(t)) (d In Xr.t,:?(t))
o J0
w;(0)w; (0)XF(0) X (0)ps, /T" Foo F
= v a; (t)oj (t)dt 417
ij=a+1 ToXap(0) 0 ’ ( )
a g F F
=D wilQus OV XEOX] Opis (™ p P g
. . I;.tXr_t "5’(“)2 0 R J
i=atl j=a+1 o
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Similar to the Libor Market Model (LMM), & f}f M can be viewed as an approximation
for the Black volatility vy 3(T) (L0). As a result, we can substitute the DMM volatility
approximation o'D ;'f M into the Black’s formula for Swaptions to price swaptions which
is calculated in . To make things clearer, now we have a close form formula for

DDM swaption pricing if we subsititute the afg“ derived in (4.17) into (4.7):

Swaption Price Under DDM = C, 5(0) [Xo 5(0)2(d1) — (K — ag)®(ds)] (4.18)

Xo gl0) | 4 2
K—og :tET"vm;'i{T“)

\/T_nvn‘:'i(Tn}

In

where d) o = and, with substitution,

=3 - . F F . T.
o DDA 2 wi(0)w; (0) X7 (0) X5 (0piy T L &
v, 5(T) = (035 = z ’l}xXa‘,.g(U)QJ A o, (t)oj (1)dt  (4.19)

ij=a+l

Note that for the calculation of afgf"” we used the technique described in ((4.9).

In the actual computation of o'D MM “we need to turn the integral in (4.19) into a sum.

Precisely, we are going to use

3 F b
.u;I-(U)'wJ'(U)XI- (D)Xj (U)Pi,J an r »
> — _ oF (Do (t)dt
i,j=0+1 IU‘X”“D’[D)
a F F Th
w;(0)w;(0) X (0) X5 (0)pi 4
= Z ToXop(0)2 Z f)a (t)r (4.20)
i, j=co+1 9 0

In our setting, we have a constant T which is set to be 0.25 (3 months).

4.3.2 Shift ag under DDS model

The only question left is about swaption price under DDM (4.18) is to decide the shift
ag in DDM. One method can be tried out: trying to match the integrated quadratic

variations of d.& in both models (DD-Forward model and DD-Swaption model).

¢ In the DD-Swaption model, the dynamic of S, 5 is given by (4.6). The quadratic

variation of S, g therefore is

(dS. ) (dS, 5) = 0, 5(t) (S, 5 — ag)dWa, 5 (5, 5 — ag) dW
s) 8) 23 ) (Sas — as) 4 (Sa s — ag) (4.21)
= 0u,p (er,B - 0(3’) dt

by doing integration on (4.21), we found the quadratic variation to be 0' 2.5(8) (Sap(t) = 05) .

e In the DD-Forward model, the dynamic of S, 5 is given by (4.12). Following the
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same logic as above, without freezing the time for w to zero, we get:

g I
(dSa,5) (dSap) = D wilt)oi(t) (Fi(t) — ap)dZ;(t) > w;(t)o;(t) (Fj(t) — ar) dZ;(t)
i=a+1 j=a+l
=33 wiltyw;(t)ol (B)af (t)pi; (Fi(t) — ar) (Fj(t) — ap)dt
i 7

(4.22)

by doing integration on , we found the quadratic variation to be

2o wilt)wj(t)oi(t)o;(t)ps; (Fit) — ap) (Fj(t) — ap). Note that the sum here

goes from ae + 1 to 3.
Now we apply the same ‘freezing to time zero’ technique as before on the quadratic varia-
tions calculated from the two displaced diffusion models. Then the quadratic variation in
DD-Swaption model becomes o'i 5() (Sa,p(0) - CYS)Q, and the quadratic variation in DD-
Forward model becomes 3, 3, -:‘uI-(U)-wj(U}af(t)of(t)p,-d- (Fi(0) — ap) (Fj(0) — aF). Now
we can integrate both sides of with time freeze to 0 and from 0 to T, and

we equate both sides to obtain

Ta , Ta
fn 02 5 (8a,p(0) — ag)®dt = /n 30D wil0)w;(0)a3(0)a;(0)pi; (Fi(0) — ap) (F3(0) — ap) dt
i J

(4.23)
Now we assume that everything apart from ag is known, and assume F;(0) and F;(0)
are constants. We try to solve (4.23) in avg and get, an expression of g in terms of ap.

For left hand side of the equation we have

Ta
LHS = / 0’3‘:-5 (Sij(n) — 285, 3(0)as + rl%) dt
0
Tﬂ’ . . Tﬂ’ .
- / 02 552 5(0)dt — 205 [ Sas(0)dt + a2 T, (4.24)
0 0
i Tﬂ’ i i
= Si:i(o)\/n‘ Ufmidt - 2‘1LS'Sr1,:3(U)1;x + aéf{'ﬂ

And for the right hand side we have
T
RHS =Y wi(0)w;(0)ps; (F(0) = au) (F(0) — ap)f of (t)ol (t)dt  (4.25)
i 7 0

However, by equating LHS and RHS, we got an identity equation which leads to no

solution of og.

As a result, we decided to try another method: we can just set ag = ap, i.e. setting
the shift in the DD-Forward model and the shift in the DD-Swaption equal.
This is the method we are using the the Monte Carlo Simulation described in the next
Chapter.
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4.4

Computation of the analytical formula for swaption price under
DDS model

To see the connection between the DDF model and the DDS model, we want to compare

the swaption price result computed from the above analytical formula (under DDS

model) and the formula under DDF described in the next Chapter. To compute the

swaption price from DDS model using the analytical formula, all we need to do is to

select all the inputs and compute individual components that are used in the formula.

Below is how we choose or compute the components of the formula:

1.

W

Weights w;(0)
We computed the weights used in the volatility component of the analytical for-

mula by using the chosen forward rates Fi.(0)'s for k=a+ 1L,a+2,...,5.

Integral in ?,.‘i 5(Ta)

Since we choose to model instantansous volatility o.(t)’s using the SPC (GPC)
method (described in the next chapter) and since 7; is a fixed constant which is
set to be 0.25, the integral involved in the volatility formula can be turned
into a sum: fnT“ of(t}o’f(t}dt = Z:T;n af(t}of{t}f.

Correlation matrix p

In the analytical pricing formula of DDS, the correlation that we need is the in-
stantaneous correlation matrix instead of the terminal correlations. Here we are
using the same instantaneous correlation matrix as in the Monte Carlo Simulation.
The method is called ‘Full rank, classical, two-parameters, exponentially
decreasing’ parameterisation’. We are also using the same sets of « and p.
asin 'l'ableﬂto compute this correlation matrix (the parametrisation is explained

in the next chapter).

For completeness, we can apply the method described in Brigo and Mercurio (2001)

(12) to compute the terminal correlations in this case if needed. The method is:

€xp (fnT" f‘f'f(t)r?;(t)pf,;dﬂ) -1 = ou(t)o (bt
& Pig
\/exp (fnr“ o’f(t)dt) - 1\/exp (fnT" af(t)dt) -1 : \/foT“ ol(t)dt \/fﬂ = Uf(ﬁ)dt
(4.26)

Note that p; ; in (4.26) refers to the instantaneous correlations.

Shift ag
As described in Section 4.3.2, we are using g = a to perform our computations.
Note that ap is the corresponding shift in the DDF model which is also the shift

used for the Monte Carlo simulation in the next chapter.




