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INTRODUCTION

Financial time series prediction is always appealing due to its potential profits. How-
ever, it is also challenging since financial market is a dynamical system which is highly
sensitive and noisy. Numerous factors that can affect stock prices include intrinsic
value of the company, national economy, prospects of investors, speculators and polit-
ical reasons.

During the past ten years, various mathematical and computational researches are
taken, attempting to get higher accuracy on financial time series prediction. Among
them, neural networks, especially recurrent neural networks, stand out as one of the
emerging models that are capable of capturing non-linearity of a system and cope with
chaotic, non-stationary time series.

This paper introduces two types of recurrent neural networks: Echo State Network(ESN)
and Recurrent Radial Basis Function Network. The biggest feature of recurrent neu-
ral network is that it has a sparsely connected hidden layer called reservoir, which
enables RNNs to have short term ‘'memory’ that captures information about what has
been calculated so far. Usually, this recurrent part of the structure is essential in learn-
ing complex patterns.

The main purpose of the thesis is to verify performance of RRNs on denoised financial
time series. The modelling is under the assumption that historical price series contains
all necessary information to be used to predict next day prices and returns.

In the context of test error, the empirical results imply that the proposed recurrent
neural networks, especially ESN, successfully manage to reduce great percentages of
the test errors made by linear regression under the same condition.
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Figure 1: Recurrent Neural Network



BASICS

2.1 DATA PREPROCESSING
2.1.1 Data Normalization

Data normalization is the process of transforming raw data into some standard form of
data. This process is usually important for complex machine learning models. Some
models even require this procedure before data are fed into the models, since mod-
els internally use distances or feature variances and thus without normalization the
results would be heavily affected by the feature with the largest variance or scale.
Normalizing inputs could also help numerical optimization method (such as Gradient
Descent) converge much faster and accurately.

There are different ways of data normalization:

e Linearly transform all the data to a certain range [4,b], where the minimum of
the dataset is mapped to a and the largest value is mapped to b.

e Calculate the mean and standard deviation of the dataset, subtract each sample
by sample mean, and then divide each sample by sample standard deviation.

Consider method one: In fact, various normalization methods were tested to improve
the network training (Demuth and Beale, 2002; Chaturvedi et al., 1996; Sola and Sevilla,
1997), including “the normalized data in the range of [0, 1] by using the following
equation:”
X — Xpi
Xnorm = — (1)
Xmax — Xmin

Generally, given a time series vector x, if desired target range is set to be [/, 7], then if
m = max(x) and n = min(x), solve the equation

an+b =1 (2)
am—+b=r (3)
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will give gradient a and intercept b respectively:

r—1
a=-— (4)
Im —rn
b—r—am—im_n (5)

Thus y = ax + b will give the mapped data. Below is an experiment interpreting the
effectiveness of this method:
For price series, one usually take its return

p(n+1) —p(n)

rt(n+1) = ()

or log return
logrt =1log(1+rt(n+1)) = log(M)
p(n)

as the variable to be fed into the model, the reasons being that the log return is usually
the variable of interest instead of raw price, and to some extent, log returns can be
assumed to be nearly stationary while price cannot.

Suppose log returns are imported into a certain machine learning model. Other pa-
rameters kept all the same, with and without data normalization gives the following

comparison on prediction performance:

ESN on test set ESN on test set
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0.015 1 0.015
001 001
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Figure 2: With Normalization Figure 3: Without Normalization

Comparing two figures, one could visually see that the task performance of the first
one surpass that of the latter one, which in a way proves the utility of data normaliza-
tion.

Now, consider method 2, suppose x is a dataset, with X being sample mean of the
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dataset and s being the sample standard deviation, then the normalized dataset x has
the following expression:

X = (6)

Sometimes population mean y instead of X is used. For instance, one may assume the
population mean of log return is zero. The choice varies from case to case generally.

In summary, data normalization is an important part of the model which affects its
prediction performance. The main aim of normalization is to make data more tractable
so that when the normalized data are further processed by the model, things become
more controllable.

2.1.2 Data Denoising

Usually, financial time series is noisy. Thus, it is filled with irrelevant information that
may confuse a certain model and reduce its task performance. Therefore, denoising is
an integral and significant part of a financial series prediction system.

External information(e.g. news) may or may not be used for denoising. At the end of
the prediction system, noise needs to be added back.

Therefore, as a whole, denoising is an very important and interesting area that worth
delving. However, it is beyond the scope of this paper. Hence, in the next few sections,
the built-in denoising package of Matlab is used. Please find below a comparison
between the original noisy time series and the denoised one:
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Figure 4: Raw Data Figure 5: Denoised Data

2.2 NOTATIONS AND COMMON SETTINGS

In this paper there are many notations and common settings that need to be clarified.
First of all, there are two datasets used in this paper: one is the classic chaotic time
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series-Mackey Series, the other one is daily close price data of 100 stocks from S&P
500. In the next few sections, whenever these datasets are imported, the following
numbers are used:

size of training set | size of test set
Mackey Series 2000 500
Stock Data 1200 200

In this thesis, u(n) stands for input vector at time n and has size N,,, while y(n) repre-
sents the corresponding output vector and has size Nj.

Generally, matrix [u(ng), ..., u(n —2),u(n —1),u(n)] is used to predict y(n) = u(n+1).
In further sections, uTr stands for input dataset in training set, yTr stands for output
dataset in training set. Similarly, uTest and yTest represent input dataset and output
dataset in test set respectively.

Below are typical steps that are followed in this paper to apply machine learning mod-
els on datasets. Note the largest iteration is over stocks.

For each stock, do the following;:

1. e Initialize input weight matrix W;, and reservoir weight matrix W.
e Assign values to various parameters.

Note this step could be taken outside the loop and placed before the loop if all
stocks use the same common parameter setting.

2. Raw data is transformed to log return (or other quantities).
3. Log return is denoised.

4. Map the denoised log return into a predefined range(e.g.[—1, 1]), record the gra-
dient and intercept.

5. Calculate the volatility of the whole series and divide it by square root of the
time length of the series to get daily log return volatility of the stock.

6. Split the whole set into training set and test set. For training set, uTr=data(1 :
1200), yTr=data(2 : 1201); For test set, uTest=data(1201 : 1400), yTest=data(1202 :
1401);

7. Adjust both sets according to the value of input size N,,. For example, suppose
uTr=[1,2,3,4,5], yIr=[2,3,4,5,6], if N, = 2, uTr is changed to

1 2 3 4
2 3 45

and yTr is changed to [3,4,5,6]. uTest and yTest are similarly transformed. In
particular, if N, = 1, this step does nothing.
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2.2 NOTATIONS AND COMMON SETTINGS

Apply specific machine leaning model(e.g.Linear Regression, Echo State Net-
work etc.). For each model, do the following;:

a) Train the model using training set, get output weight matrix Wy,;. For
recurrent neural network, the first 100 samples are used to develop reservoir
states hence will not be used for training(For consistency this is also done
with linear regression).

b) Do predictions on test set.

c) Linearly map the target data y and predicted data § back to orignial scale
using the recorded gradient and intercept. Then, calculate the correspond-
ing root mean square errors for training and test set.

Draw corresponding figures and error tables.

Kindly note that:

For Mackey series, it is equivalent to the case of one stock. However, the differ-
ence is that the Mackey series is neither denoised nor transformed to log return
before further processing.

For stocks, daily close price instead of daily adjusted close price is used since
adjust close value is affected by cash dividends and stock dividends, thus it is
not the real close value on that day.

This paper focus on fitting the exact amount of log returns. Therefore, the cost
function to be minimized is as follows:

E= 1Y (50— y()? @

Training and test errors are comparable over different normalization ranges since
these errors are calculated after data are mapped back to original scale.

Random initializations of W;, and W can be made reproducible. For instance, in
Matlab, one could use command: rand('seed’ 42);

The common parameters that will appear in this paper are:

9

Input Size: N, Reservoir Size: Ny Target Size: N,

Input Weight Matrix: W;, | Reservoir Weight Matrix: W Reservoir Density

Leak Rate: ¢ Spectral Radius Regularization term: A
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2.3 LINEAR REGRESSION

Linear regression is one of the simplest regression models which are still widely used
in industry. This most straight forward method works as a benchmark or criterion
when competed against a more complex model. Typically, the root mean square error
is calculated as follows:

_ 1y DY _ oli
RMSE—\/nZ;(he(X ) —y(®)2 (8)

Note hg(X(i)) is linear hypothesis of the form 6y + 61x; + 62x2 + 03x3 + ... + 0,x;,. For
consistency with further discussions about recurrent neural network, x = X'/ is set to
be the ith column instead of ith row of the design matrix X € R"*". Then, assuming
y is the vector of targets, in the sense of normal equation, the solution has the form

b =yx' (xx")™ ©)
In order to mitigate potential overfitting, a regularization term A is introduced so that
it becomes ridge regression and the solution turns into

0 = yXT(xXxT + A1) ! (10)

where I is identity matrix. The following is a pseudo code for training linear regres-
sion:

Algorithm 1 LinearRegression Training

1: function linearTrain(u,y, model Inputs) > modelInputs < N,, N, etc.
2 m <— nbPointsTolgnore + 1;

3 S=[Lu(:,m:end)];

4 D =y(:;,m:end);

5: Wour = DSTpinv(SST + AI); > Ridge Regression, ‘pinv’ is pseudo inverse
6: end function

Note that in the above algorithm,
e At line 2, nbPointsTolgnore equals to 100 in this paper
e At line 3, the semicolon indicates a vertical concatenation.
e At line 5, superscript T stands for transpose of a matrix.

