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Abstract

One of the aims of this paper is to find the feedback control in constrained quadratic minimization
problem under two-dimensional cases. Another aim is to study the upper and lower bounds on
the primal value function for utility maximization problem when the drift following the Ornstein-
Uhlenbeck(OU) process with power utility and non-HARA utility functions. We can find a closed-
form solution for power utility using both primal HJB and dual HJB due to its homothetic property
when the drift µt following the OU process. However, it is impossible to get an exact solution for
general utilities. In this paper, by the duality relationship, we construct the upper bound from a
dual problem and then construct a feasible control to find the lower bound under the OU process
with power and non-HARA utilities and estimate the gap of upper and lower bounds. The dual
control Monte-Carlo method is used to calculate the tight upper and lower bounds of the value
function. Finally, we perform some numerical tests to check the robustness, efficiency and accuracy
of the upper and lower bounds method.
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Introduction

Stochastic optimal control and convex duality methods are widely used to solve dynamic portfolio
optimization problems. In the optimization theory, the duality principle is a principle problem
for optimizing problems from the primal problem’s angles or the dual problem. The relationship
of the primal problem and the dual problem is that the solution of the dual problem produces a
lower bound to the solution of the primal problem.[1] Therefore, The key idea of solving dynamic
portfolio optimization problems is to use the dynamic programming principle(DPP) to the opti-
mal value function, see [2]. This method will produce a second-order nonlinear partial differential
equation(PDE) called Hamiltonian-Jacobian-Berman (HJB) equation. However, when solving this
equation, we also obtain the optimal control in the form of ”feedback.” This means that if we find
an exact formula of the HJB, then we can use the martingale principle of optimality to verify that
it is the value function and find the optimal feedback control simultaneously. Otherwise, it can be
proved that the value function is a unique solution of the HJB equation, see [3]. For a complete
market with some special utilities, it is easy to find a closed-form solution to the nonlinear HJB
equation using the dual control method. Bian and Zheng[4] show that for a complete market with
closed convex cone constraints for controls and some particular continuous concave utilities, there
exists a closed-form solution to the HJB equation.

However, for an incomplete market is driven by some Markovian processes such as the Ornstein-
Uhlenbeck(OU) process, it isn’t easy to solve the fully nonlinear HJB PDE directly. The reason is
that the HJB equation has two state variables, wealth Xt and drift µt. The OU process is not a
geometric Brownian motion which leads to the dual HJB equation is an equally difficult nonlinear
PDE with two state variables. In this paper, we discuss the method of finding an approximate
solution to the HJB equation under the OU process. Since the OU process is an affine stochastic
process, for a power utility, one may decompose the solution to reduce the dimensionality of state
variables by one and get a simplified nonlinear PDE with one state variable (drift). A clever trans-
formation proposed by Zariphopoulou simplifies the nonlinear equation further into an equivalent
linear PDE. Then we can derive the classical solution by Feynman-Kac Theorem; see more details
from [5].

However, for other general utilities, we cannot find a closed-form solution of the HJB equation. Al-
though the dual control method cannot solve general utility maximization problems for our model,
it provides valuable information for the optimal value function. Because of the weak duality rela-
tion, we can construct the upper bound from the dual value function for the primal value function
and then construct a feasible control to find a good lower bound for the primal value function under
the OU process. If the gap between the upper and lower bounds is small, we can approximate the
primal value function. This idea has been applied successfully to find the approximate optimal
value function for the Heston stochastic volatility model and regime-switching asset price model
with general utility functions, see [6] and [7].

This paper derives the dual control problem and recovers the optimal solution for power util-
ity in [5] and [8]. We use the dual control Monte Carlo method to compute the upper and lower
bounds for general utilities’ primal value function. For power and non-HARA utilities with a par-
ticular dual control, the upper bounds can be computed efficiently with the closed-form formula.
Numerical tests for power and non-HARA utilities show that these bounds are tight, which pro-
vides a good approximation to the primal value function.

The rest of the paper is arranged as follows. Chapter 1 introduces the classical solution to the
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HJB equation for some special continuous concave utility functions, including power, non-HARA,
Yarri utilities, using the dual control method, and representing the solution to the HJB equation
in terms of that of the dual HJB equation. Chapter 2 derives the optimal controls under the two-
dimensional cases in constraint problems using the Kuhn-Tucker condition and gives some simple
numerical examples. Chapter 3 discusses the dual control method and derives the closed-form
solution for power utility under the OU process and use the solution of the Riccati equation and
numerical methods to test and verify primal and dual control methods produce the same primal
value function and feedback control. Chapter 4 presents the dual control Monte Carlo method for
computing tight upper and lower bounds of the value function and derives the closed-form upper
bound for power and non-HARA utilities with a specific form of the dual control. Then performs
numerical tests to see the efficiency, accuracy, and robustness of the method. Chapter 5 concludes.
Appendix A gives the closed-form solution of the Riccati equation.
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Chapter 1

HJB equation and dual control
method

1.1 Utility maximization with dual control method

Assume that a financial market has two assets, risk-free savings account B and risky stock S,
satisfying the following stochastic differential equations(SDEs):

dBt = rBtdt, dSt = St(µdt+ σdWt), 0 ≤ t ≤ T

with initial prices B0 = 1 and S0 = s > 0, where interest rate r > 0 and W is a standard Brownian
motion on a filtered probability space (Ω,F ,F = (Ft)t≥0, P ).

Assume that π is an Ft-adapted process,
∫ T

0
π2
t dt < ∞, a.s. and π is a progressively measurable

control process satisfying πt ∈ K, a closed convex cone in R, a.s. for t ∈ [0, T ] a.e. π is proportional
portfolio process. Assume Xt is wealth at time t. Then πtXt is amount of money invested in S and
(1− πt)Xt is amount of money in bank account B. The wealth process Xt satisfies the stochastic
differential equation(SDE):

dXt = πtXt(µdt+ σdWt) + (1− πt)Xtrdt

= rXtdt+ πtXt((µ− r)dt+ σdWt)
(1.1.1)

with the initial wealth X0 = x.
The utility maximization problem is given by

sup
π
E[U(XT )] subject to (1.1.1), (1.1.2)

where U is a continuous, increasing and concave (but not necessarily strictly increasing and strictly
concave) utility function on [0,∞), satisfying U(0) = 0 and U(x) ≤ C(1 + xp), x ≤ 0 for some
constants C > 0 and 0 < p < 1.

Remark 1.1.1. U increasing (U ′ > 0) means investors prefer having more wealth to having less.
U concave (U ′′ < 0) means investors are risk averse and having diminishing marginal utility, that
is, prefer a payoff E(X) to a random payoff X, the first one gives utility U(E(X)), and the second
one gives expected utility E(U(X)).

1.1.1 Dynamic programming and the primal HJB equation

To solve (1.1.2) with the stochastic control method, the value function V : [0, T ]×R→ R is defined
by

V (t, x) = sup
π∈K

Et,x[U(XT )|Xt = x], t ≥ 0 and x ∈ R. (1.1.3)

Theorem 1.1.2. (Dynamic Programming Principle) Assume on [t, t + h], the control process π
and X evolves from (t, x) to (t+ h,Xt+h), then the value function V (t, x) is given by

V (t, x) = sup
π∈K

E[V (t+ h,Xt+h)|Xt = x] (1.1.4)
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Assume V (·, x) ∈ C1, V (t, ·) ∈ C2. By Ito’s formula,

V (t+ h,Xt+h) = V (t, x) +

∫ t+h

t

(
∂V (s,Xs)

∂s
ds+

∂V (s,Xs)

∂x
dXs +

1

2

∂2V (s,Xs)

∂x2
d[X,X]s)

= V (t, x) +

∫ t+h

t

(
∂V

∂s
+
∂V

∂x
(rXs + πsXs(µ− r)) +

1

2

∂2V

∂x2
π2
sX

2
sσ

2)ds

+

∫ t+h

t

∂V

∂x
πsXsσdWs

(1.1.5)

Substitute equation (1.1.5) to equation (1.1.4) to obtain

sup
π∈[t,t+h]

E[

∫ t+h

t

(
∂V

∂s
+
∂V

∂x
(rXs + πsXs(µ− r)) +

1

2

∂2V

∂x2
π2
sX

2
sσ

2)ds|Xt = x] = 0

When h→ 0, πs → πt = π and by Mean Value Theorem, s→ t, Xs → Xt = x

sup
π∈K

(
∂V

∂t
+
∂V

∂x
(rx+ πx(µ− r)) +

1

2

∂2V

∂x2
π2x2σ2) = 0

As a result, the primal Hamilton-Jacobi-Bellman(HJB) equation is given by

∂V

∂t
+ rx

∂V

∂x
+ sup
π∈K

(πx(µ− r)∂V
∂x

+
1

2
π2x2σ2 ∂

2V

∂x2
) = 0 (1.1.6)

with the terminal condition

V (T, x) = sup
π
E[U(XT )|XT = x] = U(x)

Value function can be obtained by solving PDE (1.1.6). If V is a strictly concave function in x,
that is, Vxx < 0. The maximum point is obtained by solving

x(µ− r)Vx + πx2σ2Vxx = 0

which gives

π∗t,x = −µ− r
σ2

Vx
xVxx

(1.1.7)

Inserting π∗ into HJB (1.1.6) and simplifying the expression, we obtain a nonlinear PDE which is
hard to solve

∂V

∂t
+ rx

∂V

∂x
− 1

2
(
µ− r
σ

)2 V
2
x

Vxx
= 0 (1.1.8)

with the terminal condition V (T, x) = U(x). If the utility function is power utility, that is U(x) =
xp/p, we know

V (t, x) = U(x)g(t)

and solve ODE for g to obtain V (t, x). However, if U is not power utility, it is impossible to solve
the nonlinear HJB PDE.

1.1.2 Dual control method

We can use the dual control method to find the solution of the nonlinear primal HJB equation.
Dual utility function of U is defined by

Ũ(y) = sup
x≥0

(U(x)− xy), y ≥ 0, (1.1.9)

The function Ũ is continuous convex and decreasing on [0,∞) with Ũ(0) = U(∞) and Ũ(∞) = 0,
satisfying

Ũ(y) ≤ C(1 + yq), y > 0
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for some constant C > 0 and q = p/(p− 1) < 0.[4]
Define a dual process Y satisfies the SDE

dYt = Yt(−rdt− (σ−1π̃t + (µ− r)σ−1)dWt), Y0 = y, (1.1.10)

where π̃ is a progressively measurable dual control process satisfying π̃t ∈ K̃, the positive polar
cone of K in R, a.s. for t ∈ [0, T ] a.e..
The dual minimization problem is defined by

inf
π̃∈K̃

E[Ũ(YT )]. (1.1.11)

For 0 ≤ t ≤ T and y ≥ 0, the dual value function is defined by

Ṽ (t, y) = inf
π̃∈K̃

E[Ũ(YT )|Yt = y]. (1.1.12)

The primal value function and dual value function have the following relationship[6]

V (t, x) = inf
y≥0

(Ṽ (t, y) + xy) (1.1.13)

Since Ṽ (t, ·) is strictly convex, Ṽy(t, ·) is strictly increasing. Thus, the minimum in (1.1.13) is
achieved at

∂Ṽ (t, x)

∂y
+ x = 0. (1.1.14)

For every x > 0, let the unique solution be ŷ(t, x), satisfying

V (t, x) = Ṽ (t, ŷ(t, x)) + xŷ(t, x). (1.1.15)

The partial derivatives of the equation(1.1.15) are given by

∂V

∂t
=
∂Ṽ

∂t
+
∂Ṽ

∂y

∂y

∂t
+ x

∂y

∂t
=
∂Ṽ

∂t
,

∂V

∂x
=
∂Ṽ

∂y

∂y

∂x
+ y + x

∂y

∂x
= y,

∂2V

∂x2
=
∂y

∂x
= − 1

Ṽyy

(1.1.16)

Substituting (1.1.14) and (1.1.16) into (1.1.8), Ṽ satisfies a linear PDE

∂Ṽ

∂t
− ry ∂Ṽ

∂y
+

1

2
(
µ− r
σ

)2y2 ∂
2Ṽ

∂y2
= 0 (1.1.17)

with initial condition Ṽ (T, y) = Ũ(y). This PDE is called the dual HJB equation. We can find a
representation of the classical solution to the primal HJB equation by two convex dual operations
and solution of a linear PDE, all are relatively easy to perform. By the Feynman-Kac Theorem,
the solution to dual HJB equation(1.1.16) has the following representation

Ṽ (t, y) = E[Ũ(YT )|Yt = y], (1.1.18)

where

dY = −rY dt− θY dW

⇒ Y = y0exp(

∫ T

t

(−r − 1

2
θ2)ds−

∫ T

t

θdWs), θ =
µ− r
σ

,

with the initial value Y0 = y0. Since r, µ and σ are constant, then

Y = y0exp[(−r − 1

2
θ2)(T − t)− θ(WT −Wt)] (1.1.19)
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with the initial value Y0 = y0. Therefore, using the dual control method, we can find the optimal
control π∗, value function V and optimal wealth process X∗ in two ways:
1. Find the value function V by equation (1.1.15), the corresponding optimal control π∗ by equation
(1.1.7) and optimal wealth X∗ by solving SDE(1.1.1).
2. Find the value function V by equation 1.1.15, then solve equation (1.1.14) with time t = 0 to
get y0, where X0 = x is the initial wealth at time t = 0, then find the dual process Y by equation
(1.1.19) and the optimal wealth process X∗ at time t is given by

X∗t = −Ṽy(t, Yt).