5. Discount factor C, 5(0)
To compute Cy, 5(0), we need to know zero-coupon bond prices P(0,T;) for i = a+
1,...,3. These can be computed recursively using the formula for the relationship

between zero-coupon bond prices and forward rates:

P0,Ti1)

T~ T_F(0) F 1 (4.27)

P(0,T;) =

Also note that T in the discount factor C, 5(0) is corresponding to T; — T; | not
At. Now, the only quantity that is left for us to choose freely is P(0,7,) which is
also the starting point of the recursive formula (4.27). We choose P(0,7,) = 0.01

in our computation.
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5 Displaced Diffusion Forward Model: Testing using Monte

Carlo simulation methods

5.1 Pricing Swaption under the Displaced Diffusion Forward Model

Now we want to compare the above close form formula for swaption price under Dis-
placed Diffusion Swap Model and the actual swaption price obtained from Monte Carlo

Simulation using the Displaced Diffusion Forward model.

First of all, let's recall the swaption pricing formula:

g
. . B(0) - + o
Swaption Price = EB( - (5.,38(T,) — K TP (T, T; )
i1 (= 5, v
&1

—p° (% (S a(Ta) — K)* ,EH P, T, )) (5.1)

3
=P(ﬂ"1},)E‘-‘((Sr_t,:-a('i;.t)—K)* > rP(I;_t.J;-))

i=n+1

We can now see that due to the fact that

3 1
S (T) — 1- H-':r.t+1 1+7; Fi(Ta)
- rt,.":f( rt) - ZB - 1_[1- 1
i=a+l "t llj=a+1 T+7F;(T.)

(5.2)

the above expectation in depends on the joint distribution of the forward rates
Fos1(Th), Fasa(Th),. .., Fa(T,) under the measure Q% In addition, we know that the
dynamic of forward rates under J° is as described in . Please note that here hy
construction we have forward rates at time between o 4+ 1 and 3 inclusive, which are all
bigger than the measure time «, thus we are using the dynamic we derived in chapter

3

k
ARVE() — ovr
dFy = o (F. — afp) | dZ)) + Z 7 7;( )(1 j_(q-).F.(‘:;)pm
it

J=a+1

dt (5.3)
where k =a+ 1,0+ 2,...,0.
We need to simulate the F's under the measure Q@ and use the simulation result to

price the swaption by simulation. One method that we can use is the Milstein Scheme.

We are going to use G ap in this simulation, as it gives a log-normal variable.
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Milstein Scheme for In X:

Tio(t) X Ab
In X2t 4+ At) = In X2H(t) + o (1) Z MAP:

At
J=a+l 1 +TJF

2
- "’\'T(”m +on(t) (Zi(t + At) — Ze(t))  (5.4)

which is a recursive generation of forward rates within a given period of time with prop-

erly chosen parameters.

From lecture notes (I0), we know that this is a approximation such that there exists a

dg with
E*{|Iln X}?L(I}x} —In Xp(T)|} < C(T)(AD?,  for all At < 4§y (5.5)

Note that here C(T},) is a constant so that means the above approximation has strong
convergence of order 1, and (Z(t + At) — Zi.(t)) is a normally distributed known object
that we can simulate (10).

5.2 Choosing Parameters

In order to perform the Monte Carlo simulation of the forward rate path, we need to
choose several parameters to be the (initial) inputs of the recursively generated paths.
If we take a close look at the equation , we can list out the parameters that need to
be chosen which are written below. We need to choose them wisely in order to achieve

the desired combinations of the scenarios that we want to simulate and test.

Parameters to choose:

1. The volatility of the swaption at each time point time ¢ and for each forward rate
Fi., op(t);

2. The instantaneous correlation matrix p for all Fj, for k=a +1,...,5;
3. The shift ap (which is the same as «g);

4. The initial forward rate Fj.(0) for k=a+1,...,4.

We summarise below the method used for choosing each of the inputs mentioned above.
The DDM is completely specified once we specify or(t), p;; and F.(0) for all 4, j, & in

the tenor structure. We select the methods from the lecture notes (10).

5.2.1 Volatility o

In the Monte Carlo simulation, we decided to choose oy (t)’s using the Separable Piece-

wise Contant (SPC) method. SPC is a special case under the General Piecewise

C
[ox]




Contant (GPC) method and GPC is the richest parametrization and can fit all the at-
the-money options (10). The numerical illustration of SPC ¢'s is ow.(1) = drin_(30)-1)
with Tig(y_o <t < Tg(y—1. With the SPC parametrisations we get M parameters ¢ and
M parameters 0. Thus, there is a total of 2M volatility parameters with M being the

number of forward rates that we are generating.

te (0,79 (To, 1] (T, 1] (To, T3] ... (Ta—o,Tw-1]
Fy(t) 71,1
Fa(t) 021 022
F3(t) 03,1 a3 033
F."L-f (t} TN 1 TNL2 T M3 TAMA e TN M

Table 1: Ziggurat matrix for intantaneous volatilities of forward rates under GPC
method.

Table [1] is an illustration of the idea behind the GPC method and Table 2] is an il-

lustration of the idea behind the SPC method which is the one that we will focus on.

| te (0,7y]  (To, T1] (T, 75] ... (Tar—o, Thr—1]
Fi(t) P1Y1 Expired  Expired ... Expired
Ey(t) dotl Pty Expired ... Expired
Fu(t) | ¢omdnr dudv—1 duvdm—2 ... darin

Table 2: Ziggurat matrix for intantaneous volatilities of forward rates under SPC
method.

Two choices of SPC

1. Homogeneous in the time-to-expiry: o.(f) = ¥5._(g0)-1), and o (T}-) =
thp—j. This is achieved by setting all ¢’s to 1. The idea is shown in Table (3] In
real life, this assumption is used when traders have no view on future volatility
term structures and they prefer a stationary model (10). We are using this method
for the Monte Carlo simulations. Please note that the subscript of forward rates
refer to the corresponding number of time point: for example, Fi(t) is referring to

Fi11(t) in our Monte Carlo Simulation.

2. Homogeneous in the time: o (t) = ¢;.This is achieved by setting all ¢/s to 1.
The idea is shown in Tahle With 1) = 1, the volatility term structure shows no
humped shape at the tail when time is further away from the ‘current time’, and

it converges to a flat line as time goes on (10). This assumption makes calculation
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te (0, 7] (To,Tn] (T, Tp] ... (Tay—2. Ty
Fi(t) ) Expired Expired ... Expired
Folt) g i Expired ... Expired
Far(t) Y Yar-1 Yy—2 ... {1

Table 3: Volatility Matrix under SPC method and ¢ = 1.

and calibration easier by making terminal and instantaneous correlations the same,
however, it makes a strong assumption that future volatility will be lower than the
current ones which is not justified in some economic situations ﬂL_U_D Therefore,

this method should be avoided as long as we can.

te (0, 7] (To,7n] (T, 7] ... (Taw—2, Tas—1]
Fi(t) @1 Expired Expired ... Expired
Fo(t) Po o Expired ... Expired
Far(t) du dn Onr o dm

Table 4: Volatility Matrix under SPC method and v» = 1.

5.2.2 Instantaneous and Terminal Correlations p

Swaption price depends on the terminal correlations between forward rates. These ter-
minal correlations in turn depend on the corresponding instantaneous correlations p; ;

and the way the associated caplet volatilities are decomposed in instantaneous volatili-

ties for ¢ (10).