In the following sections, the task performance of linear regression will be mainly
used as a threshold. If a complex model cannot surpass linear regression, then in
terms of efficiency no one would use this complex model and abandon the simple
linear regression.

10
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3.1 ECHO STATE NETWORK

Echo State Network(ESN) are a certain type of recurrent neural network(RRN) that is
built to solve non-linear tasks. The main difference of it from feedforward neural net-
work is that there is an internal reservoir in ESN represented by a sparse matrix which
holds connections between reservoir neurons. The basic idea of ESN is that it projects
input vector u(n) into a high dimensional vector x(n) in order to capture non-linearity
of the system, where 1 being certain discrete time point. Unlike Principal Component
Analysis(PCA) which attempts to reduce dimensions, ESN expands dimensions of in-
puts to simplify the problem, which is crucial for reservoir computing method|2].
ESN has advantages compared to traditional feed-forward neural networks mainly
due to its feature of short-term memory, which retains and reflects recent history pretty
well and gradually fades as time goes on. This property shares similarity with stock
market dynamics, which renders it possible, even suitable for ESN to predict financial
time series.

The general update equations for ESN are :

x(n) = f(Win[Lu(n)] + Wx(n — 1)) (11)
x(n) = (1 —7)x(n—1) 4+ 1x(n) (12)
y(n) = Woue[Lu(n); x(n)] (13)

where u(n) € RM and x(n) € RN+ are vectors of input and reservoir neuron activa-
tions respectively, y(n) € R is the output vector at time n. W;, is the input weight
matrix, W stands for the reservoir weight matrix; At time step n, f can be either tanh
or sigmoid and is applied element-wise; ¢ € (0,1] is called leak rate. If ¥ = 1, then it
is standard ESN. Note that sigmoid function has the following expression:

11
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ytargt‘t{ 'J’l:]

Figure 6: Echo State Network Architecture(Lukosevicius, 2012, S. 3)

Basic steps to construct an ESN are as follows:
e W;, and W are randomly initialized, an appropriate - is selected.

e For each n,

- Import input vector u(n) of training set to the system and evolve the cor-
responding reservoir state x(n). Note that applying function f is a way of
data normalization since it keeps x(n) bounded so that it does not have
unexpected ‘weird” behaviour.

e A supervised learning algorithm is built on pairs of x(1) and y"”¢(n). Typically,
for off-line optimization, ridge regression is used to yield matrix Wyy;.

e Foe each n,
- Apply trained W,,; on input vector u(n) of test set to compute predictions
y(n).

Here W,,;; is computed using ridge regression:
Wour = yXT(XXT + A1) (14)

where X is the design matrix collecting evolutions of x(n):

Initial state x(0) is arbitrary. Typically, x(0) = 0[9]. Usually initial ‘'warm-up’ states of
x(n) are discarded since they are affected by artificial initial setting and should not be
used in training Woy;.

Moreover, it is useful to monitor elements of W,,;: large entries means that a tiny

12
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change in x(n) maybe be unnecessarily amplified. Thus, even if task performance is
pretty well at the training stage, slight deviation on input conditions may lead to poor
prediction performance on test set. In other words, being unstable, the system is very
sensitive to inputs and is much likely to be under risk of overfitting. That is why reg-
ularization term A is needed.

3.1.1

Pseudo Code

The following is the pseudo code for training ESN:

Algorithm 2 ESN Training Algorithm

trn

1: function esnTrain(u,y, model Inputs) > model Inputs < v, W;,, W, X" etc.

10:

X € RNwxnbDataPoints ¢ Desion Matrix
for i = 1 to nbDataPoints do
X(;,i) = (1—9)*X(;,i — 1) + 7 * tanh(WX(:,i — 1) + Wy, [L;u(;,1)]);
z(:,1) = [Lu(:,1);X(:,1)]; > Vertical Concatenation
end for
m <— nbPointsTolgnore 4 1;
S=z(:;,m:end);
D =y(:,m:end);
Wout = DSTpinv(SST + Al); > Ridge Regression, 'pinv’ is pseudo inverse

11: end function

The following is the pseudo code for testing ESN:

Algorithm 3 ESN Predicting Algorithm

prd

1: function esnPredict(uTest, yTest, modelOutput) > modelOutput <— Wy, Xy~ etc.

2:

9:

3
4
5:
6:
7
8

X € RNxxnbDataPoints « Degion Matrix
X(;,1) = (1= ) % XP o s tanh (WXL + W, [1; uTest(:, 1)));
z(:,1) = [L;uTest(;, 1); X"; > Vertical Concatenation
for i = 2 to nbDataPoints do
X(:;,i) = (1 —7)*«X(5,i = 1) + v * tanh(WX(:,i — 1) + W;,[1; uTest(:,1)]);
z(:,i) = [1;uTest(:,i); X(:,1)]; > Vertical Concatenation
end for
yPredict = (modelOutput.Wo,;) * z

10: end function

Please note that in the predicting algorithm:

13
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e No reservoir states x(n) are discarded since the first reservoir state Xgrd is equal
to the final reservoir states in the training algorithm.

e Sometimes the term uTest(:, i) can be replaced by yPredict(:,i — 1), since yPredict(:
,i — 1) is expected to be equal to uTest(:, 7). In this case, only the very first value
of dataset uTest is used and predictions for several days ahead can be made.

3.1.2 Parameters

Choosing the right parameters can be more beneficial than choosing the right model
itself. However, it is never trivial to tune parameters of ESN. Experience will play
an important role here. It is inevitable and necessary to use manual selection to get
a sense of which parameters affect results more than others do, and these manually
selected values could be used as the initial values for further automated selection.
During the process, please ensure that only one parameter is changed at a time. The
quality of a certain parameter setting is evaluated using root mean square error of
training set and test set. Note that all the parameters ought to be optimized under a
condition where adequate regularization measure is taken to alleviate overfitting.
Practically, the input scaling, leak rate and spectral radius of reservoir weight matrix
are the three most important parameters of ESN.

Input Scaling

Input weight matrix W;,, is usually dense without zero elements. The entries of the
matrix usually follow a uniform distribution in a symmetric range [—a,a] or classic
range [0,1]. Often candidate values for a is 1, 0.1, 0.01. The distribution can be Gaus-
sian or a customized one as well, whereas the boundness is not guaranteed.

The first column of the input weight matrix is usually the bias column, which corre-
sponds to bias element 1’ in input vector u(n). Hence it does not share the same status
as the rest of the columns. Thus, to reduce degree of freedom, all columns except the
first column of the input weight matrix are randomized using one parameter a, and
the first column uses another parameter b.

Small values of a will map input to a small range around zero, where tanh() is vir-
tually linear, hence this setting is suitable for solving linear systems. On the other
hand, large values of 4 will map u(n) to extreme values of tanh(), namely —1 or 1, cre-
ating a non-linear, binary manner. Overall, input scaling controls non linearity of x(n).

14
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tanh sigmoid
1 1 ==
0.5 /
0 0.5
.-"l
05 /
/ —
1 p =
-4 -2 0 2 4 -4 2 0 2 4
Figure 7: activation function tanh Figure 8: activation function sigmoid

The reservoir weight matrix W represents a structure of recurrently connected units.
Similar to the case of W;,,, non-zero elements of W usually have uniform distribution in
a symmetric range. However, unlike W;,, W is sparse and has other distinct properties.

Size of the Reservoir

Intuitively, larger the reservoir, the better the attainable performance. the size can be
as big as 20, 50, 100, 1000, even 10000 is not uncommon. There is few condition when
reservoir may be oversized: one is that the task itself is pretty much trivial, and the
other could be that the size approaches meaningful fraction of number of data points,
or in other words, lack of data points. Normally, if sample size is n, it is required that

[3]
Ny <=mn/2; (15)

Typically, it also holds that 1 + N,, + Ny << n, this constraint also reduces the risk of
overfitting. At the same time, the size of reservoir should at least be the number of
independent time steps that are supposed to be memorized to address the problem.