Find the SDE satisfied by X∗t and the corresponding optimal control π∗.

1.2 Dual control method for three different utility functions

1.2.1 Power utility function

Power utility function is defined by

U(x) =
1

p
xp

where p ∈ (0, 1) is a constant. The dual power utility function is given by

Ũ(y) = sup
x>0

(U(x)− xy) = sup
x>0

(
1

p
xp − xy), y > 0.

Since the optimal point x satisfies the equation

U ′(x)− y = xp−1 − y = 0.

Hence,

Ũ(y) = −1

q
yq, y > 0 (1.2.1)

where q = p/(p− 1) < 0. By equation(1.1.18) and (1.1.19), the dual value function is given by

Ṽ (t, y) = −1

q
yqexp[(

1

2
q(q − 1)θ2 − qr)(T − t)], θ =

µ− r
σ

. (1.2.2)

The minimum point is obtained at point ŷ = ŷ(t, x) which is solves the equation(1.1.14)

ŷ(t, x) = x
1

q−1 exp[(−1

2
qθ2 +

qr

q − 1
)(T − t)], θ =

µ− r
σ

.

Then by using dual relation to find primal value function from dual value function

V (t, x) =Ṽ (t, ŷ(t, x)) + xŷ(t, x)

=
q − 1

q
x

q
q−1 exp[(−1

2
qθ2 +

qr

q − 1
)(T − t)]

=
1

p
xpexp[(

1

2

p

1− p
θ2 + pr)(T − t)]

Therefore, the primal optimal control is achieved at

π∗(t, x) = −µ− r
σ2

Vx
xVxx

=
µ− r

(1− p)σ2
.

Therefore, the wealth process Xt satisfies a linear SDE

dXt = Xt

(
(

(µ− r)2

(1− p)σ2
+ r)dt+

µ− r
σ(1− p)

dWt

)
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Theorem 1.2.1. Consider dYt = mtYtdt+ νtYtdWt (Geometric Brownian Motion), with mt and
νt deterministic function of time. Set Zt = ln(Yt) =: φ(Yt). By Ito formula the SDE of Zt is given
by

dZt = (mt −
1

2
ν2
t )dt+ νtdWt (Arithmetic BM)

By Theorem1.2.1, the optimal wealth process is given by

Xt = xexp

[(
(µ− r)2

(1− p)σ2
+ r − 1

2

(µ− r)2

σ2(1− p)2

)
t+

µ− r
σ(1− p)

dWt

]
.

1.2.2 Non-Hara utility function

Non-Hara utility function is defined by

U(x) =
1

3
H(x)−3 +H(x)−1 + xH(x)

for x > 0, where

H(x) =

(
2√

1 + 4x− 1

)1/2

Theorem 1.2.2. Non-Hara utility function U is strictly increasing, strictly concave, U(0) = 0,
U(∞) =∞, U ′(0) =∞ and U ′(∞) = 0.

Proof. The first derivative function of H(x) is

H ′(x) = − 1

2
√

1 + 4x
H(x)3

The first derivative function of U(x) is

U ′(x) = −H(x)−4H ′(x)−H(x)−2H ′(x) +H(x) + xH ′(x)

=
1

2
√

1 + 4x

(
H(x)−1 +H(x)− xH(x)3

)
+H(x)

=
1

2
√

1 + 4x
× 0 +H(x)

= H(x) > 0

which shows U is strictly increasing. The second derivative function of U(x) is given by

U ′′(x) = H ′(x) = − 1

2
√

1 + 4x
H(x)3 < 0

which shows U is strictly concave. Since H(0) = limx→0H(x) =∞, then

U(0) = lim
x→0

H(x) =
1

3
H(0)−3 +H(0)−1 + 0×H(0) = 0,

U ′(0) = H(0) =∞.

Since H(∞) = 0, then U(∞) = ∞ and U ′(∞) = H(∞) = 0. At the meanwhile, U is a utility
function is also proved.

The dual non-Hara utility function is defined by

Ũ(y) = sup
x>0

(U(x)− xy)
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The maximum is achieved at

U ′(x)− y = H(x)− y = 0.

Solving this equation, the solution is given by

x =
1

y2
+

1

y4
.

Substituting x into U(x)− xy, the dual utility function is given by

Ũ(y) =
1

y
+

1

3y3
.

By equation(1.2.1), the dual non-Hara utility function and the dual non-Hara utility function have
the following relationship

Ũ(y) = − 1

q1
yq1 − 1

q2
yq2

where q1 = −1 and q2 = −3. By equation(1.2.2), the dual value function is given by

Ṽ (t, y) = − 1

q1
yq1exp[(

1

2
q1(q1 − 1)θ2 − q1r)(T − t)]−

1

q2
yq2exp[(

1

2
q2(q2 − 1)θ2 − q2r)(T − t)]

= e(θ2+r)(T−t) 1

y
+ e(6θ2+3r)(T−t) 1

3y3
, θ =

µ− r
σ

.

Furthermore, since ŷ is the solution to Ṽy(t, y) + x = 0, by solving the equation

−e(θ2+r)(T−t) 1

y2
− e(6θ2+3r)(T−t) 1

y4
+ x = 0, (1.2.3)

the minimum point is obtained at point

ŷ(t, x) =

(
1

2x

(
e(r+θ2)(T−t) +

√
e2(r+θ2)(T−t) + 4xe3(r+2θ2)(T−t)

))1/2

. (1.2.4)

Furthermore, we can derive an explicit solution to the primal HJB equation by the dual HJB
equation

V (t, x) = Ṽ (t, ŷ(t, x)) + xŷ(t, x)

= e(θ2+r)(T−t) 1

ŷ
+ e(6θ2+3r)(T−t) 1

3ŷ3
+ xŷ

=
ŷ

3

(
3e(θ2+r)(T−t)y−2 + e(6θ2+3r)(T−t)ŷ−4 + 3x

)
By equation(1.2.3)

e(6θ2+3r)(T−t)ŷ−4 = −e(θ2+r)(T−t) 1

y2
+ x.

Then,

V (t, x) =
ŷ

3

(
3e(θ2+r)(T−t)y−2 − e(θ2+r)(T−t) 1

y2
+ x+ 3x

)
=

2

3

(
e(r+θ2)(T−t)ŷ−1 + 2xŷ

)
,

(1.2.5)

where ŷ > 0 is given by (1.2.4). The optimal control π∗ can be computed by equation(1.1.7).
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1.2.3 Yarri utility function

Yarri utility function is defined by

U(x) = x ∧m = min(x,m),

where m is a positive constant. The dual Yarri function of U is given by

Ũ(y) = sup
x>0

(min(x,m)− xy) =

 sup
x>0

(x− xy), if x ≤ m, y > 0

sup
x>0

(m− xy), if x > m, y > 0

=

{
m(1− y), if 1− y > 0

0, if 1− y ≤ 0

= m(1− y)+, y > 0.

By equation(1.1.17), the dual value function is given by

Ṽ (t, y) = E[Ũ(YT )|Yt = y] = mE[(1− YT )+|Yt = y].

By the equation(1.1.18),

YT = y0exp[−(r +
1

2
θ2)(T − t)− θ

√
T − tZ],

with the initial value Y0 = y0, where Z is the standard normal distribution, i.e. Z ∼ N(0, 1).
Hence, the dual value function is given by

Ṽ (t, y) = mE

[(
1− yexp

(
−(r +

1

2
θ2)(T − t)− θ

√
T − tZ

))+
]
.

Noting that

1− yexp

(
−(r +

1

2
θ2)(T − t)− θ

√
T − tZ

)
≥ 0⇔ Z ≥

logy − (r + 1
2θ

2)(T − t)
θ
√
T − t

:= k.

As a result,

Ṽ (t, y) = m

∫ ∞
k

(
1− yexp

(
−(r +

1

2
θ2)(T − t)− θ

√
T − tz

))
1√
2π

e−
z2

2 dz

= −mye−r(T−t)Φ(−k − θ
√
T − t) +mΦ(−k)

= −mye−r(T−t)Φ(− 1

θ
√
T − t

logy +
r

θ

√
T − t− 1

2
θ
√
T − t)

+mΦ(− 1

θ
√
T − t

logy +
r

θ

√
T − t+

1

2
θ
√
T − t), θ =

(µ− r)
σ

where Φ is the cumulative distribution function of a standard normal variable. The partial deriva-
tive of Ṽ (t, y) is given by

∂Ṽ

∂y
= −me−r(T−t)Φ(−k − θ

√
T − t) +m(φ(−k)− ye−r(T−t)φ(k − θ

√
T − t))(−∂k

∂y
)

= −me−r(T−t)Φ(−k − θ
√
T − t)

= −me−r(T−t)Φ(− 1

θ
√
T − t

logy +
r

θ

√
T − t− 1

2
θ
√
T − t).

By solving the equation(1.1.13), the unique solution ŷ = ŷ(t, x) is given by

ŷ(t, x) = exp

(
−θ
√
T − tΦ−1(

x

m
er(T−t)) + (r − 1

2
θ2)(T − t)

)
. (1.2.6)
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If the initial wealth x ≥ me−r(T−t) at time t, investors can invest Xt = x in a riskless asset at
time t, and then the wealth is XT = xer(T−t), which is greater than or equal to m. Investors are
guaranteed to achieve the maximum possible wealth m at time T with a trading strategy πt = 0.
Thus, the optimal trading strategy is to put all money in the bank account and do not invest in
risky asset.
Hence, by using dual relation to find primal value function from dual value function

V (t, x) =

{
Ṽ (t, ŷ(t, x)) + xŷ(t, x), if 0 ≤ x ≤ me−r(T−t),

m, if x ≥ me−r(T−t),

=

{
mΦ

(
Φ−1( xmer(T−t)) + θ

√
T − t

)
, if 0 ≤ x ≤ me−r(T−t)

m, if x ≥,me−r(T−t).