Optimally, we want the Instantaneous Correlations Matrix p to have two notable

features that are explained below.

e Firstly, becanse we expect the movements of rates that have underlying times
closer to each other be more correlated, we want to have a decrease in the value
of the entries in the matrix when we are moving away from the diagonal (both
vertically and horizontally) where the correlation entries are 1. For example, we
expect that the 6m-1y rate is more correlated with the 1y-1y6m rate compared to

the 9y-9y6m rate since the later is very far away from the 6m-1y time period.

e Secondly, we expect an increase in the value of the entries along sub-diagonals.
This is because that rates tend to be more correlated for long maturities compared
to shorter maturities. For example, the correlation between 6m-1y rate and ly-

1y6m rate will be lower than the correlation between 2y6m-3y rate and 3y-3v6m

[}
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rate.

There are several parameterizations discovered in previous studies can achieve those de-
sirable features. Many effective choices have been summerised in “A note on correlation
and rank reduction” (11). One example is the ‘Improved, stable, full rank, two-
parameters, increasing along sub-diagonals’ parameterisation(S&C2) (23):

i — J|

fig = exp _er_ 1 (_lnpoc

2424 i - 3Mi—3Mj+3i+3j +2M> - M — 4
(M —2)(M - 3)

+1 (5.6)
However, due to computational difficulties, we are going to use a methods that compro-
mises on the second point and gives constant sub-diagonal entries instead. In this thesis
we are using the ‘Full rank, classical, two-parameters, exponentially decreasing’

parameterisation. This parameterisation is characterised as follows:
pij = P + (1 — poo)exp[—ali —j|], a=0. (5.7)

In this formula, p.. represents asymptotically the correlation between the furthest for-

ward rates pair in the forward rate family considered, i.e. p; 3; in our case (10).

5.2.3 Initial Forward Rate F.(0)

In our Monte Carlo simulation we assumed P(0,T},) to be 0.01. In addition, we choose
Fi.(0) for all B = a+1,..., 3 based on the scenarios that we want to explore. With
T, and T3 fixed, each Fj(0) is responsible for the generation of the forward rate path
Fr(04+ At), ..., Fo(Th — A, B (T,) forall k e a4+ 1, 5.

5.2.4 Zero-coupon bond prices P(1,,T;) and P(0,7,)

To caleulate the final swaption price given by formula ‘ we also need to calculate
the zero-coupon bond prices P(T,,,T;) fori = a4+ 1,...,5. In order to calculate them,
we apply the relationship between zero-coupon bond and forward rates again:
o - 1 P(T.,T1)
Pt = e (Gt 1)
P(T,, Ty )
(Th = Th1) F(T, T o1, T ) + 1

= P(T,, 1)) =

With the relationship given in ||| we can derive all the P(T},,T;) needed for the
swaption price by starting with P(7,, 7). This quantity is equal to 1 by definition.

Then we can get all the other bond prices recursively: for instance, for P(T,, T,,+1), we

P{TmTﬂ} 1

can simply do P(To, Tot1) = (ro )BT Do Toma) 71 = 7Fama(Ta) 7T




For the discounting factor P(0,7T,+1), we apply the formula

. 1 i
POT) = G R Fo.0. 1w 71 (59)

to get its value. Here we assume F(0,0,7,,) = 0.01.

5.2.5 Brownian Motion Z

Since we have that dZ;dZ; = p; jdt and p being an MxM full rank correlation matrix,
then by Lemma we know that there exists an MxM matrix A and a vector of
standard Brownian Motion W whose individual components are independent of each
other, i.e. dW;dW; =0, such that:

AAT = p, dZ = AdW (5.10)

Thus, the method we are using to generate dZ is by generating dW and multiply the
vector by the matrix A. In other word, in our formula . we simulate standard
normal random variables Wy (f) for k = a+ 1,...,3 and t = 0,0.025,...,5. Then we
multiply the simulated standard normal vectors with matrix A which comes from the
cholesky factorization as described in Deﬁnitionto get a matrix of correlated nor-
mal variables Z,.(t). Then we take the difference (Z.(t + At) — Z,(1)) where W to get

the desired Brownian Motion quantities.

To simulate a vector of standard normal random variables at each chosen time point
t, we choose to use the Marsaglia polar method (aka acception-rejection method)
as it is faster that the Box-Muller method (Definition |[A.5.1) since it does not involve

calculations of trigonometry.

Marsaglia Polar Method

1. Let Uy and Us be two independent Uniform(0,1) random variables. Set Vi =
2()"1 —1and Vz = 2()"2 - 1.

2. Let W = V2 + V2.

3. If W > 1, return to step 1. Otherwise, return N; = \I#VI and N; =

(—2InW)

V2, where Np and N3 are two independent standard normal variables.

To generate a larger vector of standard normal variables at each time point ¢, we simply
generate multiple pairs of standard normal variables using the Marsaglia Polar Method

described above and put all the pairs in the same vector.




Finally, the only issue left to consider is the generation of independent standard uniform
random variables. We choose to use the Linear Congruential Generator (LCG).

This generator works as follows (deseribed in (25)):

1. Choose a prime number m > 0 and ab integer a > 0 such that ¢™~ ! — 1 is divisible
by m, and a’ — 1 is not divisible by m for j =1,...,m — 2. In our simulation, we

choose a = 7° = 16807 and m = 231 — 1 = 2147483647.

2. Start with an integer seed ng > 0 randomly and generate a sequence of integers

n; recursively by n; = (an;—1) mod mfori=1,2,...,N.

3. Then we perform the division x; = 7% to get a sequence of numbers between 0 and
1. These z.s are called pseudo-uniform random numbers that follow independent

Uniform(0,1) distributions.

Now we have all the components needed for the Milstein Scheme of Monte

Carlo simulation. We are going to discuss our results in the next chapter.




6 Results discussions

6.1 Correlation matrices, Volatility matrices, Initial forward rates and
Tenor

Correlation Matrices p

We have used mainly 4 correlation matrices in our simulation and computation of the
analytical formula. Two of them represent high correlation between forward rates, and
the other two represent low correlation between forward rates. The choices of @ and po

are shown in Table[3]

Classification | «  po Highest Correlation Lowest Correlation Range
1. High Correlation | 0.02 0.9 0.99802 0.98025 0.01777
2. High Correlation | 0.04 0.8 0.99216 0.90976 0.0824
3. Low Correlation | 0.15 0.5 0.93035 0.52489 0.40546
4. Low Correlation | 0.15 0.4 0.91642 0.51523 0.40119

Table 5: Correlation Matrix parameters used in computations and simulations.

Volatility Matrices o(t)
We have used mainly 4 sets of volatility matrices by setting the upper and lower bounds
of the ¢'s we choose. Again, two of them correspond to high volatility and two of them

correspond to low volatility. The choices are shown in Table

Classification | Lower Bound Upper Bound
1. High Volatility 0.15 0.2
2. High Volatility 0.25 0.3
3. Low Volatility 0.05 0.08
4. Low Volatility 0.08 0.1

Table 6: Volatility Matrix parameters used in computations and simulations.

Initial shifted forward rates X;(0)

We have used mainly 6 sets of initial shifted forward rates X.(0), corresponding to 3 dif-
ferent scenarios: large rates, near zero rates and negative rates. The choices are shown
in Table Tal)le@ shows the corresponding initial forward rate Fi(0).

Tenor ¢
In our simulation and analytical price computations, we used 7= 1; — T;_; = 0.25. In

addition, in the Monte Carlo simulation, we choose At = 0.025 for our simulation paths.




Classification Lower Bound Upper Bound
1. Normal Rates 0.04 0.06
2. Normal Rates 0.05 0.08
3. Near Zero Rates 0.008 0.01
4. Near Zero Rates 0.007 0.009
5. Negative Rates 0.003 0.004
6. Negative Rates 0.002 0.003

Table 7: Initial shifted forward rates X (0) parameters used in computations and sim-
ulations.