Sparsity

Though the reservoir is big, the reservoir weight matrix is always set to be sparse in
many publications. In my experience, higher density tends to give higher prediction
performance. However, at the same time, lower sparsity means more recurrent connec-
tions, and large non-zero matrix operations increase computational costs. Generally,
above a certain threshold, connectivity barely affects the final performance. Hence I
would recommend 30% connectivity, which is robust enough to be a balance between
efficiency and efficacy. Compared to others, sparsity has relatively low priority to be
optimized. In Matlab, there is a special representation for sparse matrix that could
speed up computations.
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Spectral Radius

Being the central parameter of ESN, spectral radius is the maximum of absolute eigen-
values of reservoir matrix W. Intuitively, it determines the width of the distribution of
non-zero entries. If it is set too high, then the reservoir may hold periodic, even chaotic
spontaneous attractor modes which deactivates echo state property. It has been proved
that, in most cases, *(W) < 1 ensures the echo state property[7]. However, it is also
true that W with spectral radius greater than 1 retains echo state property. As a rule of
thumb, if the task requires extensive input history, then it is recommended to set the
spectral radius higher. The following steps are usually taken when specific spectral
radius is assigned to reservoir weight matrix:

1. Initialize a reservoir weight matrix Wy

2. Normalize Wy to Wy using Wi = Wy /11, where r; is the spectral radius of W.
Now that W has unitary spectral radius.

3. Multiply W; by r element-wise so that it has spectral radius .

Leak Rate

Leak rate is a real value between 0 and 1. Echo state network without leak rate
is called standard echo state network, the one with leak rate or leaky integrator is
called LI-ESN. In this latter case, 7y can either be placed before application of f() or
after. Introduction of leak rate makes it possible to learn very slow dynamic systems
and replay them at various speeds(Jaeger, Lukosevicius, Popovici, and Siewert,2010,S.
335)-

Small values of leak rate may induce slow dynamics of x(n) and extend short term
memory[4]. Virtually, the prediction performance is sensitive to leak rate since a small
change in leak rate may lead to a big change in final result. Hence, this parameter
also has relatively high priority. Some low-prioritized parameters could be assigned
default values for convenience.

3.1.3 Empirical Results

ESN is expert in fitting and predicting chaotic time series, this could be verified by its
performance on classic Mackey-Glass series:

16
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Figure 9: Samples of Mackey-Glass Chaotic Time Series

In a publication by Jaeger, it is claimed that advanced ESN could yield root mean
square error(RMSE) of order 10~7 on predicting Mackey series|[5].

Now, in my experiment, 2000 data points are used for training, with the first one
hundred reservoir states x(n) being discarded due to initial transient effect, and 500
data points are used for testing. Both linear regression and ESN will be implemented.
For ESN, parameters are specified as follows:

Leak Rate 7y 0.9 Spectral Radius 1.25
Input Weight Matrix W;,, | [—0.5,0.5] | Reservoir Weight Matrix W | [—0.5,0.5]
Reservoir Size N, 400 Normalization Range [—1,1]
Reservoir Density 0.3 Regularization term A 108

After plugging all the parameters into ESN, following errors are summarized:

Training error(RMS) | Testing error(RMS)
Linear Regression 0.0315 0.032
ESN 79 x107° 8.0 x10°°

Apparently ESN produces negligible errors compared to that of linear regression. In
fact, even if reservoir size Ny is reduced to 35, training and testing errors are still less
than 0.001, which is less than 3% of the errors made by linear regression.

For illustration, the predicting performance of ESN with N, = 35, along with that of
linear regression, are displayed below:

17
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Figure 10: Mackey Series test set

400 450 500

In both figures, one could not virtually discern between predicted values and actual
values, since two curves nearly coincide with each other most of the time. Judging
from the plot, it seems that linear regression has reasonably well fit even if it has
"huge’ test error compared to ESN. However, if details of two figures are studied more

carefully, difference could be realized:

Linear Regression

— Target signal
Predicted signal

240 260

320 340
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Figure 11: Zoomed-in Figure Comparison

One may notice that prediction curve of linear regression is just a forward shift of
the target curves. In other words, the prediction curve is just a time-lagged copy of
the actual target curve if horizontal axis is discrete time. Therefore, in this case, the
prediction capability of linear regression is relatively poor. On the other hand, ESN
prediction curve tends to move in phase with the target curve. Even at the turning
point around n = 290, where two curves can visually be distinguished, the trends of
prediction values keep pace with that of target curves. Hence, statistically, ESN has
much better test error than linear regression. Below are some samples of reservoir
states x(n):

Some reservoir activations

Figure 12: Evolutions of reservoir activations

In the figure above, reservoir activations actually means a vertical concatenation of
bias factor, input vector and actual reservoir state, i.e. (1,u(n),x(n))’. It is a vector of
size 1 + N, + Ny, since Ny is large, the first 20 entries of the vector are plotted. Hence
in the graph there are totally 20 curves, with each curve being the evolutions of a fixed
position within the vector (1,u(n),x(n))T. At the same time, x-axis indicates n = 1
to 200, and the number of evolutions is 200. In the figure, the reservoir state is not
saturated since not all curves converges to the same number(e.g. 1 or —1). Note also
that the upper most curve, the bias factor, is a straight line which always equals to
one.

The following is a bar plot of output weight matrix W

19
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Output weights W

100 200 300 400 500 600 700 800 900 1000

Figure 13: Evolutions of reservoir states

Assuming N, = 1, W,,; is a vector of size Ny X 1. In the figure above, N, = 1000,
and almost all the elements of W,,;; are within the range [—3,3]. Hence, there are no
extreme large values in W,,; and the model is less likely to suffer from overfitting.

Recall that the word ‘chaotic’ means that a time series consists of irregular patterns,
so that visually no obvious trends could be easily perceived, while 'noisy” emphasizes
on stochastic or irrelevant factors that may interfere or even obscure useful inputs. A
time series could be both chaotic and smooth at the same time. e.g. Mackey Series,
while noisy time series is usually filled with wavelets.

After adding some Gaussian noise to the standard Mackey series, the following figure
is plotted:
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Figure 14: Mackey series Figure 15: noisy Mackey series

As in figure 15, the noisy curves are usually oscillating more frequently and therefore
are much more difficult for any models to track its path. As a matter of fact, it could
be seen that ESN possesses advantages in fitting and predicting chaotic time series.
However, experiments show that the performance of ESN will be discounted coping
with noisy time series directly.

Unfortunately, financial time series is often chaotic and noisy. In addition, great cau-
tion is required when financial data are utilized for backtesting. There is no doubt that
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flawed data can lead to misleading results. In worst cases, historical returns may be
overestimated. Following are several facts about financial data:

e Dataset with high resolution offers more details, at the expense of being noisier
(Aamodt, 2015, S. 50)

e Stock prices need to be adjusted after share split or dividend pay-out.

e Most importantly, many accessible datasets have survisorship bias[1] since his-
torical database does not hold information about companies which disappeared
due to delistings, bankruptcies or mergers.

Along with the first two bullet points, the size of dataset also matters in a machine
learning model, while the third bullet point, as well as transaction cost, is crucial in
terms of backtesting.

Due to limited public access to all types of financial datasets, the focus is on modelling
stock returns. Hence, regardless of survivorship bias, only survived stocks, especially
those from S&P 500, are chosen for experiments. Generally, these stocks have advan-
tages over other stocks in terms of market cap and liquidity. The index S&P 500 itself
is often used as the weather report of financial industry.

In my experiment, 100 constituents of S&P 500 are imported. For each stock, the daily
closing price data are downloaded. 1200 data points are used for training(the first 100
points are used to evolve reservoir states x(n) and will be discarded), while another
200 points are left out for testing.

Applying linear regression to the raw log returns of symbol MMM gives the following
tigures:

Training Set-Linear Regression Test Set-Linear Regression
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Figure 16: Linear Regression on raw stock returns

The figure shows that the log return time series is so intractable and noisy such that
only approximately a straight line around zero would minimize the least square error
for linear regression, where the regularization term A is the only parameter of ridge
regression. However, regardless of what A is, it always gives similar results. Here, the
ratio of predicted values volatility to target values volatility would be close to zero,

21



3.1 ECHO STATE NETWORK

which is undesirable.
Now, the same raw data are fed into ESN:

Training Set-ESN Test Set-ESN
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Figure 17: ESN on raw stock returns

Statistically, ESN has test error of only 5% lower than that of linear regression, despite
the fact that visually their figures differ a lot. Moreover, in dealing with unprocessed
data, adjustment of parameter values does not improve performance of ESN a lot.