In the region of
{

(x, t) : x ≥ me−r(T−t), 0 < t < T
}

, the primal optimal control is achieved at

π∗(t, x) = 0. In the region of
{

(x, t) : 0 < x < me−r(T−t), 0 < t < T
}

, the primal optimal control
is achieved at

π∗(t, x) = −µ− r
σ2

Vx
xVxx

=
me−r(T−t)

xσ
√
T − t

φ
(

Φ−1(
x

m
er(T−t))

)
.
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Chapter 2

Dual control method under the
multidimensional model

Assume that W is an n-dimensional standard Brownian motion on a filtered probability space
(Ω,F ,F = (Ft)t≥0, P ) satisfying the usual conditions. The financial market consists of one savings
account and n risky stocks. The discounted bank account and stocks price processes B and
S = (S1, S2, ..., Sn)T satisfies the following stochastic differential equations(SDEs)

dBt = rBtdt, dSt = diag(St)(µdt+ σdWt), 0 ≤ t ≤ T (2.0.1)

with the initial price S0 = s, where the positive constant r is the riskless interest rate, diag(St) is
a diagonal n× n matrix with diagonal elements Sit and all other elements zero, (S1, S2, ..., Sn)T is
the transpose of S = (S1, S2, ..., Sn), µ = (µ1, µ2, ..., µn)T is a vector of stock returns and σ is a
n× n nonsingular matrix of volatilities.

Assume that π is an Ft-adapted process,
∫ T

0
π2
t dt < ∞, a.s. and πt = (π1, π2, ..., πn)T is a

progressively measurable control process satisfying πt ∈ K, a closed convex cone in Rn, a.s. for
t ∈ [0, T ] a.e. π is proportional portfolio process. Assume Xt is wealth at time t. Then πtXt

is amount of money invested in S and (1 − πt)Xt is amount of money in bank account B. The
discounted wealth process X satisfies the SDE:

dXt = (1− πTt )Xtrdt+ πTt Xt(µdt+ σdWt)

= rXtdt+ πTt Xt((µ− r1)dt+ σdWt)

= Xt((π
T
t (µ− r1) + r)dt+ πTt σdWt),

(2.0.2)

with initial wealth X0 = x, where 1 is a vector with all components 1.
Similarly, the utility maximization problem is defined by

sup
π∈K

E[U(XT )] subject to (2.0.2). (2.0.3)

The value function is given by

V (t, x) = sup
π∈K

E[U(XT )|Xt = x].

The primal HJB equation is given by

∂V

∂t
+ rx

∂V

∂x
+ sup
π∈K

(
πT (µ− r1)x

∂V

∂x
+

1

2
|σTπ|2x2 ∂

2V

∂x2

)
= 0 (2.0.4)

for x > 0 and 0 < t < T with the terminal condition V (T, x) = U(x). The dual utility function of
U is given by

Ũ(y) = sup
x≥0

(U(x)− xy)

for y ≥ 0. The dual process Y satisfies the SDE

dYt = Yt(−rdt− (σ−1π̃t + σ−1(µ− r1))T dWt), Y0 = y,
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where π̃ is a progressively measurable dual control process satisfying π̃t ∈ K̃, the positive polar
cone of K in Rn, a.s. for t ∈ [0, T ] a.e..
Furthermore, the dual minimization problem is given by

inf
π̃∈K̃

E[Ũ(YT )]. (2.0.5)

The dual value function is given by

Ṽ (t, y) = inf
π̃∈K̃

E[Ũ(YT )|Yt = y] (2.0.6)

for 0 ≤ t ≤ T and y ≥ 0. The dual HJB equation is given by

∂Ṽ

∂t
− ry ∂Ṽ

∂y
+

1

2
|θ̂|2y2 ∂

2Ṽ

∂y2
= 0 (2.0.7)

for y > 0 and 0 < t < T with the terminal condition Ṽ (T, y) = Ũ(y), where θ̂ = σ−1(µ−r1)+σ−1π̂

and π̂ is the unique minimizer of f(π̃) = |σ−1(µ − r1) + σ−1π̂|2 over π̃ ∈ K̃. Assume that θ̂ is

continuous on [0, T ] and there is a positive constant θ0 such that |θ̂| ≥ θ0 for all t ∈ [0, T ].
Now we consider three different cases of K under two-dimensional model.

2.1 Unconstrained problem

K is the whole space Rn, that is, there is no trading constraints, then the positive polar cone K̃
is {0}, and the dual optimal control solution π̂t = 0 for all t. Thus, θ̂t = θ = σ(t)−1(µ − r1) is
a nonzero continuous vector-valued function on [0, T ] and by the assumption, θ0 is the minimum
value of |θ| on [0, T ].
Therefore, the dual HJB equation is given by

∂Ṽ

∂t
− ry ∂Ṽ

∂y
+

1

2
|σ−1(µ− r1)|2y2 ∂

2Ṽ

∂y2
= 0

The corresponding primal optimal control is given by

π∗(t, x) = −(σT )−1θ
Vx(t, x)

xVxx(t, x)
∈ R2, θ = σ−1(µ− r1).

2.2 Constraint problem

If f : dom(f)→ R is twice differentiable(meaning that the function5f is differentiable), convexity
can be characterized as follows.

Lemma 2.2.1. Suppose that dom(f) is open and that f is twice differentiable; in particular, the
Hessian(matrix of second partial derivatives)

52f(x) =


∂2f

∂x1∂x1
(x) ∂2f

∂x1∂x2
(x) · · · ∂2f

∂x1∂xd
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2∂x2

(x) · · · ∂2f
∂x2∂xd

(x)
...

... · · ·
...

∂2f
∂xd∂x1

(x) ∂2f
∂xd∂x2

(x) · · · ∂2f
∂xd∂xd

(x)

 (2.2.1)

exists at every point x ∈ dom(f) and is symmetric. Then f is convex if and only if dom(f) is
convex, and for all x ∈ dom(f), we have

52f(x) ≥ 0 (2.2.2)

i.e. 52f(x) is positive semidefinite.

Lemma 2.2.2. If f : dom(f) → R is convex and differentiable over an open domain dom(f) ⊆
Rd. Let x ∈ dom(f). If 5f(x) = 0, then x is a global minimum.
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2.2.1 Kuhn-Tucker condition

In mathematical optimization, the Kuhn-Tucker conditions, are first-order derivative tests (some-
times called first-order necessary conditions), and the solution used in nonlinear programming
is optimal, as long as it satisfies some regularity conditions. Kuhn-Tucker condition is a neces-
sary condition to judge the feasible point of constrained nonlinear programming problem as the
minimum point.

For convex programming, it is a necessary and sufficient condition for judging the minimum
point. For a constrained nonlinear programming problem (NP), let f(x), gi(x)(i = 1, 2, ...p) and
hj(x)(j = 1, 2, ..., q) have the first order continuously differentiable on an open set of R.
Consider the optimization problem

minf(x)

subject to

gi(x) ≤ 0,

hj(x) = 0.

where x ∈ X is the optimization variable chosen from a convex subset of Rn, f is the objective
or utility function, gi are the inequality constraint functions and hj are the equality constraint
functions. The number of inequalities and equalities are denoted by p and q respectively.
A Lagrange function is defined by

L(x, λ, µ) = f(x) + λT g(x) + µTh(x)

Theorem 2.2.3. x∗ is the minimum point of the problem and the regular point of the constraint
condition, then there are vectors λ∗ = (λ∗1, λ

∗
2, ..., λ

∗
p)
T , µ∗ = (µ∗1, µ

∗
2, ..., µ

∗
q)
T , so that

5f(x∗) +
∑p
i=1 λ

∗
i 5 gi(x

∗) +
∑q
j=1 µ

∗
j 5 hj(x

∗) = 0,

λ∗i gi(x
∗) = 0, i = 1, 2, ..., p

µ∗j ≥ 0, j = 1, 2, ..., q

(2.2.3)

This is the Kuhn-Tucker condition of the constrained nonlinear programming problem (NP),
which is also called the first-order necessary condition. λ∗i (i = 1, 2, ..., p) and µ∗j (j = 1, 2, ..., q) is
called Kuhn-Tucker multiplier. From the Kuhn-Tucker condition mentioned above, it can be seen
that only when gi(x) is a functional constraint at x∗ point, there may be λ∗i 6= 0; Otherwise, λ∗i = 0.

Theorem 2.2.4. If f is a convex function and g1, ..., gm are linear functions, then x∗ is minimum
point if and only if x∗, λ∗ and µ∗ satisfies KT condition.

2.2.2 K = R2
+

K is the nonnegative part of the whole space R2
+, that is, there is short selling contraints, then the

positive polar cone K̃ is also R2
+. The above assumption is automatically satisfied if all components

of µ − r1 are positive, the dual optimal control is given by π̂t = 0 for all t. However, if not all
components of µ− r1 are positive numbers. The situation becomes complicated.

Let σ−1 =

[
σ1 σ2

σ3 σ4

]
, b = (µ− r1) =

[
µ1 − r
µ2 − r

]
=

[
b1
b2

]
, π̃ =

[
π̃1

π̃2

]
≥ 0, then

θ + σ−1π̃ =

[
σ1(b1 + π̃1) + σ2(b2 + π̃2)
σ3(b1 + π̃1) + σ4(b2 + π̃2)

]

52f(π̃) =

[
2(σ2

1 + σ2
3) 2(σ1σ2 + σ3σ4)

2(σ1σ2 + σ3σ4) 2(σ2
2 + σ2

4)

]
(2.2.4)

Therefore, the above problem is transformed into solving quadratic programming with K-T con-
dition. The standardized model is

minf(π̃) =(σ1(b1 + π̃1) + σ2(b2 + π̃2))2 + (σ3(b1 + π̃1) + σ4(b2 + π̃2))2

=(σ2
1 + σ2

3)(b1 + π̃1)2 + (σ2
2 + σ2

4)(b2 + π̃2)2 + 2(σ1σ2 + σ3σ4)(b1 + π̃1)(b2 + π̃2)
(2.2.5)
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subject to {
g1(π̃) = π̃1 ≥ 0

g2(π̃) = π̃2 ≥ 0
(2.2.6)

The gradient of each function is

5f(π̃) =

[
∂f
∂π̃1
∂f
∂π̃2

]
=

[
2(σ2

1 + σ2
3)(b1 + π̃1) + 2(b2 + π̃2)(σ1σ2 + σ3σ4)

2(σ2
2 + σ2

4)(b2 + π̃2) + 2(b1 + π̃1)(σ1σ2 + σ3σ4)

]
(2.2.7)

g1(π̃) = (1, 0)T , g2(π̃) = (0, 1)T . Lagrange multipliers γ∗1 , γ∗2 are introduced for the two constraints
respectively. The following K-T condition is obtained

5 f(π̃)− γ∗1 5 g1(π̃)− γ∗2 5 g2(π̃) = 0

⇒
[
2(σ2

1 + σ2
3)(b1 + π̃∗1) + 2(b2 + π̃∗2)(σ1σ2 + σ3σ4)

2(σ2
2 + σ2

4)(b2 + π̃∗2) + 2(b1 + π̃∗1)(σ1σ2 + σ3σ4)

]
− γ∗1

[
1
0

]
− γ∗2

[
0
1

]
= 0

(2.2.8)

It can be decomposed into



2(σ2
1 + σ2

3)(b1 + π̃∗1) + 2(b2 + π̃∗2)(σ1σ2 + σ3σ4)− γ∗1 = 0

2(σ2
2 + σ2

4)(b2 + π̃∗2) + 2(b1 + π̃∗1)(σ1σ2 + σ3σ4)− γ∗2 = 0

γ∗1 π̃
∗
1 = 0

γ∗2 π̃
∗
2 = 0

γ∗1 , γ
∗
2 ≥ 0

As a result, by identifying and classifying model coefficients, there are four cases come up.
(1) For γ∗1 > 0, γ∗2 > 0, that is, π̃∗1 = π̃∗2 = 0 and{

b1(σ2
1 + σ2

3) + b2(σ1σ2 + σ3σ4) > 0

b2(σ2
2 + σ2

4) + b1(σ1σ2 + σ3σ4) > 0

The dual optimal control is given by
π̃∗ = [0, 0]T . (2.2.9)

Since γ∗1 > 0, γ∗2 > 0 i.e. 5f(π̃) > 0, f(π̃) is strictly increasing, then π̃∗ = 0 is the unique

minimizer of quadratic function f . Therefore, θ̂ = θ.
The primal optimal control is given by

π∗(t, x) = −(σT )−1θ
Vx(t, x)

xVxx(t, x)
∈ R2, θ = σ−1(µ− r1).