Classification Lower Bound Upper Bound
1. Normal Rates 0.035 0.055
2. Normal Rates 0.045 0.075
3. Near Zero Rates 0.003 0.005
4. Near Zero Rates 0.002 0.004
5. Negative Rates -0.002 -0.001
6. Negative Rates -0.003 -0.002

Table 8: Initial shifted forward rates Fi.(0) parameters used in computations and simu-
lations.

6.2 Absolute, Percentage and Standard Errors

In the Tables of results listed below in Section 6.4, we analysed the discrepancies between
the two pricing results using both the absolute errors and the percentage errors. We also
listed the rounded standard errors in the table to ensure the accuracy of the simulation

results.

1. Absolute Errors

Absolute Errors are caleulated as (Analytical Formula Price - Monte Carlo Price).

2. Percentage Errors

100{ Analytical Formula Price—Monte Carlo Price)

Percentage Errors are calculated as Monie Carlo Price

. Standard Error

W

Following the description in Leeture Notes (10), the caleulation is as follows:
Let ny be the number of paths in each simulation, and let II(7,) be the swaption

payoff. The logic behind the Monte Carlo simulation is:

Ty

E[D(0, To)IL(TW)] = p(ﬂ‘mzw
7=1

Ty

(6.1)

Note that each II7 is coming from the one set of simulation of forward rates F,f(]}_‘)
fork=a+1,...,3.
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We want to get the error between the true expectation value E[II(T,)] and the
Tp

Monte Carlo estimation of this expectation ZJ_I "

. Here we can view the (I19);
as a sequence of independent and identically distributed random variable, all com-

ing from the same distribution as I1(7},).

By Central Limit Theorem (CLT), under suitable assumption we have:

Eml ln} - (j:t}) RQDC
/Ty Std(IL 1,,))

From | we can derive that

N(0,1) (6.2)

i(n(z;x)f - E(I(Ta)) ~ \/mp Std(T1(Z4)) N (0, 1)
< | (6.3)
Tip L aIRY T,

- EAUED gy SO0 v,

Ty Ty

We want to find the € such that

(‘27 E(IN(T.))

. VT _
< ) ‘Z“D( St(II(T m) She0s o
(T, '

Std(I1
= ¢ = pg3tdllTa))

ny

By doing the above, we guarantee that the true value of E(II(7,)) is in the 98%

confidence interval:

[Z P (T )) gy SHAN(TL)) X% (L)) 1 9 33 51T

(6.5)

e

a))
. 3 - ede]
Ny W tp Ty W Itp

Finally, since the standard deviation Std(II(1},)) is unknown in our case, we follow

in same method as Lecture Notes by setting

i) (Z )

T oy, 2.
(Std(T(T,); ny)? = - -

(6.6)

2l

This means that the actual 98% confidence interval of the Monte Carlo Simulation

is:

it (I(T)) 2_335&.1(11(1;_‘);@,)‘ ZJ-’__’I(H(IA)J)+2_335‘nd(n(3;‘);np)}
np v p Ve

(6.7)
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and the standard error is therefore 2.33

Note: if the standard error is too big to be accepted, the control variate method described
in Sectionshould be applied.

6.3 Results: at-the-money and in-the-money swaptions

To make sure that our model and testing procedure code are well-established, we first
looked at results from the corresponding LMM (ag = ap = 0), which has been proved
to have little discrepancies between the two pricing methods. We found that the result

from my code testifies this.

The swaptions are priced at-the-money, except for cases that the at-the-money swaption
prices are far too small (e.g. 3*10™*). In those cases, we price in-the-money swaptions

instead to obtain more meaningful results.

For each swaption underlying 5, g, we computed the price under 12 different cases. The

cases descriptions are summerised below:

1. Case 1: High correlation, large rates, high volatility.

2. Case 2: High correlation, large rates, low volatility.

3. Case 3: High correlation, near zero rates, high volatility.

4. Case 4: High correlation, near zero rates, low volatility.

h. Case 5: High correlation, negative rates, high volatility.

G. Case 6: High correlation, negative rates, low volatility.

7. Case 7: Low correlation, large rates, high volatility.

8. Case 8: Low correlation, large rates, low volatility.

9. Case 9: Low correlation, near zero rates, high volatility.
10. Case 10: Low correlation, near zero rates, low volatility.
11. Case 11: Low correlation, negative rates, high volatility.
12. Case 12: Low correlation, negative rates, low volatility.

Due to the limitation in computational power, we only tested the results for swaptions

which have T3 < 10. In reality, swaptions can have maturity dates T3 up to 30 years.
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S1,10 Si8 S15 S13 S12
Table |E| Table ml Table |E| Table |ﬁ| Table |ﬁ|
S2,10 Sa5 83,10 S35 S35
Table |ﬁ| Table m Table |ﬁ| Table |ﬁ] Table |ﬁ|
S4,10 Sa7 55,10 Ss.8 Ss,7
Table m Table ml Table |Z| Table |§| Table |£|
S5.6 S6,10 Se,8 S8,10 Sg9
Table [25] | Table m Table |E| Table |§| Table |E|

Table 9: swaptions pricing results table summary

Table [9] shows all the swaptions that we tested.

Below are the results from Monte Carlo simulation (DDF model) and from

direct computation of the close form Black’s formula for swaption (DDS

model), subject to rounding errors. Note that the numbers in brackets represent

negative numbers.

S1.10 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.03929 0.04015 (0.0009) (2.134) 0.0015
Case 2 0.01021 0.01037 (0.0001) (1.505) 0.0003
Case 3 0.02769 0.02713 0.0005 2.084 0.0002
Case 4 0.02855 0.02857 (2* 1[]*5) (0.073) 0.0001
Case 5 0.00233 0.00229 341070 1.339 8.7¢107°
Case 6 0.00100 0.00100 1*107° 0.104 3.2*10-°
Case 7 0.01944 0.01897 0.0005 2.496 0.0007
Case 8 0.01024 0.01008 0.0001 1.580 0.0003
Case 9 0.03211 0.03162 0.0005 1.548 0.0009
Case 10 0.02910 0.02926 (0.0001) (0.545) 0.0004
Case 11 0.00187 0.00187 (3*1[]_7) (0.016) 6.7°107°
Case 12 0.00033 0.00033 2%10-6 0.794 1.6*107°

Table 10: At-the-money and in-the-money S1,10 pricing results under DDM

From the results we can conclude that the DDF and DDS model have high

level of consistency in terms of swaption pricing, even when the underlying

forward rates are negative.
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S8 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.05263 0.05232 0.0003 0.593 0.0003
Case 2 0.02479 0.02466 0.0001 0.529 0.0004
Case 3 0.02066 0.02049 0.00016 0.812 0.0003
Case 4 0.01967 0.01972 (4.0*10_5} (0.234) 0.0001
Case 5 0.00511 0.00502 8.8%1079 1.749 0.0001
Case 6 | 0.00333 0.00331 1.21073 0.351 5171075
Case 7 0.08963 0.08982 (0.0002) (0.213) 0.0001
Case 8 0.08329 0.08295 0.0003 0.418 0.0004
Case 9 0.01005 0.00990 0.0001 1.527 0.0002
Case 10 0.00709 0.00722 (0.0001) (1.650) 8.2710°°
Case 11 0.00386 0.00392 (6.7"10_5) (1.710) 0.0001
Case 12 0.00375 0.00374 9.8*10~6 0.261 3.3*10-°