Now, the log return series of MMM is denoised before fed into linear regression and
ESN. With regularization term A = 1078, linear regression gives the following error:

Training error(RMS) | Test error(RMS)
Linear Regression 0.00472 0.0036

At the same time, ESN is equipped with common parameter settings below,

Leak Rate v 1 Spectral Radius 0.8
Input Weight Matrix W;, | [—2,2] | Reservoir Weight Matrix W | [—0.5,0.5]
Reservoir Density 0.5 Regularization Term A 108

In Matlab, the same random initializations for W;, and W are reproducible by setting
values for seed. For example, rand('seed’, 34);

Now, fix these parameters, and only vary reservoir size N, since it can sensitively
affect performance of ESN. The results are displayed in triplets, which stands for Ny,
training error and test error respectively.

ESN f=tanh f=sigmoid
No normalization | 850,0.00227,0.00157 | 200, 0.00235,0.00204
Normalized to [—1,1] | 170,0.00209,0.00150 | 600,0.00228,0.00140
Normalized to [—2,2] | 140,0.00234,0.00166 | 80,0.00232,0.00139
Normalized to [0,1] | 190,0.00193,0.00136 | 650,0.00250,0.00155

From the table, it could be seen that:
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e Normalization generally improves task performance of ESN(note normalization
does not virtually change performance of linear regression).

e Compared to tanh, sigmoid function works better in symmetric ranges. Espe-
cially with the range [—2,2], ESN with sigmoid activation function uses small
reservoir size N, = 80 and still perform better than that of tanh with a larger
reservoir size N, = 140.

e The best test error comes from ESN with normalization range [0, 1], it reduces
62% of the test error made by linear regression. Moreover, it is also coupled with
best training error in the table.

Cautiously note that these are observations from the test on stock MMM. Further
experiments on large set of stocks are required to check if the above observations uni-
versally apply.

The corresponding figures for ESN with normalization range [0, 1] and linear regres-
sion are displayed below:
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Figure 18: ESN on denoised stock returns test set
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Linear Regression Training
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Figure 19: ESN on denoised stock returns training set

From the figures it could be seen that ESN restores some of its prediction capabil-
ity when dealing with denoised chaotic time series instead of raw time series. ESN
apparently has better fittings in comparison of linear regression. Statistically, with nor-
malization, ESN reduces at least 57% of the test error made by linear regression.
Moreover, note that parameters are manually tuned one at a time. Therefore, if system-
atic way of tuning(i.e. grid search, genetic algorithm) is used, the errors are likely to be
further reduced by a meaningful percentage. Moreover, optimal parameters settings
are specific and unique for each stock. If the same setting is used for various stocks,
the corresponding errors would be inevitably increased. Nevertheless, an experiment
is done with the following parameter setting:

Leak Rate y 1 Spectral Radius 0.8
Input Weight Matrix W;, | [—2,2] | Reservoir Weight Matrix W | [—0.5,0.5]
Reservoir Density 0.5 Reservoir Size N, 350

Meanwhile, a relative large regularization term A=0.01 is chosen to reduce chance of
overfitting. Also, sigmoid function with normalization range [—2,2] is used. ESN with
this parameter setting is applied on 100 stocks from S&P 500 and then gives the error
table as follows:

Average Training error(RMS) | Average Test error(RMS)
Linear Regression 0.00809 0.00799
ESN 0.00498 0.00515
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The table shows that this time ESN reduces only 36% instead of 57% of the test error
made by linear regression. This is due to the use of common parameter setting for
all 100 stocks for convenience. Nevertheless, 36% reduction still reveals competitive
prediction capability of ESN across stocks with a common parameter setting.

3.1.4 Batch Intrinsic Plasticity

So far there are no generalized unsupervised learning algorithms that are powerful
enough to be able to fully train ESN reservoirs, although several attempts[8] were
made. However, sometimes pre-training methods in simple machine learning models
could be enlightening and useful as well in complex models such as ESN.

Extreme Learning Machine(ELM) is a
simple type of feedforward neural net-
work. It has only one hidden layer and
no recurrent part. Similar to ESN, its task
performance greatly depends on random
initialization of the input weight matrix
Wi;,. Without additional tuning strate-
gies, in some cases random generations
can lead to saturations of reservoir states
x(n), where most of the entries are equal
to —1 or 1, or early convergence where
x(n) = x(n+ 1) when n is small.

Batch Intrinsic Plasticity[10] is intro-
duced to adapt activation functions so
that desired distribution for x(n) can be

realized.

Suppose ELM has the following update

equations: Figure 20: Extreme Learning Machines
xi = f(aiWi,u + by) (16)
Y = Wourx (17)

where u = (u(1),u(2), ..., u(nbDataPoints)) € RN«xnbDataPoints g input vector, Wi, is
the ith row of input weight matrix W;, € RN<*Nu and a € RN and b € RN+ are
scalar vectors to be determined by BIP.

Consider f = tanh, then x = [—1,1] is an important range where y = tanh(x) is
virtually linear. Outside this range, especially when |x| > 2, y will be very close to
—1 or 1, which can cause saturations of x(n) if x;(n) = f(W. u(n)). Now with scaler
vectors a and b, this situation may be mitigated.
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Suppose f = tanh, sy € RNxxnbDataPoints — W, 4 and x € R*Nr has N, positions for
elements. Then, for ith position, BIP will do the following;:

1.

Uniform samples are drawn from [—1,1] and sorted ascendingly, the result is
collected by target vector t € R xnbDataPoints_

The ith row of s is sorted ascendingly and collected by vector s.

. Take s as input and t as output, implement a linear regression to get coefficients

a; and bi.

Finally, iterations of i from 1 to N, will give vectors a and b.
The corresponding pseudo code can be found below:

Algorithm 4 BIP Training Algorithm

Require: : Import input vectors u = (u(1), u(2), ..., u(nbDataPoints))
1: s = W;,u
2: fori =1to N, do

3: s < sorted ith row of sg

4  Construct concatenation ¢ = [s; (1,1, ..., 1)] € R¥*nbDataPoints

5: Draw targets t = (¢(1),#(2), ..., t(nbDataPoints)) from desired distribution
6: t < sorted t

7 v = [a;, b] = tx pino(e)

8: end for

9: Return v

Some bullet points are given here:

e For f=sigmoid function, the range for uniform sampling could extend to [—2,2]

due to the shape of sigmoid function.

The input and output vectors are sorted before linear regression due to the fact
that the function y = a,x 4 b; is set to be monotonic increasing.

Apart from uniform distributions, the above procedure also applies to other
bounded distributions. For unbounded distributions such as Gaussian, things
need to be changed a little bit. Drawing normally distributed samples t and
applying tanh on it clearly no longer works since the samples are not bounded
between [—1,1]. At this stage, one possibility to get round would be that the

normal distribution is applied on f(t), i.e. the reservoir state x, instead of t.

Hence, when x is set to be normally distributed, f~! needs to be computed. The
result works as new output, say, t,, and linear regression can then be constructed
between s and t,.
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Now, this algorithm could also be used on ESN as well. Consider standard ESN with
leak rate v = 1, and the following update equation:

x(n) = f(Win[Lu(n)] + Wx(n — 1)) (18)

This time, suppose design matrix X = (x(1), x(2), ..., x(nbDataPoints)) € RNxxnbDataPoints
there are three ways of setting s.

e so=f1(X)
e 50 =X
e sp = Wju

Experimentally these three settings can all improve ESN. In particular, the third one
will be illustrated in detail since it generally performs better than the first two. Partly,
it is because the last setting has smallest root mean square error in desired target
fitting.

BIP error

Target Values
27 Fitted Values | |

1] 200 400 600 800 1000 1200

Figure 21: desired target fitting

Now, suppose so = W, u, other settings kept the same as ELM, the ESN reservoir state
has the following update equation:

x(n) = f(a.*Wju(n) +b+Wx(n —1)) (19)

Note a € RN*! and Wy, u(n) € RN+*1, 50 .x here means element wise multiplication.