(2) γ∗1 > 0, γ∗2 = 0: π̃∗1 = 0
By K-T condition, {

2b1(σ2
1 + σ2

3) + 2(b2 + π̃∗2)(σ1σ2 + σ3σ4) = γ∗1
2(σ2

2 + σ2
4)(b2 + π̃∗2) + 2b1(σ1σ2 + σ3σ4) = 0

(2.2.10)

By solving the equation, we can obtain

π̃∗2 = −b1(σ1σ2 + σ3σ4)

σ2
2 + σ2

4

− b2 > 0 (2.2.11)

γ∗1 =
2b1(σ2σ3 − σ1σ4)2

σ2
2 + σ2

4

> 0 (2.2.12)

Hence, for b1 > 0, b2(σ2
2 + σ2

4) + b1(σ1σ2 + σ3σ4) > 0, the dual optimal control is given by

π̃∗ = [0,−b1(σ1σ2 + σ3σ4)

σ2
2 + σ2

4

− b2]T .
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The primal optimal control is given by

π∗(t, x) = −(σT )−1θ̂
Vx(t, x)

xVxx(t, x)
∈ R2

+, θ̂ = σ−1(µ− r1) + σ−1π̃∗.

(3) γ∗1 = 0, γ∗2 > 0: π∗2 = 0
By K-T condition, {

2(b1 + π̃∗1)(σ2
1 + σ2

3) + 2b2(σ1σ2 + σ3σ4) = 0

2b2(σ2
2 + σ2

4) + 2(b1 + π̃∗1)(σ1σ2 + σ3σ4) = γ∗2
(2.2.13)

By solving the equation, we can obtain

π̃∗1 = −b2(σ1σ2 + σ3σ4)

σ2
1 + σ2

3

− b1 > 0 (2.2.14)

γ∗2 =
2b2(σ2σ3 − σ1σ4)2

σ2
1 + σ2

3

> 0 (2.2.15)

Thus, for b2 > 0 and b1(σ2
1 + σ2

3) + b2(σ1σ2 + σ3σ4) > 0, the dual optimal control is given by

π̃∗ = [−b2(σ1σ2 + σ3σ4)

σ2
1 + σ2

3

− b1, 0]T .

The primal optimal control is given by

π∗(t, x) = −(σT )−1θ̂
Vx(t, x)

xVxx(t, x)
∈ R2

+, θ̂ = σ−1(µ− r1) + σ−1π̃∗.

(4) γ∗1 = 0, γ∗2 = 0: i.e. 5f(π̃) = 0{
2(b1 + π̃∗1)(σ2

1 + σ2
3) + 2(b2 + π̃∗2)(σ1σ2 + σ3σ4) = 0

2(b2 + π̃∗2)(σ2
2 + σ2

4) + 2(b1 + π̃∗1)(σ1σ2 + σ3σ4) = 0
(2.2.16)

Since matrix σ−1 is inverse, σ1σ4 6= σ2σ3, i.e. σ2
1 + σ2

3 > 0 and σ2
2 + σ2

4 > 0.
Solving the above system of linear equations in two unknowns. The solution is given by{

(b1 + π̃∗1)(σ2
1σ

2
4 + σ2

2σ
2
3 − 2σ1σ2σ3σ4) = 0

(b2 + π̃∗2)(σ2
1σ

2
4 + σ2

2σ
2
3 − 2σ1σ2σ3σ4) = 0,

(2.2.17)

To solve dual control problem, we need to find optimal dual control π̃∗. We need to assume
the minimum value is continuous on [0, T ] and non-zero, i.e., θ̂ = σ−1π̃∗ + θ 6= 0 , that is,

there is a positive constant θ0 such that |θ̂(t)| ≥ θ0 for all t ∈ [0, T ]. Therefore, the solution of
equations(2.2.17) is given by

σ2
1σ

2
4 + σ2

2σ
2
3 − 2σ1σ2σ3σ4 = 0

⇒ (σ1σ4 − σ2σ3)2 = 0

⇒ σ1σ4 = σ2σ3

However, σ−1 is nonsingular matrix, that is, |σ−1| = σ1σ4 − σ2σ3 6= 0. Thus, for b1 = −π∗1 ,
b2 = −π∗2 , there not exists the dual optimal control.

Example 2.2.1. Let the inverse of volatility matrix σ−1 =

[
1 0
0 1

]
, the stock excess returns b =[

1
−1

]
, π̃ =

[
π̃1

π̃2

]
≥ 0, then

5f(π̃) =

[
2(π̃1 + 1)
2(π̃2 − 1)

]
, 52f(π̃) =

[
2 0
0 2

]
> 0
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We can obtain the following K-T condition

2(π̃1 + 1)− γ∗1 = 0

2(π̃2 − 1)− γ∗2 = 0

γ∗1 π̃
∗
1 = 0

γ∗2 π̃
∗
2 = 0

γ∗1 , γ
∗
2 ≥ 0

(1) For γ∗1 > 0, γ∗2 > 0, we can obtain the dual optimal control π̃∗ = [0, 0]T and the Lagrange
multiplier γ∗ = [2,−2]T which does not meet the K-T condition. Thus, there is not exist an
optimal control.
(2)For γ∗1 > 0, γ∗2 = 0, the dual optimal control is given by π̃∗ = [0, 1]T and the Lagrange multiplier
is given by γ∗ = [2, 0]T .
(3)For γ∗1 = 0, γ∗2 > 0, we can obtain the dual optimal control π̃∗ = [−1, 0]T and the Lagrange
multiplier γ∗ = [0,−2]T which does not meet the K-T condition. Thus, there is not exist a optimal
control.
To sum up, the dual optimal control is given by π̃∗ = [0, 1]T and then the primal is given by

π∗(t, x) = −(σT )−1θ̂
Vx(t, x)

xVxx(t, x)
∈ R2

+, θ̂ = [1, 0]T .

Example 2.2.2. Let the inverse of volatility matrix σ−1 =

[
1 −1
−1 2

]
, the stock excess returns

b =

[
−1
1

]
, π̃ =

[
π̃1

π̃2

]
≥ 0, then

5f(π̃) =

[
4(π̃1 − 1)− 6(π̃2 + 1)
10(π̃2 + 1)− 6(π̃1 − 1)

]
, 52f(π̃) =

[
4 −6
−6 10

]
We can obtain the following K-T condition

4π̃1 − 6π̃2 − 10− γ∗1 = 0

−6π̃1 + 10π̃2 + 16− γ∗2 = 0

γ∗1 π̃
∗
1 = 0

γ∗2 π̃
∗
2 = 0

γ∗1 , γ
∗
2 ≥ 0

(1) For γ∗1 > 0, γ∗2 > 0, we can obtain the dual optimal control π̃∗ = [0, 0]T and the Lagrange
multiplier γ∗ = [−10, 16]T which does not meet the K-T condition. Thus, there is not exist an
optimal control.
(2)For γ∗1 > 0, γ∗2 = 0, we can obtain the dual optimal control π̃∗ = [0,−8/5]T which does not meet
the K-T condition. Thus, there is not exist an optimal control.
(3)For γ∗1 = 0, γ∗2 > 0, the dual optimal control is given by π̃∗ = [5/2, 0]T and the Lagrange
multiplier is given by γ∗ = [0, 1]T .
To sum up, the dual optimal control is given by π̃∗ = [0, 1]T and then the primal is given by

π∗(t, x) = −(σT )−1θ̂
Vx(t, x)

xVxx(t, x)
∈ R2

+, θ̂ = [
1

2
,

1

2
]T .

2.2.3 K = R× 0

K is the nonnegative part of the whole space R× 0, then the positive polar cone K̃ is 0×R. Thus,
the π̃∗1 = 0 and the quadratic function is given by

f(π̃) =(σ1b1 + σ2(b2 + π̃2))2 + (σ3b1 + σ4(b2 + π̃2))2

=(σ2
1 + σ2

3)b21 + (σ2
2 + σ2

4)(b2 + π̃2)2 + 2b1(b2 + π̃2)(σ1σ2 + σ3σ4)

The first derivative is given by

∂f

∂π̃2
= 2(σ2

2 + σ2
4)(b2 + π̃2) + 2b1(σ1σ2 + σ3σ4)
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The second derivative is given by

∂2f

∂π̃2
2

= 2(σ2
2 + σ2

4) > 0

Therefore, f(π̃) is convex. By lemma 2.2.2, if 5f = 0, then π̃∗ is global minimum.

π̃∗2 = −b1(σ1σ2 + σ3σ4)

σ2
2 + σ2

4

− b2

Therefore, the dual optimal control is given by

π̃∗ = [0,−b1(σ1σ2 + σ3σ4)

σ2
2 + σ2

4

− b2]T .

The primal optimal control is given by

π∗(t, x) = −(σT )−1θ̂
Vx(t, x)

xVxx(t, x)
∈ R× 0, θ̂ = σ−1(µ− r1) + σ−1π̃∗.
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Chapter 3

The Ornstein–Uhlenbeck process
and dual control method

Assume that (Ω,F ,Ft, P ) is a given probability space with filtration Ft generated by standard
Brownian motions W s and Wµ with coefficient ρ. The market consists of two traded assets,
one savings account B with risk-free interest rate r and one risky asset S satisfying a stochastic
differential equaiton(SDE):

dSt = St(µtdt+ σdW s
t ). (3.0.1)

The drift µt satisfies an Ornstein-Uhlenbeck(OU) process

dµt = κ(θ − µt)dt + σdWµ
t , α = (κ, θ, σ) (3.0.2)

where κ > 0, σ > 0, θ are parameters. In financial mathematics, this is also called the Vasicek
model. the Vasicek model has some advantages. This equation is linear and can be solved explicitly.
In addition, the model is mean-reverting, and the expected value of drift tends to a constant value
θ. As time goes on to infinity, the velocity depends on κ, and its variance will not explode at
infinity. Then the wealth process X satisfies the SDE:

dXt = Xt [ (r + πt(µt − r))dt+ πtσdW
s
t ] (3.0.3)

where π is a progressively measurable control process.
The utility maximization problem is defined by

sup
π∈K

E[U(XT )] subject to (3.0.3), (3.0.4)

Stochastic control method can be use to solve equation (3.0.4). Then we define the value function

V (t, x, µ) = sup
π∈K

Et,x,µ[U(XT )], (3.0.5)

where Et,x,µ is the conditional expectation operator given by Xt = x and µt = µ, and πt ∈ K = R.
By Dynamic Programming Principle (??) and Ito formula, we obtain

V (t+ h,Xt+h, µt+h) = V (t, x, µ) +

∫ t+h

t

(
∂V

∂s
ds+

∂V

∂x
dXs +

1

2

∂2V

∂x2
d[X,X]s +

∂V

∂µ
dµs

+
1

2

∂2V

∂µ2
d[µ, µ]s +

∂2V

∂x∂µ
dXsdµs)

= V (t, x, µ) +

∫ t+h

t

(
∂V

∂s
+
∂V

∂x
(rXs + πsXs(µs − r)) +

1

2

∂2V

∂x2
π2
sX

2
sσ

2

+
∂V

∂µ
κ(θ − µs) +

1

2

∂2V

∂µ2
σ2 +

∂2V

∂x∂µ
Xsπsσ

2ρ)ds

+

∫ t+h

t

(
∂V

∂x
πsXsσ +

∂V

∂µ
σ)dWs

(3.0.6)
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As a result, the primal HJB equation is given by