Table 11: At-the-money and in-the-money S} g pricing results under DDM

S1,5 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.02173 0.02142 0.0003 1.445 0.0008
Case 2 0.01095 0.01085 0.0001 0.952 0.0002
Case 3 0.00871 0.00856 0.0001 1.861 0.0002
Cased | 0.01186 0.01184 2.4%10°° 0.201 6.5°10°°
Case 5 0.00282 0.00277 5.4*10~° 1.965 7.7°107°
Case 6 0.00227 0.00226 5.1%1076 0.224 2.8%10-°
Case 7 0.02300 0.02290 0.9*10-9 0.433 0.0007
Case 8 0.02248 0.02242 5.9*1079 0.267 0.0002
Case 9 0.01158 0.01161 (3.4*10’5) (0.290) 0.0001
Case 10 | 0.01153 0.11510 2.3*10° 0.200 4.9°107°
Case 11 0.00220 0.00222 {1.9*10_5} (0.869) 6.2510-°
Case 12 | 0.00205 0.00206 (5.3*10~6) (0.258) 227105

Table 12: At-the-money and in-the-money S5 pricing results under DDM

Si3 Analytical MC Simulation Abs. Error  Per. Error(%) Std. Error
Case 1 | 0.06175 0.06156 0.0004 0.682 7.0°107°
Case 2 | 0.06532 0.06535 (2.37107°) (0.359) 6.171075
Case 3 | 0.00464 0.00464 2.9*10~6 0.006 3.9¢10°
Case 4 | 0.00395 0.00395 37107 0.009 1.2¢1075
Case 5 | 0.00139 0.00139 1.8%10~6 0.131 1.2¢1075
Case 6 | 0.00103 0.00103 (5.34*1077) (0.052) 3.6*10~0
Case 7 | 0.04649 0.04644 471070 0.102 0.0002
Case 8 | 0.04887 0.04884 3.0°10°7 0.062 5.2¢107°
Case 9 | 0.00997 0.00997 (2.9¥107°) (0.029) 4.11075
Case 10 | 0.01022 0.01023 (1.1*107°) (0.116) 1.2¢107°
Case 11 | 0.00160 0.00159 2.8%10 6 0.175 1.2¢105
Case 12 | 0.00075 0.00074 1.5%10 6 0.196 3.4¢10 6

Table 13: At-the-money and in-the-money Sy 3 pricing results under DDM




S1,2 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.02035 0.02051 (0.0001) (0.778) 0.0004
Case 2 | 0.00849 0.00851 (1.8*1073) (0.216) 251073
Case 3 0.00272 0.00271 2.9%1076 0.106 1.27107°
Case 4 0.00276 0.00276 3.6°1076 0.132 5.871076
Case 5 | 0.00236 0.00236 (4.6*10°7) (0.019) 101076
Case 6 0.00276 0.00276 8.9*10~7 0.032 1.8°10-°
Case 7 | 0.01746 0.01748 (2.17107%) (0.120) 6.4%107°
Case 8 0.01485 0.01484 5.0*107° 0.034 221077
Case 9 | 0.00142 0.00141 8.3°107° 0.589 9.7°107°
Case 10 0.00188 0.00188 9.5*10~7 0.051 4.1°1076
Case 11 | 0.00268 0.00268 (1.3*107%) (0.047) 5.7%107°
Case 12 | 0.00242 0.00242 1.5*10~7 0.006 2.0*10

Table 14: At-the-money and in-the-money S, pricing results under DDM

S2.10 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.07398 0.07426 (0.0003) (0.382) 0.0002
Case 2 0.03091 0.03035 0.0006 1.828 0.0007
Case 3 0.02812 0.02822 (9.6*10_5} (0.341) 0.0007
Case 4 0.02443 0.2440 2.9*10°9 0.118 0.0002
Case 5 0.01994 0.2004 (0.0001) (0.516) 0.0002
Case 6 0.02074 0.02074 (3.4*107%) (0.016) 7.1107°
Case 7 0.09939 0.09952 (0.0001) (0.131) 0.0002
Case 8 0.10495 0.10550 (0.0005) (0.516) 0.0006
Case 9 0.01828 0.01845 (0.0002) (0.936) 0.0005
Case 10 0.01677 0.01662 0.0001 0.875 0.0001
Case 11 | 0.02020 0.2018 2.0%10~° 0.099 0.0002
Case 12 | 0.01944 0.01955 2.5*107 0.013 5.2%107°

Table 15: At-the-money and in-the-money 53 jp pricing results under DDM

Sas Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.07202 0.07187 0.0001 0.209 0.0006
Case 2 | 0.00970 0.00973 (3.8%1077) (0.395) 0.00001
Case 3 0.01023 0.01028 (5.0*10_5) (0.489) 0.0001
Case 4 0.00955 0.00953 1.9*107° 0.207 3.5%107°
Case 5 | 0.00791 0.00788 3.07107° 0.379 4.5%107°
Case 6 | 0.00754 0.00754 6.9°107 0.009 1.271075
Case 7 0.07227 0.07217 0.0001 0.0139 0.0005
Case 8 0.06411 0.06412 (7.7*10_“) (0.012) 0.0001
Case 9 0.01057 0.01069 (0.0001) (1.083) 0.0001
Case 10 | 0.00903 0.00905 (1.541) (0.170) 3.5°107°
Case 11 | 0.00778 0.00776 1.9*1073 0.243 3.9°107°
Case 12 | 0.00733 0.00733 (2.0%10°7) (0.003) 9.8°10 6

Table 16: At-the-money and in-the-money Sp5 pricing results under DDM




S3.10 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.06322 0.06389 (0.0007) (1.050) 0.0002
Case 2 0.08272 0.08294 (0.0002) (0.268) 0.0001
Case 3 0.03523 0.03539 (0.0002) (0.467) 0.0001
Case 4 0.03396 0.03387 8.5%107° 0.252 0.0003
Case 5 | 0.00878 0.00872 5471073 0.622 1.0"107°
Case 6 | 0.00863 0.00862 1.0810—° 0.119 5.17107%
Case 7 0.07867 0.07742 0.0012 1.619 0.0002
Case 8 0.05589 0.05637 (0.0005) (0.855) 0.0008
Case 9 0.01376 0.01417 (0.0004) (2.898) 0.0005
Case 10 0.00504 0.00507 (2.7*10*5) (0.530) 0.0001
Case 11 0.01740 0.01754 (0.0001) (0.745) 0.0002
Case 12 | 0.01647 0.01651 (3.7°1073) (0.221) 561073

Table 17: At-the-money and in-the-money S5 1y pricing results under DDM

Sa s Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.05944 0.05727 0.0022 3.781 0.0002
Case 2 0.02934 0.02912 0.00022 0.776 0.0006
Case 3 0.01808 0.01860 (0.0005) (2.769) 0.0007
Case 4 0.00976 0.00970 6.1%10 9 0.627 0.0001
Case b 0.00478 0.00485 (6.5*10~3) (1.346) 8.8<107°
Case 6 0.00683 0.00682 8.5%1076 0.125 2.7510-°
Case 7 0.06805 0.06878 (0.0007) (1.068) 0.0001
Case 8 0.05846 0.05834 0.0001 0.207 0.0002
Case 9 0.01301 0.01304 (2.5*10*5) (0.191) 0.0001
Case 10 0.00938 0.00940 (2.6*10_5) (0.276) 0.0001
Case 11 0.00804 0.00804 1.1¥10~° 0.014 2,010
Case 12 | 0.00790 0.00790 (3.01077) (0.004) 4.5°107%