For example,
a o[
b ) d ) \ bd

Empirically, unlike case with original ESN, normalization barely changes task perfor-
mance of BIP-attached ESN, while desired target range matters more. Hence, experi-
ments are done on the stock MMM using different target ranges:
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f=tanh f=sigmoid
Uniform Range [—2,2] 90,0.00247,0.00148 | 170,0.00198,0.00130
Uniform Range [—1, 1] 120,0.00234,0.00147 | 150,0.00199,0.00109
Uniform Range [—0.5,0.5] | 130,0.00213,0.00145 | 440,0.00206,0.00122
Uniform Range [0, 1] 110,0.00207,0.00134 | 450,0.00206,0.00125

Similar to the previous experiment on ESN, the triplet in the table still means Ny,
training error and test error respectively. Seen from the table,

e Sigmoid in general surpasses tanh on task performance.

e For f=sigmoid, that the range [—1,1] works better than [—2,2] may be due to
specific setting of sy = Wj,u: Since x(n) = f(a.* Wju(n) +b+Wx(n — 1)) =
a.*sp+b+Wx(n—1)), a. xsg + b only partly contributes to calculation of x(#),
unlike in case of ELM where x(n) = f(a.* Wj,u(n) +b) and a. x sy + b fully
determines x(1). Moreover, x = [—1,1] is a range where f(x) is steepest, hence
elements of x(n) will be more spread out there.

e The best test error 0.00109 comes from sigmoid with uniform range [—1,1], it
reduces 69% of the test error made by linear regression and 20% of the smallest
test error made by original ESN. The error comparisons are displayed below:
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Figure 22: ESN on denoised stock returns test set
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Figure 23: ESN with BIP on denoised stock returns test set
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Also, general performance of BIP-attached ESN over 100 stocks is assessed using the
following common parameter setting:

Leak Rate y 1 Spectral Radius 0.65
Reservoir size N, 150 Activation function sigmoid
Reservoir Size Wy, | [—2,2] | Reservoir Weight Matrix W | [—0.5,0.5]
Reservoir Density 0.5 Regularization term A 102

Again, the desired target range used is [—1, 1], which gives the following error table:

Errors over stocks | Average Training error(RMS) | Average Test error(RMS)
Linear Regression 0.00809 0.00799
ESN 0.00498 0.00515
ESN with BIP 0.00397 0.00459

Simple calculations show that BIP-attached ESN reduces on average 20% of training
error and 11% of test error made by plain ESN. This observation underpins BIP as a
promising tool to improve ESN.
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3.2 RADIAL BASIS FUNCTION(RBF) AND GRADIENT DESCENT

Radial Basis Function(RBF) are a certain type of functions whose value only depend
on the distance from some center ¢. Any function ¢ satisfying ¢(x,c) = ¢(||x —c||) is
called a radial basis function. The norm here is usually taken as Euclidean norm. As
an important branch of neural networks, RBF networks have numerous applications
including system identification and non-linear chaotic time series forecasting. It has
rather distinct properties from ESN(e.g. only require small reservoir size). In this
section, the most commonly used Gaussian kernel is adopted:

= O(|[u—ql|) = exp{~Ilu— [/ (287)} (20)
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Figure 24: Gaussian kernel Figure 25: RBF

Basically, each time a new input u is imported, it is transformed into x using radial
basis function 20. Then multiplication of x with output weight matrix W,; gives the
output. This time, the output weight matrix W,; is no longer trained using a super-
vised ridge regression. Instead, it is tuned along with other parameters. Generally,
with w standing for wyy, the triplet {c, , w} [11] needs to be tuned together using a
learning algorithm called gradient descent, which iteratively takes steps proportional to
the negative of the current gradient of the function. The following are update equa-
tions:

Wi+ 1) = wi(n) — me(n)C(n)xi(n) (1)
61+ 1) = (1) = e () (m)C ) 0 () =) (z2)
Bi(n + 1) = Biln) — yse(m)ai(m)C(n) (( ; () — ()] (23)

Where #1, 112, 173 are learning rates which control the speed of the process. €(n) is the
difference between target value and predicted value at time 7 i.e.

e(n) = §(n) —y(n) = wn)x(n) —y(n) (24)
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C(n) is an additional feature called stochastic data-time effective function:

Cln) = zexp( [ w(e)d+ [ o(tyaw) (25)

to

The focus is on gradient descent algorithm itself, so for simplicity y(t) and o(t) are

both set to be zero. Below is the pseudo code for training RBF using gradient descent:

Algorithm 5 RBF Training Algorithm

1: function modelOutput = rbf Train(u,y, model Inputs) > modellnputs <— Ny, 1, T
> = ]RN”XNX '3 c IRNX><1 Wout c lRlXNX yHat c RlxanatuPoints

3 k =1, error = 10°, maxIteration = 500, tolerance = 0.008 <« Initializations
4 while (error > tolerance and k < maxlIteration do)

5: for j = 1 to nbDataPoints do

6 fori=1to N, do » -

7 @ (i) = exp(—1gpth)

8 end for

9: € =Wourp —y(j)

10: C=1/7

11: fori =1to Ny do

12: w; = Wyt (1)

13: C; C( l)

14 bi = B(i)

15: W ( ) out( ) 77€C¢( )

16: c(:,1) = c(:,i) — neCwip (i) (u(:, j) — ;) /b? > (i) is a vector
17: B(i) = B(i) — neCw;p(i)|[u(:, j) — il /b

18: end for

19: end for
20: for j = 1 to nbDataPoints do
21 fori=1to N, do

. 1) —c(:,0)| 1

@ (i) = exp(—1hgh)
23: end for
24: yHat(j) = Wou¢
25: end for
26: m <— nbPointsTolgnore + 1;
27: y, = (yHat(;m:end) — b)/a > the first m points are discarded
28: y, = (y(,m:end) — b)/a > the y values are mapped back before calculating errors
29: error = \/m ngpomts(ﬁ(”) —y,(n))?
30: k=k+1
31 end while

32: Store updated ¢,  and W,
33: end function
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Note in the above algorithm,

e Suppose N, = 1, then c is a matrix of size N;, X Ny, whenever a new input u(n)
is imported, every column of ¢ is updated using c(:,i) = c(:,7) — k(u(:,j) — ¢;)
where k is some scalar. Similarly, B is a vector of size Ny x 1 and w is a vector of
size 1 x N,. They will be updated accordingly.

e The algorithm will terminate if either the training error is less than the prede-
fined tolerance, or the maximum number of iterations are hit.

With the following parameter settings:

Reservoir Size N, 15 Input size N, 1
Normalization Range [0,1] Learning Rate % 0.001
Data-time Effective Function C | 10 | Maximum Iterations | 500

and these initializations using uniform distributions on certain ranges:

| c¢:[0,1] p:[0.1,03] w:[—0.1,0.1] |

Setting the tolerance to 0.008 would give the following error table and the correspond-
ing prediction performance:
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Training error(RMS) | Testing error(RMS)
Linear Regression 0.0315 0.032
RBF 0.008 0.00771
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Figure 26: RBF on Mackey Series test set

This first experiment costs 33 seconds, and the evolution of training errors are plotted:
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Figure 27: Error Evolutions

Now if the tolerance is set to be 0.007, i.e. require the training error to be no more than
0.007, then it takes 53 seconds to reach this error target:
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Figure 28: Error Evolutions

Therefore, technically it takes 20 seconds for the algorithm to get rid of the last 0.001
training error. That means, it consumes additional 60% of the previous running time
to reduce 12% of the error. Seen from the table, gradient descent has fast convergence
rate at the beginning. However, after 200 iterations it struggles to just improve a
little bit. Now, other parameters kept the same(the same random initializations are
reproducible), more experiments are done using various learning rates:
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Learning Rate 77 | Running Time(seconds)
0.001 53
0.002 43
0.005 63
0.0005 66

In the table, only a learning rate of 0.002 speeds up the process by 10 seconds. However,
further increase of the learning rate(r7 = 0.005) no longer helps.

In additional to learning rate, the evolvements of w, § and c are also of interest. In the
original case where tolerance=0.008 and learning rate=0.001, the final form of B is as
follows:

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Figure 29: bar plot of 8

Since N, = 15, each bar represents each element of B. Note that B is initialized to be
within range [0.1,0.3]. But seen from the plot, about 1/3 of the elements go far beyond
its upper bound 0.3, in particular, the highest value is 1.23, which is as 4 times as 0.3,
and the lowest value is 0.12. Hence, if the initialization range for B is expanded to [0, 1]
or [0.12,1.23], it is possible that the running time will be further reduced. Empirically
however, neither case manages to decrease the original running time. Nevertheless, if
the learning rate is adjusted to 0.002, all three cases achieve reduction of 10 seconds on
average. On the other hand, similar experimental results apply to the case of w and c.
Generally, the learning rate is a delicate parameter in machine learning, if it is set
small, it will take too much time to converge. However, if it is greater than needed, it
may never converge and even diverge. See the following figure for intuition:
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Figure 30: Gradient Descent-Andrew Ng

At the same time, although for gradient descent, initializations are not required to
be close-to-optimal, it has to be within a certain range for the algorithm to reach the
target error within reasonable time. Ideally, gradient descent works best on convex
functions. If the function has multiple peaks or several local minima, given different
initializations, gradient descent may end up finding the global minimum or being
trapped in a local minimum.