∂V

∂t
+ rxVx +κ(θ−µ)Vµ +

1

2
σ2Vµµ + sup

π∈K

{
πx(µ− r)Vx +

1

2
π2x2σ2Vxx + ρxπσ2Vxµ

}
= 0 (3.0.7)

with the terminal condition V (T, x, µ) = U(x). The maximum in (3.0.7) is achieved at

π∗ = − (µ− r)Vx
xσ2Vxx

− ρVxµ
xVxx

(3.0.8)

Substituting (3.0.8) into (3.0.7) gives a nonlinear PDE

∂V

∂t
+ rxVx + κ(θ − µ)Vµ +

1

2
σ2Vµµ −

1

2σ2Vxx
[(µ− r)Vx + σ2ρVxµ]2 = 0 (3.0.9)

3.1 Power utility and primal HJB equation

For a power utility U(x) = 1/pxp, 0 < p < 1, the solution of equation (3.0.9) can be expressed in
a separable form

V (t, x, µ) = U(x)g(t, µ) (3.1.1)

The component g(t, µ) is unknown except for some special cases. In fact, g(t, µ) solves a nonlinear
equation for which no closed-form solutions are available.
The partial derivative of V is given by

∂V

∂t
=

1

p
xp
∂g

∂t
,

∂V

∂x
= xp−1g,

∂V

∂µ
=

1

p
xpgµ,

∂2V

∂x2
= (p− 1)xp−2g,

∂2V

∂µ2
=

1

p
xpgµµ,

∂2V

∂x∂µ
= xp−1gµ

(3.1.2)

for some function g which satisfies a nonlinear PDE

∂g

∂t
+ prg + κ(θ − µ)gµ +

1

2
σ2gµµ −

p

2(p− 1)σ2g
[(µ− r)g + σ2ρgµ]2 = 0 (3.1.3)

with the terminal condition g(T, µ) = 1. The primal optimal control is given by

π∗ = − µ− r
σ2(p− 1)

− ρgµ
(p− 1)g

. (3.1.4)

To remove certain non-linearities that arise due to the stochastic factor, we now make the following
transformation proposed by T.Zariphopoulou[5] to obtain a new equation of value function

V (t, x, µ) = U(x)g(t, µ) =
xp

p
ĝ(t, µ)λ, λ =

1− p
1− p+ ρ2p

(3.1.5)

Partial derivatives of ĝ(t, µ) are given by

∂g

∂t
= λ

∂ĝ

∂t
ĝλ−1,

∂g

∂µ
= λ

∂ĝ

∂µ
ĝλ−1,

∂2g

∂µ2
= λ

∂2ĝ

∂µ2
ĝλ−1 + λ(λ− 1)(

∂ĝ

∂µ
)2ĝλ−2. (3.1.6)

Inserting the above derivatives in PDE (3.1.3) gives

∂ĝ

∂t
+
pr

λ
ĝ + κ(θ − µ)ĝµ +

1

2
σ2ĝµµ −

p

2(p− 1)σ2λ
((µ− r)2ĝ + 2(µ− r)σ2λρĝµ) = 0 (3.1.7)

with the terminal condition ĝ(T, µ) = 1. The PDE (3.1.7) can be solved by Feynman-Kac Theorem
and the exact solution can be obtained.
Suppose that ĝ(t, µ) is the solution to the PDE{

∂ĝ
∂t + b(t, µ) ∂ĝ∂µ + 1

2σ
2(t, µ) ∂

2ĝ
∂µ2 = r(t, µ)ĝ, t < T ;

ĝ(T, µ) = 1 t = T.
(3.1.8)
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where

b(t, µ) = κ(θ − µ)− pρ(µ− r)
p− 1

, σ(t, µ) = σ, r(t, µ) =
p(µ− r)2

2(p− 1)σ2λ
− pr

λ
(3.1.9)

Then the ĝ is given by

ĝ(t, µ) = E(t,µ)[e−
∫ T
t
r(u,µu)du]

= E(t,µ)[exp

(
−
∫ T

t

(
p(µu − r)2

2(p− 1)σ2λ
− pr

λ
)du

)
]

where Et,µ[·] denotes the conditional expectation operator given by the information up to time t
with µt = µ, and µ = (µs)s∈[t,T ] is the solution to the SDE

dµs = b(s, µs)ds+ σ(t, µs)dWs

=

(
κ(θ − µs)−

pρ(µs − r)
p− 1

)
ds+ σdWs.

The optimal control is given by

π∗ = − µ− r
σ2(p− 1)

− ρλĝµ
(p− 1)ĝ

. (3.1.10)

Since the Vasicek model has an affine term structure, we use the idea in [8, Proposition 5.1, page
307]. The function g can be expressed in an analytical form

g(t, µ) = exp(A(t) +B(t)µ+ C(t)µ2) (3.1.11)

where A(·), B(·) and C(·) are continuous differentiable functions of time t with the terminal
condition A(T ) = 0, B(T ) = 0 and C(T ) = 0. Simply calculus shows that

∂g

∂t
= g(A′(t) +B′(t)µ+ C ′(t)µ2), gµ = g(B(t) + 2C(t)µ)

gµµ = g(B(t) + 2C(t)µ)2 + 2gC(t)

Substituting these derivatives into PDE (3.1.3), the functions A(·), B(·) and C(·) are solutions of
the ordinary differential equations (ODEs):

A′(t) = −rp+
pr2

2(p− 1)σ2
− (κθ +

pρr

p− 1
)B(t) +

1

2
σ2(

pρ2

p− 1
− 1)B2(t)− σ2C(t)

B′(t) = (κ+
pρ

p− 1
)B(t) + 2σ2(

pρ2

p− 1
− 1)B(t)C(t)− 2(κθ +

rρp

p− 1
)C(t)− pr

(p− 1)σ2

C ′(t) = 2(κ+
pρ

p− 1
)C(t) + 2σ2(

pρ2

p− 1
− 1)C2(t) +

p

2σ2(p− 1)

(3.1.12)

with terminal conditions A(T ) = 0, B(T ) = 0 and C(T ) = 0. We can solve the Riccati equation
to get a closed-form solution C(t) and then find B(t) and A(t) once C(t) is known, see Appendix
A. The primal optimal control is given by

π∗(t) = − µ− r
σ2(p− 1)

− ρ

p− 1
(B(t) + 2C(t)µ).

3.2 Dual HJB equation

Since, we assume that the utility function is a power utility, the nonlinear PDE (3.0.9) can be
simplified to a solvable nonlinear PDE (3.1.4) so that obtaining analytical solution. However, for
general utility functions, like non-HARA utility and Yarri utility, it is impossible to find the exact
solutions. We need to use dual control method to find the exact solutions. The dual utility function
is defined by

Ũ(y) = sup
x≥0

(U(x)− xy)
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for y ≥ 0. Assume that a dual process Y has the following form

dYt = Yt[αtdt+ βtdW
s
t + γtdW

µ
t ]

with the initial condition Y0 = y. If XY is super-martingale for any control process π, then

E[XT,πYT ] ≤ xy = X0Y0.

Since Ũ is dual value function of U , by equation (1.1.9)

Ũ(y) ≤ U(x) + xy

⇒U(x) ≤ Ũ(y) + xy

for x ≥ 0 and y ≥ 0. Thus,

E[U(XT,π)] ≤ E[Ũ(YT )] + E[XT,πYT ] ≤ E[Ũ(YT )] + xy,

where X0 = x and Y0 = y are the initial conditions, which leads to a weak duality relation

sup
π
E[U(XT,π)] ≤ inf

y≥0
(E[Ũ(YT )] + xy). (3.2.1)

To make sure XY is super-martingale, we apply Ito’s formula to obtain

dXtYt = YtdXt +XtdYt + d[X,Y ]t

= YtXt[(r + πt(µt − r))dt+ πtσdW
s
t ] +XtYt[αtdt+ βtdW

s
t + γtdW

µ
t ] +XtYt[πtσβtdt+ πtσγtρdt]

= XtYt[(r + πtµt − πtr + αt + πtσβt + πtσγtρ)dt+ (πtσ + βt)dW
s
t + γtdW

µ
t ]

Since XY is super-martingale,

r + πtµt − πtr + αt + πtσβt + πtσγtρ ≤ 0

⇒r + αt + πt(µt + σβt + σγtρ− r) ≤ 0

⇒µt + σβt + σγtρ− r = 0, r + αt ≤ 0

⇒αt ≤ −r, βt = −µt − r
σ
− ργt.

Since U is increasing concave and Ũ is decreasing convex. We shall choose YT as large as possible,
that is, we shall choose the drift α as large as possible. Therefore, the largest αt = −r and the
dual process is given by

dYt = Yt[−rdt− (
µt − r
σ

+ ργt)dW
s
t + γtdW

µ
t ] (3.2.2)

with the initial condition Y0 = y. The solution to the PDE of dual process at time T is given by

YT = yexp

(
−
∫ T

t

(r +
1

2
(1− ρ2)γ2

u +
(µu − r)2

2σ2
)du−

∫ T

t

(
µu − r
σ

+ ργu)dW s
u +

∫ T

t

γudW
µ
u

)
.

The dual value function is defined by

Ṽ (t, y, µ) := inf
γ
E[Ũ(YT )|Yt = y].

By dynamic programming principle,

Ṽ (t, y, µ) = inf
γ
E[Ṽ (t+ h,Xt+h, µt+h) =)|Xt = x, µt = µ].
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By Ito’s formula,

Ṽ (t+ h, Yt+h, µt+h) = Ṽ (t, y, µ) + +

∫ t+h

t

(
∂Ṽ

∂s
ds+

∂Ṽ

∂y
dYs +

1

2

∂2Ṽ

∂y2
d[Y, Y ]s +

∂Ṽ

∂µ
dµs

+
1

2

∂2Ṽ

∂µ2
d[µ, µ]s +

∂2Ṽ

∂y∂µ
dYsdµs)

= Ṽ (t, y, µ) +

∫ t+h

t

(
∂Ṽ

∂s
− ∂Ṽ

∂y
rYs +

1

2

∂2Ṽ

∂y2
Y 2
s [

(µs − r)2

σ2
+ (1− ρ2)γ2

s ]

+
∂Ṽ

∂µ
κ(θ − µs) +

1

2

∂2Ṽ

∂µ2
σ2 +

∂2Ṽ

∂y∂µ
Ys[σγs(1− ρ2)− ρ(µs − r)])ds

+

∫ t+h

t

(
∂Ṽ

∂y
Ys[−(

µs − r
σ

+ ργs)dW
s
s + γsdW

µ
s ] +

∂Ṽ

∂µ
σdWµ

s

)
As a result, Ṽ satisfies the following dual HJB equation

∂Ṽ

∂t
− ryṼy + κ(θ − µ)Ṽµ +

1

2
y2 (µ− r)2

σ2
Ṽyy +

1

2
σ2Ṽµµ − ρ(µ− r)yṼyµ

+ inf
γ

{
1

2
y2γ2(1− ρ2)Ṽyy + σγ(1− ρ2)yṼyµ

}
= 0

with the terminal condition Ṽ (T, y, µ) = Ũ(y). The minimum of the dual control γ in the dual
HJB equation is achieved at

γ∗ = −σṼyµ
yṼyy

. (3.2.3)

Substituting (3.2.3) into the dual HJB equation gives

∂Ṽ

∂t
− ryṼy +κ(θ−µ)Ṽµ +

(µ− r)2

2σ2
y2Ṽyy −

σ2(1− ρ2)

2

Ṽ 2
yµ

Ṽyy
− ρ(µ− r)yṼyµ +

1

2
σ2Ṽµµ = 0. (3.2.4)

The dual value function and primal value function have the following relationship

V (t, x, µ) = inf
y≥0

(Ṽ (t, y, µ) + xy).