Table 18: At-the-money and in-the-money S35 pricing results under DDM

Sas Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.02127 0.02165 (0.0004) (1.761) 0.0004
Case 2 | 0.01207 0.01211 (3.47107°) (0.285) 9.7°1075%
Case 3 | 0.00587 0.00579 741073 1.276 6.7°107%
Case 4 0.00360 0.00360 2.4*1076 0.067 6.3<107°
Case 5 0.00393 0.00394 (6.5*107°) (0.122) 8.0%10-°
Case 6 0.00405 0.00404 4.9*1076 0.122 2.2%10°°
Case 7 0.03219 0.03235 (0.0001) (0.354) 0.0003
Case 8 0.02859 0.02870 (0.0001) (0.354) 0.0003
Case 9 0.00731 0.00728 3.5%107° 0477 0.0002
Case 10 | 0.00537 0.00538 (7.2°1079) (0.133) 2.4%107°
Case 11 | 0.00493 0.00493 3.8*1077 0.008 3.3°1079%
Case 12 |  0.00478 0.00478 (2.3*10 6) (0.047) 77106

Table 19: At-the-money and in-the-money S5 5 pricing results under DDM
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Si10 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.07868 0.07632 0.0023 3.090 0.0003
Case 2 0.02723 0.02793 (0.0007) (2.531) 0.0001
Case 3 0.02289 0.02315 (0.0002) (2.531) 0.0001
Case 4 0.01696 0.01701 (5.4*10_5} (0.317) 0.0002
Case 5 0.01474 0.01511 (0.0003) (2.371) 0.0004
Case 6 | 0.01491 0.01483 7171073 0.479 9.9710~5%
Case 7 0.08705 0.08719 (0.0001) (0.156) 0.0003
Case 8 0.06527 0.06492 0.0003 0.539 0.0001
Case 9 0.02016 0.01944 0.0007 3.719 0.0008
Case 10 0.01757 0.01757 1.2*10°° 0.007 0.0002
Case 11 0.01506 0.01504 1.5%10~° 0.102 0.0003
Case 12 | 0.01466 0.01469 (3.5%107%) (0.236) 7.8107°

Table 20: At-the-money and in-the-money Sy 1y pricing results under DDM

S4,7 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.05919 0.05882 0.0004 0.631 0.001
Case 2 0.04231 0.04235 (3.6%107%) (0.085) 0.0002
Case 3 0.00942 0.00946 (4.2*10_5} (0.444) 0.0002
Case 4 0.00584 0.00583 3.7°10°6 0.064 4.5%10°5
Case b 0.00771 0.00774 (2.5%107%) (0.319) 6.4*10~°
Case 6 0.00774 0.00773 3.9%10°6 0.050 L.7710~°
Case 7 0.07421 0.07461 (0.0004) (0.531) 0.0008
Case 8 0.07135 0.07134 4.4¥1076 0.006 0.0002
Case 9 0.01107 0.01106 1.2*10°° 0.109 0.0001
Case 10 0.00897 0.00894 2.3*109 0.254 0.0006
Case 11 | 0.00751 0.00752 (1.1¥1073) (0.140) 551073
Case 12 | 0.00734 0.00734 (1.5*107%) (0.021) 1.47107°

Table 21: At-the-money and in-the-money Sy 7 pricing results under DDM

Ss.10 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.06470 0.06390 0.0009 1.365 0.0034
Case 2 0.03620 0.03680 (0.0006) (1.684) 0.0024
Case 3 0.01102 0.01101 1.6*107° 0.142 0.0011
Case 4 0.00861 0.00862 (1.6*10~3) (0.187) 0.0001
Case 5 0.00378 0.00383 (5.3*10%) (1.370) 0.0001
Case 6 | 0.00273 0.00275 (1.4*1073) (0.523) 5571078
Case 7 0.02877 0.02919 (0.0004) (1.426) 0.0001
Case 8 0.01220 0.01207 0.0001 1.112 0.0004
Case 9 0.00571 0.00571 (5.9%107) (0.010) 0.0002
Case 10 | 0.00125 0.00124 7.0°107° 0.559 5.8°107°
Case 11 | 0.00222 0.00218 3.4%107° 1.578 9.25107°
Case 12 0.00087 0.00087 1.0*107° 1.191 3.2°1076

Table 22: At-the-money and in-the-money S 1y pricing results under DDM
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Ss.8 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.04537 0.04535 1.9%10° 0.042 0.0003
Case 2 0.01252 0.01234 0.0002 1.503 0.0004
Case 3 0.01178 0.01187 (8.8*107%) (0.745) 0.0004
Case 4 0.00866 0.00865 1.3*107° 0.147 0.0001
Case b 0.00318 0.00320 (2.2“10_5) (0.696) 0.0001
Case 6 0.00149 0.00149 1171078 0.071 3.47107°
Case 7 0.04143 0.04058 0.0008 2.088 0.0001
Case 8 0.01328 0.01339 (0.0001) (0.854) 0.0004
Case 9 0.01015 0.01018 (2.6*10_5} (0.254) 0.0003
Case 10 0.00622 0.00628 (6.3*1075) (0.999) 0.0001
Case 11 0.00329 0.00330 (1.4*10~°) (0.430) 6.6°10~%
Case 12 | 0.00238 0.00239 (1.1*1073) (0.462) 1.9*10—°

Table 23: At-the-money and in-the-money S55 pricing results under DDM

Ss,7 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 | 0.02874 0.02867 7.7°107° 0.267 0.0001
Case 2 | 0.01423 0.01432 (9.4*1073) (0.653) 0.0001
Case 3 | 0.00941 0.00943 (1.8°107%) (0.187) 0.0001
Case 4 | 0.00825 0.00826 (9.8*10~°) (0.119) 387108
Case 5 | 0.00281 0.00281 5171078 0.180 2.7°107°
Case 6 | 0.00173 0.00173 59%103 0.003 4.810°°
Case 7 | 0.03876 0.03905 (0.0003) (0.730) 0.0005
Case 8 | 0.03447 0.03441 621073 0.181 0.0002
Case 9 | 0.00692 0.00693 (1.2°107°) (0.175) 1.010°°
Case 10 | 0.00405 0.00404 1.7410-8 0.042 33710758
Case 11 | 0.00507 0.00510 (2.4*1073) (0.472) 4.5°1073
Case 12 | 0.00508 0.00507 7.7°1076 0.152 1.271073

Table 24: At-the-money and in-the-money S5 7 pricing results under DDM

Ss.6 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 | 0.01832 0.01813 0.0002 1.010 0.0008
Case 2 | 0.00821 0.00817 3.5*107° 0.432 9.0*10~°
Case 3 | 0.00343 0.00342 1.3*107° 0.376 6.4710~°
Case 4 | 0.00175 0.00174 6.3*10~6 0.357 1.6*107°
Case 5 | 0.00230 0.00229 1.9¥10—° 0.815 2.3°107°
Case 6 | 0.00233 0.00233 (5.4%107% (0.002) 5.6%1079
Case 7 | 0.01550 0.01551 (8.871075) (0.057) 0.0006
Case 8 | 0.01609 0.01613 (3.7°107°) (0.227) 9.5°10°°
Case 9 | 0.00342 0.00348 (5.9*10~°) (1.705) 631075
Case 10 | 0.00259 0.00259 (3.3*1079) (0.128) 1.9*107°
Case 11 | 0.00132 0.00132 (1.2*107%) (0.090) 1.2¢107°
Case 12 | 0.00160 0.00161 (3.74107°) (0.231) 3.6%10°6