0, 20 20 0,

Figure 31: Convex Functions

In summary, this section introduces a new parameter optimizing method. The main
advantage of gradient descent is that one can specify the desired error level beforehand
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so that task running time could be allocated more efficiently according to different
accuracy requirements. At the same time, however, it has several limitations:

e The setting of learning rate largely depends on experience. Inappropriate setting
can make it impossible to reach the target error level within reasonable time.

e Gradient descent is relatively slow close to the minimum: technically, its asymp-
totic rate of convergence is inferior to many other methods[WikiPedia].

e Gradient descent fails confronting non-differentiable functions. Thus these func-
tions may need to be bounded by a smooth function for gradient descent to
work.

3.3 RECURRENT RBF NETWORK
3.3.1 Standard RRBFN

Recall the RBF model has the following form:

xi = @(||u — ¢|]) = exp{—|lu—cil|*/ (287)} (26)

Now, this model is featured with recurrent structure so that it turns into an advanced
structure called Recurrent Radial Basis Function Network(RRBFN), which has the
form:

xi(n) = (| [u(n) — ||, [[x'(n — 1) — & (27)
— exp{—(Ilu(n) — |2+ [Ix(n — 1) — | P)/ (262} (28)

This time, the function values depend on two inputs instead of one. Two ’distances’
from the two center vectors determine the output value. More specifically, its update
equation is:

Xi(n) = exp(—a|[Wi, —u(n)|* = Bl|W' —x(n = 1)|?), i=1,.. N (29)

where X;(n) is the ith element of vector X(n) € RM-; W and W' are ith row of Wj,
and W respectively, « and p are scalar parameter which absorb the information of §;
in equation 26

Pseudo Code
The following is the pseudo code for training RRBFN:
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Algorithm 6 RRBEN Training Algorithm
1: function rrbfTrain(u,y, model Inputs) > model Inputs <— Ny, W;,, W, Xy etc.

2 X € RNxxnbDataPoints « Degion Matrix

3 for i = 1 to nbDataPoints do

4 forj =1to Ny do

5 X(j,1) = exp(—al|Wau(, )] — u(s, i) | = BIIWG, 91T — X1 — 1))
6: end for

7: z(:, i) = [Lu(:,1); X(:,1)]; > Vertical Concatenation
8: end for

9:

m <— nbPointsTolgnore 4 1;

S=1z(:,m:end);

1z D=y(;,m:end);

122 Wy = DSTpinov(SST + AI); > Ridge Regression, ‘pinv’ is pseudo inverse
13: end function

i
e

Parameter Tuning

As a benchmark chaotic time series, Mackey series is again used to tune parameters of
RRBEN. Compared to other chaotic even noisy time series, it is relatively smooth and
tractable. Therefore, if a machine learning model cannot succeed on Mackey series,
then it is unlikely to have strong potential in predicting chaotic time series. Most
importantly, Mackey Series could be used to find priority of parameters. Generally,

e An increase in N, will monotonically decrease both training error and test error
to a certain level. However it is not recommended to set a high value for N,
since it increases the chance of overfitting.

e W barely changes results.

e Other parameters give no obvious trends and thus need to be tuned one at a
time.

It is worth mentioning that « and p have similar positions in the model, they both are
scalar factors of a certain "distance’.

e « is the distance between ith row of W;, and input vector u(n).
e (3 is the distance between ith row of W and reservoir state x(n — 1).

Therefore, they should be treated as a pair. First of all, assume a and B have equal
importance. Start from &« = f = 0.1, a monotonic increase in both values until « =
B = 0.9 gives a general decrease in errors. In particular, « = B = 0.6 is chosen to be
a robust set since there is a huge drop in errors when a = = 0.5 is changed to o =
B = 0.6, and also this is the first time when test error is less than 10~3. Nevertheless,
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a = B = 0.9 is robust too, for it produces smallest test error when « and B are set
equal.

Secondly, it remains to be seen which one has more impact on final result. Fixing other
parameters, the following statistics are obtained:

o 0.6 0.6 1
B 0.6 1 0.6
Test error(RMSE) | 0.000737 | 0.000684 | 0.000852

From this table, it could be observed that 66% change in B leads to 7% decrease in
the test error, while 66% change in a results in 15.6% increase in the test error, which
indicates that generally « is more influential on the error term. Then fixing o = 0.6,
careful tuning on B gives the final pair:

o 0.6
B 0.9
Test error(RMSE) | 0.000669

Similarly, it is possible that some other parameters are also strongly inter-connected
and should be tuned together. However, identification of this requires additional ex-
pertise and deep analysis on the behaviour of parameters.

Finally, with cautiously tuned parameters below,

[a,B] [0.6,0.9] Spectral Radius 1.25
Reservoir size N, 10 Input Size N, 1
Reservoir Size W;, | [—1,1] | Regularization Term | 108
Without using data normalization, the errors are as displayed:
Training error(RMS) | Test error(RMS)
Linear Regression 0.0315 0.032
RRBF 0.000705 0.000648

From now on it is assumed that 0.000648 is the smallest test error that can be achieved
by standard RRBFN with N, = 1. This important result will be cited later for further
comparison and evaluation with new methods.

3.3.2 Randomly Parametrized RRBFN

Based on the conjecture that each entry of input vector u(n) or reservoir states x(n)
can contribute differently to the new reservoir state x(n + 1), modifications on distance
computation are made hoping to take advantage of this hypothesis. For example, if
u(n) = (uy, up, us, ug, u5)T is a vector representing the log returns of the past 5 days,
then u; could have more impact on u(n + 1) then us does. Therefore, when com-
puting an —u(n), the resultant vector [0.1,0,0,0,0] should be distinguished from

38



3.3 RECURRENT RBF NETWORK

[0,0,0,0,0.1]. If one favours small values of the norm |[W — u(n)||, then the latter
vector is more desirable than the first one since u; matters more than us. However,
in the sense of previous Euclidean norm, the two vectors have exactly the same norm.
Therefore, weights may be assigned to different positions within a vector to unearth
and make use of the priority of importance.

However, usually the order of importance within u(#) is unknown and it may be con-
stantly changing. If a specific order list is presumed and widely used over different
time periods and stocks, generality of the model may be impaired. Hence, N, be-
ing the length of vector u(n), a randomly assigned weight distribution is generated
following the steps below:

e Draw N, samples from standard uniform distribution U(0, 1).
e Calculate the sum of N,, samples, call it s;
e Divide each sample by s to get a probability distribution p;

e Multiply each element of p by N, to get final weight vector wy;

In the situation of equal weight distribution, all elements of p are the same and equal
to 1/N,, and the weight vector w; = N, * p consists of all ones. This special case
is equivalent to the previous standard RRBEN, where distances are measured in Eu-
clidean norm.

The above justifications and calculations apply similarly to the norm ||[W’ —x(n —1)||,
with N, changed into N.

Fixing the optimal parameter settings for standard RRBF, iterations over different
weight vector wy show that random parametrized RRBF is relatively unpredictable
in improving standard RRBF. Sometimes, it could reduce the test error by 20%; On the
other hand, with some extreme distribution of wy, this could be the other way round.
Therefore, its performance largely depends on initialization of w; and is relatively un-
stable.

Below is a case where w; is randomly initialized using rand('seed’,9). In this case,
randomly parametrized RRBF reduces 17% of the test error made by standard RRBF:

Training error(RMS) | Test error(RMS)
Linear Regression 0.0315 0.032
Standard RRBF 0.000705 0.000648
Randomly Parametrized RRBF 0.000591 0.000539

3.3.3 Directional Parametrized RRBFN

Due to the fact that the performance of randomly parametrized RRBEN greatly relies
on random generation of weight vector wi, one may want to alleviate or get rid of
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the random factor by generating w; using non-random rules. This type of network is
called directional parametrized RRBEN. It is paid attention since in the previous exper-
iment, some distributions of w; do lead parametrized RRBEN to a better performance
than that of standard RRBFN.

In my trial, elements of wy are set to be proportional to magnitudes of elements in
vector W — u(n). For instance, if W, —u(n) = (1,3)7, then the corresponding p
and w; would be (0.25,0.75)T, (0.5,1.5)7 respectively. Note that only the magnitude
matters. So if W, —u(n) = (—1,3), the corresponding w; would still be (0.25,0.75)".
Under this rule, the vector difference between W', and u(n) is amplified. For example,
if Wi —u(n) = (1,3)7 holds,

e Euclidean norm would give v/12 + 32 = /10

e Under new rule, the norm is v0.5% 12+ 1.5% 32 = /14
Empirically, with proper parameter settings:

e v=0.2, B=0.8

e Spectral Radius=0.9

Directional parametrized RRBF is able to improve the best standard RRBF by a mean-
ingful amount, please refer to the following table for details:

Training error(RMS) | Test error(RMS)
Linear Regression 0.0315 0.032
Standard RRBF 0.000705 0.000648
Randomly Parametrized RRBF 0.000591 0.000539
Directional Parametrized RRBF 0.000548 0.000479

From the table, it could be seen that directional parametrized RRBF successfully re-
duces 26% of the test error made by standard RRBE. This observation is encouraging
since it shows that directional parametrized RRBF may have potential to steadily im-
prove RRBF with general stock data.