Then the primal value function is given by

V (t, x, µ) = Ṽ (t, ŷ(t, x, µ), µ) + xŷ(t, x, µ). (3.2.5)

where ŷ(t, x, µ) is the solution of the equation

∂Ṽ (t, y, µ)

∂y
+ x = 0. (3.2.6)

Simple calculus shows that

∂V

∂t
=
∂Ṽ

∂t
+
∂Ṽ

∂y

∂y

∂t
+ x

∂y

∂t
=
∂Ṽ

∂t
,

∂V

∂x
=
∂Ṽ

∂y

∂y

∂x
+ y + x

∂y

∂x
= y,

∂V

∂µ
=
∂Ṽ

∂µ
+
∂Ṽ

∂y

∂y

∂µ
+ x

∂y

∂µ
=
∂Ṽ

∂µ
,

and by (3.2.6)

∂x

∂y
= −Ṽyy,

∂x

∂µ
= −Ṽyµ,

Then

∂2V

∂x2
=
∂y

∂x
= − 1

Ṽyy
,

∂2V

∂x∂µ
=
∂y

∂µ
=
∂y

∂x

∂x

∂µ
=
Ṽyµ

Ṽyy
,

∂2V

∂µ2
=

∂2Ṽ

∂x∂µ

∂x

∂µ
+
∂2Ṽ

∂µ2
= − (Ṽyµ)2

Ṽyy
+ Ṽµµ.

Inserting these partial derivatives into dual HJB equation(3.2.4) gives that V satisfies the primal
HJB equation(3.0.9) with the terminal condition V (T, x, µ) = U(x). Then the primal optimal
control is derived form the above dual relations of the partial derivatives and equation(3.0.8)

π∗(t, x, µ) =
µ− r
σ2x

ŷ(t, x, µ)Ṽyy(t, ŷ(t, x, µ), µ)− ρ

x
Ṽyµ(t, ŷ(t, x, µ), µ) (3.2.7)
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3.2.1 Power utility function

Power utility function is defined by

U(x) =
1

p
xp

where p ∈ (0, 1) is a constant. The dual power utility function is given by

Ũ(y) = −1

q
yq

for y > 0, where q = p/(p− 1) < 0. By equations(3.1.11) and (3.2.5), we may assume

Ṽ (t, y, µ) = Ũ(y)f̃(t, µ) = −1

q
yq f̃(t, µ)

Simple calculus shows that

∂Ṽ

∂t
= −1

q
yq
∂f̃

∂t
,

∂Ṽ

∂y
= −yq−1f̃ ,

∂Ṽ

∂µ
= −1

q
yq f̃µ

Ṽyy = −(q − 1)yq−2f̃ , Ṽyµ = −yq−1f̃µ, Ṽµµ = −1

q
yq f̃µµ

and substitute it into the equation (3.2.4) to obtain the PDE equation of f̃

∂f̃

∂t
− rqf̃ +κ(θ−µ)f̃µ +

1

2σ2
q(q− 1)(µ− r)2f̃ − q

2(q − 1)
σ2(1−ρ2)

f̃2
µ

f̃
− qρ(µ− r)f̃µ +

1

2
σ2f̃µµ = 0

(3.2.8)

with the terminal condition f̃(T, µ) = 1. Now suppose that

f̃(t, µ) = exp(Ã(t) + B̃(t)µ+ C̃(t)µ2)

and inserting f̃ into PDE(3.2.8) to obtain ODEs for AÃ, B̃ and C̃

Ã′(t) = −(κθ + qρr)B̃(t) +
1

2
σ2 1− qρ2

q − 1
B̃2(t)− σ2C̃(t) + rq − q(q − 1)r2

2σ2

B̃′(t) = (κ+ qρ)B̃(t) + 2σ2 1− qρ2

q − 1
B̃(t)C̃(t)− 2(κθ + qρr)C̃(t) +

q(q − 1)r

σ2

C̃ ′(t) = 2(κ+ qρ)C̃(t) + 2σ2 1− qρ2

q − 1
C̃2(t)− q(q − 1)

2σ2

(3.2.9)

with the terminal conditions Ã(T ) = 0, B̃(T ) = 0 and C̃(T ) = 0. We can solve the Riccati-type

equation to obtain a closed-form solution C̃(t) and then find B̃(t) and Ã(t) once C̃(t) is known,

see Appendix. By solving the equation Ṽy + x = 0 to obtain

ŷ(t, x, µ) = [xexp(−Ã(t)− B̃(t)µ− C̃(t)µ2)]p−1,

and the primal value function

V (t, x, µ) = Ṽ (t, ŷ, µ) + xŷ =
xp

p
exp[(1− p)(Ã(t) + B̃(t)µ+ C̃(t)µ2)]. (3.2.10)

By equation (3.2.7), the primal optimal control is given by

π∗(t, µ) = −µ− r
σ2x

(q − 1)ŷq−1f̃ +
ρ

x
ŷq−1(B̃(t) + 2C̃(t)µ)f̃

=
µ− r
σ2

(1− q) + ρ(B̃(t) + 2C̃(t)µ)
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3.3 Numerical test

Equations for A(t) and B(t) are too complicated to find closed-form solutions, even though they are
first-order linear ODE. Hence, we need to use numerical method to solve. A first-order differential
equation is an Initial value problem(IVP) of the form,[9]

B′(t) = f(t, B(t)), B(T ) = BT = 0,

A′(t) = g(t), A(T ) = AT = 0,
(3.3.1)

where f is a function f : [t0,∞)×Rd → Rd and the terminal condition BT ∈ Rd is a given vector.
In the paper, we use Euler method to solve the first-order IVPs. Starting with the differential
equation (3.3.1), we replace the derivative B′ by the backward difference approximation

B′(t) ≈ B(t)−B(t− h)

h
,

which when re-arranged yields the following formula

B(t− h) ≈ B(t)− hB′(t)

and then by equation (3.3.1)

B(t− h) ≈ B(t)− hf(t, B(t)). (3.3.2)

Thus, we choose a step size h = T/N where N is a integer and construct the sequence t0, t1 = t0+h,
t2 = t0 + 2h,...,tN = t0 + Nh and then denote by Bn a numerical estimate of the exact solution
B(tn). Motivated by (3.3.2), we compute these estimates by the following recursive explicit scheme

Bn−1 = Bn − hf(tn, Bn), n = N,N − 1, ..., 1

Similarly, we can obtain

An−1 = An − hg(tn), n = N,N − 1, ..., 1

We use Python to find numerical approximations to the solutions of ODEs and let parameters

r = 0.05, σ = 0.2 ρ = −0.5, κ = 0.8, θ = 0.05, T = 1, p = 1. (3.3.3)

(a) The functions A(t), B(t) and C(t) computed by primal
HJB equation

(b) The functions (1− p)Ã(t), (1− p)B̃(t), and (1− p)C̃(t)
computed by dual HJB equation

Figure 3.1: The functions A(t), B(t) and C(t) in primal problem and the functions (1 − p)Ã(t),

(1− p)B̃(t), and (1− p)C̃(t) in dual problem.

Figure3.1 illustrates one graph of A(t), B(t) and C(t) using primal solution over t ∈ [0, 1]

and one graph of (1 − p)Ã(t), (1 − p)B̃(t), and (1 − p)C̃(t) using dual solution over t ∈ [0, 1]
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separately and then shows they essentially produce the same graph. By equations (3.1.1), (3.1.11)
and (3.2.10), we can obtain

A(t) +B(t)µ+ C(t)µ2 = (1− p)(Ã(t) + B̃(t)µ+ CC̃(t)µ2).

Hence, the figure proofs that dual control method and primal control method can produce the
same optimal value function.
Furthermore, we use numerical method for SDEs to approximate drift µ. By equation (3.0.2) and
Euler-Maruyama method, the drift µt can be discretized in the following form

µn = µn−1 + κ(θ − µn−1)h+ σZ1

√
h,

with the initial condition µ0 where Z1 is chosed from the standard normal distribution N(0, 1).
Therefore, the primal optimal control using primal solution is given by

π∗(tn) = − µn − r
σ2(p− 1)

− ρ

p− 1
(B(tn) + 2C(tn)µn),

and the primal optimal control using dual solution is given by

π∗(tn) =
µn − r
σ2

(1− q) + ρ(B̃(tn) + 2C̃(tn)µn)

(a) The primal control π∗ computed by primal control
method over time t

(b) The primal control π∗ computed by dual control
method over time t

Figure 3.2: The primal control π∗ computed by primal control method and dual control method
over time t respectively

Figure3.2 shows the primal control computed by primal HJB equation and dual HJB equation
over time t ∈ [0, 1], respectively. The figure shows that the primal control method and dual control
method produce the same optimal control.
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Chapter 4

Upper and lower bounds

For general utility functions, we cannot solve the primal problem by using the relationship

V (t, x, µ) = Ṽ (t, ŷ, µ) + xŷ,

since the dual problem is quiet difficult. we has already obtain a weak duality relation (3.2.1)

sup
π
E[U(XT,π)] ≤ inf

y>0
(inf
γ
E[U(XT,π)] + xy) ≤ inf

y>0
(E[Ũ(YT )] + xy),

for all dual controls γ.
For every fixed γ, the upper bound is defined by

V (t, x, µ) = inf
y>0

(Et,y,µ[Ũ(Y γT )] + xy). (4.0.1)

YT can be computed for fixed γ and then we can compute the upper bound by Monte Carlo
simulation.

Theorem 4.0.1. Let Γ be a set of dual controls γ and the upper bound V (t, x, µ) is given by
(4.0.1). Then the optimal value function V (t, x, µ) satisfies

V (t, x, µ) ≤ inf
γ∈Γ

V (t, x, µ).

Assume that

M(t, y, µ) = Et,y,µ[Ũ(YT )]

is twice differentiable and strictly convex for y > 0 with fixed t and µ. Suppose that y∗ =
ŷ(t, x, µ; γ) is the solution of the equation

∂M
∂y

(t, y, µ) + x = 0,

and the primal control is given by

π∗(t, x, µ) =
µ− r
σ2x

y∗Myy(t, y∗, µ)− ρ

x
Myµ(t, y∗, µ). (4.0.2)

Assume that X is the unique solution of SDE

dXt = Xt [ (r + πt(µt − r))dt+ πtσdW
s
t ]

with the primal control πt = π(t,Xt, µt) for t ∈ [0, T ].

Theorem 4.0.2. Define the lower bound

V (t, x, µ) = Et,x,µ[U(XT )]

for the fixed primal control πt = π(t,Xt, µt). Then the optimal value function satisfies

V (t, x, µ) ≥ sup
γ∈Γ

V (t, x, µ).
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4.1 Monte Carlo lower and upper bounds

Let Γ ⊂ Γ1, then

V (t, x, µ) ≤ inf
γ∈Γ1

V (t, x, µ) ≤ inf
γ∈Γ

V (t, x, µ).

Hence, Using Γ1 instead of Γ gives tighter upper and lower bounds. For numerical tests in section
3, we apply the idea in [7] and refer the equation (3.2.5) to choose the set Γ to contain dual control:
m(t), m(t)µt and m(t) + η(t)µt where m and η are piecewise constant functions

m(t) =

n∑
i=1

mi1(ti−1,ti](t),

η(t) =

n∑
i=1

ηi1(ti−1,ti](t),

with 0 = t0 < t1 < t2 < ... < tn−1 < tn = T for n ≥ 1, mi and ηi for i = 1, ..., n being arbitrary

constants. Then assume that the dual function Ũ has the following form

Ũ(y) =

N∑
j=1

Ũj(y) =

N∑
j=1

(
− 1

qj
yqj
)

(4.1.1)

for qj < 0 and j = 1, ..., N , then

M(t, y, µ) =

N∑
j=1

Ũj(y)Fj(t, µ) (4.1.2)

By equation (4.2.3), the upper bound V is given by

V (t, x, µ) =

N∑
j=1

Ũj(y
∗)Fj(t, µ) + xy∗. (4.1.3)

where y∗ = ŷ(t, x, µ) is the unique solution of equation

N∑
j=1

yqj−1Fj(t, µ) = x.