Table 25: At-the-money and in-the-money S5 pricing results under DDM
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S6.10 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.07019 0.06815 0.0020 2.995 0.004
Case 2 0.02498 0.02497 1.6*107° 0.064 0.0007
Case 3 0.01896 0.01905 (8.6%107%) (0.452) 0.0007
Case 4 0.01566 0.01559 7.0%107° 0.451 0.0002
Case 5 0.01009 0.00995 0.00014 1.431 0.0002
Case 6 | 0.01006 0.01012 (5.5810~5) (0.545) 5.97107°
Case 7 0.07096 0.06985 0.0011 1.594 0.0002
Case 8 0.05423 0.05366 0.0006 1.074 0.0007
Case 9 0.01327 0.01350 (0.0002) (1.741) 0.0005
Case 10 0.00747 0.00749 (2.7*1075) (0.367) 0.0001
Case 11 0.01056 0.01066 (9.8%10~%) (0.917) 0.0002
Case 12 | 0.01017 0.01016 5.2*1078 0.051 5.1%107°

Table 26: At-the-money and in-the-money S; 1y pricing results under DDM

Se,8 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.03062 0.03114 (0.0005) (1.681) 0.001
Case 2 0.01416 0.01405 0.0001 0.781 0.0005
Case 3 0.00833 0.00840 (2.7*10_5} (0.317) 0.0001
Case 4 | 0.00499 0.00496 3.7°10°% 0.738 3.7°10°8
Case b 0.00481 0.00482 (1.3*107%) (0.264) 5.4*10~°
Case 6 0.00473 0.00473 (2.2*107%) (0.047) 1.3710~°
Case 7 0.04949 0.04912 0.0003 0.749 0.0006
Case 8 0.05446 0.05452 (6.0*10_5) (0.111) 0.0002
Case 9 0.00822 0.00822 5.8%10°6 0.070 0.0001
Case 10 | 0.00565 0.00566 (1.2*10-°) (0.214) 3.8°107°
Case 11 0.00512 0.00513 (4.2*107%) (0.082) 4.9%107°
Case 12 | 0.00493 0.00494 (7.6*107%) (0.154) 1.27107°

Table 27: At-the-money and in-the-money Sgg pricing results under DDM

Ss.10 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 0.03532 0.03597 (0.0006) (1.805) 0.0018
Case 2 0.01804 0.01776 0.0003 1.587 0.0005
Case 3 0.00679 0.00668 0.0001 1.634 0.0003
Case 4 0.00313 0.00309 4.6*107° 1.486 8.4*107°
Case 5 0.00514 0.00510 4.2*107° 0.824 0.0001
Case 6 0.00505 0.00506 (3.7%107%) (0.073) 3.5%107°
Case 7 0.03493 0.03474 0.0002 0.554 0.0001
Case 8 0.01817 0.01816 1.7*107° 0.824 0.0001
Case 9 0.00683 0.00663 0.0002 3.130 3.0°107°
Case 10 | 0.00282 0.00239 (6.5°107%) (2.230) 8.17107°
Case 11 | 0.00477 0.00470 7.3*107° 1.556 1.0°107°
Case 12 | 0.00507 0.00508 (1.1°10 6) (0.021) 3.1°10 °

Table 28: At-the-money and in-the-money Sg 1y pricing results under DDM
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Ss.0 Analytical MC Simulation Abs. Error Per. Error(%) Std. Error
Case 1 | 0.01935 0.01911 0.0002 1.222 0.0004
Case 2 | 0.00887 0.00895 (8.6*10°) (0.995) 0.0002
Case 3 | 0.00443 0.00444 (1.0*107%) (0.228) 8.9°1073
Case 4 | 0.00286 0.00287 (1.171079) (0.377) 2.2°107°
Case 5 | 0.00163 0.00164 (5.47107°) (0.332) 2.8°107°
Case 6 | 0.00134 0.00134 1.610-6 0.120 7271076
Case 7 | 0.02399 0.02405 (5.6"107%) (0.533) 9.1107°
Case & | 0.00983 0.00988 (5.3*107%) (0.233) 0.0004
Case 9 | 0.00476 0.00475 1.3*107° 0.279 9.2°107°
Case 10 | 0.00329 0.00330 (1.0°107°) (0.312) 247108
Case 11 | 0.00132 0.00133 (7.8%10~°) (0.539) 1.6%107°
Case 12 | 0.00166 0.00166 (7.5%1077) (0.045) 5.0°1076

Table 29: At-the-money and in-the-money Sgg pricing results under DDM

7 Analysis of the discrepancies between results of MC sim-

ulation and the analytical pricing formula

Although the results from the previous chapter were sound, there are still some hiases
in it that should be and analysed. Below are several aspects that could be improved if

we have higher computational power or better analytical tools.

7.1 Shift ap in DDF Model

In Section 3.2, it was mentioned that the shift in the DDF model in this thesis is chosen
to be the same for all forward rates F}s. This choice may not be the best choice for the
DDF model. To improve, one can choose different shifts ap for different forward rates

by developing a relationship between all the shifts.

7.2 Relationship between shift op and og

In Section 4.3.2, we discussed the ways to choose the shift avg in DDS model. Due to
the failure to apply the method we once thought, we decided to use ap = ag which is
an unjustifiable method of choosing the shift in the DDS and DDF models. Thus, we
would interpret the majority of the errors in the two pricing methods to be coming from
this choice of the shifts. In further studies and investigations, one could try to develop a
relationship between the two shifts and to test the results from the two pricing methods

described in this thesis by applving the relationship of the shifts.

7.3 The choice of af

In this thesis, the pricing results are based on the assumption of ap = ag = —0.005.
This means that the model allows forward rates to be as low as 0.5% at extreme. This

value may not be the best choice for the shift of the Displaced Diffusion market model.




We also used ap = ag = —0.05 in the model and checked the pricing results. The
results were also sound and had little absolute and percentage errors. We would expect
that the results obtained using other value of shift to have high level of consistencies as

well.

7.4 Volatility Matrix o,({)

In Section 5.2.1, we discussed the ways to choose the instantaneous volatilities o;.. We
mentioned that GPC is the richest parametrization that can essentially fit all the at-
the-money options. However, we used a special case of GPC which is SPC. We also then
subsequently set ¢'s to 1 to get a homogeneous volatility matrix in the time-to-expiry.
This could again cause hiases and inaccuracies in the pricing results since we applied
many strong assumptions when modelling volatility ¢’s. To overcome this problem, one
can implement the general version of GPC method as a way to choose the volatility
matrix or fit the volatility matrix from historical data. In addition, we can choose the

volatility such that it allows humped shape as desired.

7.5 Correlation Matrix p

In Section 5.2.2, we discussed the ways to choose the instantaneous correlations pﬁ‘Js.
As mentioned in Section 5.2.2 and also learnt in lectures (10)), there are many poten-
tial ways to choose the instantancous correlation parametrisation. The parametrisation
method that we used, which is the ‘Full rank, classical, two-parameters, expo-
nentially decreasing’ parameterisation, may not be the best one to choose. In
fact, the main drawback of this choice is that the resulting correlation matrix is not
increasing along its sub-diagonals. One can improve the model by choosing a better pa-
rameterisation for p: for example, in lectures we studied several other parameterisations
such as the Stable, full-rank, 3-parameters,’ increasing along sub-diagonals’
parametrization SC3 and the ‘Improved, stable, full-rank, two-parameters,

increasing along sub-diagonals’ paraterisation.

7.6 The choices of Af in the Monte Carlo Simulation

In our simulation described in Chapter 5 and 6, we originally used At = 0.005 in
the Milstein Scheme formula. This is approximately equal to 0.005 x 365=1.825 days.
However, for large T,, (i.e. T, = 5), At = 0.005 implies that we have more than 1000
steps in each generation path in the Milstein Scheme. Therefore, the generating process
was extremely slow even for small number of paths. Therefore, we needed to alter it
to be At = 0.025, which implies approximately 0.025 x 365=9.125days. However, as
mentioned in , larger At implies larger biases in the Monte Carlo Simulations. After
this alternation, the simulation process became faster, but we still can only use up to

10, 000 paths in some of the generating processes due to limited computational power. If
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one has higher computational power, one can choose the number of path and the value

of At such that the standard errors can be kept small.