3.3.4 Empirical Results

Firstly, the test is on a specific stock. For consistency, stock MMM’ is again used. After
plugging in appropriate parameters, the errors are displayed below:

Training error(RMS) | Test error(RMS)
Linear Regression 0.00472 0.0036
Standard RRBF 0.00290 0.00173
Directional Parametrized RRBF 0.00269 0.00153
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Again, the above errors in the table are smallest errors(especially test error) attainable
using corresponding methods. This time, directional parametrized RRBF decreases
12% of the test error made by standard RRBEF, which is a good start.

Now, with a common parameter setting, data are collected across 100 stocks:

Average Training error(RMS) | Average Test error(RMS)
Linear Regression 0.00809 0.00799
Standard RRBF 0.00531 0.00598
Directional Parametrized RRBF 0.00519 0.00532

Several comments are given below:

e To some extent, it is proved that directional parametrized RRBF is capable of
improving standard RRBF in terms of both training and test error.

e On average, directional parametrized RRBF decreases 11% of the test error made
by standard RRBF. However, it takes around 1 minute to run the program, while
standard RRBF costs 4 seconds. Nevertheless, the time is still acceptable.

e In general, an significant increase in N, does not effectively reduce test error.
This might be one of the main differences between ESN and RRBF: For RRBF,
Ny is usually chosen to be less then 15, while in ESN, N, can be in hundreds,
thousands, even in ten thousands. This structural difference may be part of the
reason why RRBF has average test error which is 17% higher than that of ESN.

3.3.5 Unsupervised Learning for RRBFN

There are many unsupervised learning algorithm sfor training RBF type neural net-
works. One of them is called self organizing map(SOM) [6]

Sizex

input vector

Figure 32: Self-Organizing Maps
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Its update equations are:

Wi, (1 +1) = Wi, (n) + 17 (n)h(i, n) (u(n) — Wi, (n)) (30)
Wi(n+1) = Wi(n) +1(n)h(i,n) (x(n) — W (n)) (31)

where 7 (n) is learning rate and h(i, n) is called learning gradient distribution function:

h(i,n) = exp(—dy(i,bmu(n))?/ by (n)?) (32)

42

In the above equation, bmu(n)=argmax;(x;(n)) is the index of the ‘best matching unit’(BMU),

dy(i,j) is the distance between units with indices i and j in the additionally defined
topology for reservoir units. In our case, d,(i, ) is:

bmu(n)

o cither the Euclidean distance between Wi, and W,

e or the Euclidean distance between W; and Wy,,;;,(,,)-

Practically, every time a new input u(n) is imported, firstly the reservoir state x(n) is
updated using u(n) and x(n —1):

Xi(n) = exp(—a|[Wi, —u(n)|* = Bl|W' —x(n = 1)|?), i=1,.. N (33)

Then, equations 30 and 31 are used to update rows of W;,, and W adaptively. Mean-
while, this updating effect is controlled by a scaler called learning rate n. Empirical
values for learning rate are 0.1,0.01,0.001. In some cases, under certain criteria, the
value of learning rate itself can dynamically change during the training process to bet-
ter fit the dataset. But for simplicity fixed value for # is used here.

Take equation 30 for instance: consider input weight matrix W;, € RN~*Nu with every
row being a center vector to the new input u(n), then there are in total N, center
vectors. Hence, N, is supposed to be the estimated number of independent center
vectors. Ideally,

e These center vectors should be far from each other in Euclidean distance

e Every new input u(n) € RN« should close to all of the center vectors, i.e. all the
rows of W,

However, due to the fact that W;, and W are randomly initialized, their rows may not
function as suitable center vectors that perfectly match input dataset. Therefore, they
need to be adaptively updated during the training process.

Whenever a new input u(n) is imported, its distances to every rows of W;, are com-
puted. Among all N, distances, the best matching unit(BMU) is the row index of Wj,
which is closest to u(n). Then, assuming bmu = k, the distances from the kth row to
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every other rows of W;, are calculated and the results are summarized in the term
h(i,n), where i means ith row and n indicates the time point. Specifically, it has the
following expression:

h(i,n) = exp(—||Wi, (n) — W, (n)|*/ (20%)) (34)

Here the setting of ¢ varies from case to case, usually it is the volatility of the variable
of interest.

Now, look back to equation 30: if u(n) is closest to a center WX (1), then W% (1) be-
comes WY (7). If WY (1) is far from other center vectors, then the value of h(i,n)
should be small since the norm ||Wi (1) — W (11)|| would be large. At the same
time, if u(n) does not deviate too much from all the center vectors, u(n) — Wi (n)
would be relatively small for all i. Hence, the term #(n)h(i,n)(u(n) — Wt (n)) as a
whole would be small if the learning rate #(n) is selected and fixed. As a matter of
fact, this is a desirable situation and W;,, does not need to be modified much.

Moreover, it holds true that for i = 1...N,,

[Ju(n) = Wi (m)|] <= [lu() — Wi, (m)]] (35)
1 = h(bmu(n),n) >=h(i,n) >0 (36)

However, it is not clear if h(bmu(n),n)(u(n) — Wi (n)) >= h(i,n)(u(n) — Wi (n)).
i.e. we are not aware if WY moves greater distance towards u(n) than other rows
do. Practically, it turns out that most of the time WY tends to move faster due to
the exponential decay of (i, n). Nevertheless, there exist other models such as Neural
Gas(NG) [6] that require h(bmu(n),n) = 0. The above explanation similarly applies to
equation 31. Only the "distance” involved changes.

Furthermore, due to the fact that the rows of W;, is always compared to u(n), in some
cases the first Ny training inputs u(1), u(2),...,u(Ny) are used to initialize W,:

— u()T —

— u2)T —
W, = @) € RNx*Nu

Pseudo Code
The following is the pseudo code for training RRBFN with SOM:
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Algorithm 7 RRBEN with SOM Training Algorithm

10:
11
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

29:

30:

31
32
33
34
35

1
2
3
4
5:
6:
7
8
9

: function rrbf SOMTrain(u, y, model Inputs)
X € RNxxnbDataPoints « Degien Matrix

for i = 1 to nbDataPoints do
for j =1to N, do

X(j, 1) = exp(—a[|[[Win(j, )] —u(;, )]* -

end for

z(:,0) = [Lu(:,1);X(;,1)];

BMU; = ||[Wi, (1,)T —u(:,i

Index; = 1;
for j =2 to Ny do

Test = ||Wi(j,:)T —u(:,9)|];

if Test < BMU; then

BMU, = Test;
Index; = j;
end if
end for

BMU, = ||W(1,:)T = X(:,1)|[;

Index, = 1;
for j =2 to N, do

Test = ||W(j,:)T — X(:,1)]|;

if Test < BMU, then

BMU, = Test;
Index; = j;
end if
end for

fork—l o N, do
Win(k,:) = W;
W(k,:) = W(k,
end for

D)+ 1([x()]"

end for

m <— nbPointsTolgnore + 1;

S=z(:;,m:end);

D =vy(:;,m:end);

Wout = DSTpinv(SST + AI);
end function

> model Inputs <— Ny, W;,, W, Xy etc.

> Finally update x(n)
BIIWG DI = XC, i = DI?);

> Vertical Concatenation

> To find BMU;

> To find BMU,

> Update W;,, and W

n(k,2) 7 ([u(s )]T = Wi (k, 2) Jexp(—| Wi (K, ) — Wiy (Indexy, 2) |2/ (207));
— Wi(k,:))exp(—|[W(k,

1) = W(Indexy, )|/ (20%));

> Ridge Regression, pinv is pseudo inverse
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Fix the optimal parameter setting for standard RRBF on stock 'MMM’,

[, B] [0.6,1] Spectral Radius 1.25
Reservoir size Ny 12 | Normalization Range | [0, 1]
Reservoir Size W;, | [-1,1] | Regularization Term | 1078

and only add unsupervised update equation for W;, and W(equation 30,31) with learn-
ing rate 7 = 0.01 to the algorithm, the corresponding errors are shown below:

Training error(RMS) | Test error(RMS)
Linear Regression 0.00472 0.0036
Standard RRBF 0.00290 0.00173
Standard RRBF with SOM 0.00258 0.00163

Seen from the table, with adjustment of W;, and W, the SOM algorithm manages to
reduce 6% of the test error made by standard RRBF. Please see the evolution of input
weight matrix W;,, below:

Evolution of Win
1 T T T T

e /\ /\
\ A / \ p IV

e | | | | |
o 2 4 6 8 10 12

Figure 33: Evolution of W;,, during training

Note that W;,, has dimension Ny x N, = 12 x 1. In the above figure, since N, = 12,
the x-axis has 12 discrete points representing 12 positions in the vector W;,,. For each
position, the corresponding y-value is the element value on that position. In theory,
there supposed to be 1200 curves, with each curve shown in unique color. However,
most of the curves coincide with each other and one can hardly tell one from another.
This figure indicates that W;,, has not changed a lot during the process. With a closer
look at the figure, the 3th, 5th and 12th element may be found to evolve a bit during
the training process.