By equation (4.0.2), the primal control π∗ is given by

xπ∗(t, x, µ) =

N∑
j=1

[
µ− r
σ2

(1− qj)Fj(t, µ) + ρ
∂

∂µ
Fj(t, µ)

]
(y∗)qj−1 (4.1.4)

For fixed dual control γt, one can compute Fj(t, µ) using the Monte Carlo simulation and approx-
imate ∂

∂µFj(t, µ) using finite difference method

∂

∂µ
Fj(t, µ) =

Fj(t, µ+ h)− Fj(t, µ− h)

2h

for small h. If N = 1, there is a closed-form solution for y∗. When N ≥ 2, the Newton Raphson
method can be used to find y∗.
As a result, we can use the Monte-Carlo methods to find the tight upper and lower bounds. We
describe the process of the Monte Carlo simulation for computing tight upper and lower bounds
at time t = 0.
Step 1: Denote by Γ the set of vectors M := (m1,m2, ...,mn) and η := (η1, η2, ..., ηn) which form
the coefficients of the function m and η. Fix the vector M, η ∈ Γ and a form of dual control γt.
Step 2: Generate M sample paths of W s and Wµ

Wµ =
√
hZ1, W s = ρ

√
hZ1 +

√
1− ρ2

√
hZ2.
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Discretize the SDE of the processes Yt (3.2.2)

Yt+h = Ytexp

[
(−r − 1

2
(1− ρ2)γ2

t −
(µt − r)2

2σ2
)h− (

µt − r
σ

+ ργt)(ρ
√
hZ1 +

√
1− ρ2

√
hZ2) + γt

√
hZ1

]
where Z1 and Z2 are chosed from the standard normal distribution N(0, 1). Compute YT with the
initial value Y0 = y. Compute the average derivative

∂M(0, y, µ)

∂y
≈ 1

y

1

M

M∑
l=1

YT Ũ
′(YT ).

Step 3: Solve equation My(t, y, µ) + x = 0 by the bisection method and then find the solution
y ≈ y∗.
Step 4: Compute the upper bound

V (0, x, µ) ≈M(0, y∗, µ) + xy∗ =

N∑
j=1

Ũj(y
∗)Fj(0, µ) + xy∗.

Step 5: Generate the drift µt by the Euler method

µt+h = µt + κ(θ − µt)h+ σZ1

√
h

and compute the control process π in (4.0.2). Generate the wealth process X by the Euler method

Xt+h = Xt +Xt(r + πt(µt − r))h+ πtXtσ(ρ
√
hZ1 +

√
1− ρ2

√
hZ2)

where the initial value X0 = x, Z1 and Z2 are chosed from the standard normal distribution
N(0, 1). Since wealth process Xt is driven by πt, it is possible for an investor to lose all his money
before maturity T . Therefore, if Xt ≤ 0, we set XT = 0 for this path.
Step 6: Compute the lower bound

V (t, x, µ) ≈ 1

M

M∑
l=1

U(XT ).

Step 7: Repeat Steps 1 to 6 N1 times with different M, η ∈ Γ to derive the tight upper bound
inf

M,η∈Γ
V (0, x, µ) and the tight lower bound sup

M,η∈Γ
V (0, x, µ).

4.2 Closed-form upper bounds for power utility and non-
Hara utility

For some special utility functions, it is easy to find the closed-form upper bounds. The dual process
Y satisfies a linear SDE(3.2.2) and the dual value function Ũ is decreasing and convex. Therefore,
M(t, y, µ) is decreasing and strictly convex for y > 0 with fixed t and µ. By Feynman-Kac theorem,
M satisfies the following linear PDE

∂M
∂t
−ryMy+κ(θ−µ)Mµ+

1

2
y2[

(µ− r)2

σ2
+γ2(1−ρ2)]Myy+

1

2
σ2Mµµ+y[σγ(1−ρ2)−ρ(µ−r)]Myµ = 0

(4.2.1)

with the terminal condition M(T, y, µ) = Ũ(y). If the dual control γt = m(t) + η(t)µt where m
and η are piecewise constant functions

m(t) =

n∑
i=1

mi1(ti−1,ti](t),

η(t) =

n∑
i=1

ηi1(ti−1,ti](t),
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with 0 = t0 < t1 < t2 < ... < tn−1 < tn = T for n ≥ 1 and mi and ηi for i = 1, ..., n being arbitrary

constants. And the dual function Ũ has the following form

Ũ(y) =

N∑
j=1

Ũj(y) =

N∑
j=1

(
− 1

qj
yqj
)

(4.2.2)

for qj < 0 and j = 1, ..., N . The solution of PDE (4.2.1) is given by

M(t, y, µ) =

N∑
j=1

Ũj(y)Fj(t, µ) =

N∑
j=1

Ũj(y)exp(Ãj(t) + B̃j(t)µ+ C̃j(t)µ
2), (4.2.3)

where Ãj , B̃j and C̃j satisfies the following ODEs

Ã′j(t) =−
(
κθ + qjρr + σ(1− ρ2)qjm(t)

)
B̃j(t)−

1

2
σ2B̃2

j (t)− σ2C̃j(t)

+ rqj −
qj(qj − 1)

2

(
r2

σ2
+m2(t)(1− ρ2)

)
B̃′j(t) =(κ+ qjρ− σqj(1− ρ2)η(t))B̃j(t)− 2σ2B̃j(t)C̃j(t)− 2(κθ + qjρr + σ(1− ρ2)qjη(t))C̃j(t)

+
qj(qj − 1)r

σ2
− qj(qj − 1)(1− ρ2)m(t)η(t)

C̃ ′j(t) =− 2σ2C̃2
j (t) + 2(κ+ qjρ− σq(1− ρ2)η(t))C̃j(t)−

qj(qj − 1)

2

(
1

σ2
+ (1− ρ2)η2(t)

)
with the terminal conditions Aj(T ) = 0, Bj(T ) = 0 and Cj(T ) = 0. Moreover, C̃j(t) is given by

C̃j(t) =

n∑
i=1

C̃ij(t)1(ti−1,ti](t),

The C̃ij are computed recursively as follows:
for i = n,

C̃ ′nj(t) = ajC̃
2
nj(t) + bj(tn)C̃nj(t) + dj(tn), t ∈ [tn−1, tn]

with terminal condition C̃nj(tn) = 0.
For i = n− 1, ..., 1,

C̃ ′ij(t) = ajC̃
2
ij(t) + bj(ti)C̃ij(t) + dj(ti), t ∈ [ti−1, ti]

with the terminal condition C̃ij(ti) = C̃i+1,j(ti) where

aj = −2σ2, bj(t) = 2(κ+ qjρ− σq(1− ρ2)η(t)), dj(t) = −qj(qj − 1)

2

(
1

σ2
+ (1− ρ2)η2(t)

)
.

The closed-form solutions of C̃ij(t) are given by Appendix A. Equations for Ãij(t) and B̃ij(t) are
too complicated to find closed-form solutions, even though they are first order linear ODEs. Hence
we need to use numerical method to solve which is given by section 3.3. By equation (4.2.3), the
upper bound V is given by

V (t, x, µ) =

N∑
j=1

Ũj(y
∗)Fj(t, µ) + xy∗. (4.2.4)

By equation (4.0.2), the primal control π∗ is given by

xπ∗(t, x, µ) =

N∑
j=1

[
µ− r
σ2

(1− q) + ρ(B̃j(t) + 2C̃j(t)µ)

]
(y∗)qj−1Fj(t, µ) (4.2.5)

where y∗ = ŷ(t, x, µ) is the unique solution of equation
∑N
j=1 y

qj−1Fj(t, µ) = x and Fj(t, µ) =

exp(Ãj(t) + B̃j(t)µ + C̃j(t)µ
2). We can find an exact solution of the linear PDE (4.2.1). Hence,

there is no need to use Monte Carlo method to compute the upper bound. The closed-form solution
makes the computation of the upper bound fast, such that power utility and non-Hara utility.
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4.2.1 Power utility

Let γt = m(t) + η(t)µt. This is a special case of equation (4.2.2) with N = 1 and q1 = q. The dual
value function is given by equation (4.2.3). Therefore by equation (3.2.10) and (4.0.1), the upper
bound V is given by

V (t, x, µ) = Ṽ (t, ŷ, µ) + xŷ =
xp

p
exp[(1− p)(Ã(t) + B̃(t)µ+ C̃(t)µ2)].

The primal control π is given by

π(t, µ) =
µ− r
σ2

(1− q) + ρ(B̃(t) + 2C̃(t)µ)

Furthermore, we can use Monte Carlo method to generate sample paths of the wealth process X
in (3.0.3) to compute the lower bound

V (t, x, µ) ≈ 1

M

M∑
l=1

U(XT ).

4.2.2 Non-Hara utility

The dual function of non-HARA utility is given by

Ũ(y) = − 1

q1
yq1 − 1

q2
yq2

where q1 = −1 and q2 = −3. Let γt = m(t) + η(t)µt. Hence, this is a special case of (4.2.2) with
N = 2 and q1 = −1 and q2 = −3. The dual value function is given by equation (4.2.3), the upper
bound is given by equation (4.2.4) and the primal control is given by equation (4.2.5). Since y∗ is
the unique solution of equation

y−2F1(t, µ) + y−4F2(t, µ) = x,

y∗ can be written as

y∗ =

(
F1(t, µ) +

√
F1(t, µ)2 + 4xF2(t, µ)

2x

) 1
2

,

Furthermore, we can use Monte Carlo simulation to generate sample paths of the wealth process
X in (3.0.3) to compute the lower bound.

4.3 Numerical tests

In the section, we solve the optimal control problem with power and non-Hara utilities by using
the dual control Monte Carlo method. We use the closed-form solution to compute upper bounds
for power and non-Hara utilities when γ = m(t)+η(t)µt and γt = m(t)µt, and use the Monte Carlo
method to compute the lower bounds and the upper bound for m(t). Let path number 100,000
and time step 100 for discretizing SDEs.

4.3.1 Power utility

Our goal is solving the optimal control problem by lower and upper bounds method with power
utility function. Let parameters

r = 0.05, σ = 0.2 ρ = −0.5, κ = 3, θ = 0.05, T = 1, p = 0.5, x0 = 1, µ0 = 0.5.
(4.3.1)

We compare performances of three different choices of dual control γt with m(t) and η(t) both being
constants(n=1) which are independent uniform variables in [−0.5, 0.5]. We repeat the Monte-Carlo
method step 1 to step 6 1, 5, 10, 20, 50, 100 and 200 times and then compute the tight upper
bound inf

M,η∈Γ
V (0, x, µ) and lower bound sup

M,η∈Γ
V (0, x, µ).

34



By equations (3.1.11) and (3.1.12), We can compute the closed-form solution of C(t) and
approximate A(t) and B(t) once C(t) is known. Using Python, we can obtain

A(0) = 0.092030, B(0) = −0.183145, C(0) = 1.831404.

Then the benchmark value is the primal value explicitly given by

V =
xp0
p

exp((A(0) +B(0)µ0 + C(0)µ2
0)) = 3.162794

The numerical results are listed in Table 4.1.