7.7 Displaced Diffusion Model and other market models for forward

rates

Finally, the reason of the discrepancies could be that the Displaced Diffusion Model
has some disadvantage and incompleteness in itself. Therefore, there will always be
discrepancies in the pricing results no matter how we improve the above mentioned
aspects. Nonetheless, the discrepancies in the pricing results are small enough for us to

conclude that the DDM is an effective interest rate model to use.




8 Conclusion

The aim of this thesis is to test the effectiveness of Displaced Diffusion Market Model
by examining the discrepancies between the pricing results under Displaced Diffusion
Forward Model and Displaced Diffusion Swap Model. Previous studies have shown that
the cormection between the Libor Market Model (for caplets/floorlets) and Swap Market
Model (for swaptions) is a valid one, and our results in this thesis testified the connec-
tion between the extensions of LMM (DDF model) and SMM (DDS model).

In Chapter 3, we first derived the dynamics of forward rates in the Displaced Diffusion
Market Model under different forward measures [Q". We know that under LMM, the
forward rate dynamics are assumed to be log-normal. Therefore, we introduced shifted
forward rates X { 's, which are log-normal, in the DDM in order to utilise all the prop-
erties that the forward rates under LMM have. These (shifted) forward rate dynamics
are used in Chapter 5 in order to simulate the swap rates and the swaption prices under
the Displaced Diffusion Forward Model (DDF Model) through Milstein Scheme. Then
we developed the Displaced Diffusion Swap Model (DDS Model) in Chapter 4. Similar
to the forward rate cases, we introduced shifted swap rates X ;\_1‘3' s to benefit from the
convenience of log-normal property. We derived the closed-form Black’s formula for
swaptions under the DDS Model which we used as the ‘analytical pricing formula’ for
the Displaced Diffusion Market Model.

From our results of 20 different Swaptions, we conclude that the DDF and DDS model
have high level of consistency for swaption pricing. The absolute errors were between
10~* and 10~% in absolute magnitude for most of the time, and percentage errors were
below 1% for most of the cases. More importantly, this consistency is retained even
in the cases where we were modelling negative forward rates, which is an advantage
over LMM and SMM. This proves that the DDM is an effective model for interest rate
modelling for all levels of volatility, correlation and rates, and for both in-the-money
and at-the-money swaptions. In addition, it shows a valid and significant connection

between the market of caplets and the market of swaptions under DDM.

Despite the high level consistency between DDF and DDS model, there were still some
small discrepancies between the results. We analysed these discrepancies in Chapter
7 and proposed ways to potentially minimise the discrepancies. For example, one can
develop a relationship between the shifts avg and ap to potentially mitigate the errors in
pricing. One can also try to use another parametrisation for volatility o and correlation

p to obtain improved consistency.

Overall, we conclude that the DDM is a useful foundation and effective market model

[y ]
a




for negative interest rate modelling as well as normal positive interest rate modelling.
In addition, we conclude that the connection between the caplet market and the swap

market is a valid and strong one under DDM.
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A  Appendix

A.1 Eigenvalues zeroing an rescaling

Lemma A.1.1. Let p be a positive definite symmetric matriz, then p satisfied the fol-
lowing equation p = PHPT, where P is a real orthogonal matriz such that PTP =
PPT = Iy, and H is a diagonal matriz of the positive eigenvalues of the matriz p.
The columns of P are the eigenvectors of p, associated to the eigenvalues located in the

corresponding position in H.

Let A be the diagonal matriz whose entries are the square roots of the corresponding
entries of H, so that if we set A := P, we have both:

AAT =p, ATA=H.

(A1)
p=PHPT, A=vVH, A=P\ AAT =p ATA=H.

A.2 Facts
Below are two important lemmas described in the Lecture Notes (10).

Lemma A.2.1 (Fact One). The price of any asset divided by a reference asset (called

numeraire) is a martingale (no drift) under the measure associated with that numeraire.

For instance, let QZ be the measure associated with the numeraire P(-,T3), then by
FACT ONE Fy(t) is a martingale under the numeraire pair (Q?, P(-, T3)).

Lemma A.2.2 (Fact Two). The prices of the time-t risk neutral price for an option

are the same under all suitably chosen numeraire pairs.

For example, let (5,5;) and (B, B;) be two numeraire pairs. Then we have:

Price, =EP

B(t) Payoff(T)]

B(T)
Payoft(T’)
=5

(A.2)
— ES |:SL

A.3 Using Control Variate Estimators to minimise the variance of
Monte Carlo Simulations
To make the simulation more efficient, one can apply the control variate estimator

method described in the Lecture Notes (10). Below is a brief summary of the method.

Consider a new random variable I1.(v) := II 4 ~(II*" — 7"}, where ~ is a constant to

be determined, II*" is the known. simulated analytical payoft and 7" = E(I1*"). This

by |
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is an unbiased estimator of E(II) since E(II + ~(II*" — 7)) = E(II) + 0 = E(II). Thus,

define the contral variate estimator to be:

Z”:J E”’JJ HUJLJ
+ 5 ( — qan

I.(; Np) = (A.3)

iy Ty

In this situation, 7™ = 0 due to the martingale property. As we want to minimise the
variance of 1| it follows that

~* = —Corr(IL,I1*")Std(I1) / Std(11"™) (A.4)
Finally, plug back into and use
an HunJ)Z (E_Til Hrm.,j ) 2

(S‘rd +*); n,,))

T i

P P

Cou(I1, 1% n,)) =

P
ng n2
Cov(I1,11""; ny,)

Corr (11, 11"; np) = — —
Std(IL; ny) Std(I1en; ny,)

to get an estimated simulation result which has a lower variance. Note that in those
cases that use the Control Variate Estimator method, the 98% confidence interval of the

true value of the payoff now becomes

— L.

> (IL(T0)) 033 Srd(l‘l,( 2:7")imp) S (I Lt}} B Srd (T ))}
p Vi np \/n_P

(A6)
and the standard error is now calculated using
. _ 1
o Std(I1; n,) (1 — Corr(II, 1o, n;,)Q)
33 qrd(n‘( 7)) 954 (A7)

A.4 Cholesky Factorisation

Definition A.4.1 (Cholesky Factorisation). The Cholesky factorisation of a symmetric
matrix p is a representation
p=AAT (A.8)

where A is a lower triangular matriz A.
If p is a symmetric matriz which is positive definite, then a Cholesky factorisation erists

7).




Since A is a lower triangular matrix, AAT can be illustrated as

-‘411 Ay A - Ag
AT Ay Ay Ay o Ap
A Agp - Agg Aga
- (A.9)
14%1 _411_421 - _411‘4111
B As Ay A%l + _4%2 . Aot Ag1 + A Ago
| An Ay Ag Aoy + ApAgy ... AL 4 A% 4o 4 A2

We subsequently equate (A.9) with the matrix p to obtain the value of 411 to Agq in

the lower triangular matrix A.

A.5 Box Muller method for generating standard normal variables
Definition A.5.1. The Boz-Muller method works as follows (described in }:
1. Generate independent Uy, Uy ~U(0,1); SetR = -2 In(Uy);
3. Setfl = 2y,
4. Set X1 = VRcos(8);

5. Set X, = VRsin(f);

6. Return Xy, X,

oy |
=1
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