Kindly note that it is only in the training process that SOM is applied, the test set is
always left untouched. At the end of the training process, the evolved W;, and W
are used on test set. In order to reduce chance of overfitting, no further evolution is
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undertaken at test stage.

Similar to Wj,,, the evolution of W is also of interest. However, since W has 2D di-
mension of Ny X Ny, it is difficult to visualize its adaptation process. Nevertheless, the
initial and final formations of the reservoir weight matrix W are plotted:

0.00 0.00

0.09 0.3 0 0.00 0.00 0.00 0.5! 5
0.00 0.00 000 0.00 O 0.00 000 0.00 0.00 ﬁ
0.00 0.00 0.00 0 1 0.00 m 0.00 0.00 0.62 m
0.73
027

gikrd 0.00 014 000 000 000 000 000 0.00 0.00 000 0.00
0.34 000 000 000 0.00 0.00 0.08 0.00 0.00 0.40 . 0.40

0.71

0.00 Euk(i} 0.00 000 0.00 0.00 0. 0 0.00 .

[N -0.65 0.00 0.00 m 0.00 0.00 0.00 X m 0.39

0.00 0.00 0.00 000 0.2 0.00 0.00 0.00 0.00 0.00 0.13 0.23 047 0.97

0.00 000 027 0.13 0 DDI]DDD 0.00 0.2 0.69 [0.43 0.38

Figure 34: Initial W Figure 35: Evolved W

Note that the deeper the color, the higher the value. In the initial W, the matrix is
supposed to be sparse so that only 40% of them are non-zero. Comparing two figures,
it could be seen that only 2nd and 11th row changes by a meaningful amount. This is
partly because originally W is already relative close to optimal setting.

Now, other parameters kept fixed, if range of W;, changes to [—0.5, 0.5, then the errors
generated are as follows:

Training error(RMS) | Test error(RMS)
Linear Regression 0.00472 0.0036
Standard RRBF 0.00332 0.00213
Standard RRBF with SOM 0.00319 0.00189

The corresponding evolution of W, is also displayed:
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Evolution of Win
0.8 T T T T T

0.6~

0.4 -

02

04F 4

1 1 1 1 1
0 2 4 6 8 10 12

0.6
Figure 36: Evolution of W;,

Several comments are given here:

e Seen from the table, SOM successfully reduces 11% of the error made by stan-
dard RRBE. The error reduction doubles compared to the previous case.

e The figure shows a relative large evolution on the 3th, 5th and 12th rows. It looks
as if SOM tries to 'rectify’ these rows of W;, and lead them to the right track.
Generally, in those much more complex tasks, where optimal parameter settings
are hard to find, SOM can guide the system adaptively in the right direction.

Now, the general performance of SOM is tested on 100 stocks. The parameter settings
are kept exactly the same as the previous one used for standard RRBF tests across 100
stocks. The resultant errors are as follows:

Average Training error(RMS) | Average Test error(RMS)
Linear Regression 0.00809 0.00799
Standard RRBF 0.00531 0.00598
Standard RRBF with SOM 0.00509 0.00571

Seen from the table, on average SOM reduces test errors by 5%, which is half of the
previous 11% reduction on a specific stock. Moreover, the error percentage reduction
distribution across 100 stocks is also displayed:
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Distribution of Error Reduction
14 T T T T T T T T

Figure 37: Histogram of Error Reduction

Since a positive number means that SOM does reduce test errors, statistically it turns
out that 72% of the time SOM successfully decreases test errors made by standard
RRBF, but in the rest 28% of the time, SOM undesirably increases the errors. The
failure of SOM to decrease test errors can be partly due to a common setting of the
learning rate 77. Throughout the process only one single 7 is used. It is fixed during the
training process, and over stocks. Therefore, if a changeable 7 is used, it is likely that
SOM will remain effective more frequently. The following is a prediction comparison
on a sample stock:

RRBF on test set
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Figure 38: RRBF on test set
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RRBF with SOM on test set
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Figure 39: RRBF with SOM on test set

As for directional parametrized RRBF, the same experiments are done on the same
100 stocks using a common parameter setting. The results show that despite that on
average training errors decrease by 6%, only 44% of the time SOM manages to reduce
the test error made by directional parametrized RRBE. Moreover, the training process
takes much more time than previous experiments. The incompatibility of SOM to di-
rectional parametrized may be due to that directional parametrized RRBF itself has
already scaled element-wise the distance between u(1) and W , hence a further mod-
ification on W;, might create adverse effects.

Overall, the SOM model is promising and useful on standard RRBF in the sense that
most of the time it is able to adaptively lead rows of W;,, and W to the right positions
when the original settings are not suitable for input dataset. Moreover, if the learning
rate could be made flexible, or another % (i, 1) is utilized, chances are there for SOM to
be further developed.
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This thesis displays mainly two types of Recurrent Neural Network: ESN and RRBFN,
as well as associated unsupervised learning techniques for improving them. Empir-
ically, the results show that RRN, especially ESN, could successfully be applied on
stock log returns. In terms of test error, the predictions ESN made prevail greatly over
that of linear regression, slightly better than that of RRBFN. For details, please refer to
the following tables.

For performance on the stock ' MMM

Models Training Error | Test Error
Linear Regression 0.00472 0.0036
ESN 0.00193 0.00136
ESN with BIP 0.00199 0.00109
RRBF 0.00290 0.00173
RRBF with SOM 0.00258 0.00163
Directional RRBF 0.00269 0.00153

For performance over 100 stocks:

Models Training Error | Test Error
Linear Regression 0.00809 0.00799
ESN 0.00498 0.00515
ESN with BIP 0.00397 0.00459
RRBF 0.00531 0.00598
RRBF with SOM 0.00509 0.00571
Directional RRBF 0.00519 0.00532

Values in the table prove the strong capability of ESN for predicting chaotic time
series. Also, all the above methods, except directional RRBEF, are efficient in terms of
running time. For the stock MMM, the error results come out almost instantly. For
iterations over 100 stocks, it still takes less than 10 seconds. Moreover, "for loop” in
the previous pseudo codes could be replaced by "vectorization” technique in Matlab to
further improve efficiency.
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Although in general, RRN works pretty well on denoised series, great care needs to be
taken before it is actually used for trading:

e 'All models are wrong, some models are useful.” Typically, a machine learning
model only works under suitable conditions and assumptions. Then it attempts
to find some patterns to learn. However, unlike human behaviour, financial time
series involves large proportions of noise, and hence are difficult to predict.

e The possibility of overfitting always exists. Careful tuning of parameters can
only decrease chance of overestimation of returns in backtesting, but cannot get
rid of it.

e The result of denoising is essential since it is supposed to retain useful infor-
mation and discard irrelevant noise. However, it is often technically hard to
distinguish the useful part from the rest.

At the same time, there are several points that could be done to improve the model if
time allows:

e More dissections on denoising technique to increase the chance of predicting
actual price instead of noise.

e More relevant inputs or features may be added(e.g. Trading Volumes).

e Discover more unsupervised adaptive algorithms such as Maximal Entropy(Lukosevicius
& Jaeger, 2009, S. 137) to further improve a model.

e Utilize systematic ways of tuning parameters such as Grid Research(available in
Python), or Genetic Algorithm, which is robust in heuristic search. Moreover,
some parameters could be made changeable adaptively during the training pro-
cess(e.g. Learning Rate in Gradient Descent or SOM). A very simple example
would be using different learning rates for different dataset sizes.

e Use cross-validation to improve reliability of the results.

¢ Financial data used should be survivorship bias free and transaction costs should
be considered when calculating log returns.

Overall, as a state of the art prediction method, RRN works pretty well on the denoised
financial time series in terms of test error. It takes a big leap from linear regression and
it is still fast. The above bullet points also reveal great potential of the model. No mat-
ter how many of the above points will effectively refine the model, more possibilities
are always there to be exploited.
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