Times Benchmark UB LB abs-diff rel-diff
1 3.162794 3.163576 3.162234 0.001342 0.000425
5 3.162794 3.163576 3.162234 0.001342 0.000425
10 3.162794 3.163576 3.162234 0.001342 0.000425
20 3.162794 3.163351 3.162234 0.001117 0.000354
50 3.162794 3.163351 3.162234 0.001117 0.000354
100 3.162794 3.162842 3.162234 0.000608 0.000193
200 3.162794 3.162796 3.162234 0.000562 0.000178

Table 4.1: Upper bound (UB) lower bound (LB) for power utility(γt = m(t) + η(t)µt)

Times Benchmark UB LB abs-diff rel-diff
1 3.162794 3.163754 3.162195 0.001559 0.000493
5 3.162794 3.163705 3.162195 0.001510 0.000478
10 3.162794 3.163668 3.162195 0.001473 0.000466
20 3.162794 3.163317 3.162195 0.001122 0.000355
50 3.162794 3.163256 3.162195 0.001061 0.000335
100 3.162794 3.162894 3.162195 0.000699 0.000221
200 3.162794 3.162843 3.162195 0.000648 0.000205

Table 4.2: Upper bound (UB) and lower bound (LB) for power utility(γt = m(t)µt)

Times Benchmark UB LB abs-diff rel-diff
1 3.162794 3.163953 3.161932 0.002021 0.000639
5 3.162794 3.163729 3.161932 0.001797 0.000568
10 3.162794 3.163361 3.161932 0.001429 0.000452
20 3.162794 3.163361 3.161932 0.001429 0.000452
50 3.162794 3.163274 3.161932 0.001342 0.000424
100 3.162794 3.163029 3.161932 0.001097 0.000347
200 3.162794 3.163029 3.161932 0.001097 0.000347

Table 4.3: Upper bound (UB) and lower bound (LB) for power utility(γt = m(t))

The tables illustrate that the benchmark value is between the upper and lower bounds, and
the absolute difference is proportional to 10−3 or 10−4 and the relative difference is proportional
to 10−4. As a result, the upper and lower bounds method is accurate and reliable. From tables
4.1, 4.2 and 4.3, the gap between the tight upper and lower bounds is very small. We also can
obtain γt = m(t) + η(t)µt outperforms other choices of γt. In addition, we examine the robustness
of the method for γt = m(t) + η(t)µt. We choose the dual control γt = m(t) + η(t)µt with m(t)
and η(t) both being constants(n=1) which are independent uniform variables in [−0.5, 0.5]. Then
we repeat the Monte-Carlo method step 1 to step 6 1, 5, 10, 20, 50, 100 and 200 times and then
compute the tight upper bound inf

M,η∈Γ
V (0, x, µ) and lower bound sup

M,η∈Γ
V (0, x, µ).

We randomly take 10 samples of interest rate r from the uniform distribution on [0.01, 0.08], σ on
[0.1, 0.5], ρ on [−1, 1], κ on [1, 5], θ on [0.01, 0.1]. Let parameters T = 1, x0 = 1 and µ0 = 0.5.
We compute the mean and standard deviation of the absolute and relative difference between the
upper and lower bounds and show the numerical results in the Table 4.4.
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Times mean abs-diff std abs-diff mean rel-diff std rel-diff
1 0.001821 0.002639 0.00034434 0.0114325
5 0.001797 0.002568 0.00028595 0.0109843
10 0.001538 0.002452 0.00029425 0.0104357
20 0.001429 0.002241 0.00028532 0.0094641
50 0.001342 0.001924 0.00025320 0.0092543
100 0.000978 0.001847 0.00021249 0.0090568
200 0.000897 0.001832 0.00019951 0.0088093

Table 4.4: Mean and standard deviation of the absolute and relative difference between the upper
and lower bounds for power utility with randomly sampled parameters-sets

The table illustrates that the algorithm is accurate and reliable. Furthermore, we compare
performances of γt = m(t) + η(t)µt with m(t) and η(t) both being constants, that is m(t) = m
and η(t) = η (the number of pieces n1 = 1) and being a two-piecewise constant function, that is
m(t) = m11[0,1/2](t) + m21(1/2,1](t) and η(t) = η11[0,1/2](t) + η21(1/2,1](t) (the number of pieces
n1 = 2. In the process of calculating the lower bound, we use a piece constant control

π∗(t) =

n2∑
k=1

π(tk)1(tk−1,tk](t), tk = k
T

n2
, n2 = 100

to replace the feasible control π. Moreover, we make the number of samples for each mi and ηi,
i = 1, 2, the same as that of m and η for n1 = 1, so as to ensure that the piecewise functions with
n1 = 2 include all functions with n1 = 1. The numerical results are listed in Table 4.5 and Table
4.6.

times Benchmark UB LB abs-diff rel-diff
1 3.16279372 3.16357634 3.16223398 0.00134236 0.00042442
60 3.16279372 3.16297127 3.16223398 0.00073729 0.00023311
600 3.16279372 3.16279465 3.16223398 0.00056067 0.00017727
6000 3.16279372 3.16279399 3.16223398 0.00056001 0.00017706

Table 4.5: Upper bound(UB) and lower bound(LB) for power utility with piecewise constant
control (n1 = 1)

Times Benchmark UB LB abs-diff rel-diff
1 3.16279372 3.16301876 3.16223398 0.00078478 0.00024813

602 3.16279372 3.16281122 3.16223398 0.00057724 0.00018251
6002 3.16279372 3.16279404 3.16223398 0.00056006 0.00017708
60002 3.16279372 3.16279384 3.16223398 0.00055986 0.00017701

Table 4.6: Upper bound(UB) and lower bound(LB) for power utility with piecewise constant
control (n1 = 2)

It is clear that the upper and lower bounds are tight. Our numerical results confirm the upper
bound is decreased as the number of samples for m and η increased, that is the performance of
n1 = 2 is better than that of n1 = 1, even if the rate of improvement is small. One possible reason
is that the bounds are already very tight. Hence, we can increase the number of samples to reduce
the gap of the upper and lower bounds. However, the time of computation will exponentially
increase as increasing the number of samples. One needs to strike a balance of accuracy and cost
of computation. According to the numerical results in Table 4.5 and Table 4.6, n1 = 1 has already
given good estimation of the bounds. we will use it for non-HARA utility.

4.3.2 Non-HARA utility

In this section, we check the correctness of the upper and lower bounds when process µt always
constant over the time t. By subsection 1.2.2, there is a classical solution to the primal value
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equation. Let all parameters be the same as (4.3.1). By equation (1.2.4), we can obtain

y∗ =

(
1

2x0

(
e(r+θ2)T +

√
e2(r+θ2)T + 4x0e3(r+2θ2)T )

))1/2

= 1.330956.

By equation (1.2.5), the benchmark value at time t is given by

V =
2

3

(
e(r+θ2)T

y∗
+ 2x0y

∗

)
= 2.307806.

We compute the upper and lower bounds by Monte-Carlo method. Table 4.7 lists the numerical
results.

The table illustrates that the benchmark is between upper and lower bounds, and the absolute

Benchmark UB LB abs-diff rel-diff
2.307806 2.307859 2.307702 0.000157 6.80e-05

Table 4.7: Upper bound(UB) and lower bound(LB) for Non-HARA utility

difference is proportional to 10−4 and the relative difference is proportional to 10−5. As a result,
the upper and lower bounds method is accurate and reliable.
In addition, we use the upper and lower bounds method to the non-HARA utility when drift µt
following the OU process.We compare performances of three different choices of dual control γt with
m(t) and η(t) both being constants(n=1) which are independent uniform variables in [−0.5, 0.5].
We repeat the Monte-Carlo method step 1 to step 6 1, 5, 10, 20, 50, 100 and 200 times and then
compute the tight upper bound inf

M,η∈Γ
V (0, x, µ) and lower bound sup

M,η∈Γ
V (0, x, µ). Let µ0 = 0.05,

p1 = 0.5 and p2 = 0.75. The other parameters are the same as in 4.3.1. The numerical results are
listed in Table 4.8, Table 4.9 and Table 4.10.

Num m and η UB LB abs-diff rel-diff
1 3.55639620 3.55552074 0.00087546 0.00024623
5 3.55639620 3.55552074 0.00087546 0.00024623
10 3.55639620 3.55552074 0.00087546 0.00024623
20 3.55630068 3.55552074 0.00077994 0.00021936
50 3.55630068 3.55552074 0.00077994 0.00021936
100 3.55569335 3.55552074 0.00017261 4.855e-05
200 3.55557267 3.55552074 5.193e-05 1.461e-05

Table 4.8: Upper bound (UB) lower bound (LB) and the absolute and relative difference between
upper and lower bounds for Non-HARA utility(γt = m(t) + η(t)µt)

Num m UB LB abs-diff rel-diff
1 3.55659998 3.55520307 0.00139691 0.00039288
5 3.55659998 3.55520307 0.00139691 0.00039288
10 3.55645730 3.55520307 0.00125423 0.00035276
20 3.55631066 3.55520307 0.00110759 0.00031151
50 3.55631066 3.55520307 0.00110759 0.00031151
100 3.55613581 3.55520307 0.00093274 0.00026234
200 3.55562488 3.55520307 0.00042181 0.00011864

Table 4.9: Upper bound (UB) and lower bound (LB) and the absolute and relative difference
between upper and lower bounds for Non-HARA utility(γt = m(t)µt)
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Num m UB LB abs-diff rel-diff
1 3.55667566 3.55515873 0.00151693 0.00042664
5 3.55667566 3.55515873 0.00151693 0.00042664
10 3.55642792 3.55515873 0.00126919 0.00035696
20 3.55642792 3.55515873 0.00126919 0.00035696
50 3.55642792 3.55515873 0.00126919 0.00035696
100 3.55621365 3.55515873 0.00105492 0.00029670
200 3.55565726 3.55515873 0.00049853 0.00014021

Table 4.10: Upper bound (UB) and lower bound (LB) and the absolute and relative difference
between upper and lower bounds for Non-HARA utility(γt = m(t))

The numerical results also confirm that the choice γt = m(t) + η(t)µt outperforms the other
choices of γt. We further check and test the robustness of the dual control Monte-Carlo methods
for non-HARA utility with γt = m(t)+η(t)µt with m(t) and η(t) both being constants(n=1) which
are independent uniform variables in [−0.5, 0.5]. Then we repeat the Monte-Carlo method step 1 to
step 6 1, 5, 10, 20, 50, 100 and 200 times and then compute the tight upper bound inf

M,η∈Γ
V (0, x, µ)

and lower bound sup
M,η∈Γ

V (0, x, µ).

We randomly take 10 samples of interest rate r from the uniform distribution on [0.01, 0.08], σ on
[0.1, 0.5], ρ on [−1, 1], κ on [1, 5], θ on [0.01, 0.1]. Let parameters T = 1, x0 = 1 and µ0 = 0.05.
We compute the mean and standard deviation of the absolute and relative difference between the
upper and lower bounds for non-HARA utility and show the numerical results in the Table 4.11.

Num m and η mean abs-diff std abs-diff mean rel-diff std rel-diff
1 0.008868 0.012592 0.219486 0.343412
5 0.008747 0.011095 0.194536 0.309677
10 0.008523 0.010178 0.185413 0.287890
20 0.008311 0.009639 0.181249 0.262324
50 0.007969 0.009414 0.169873 0.249088
100 0.007243 0.009135 0.163256 0.237766
200 0.007004 0.008871 0.159987 0.211909

Table 4.11: Mean and standard deviation of the absolute and relative difference between upper
and lower bounds for non-HARA utility with randomly sampled parameters-sets

It is clear that the gap between the upper bound and lower bound is very small. Therefore,
the algorithm is accurate and reliable.
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Conclusion

In this paper, we use Lagrange multiplier and Kuhn-Tucker condition to solve constrained quadratic
minimization problem and find the primal control. We find an exact solution for power utility using
both primal HJB and dual HJB when the drift µt following the OU process. We further plot some
graphs using the primal solution and dual solution separately and confirm they essentially produce
the same results. Besides, we use the weak duality relation to construct the upper bound from
the dual problem and then construct a feasible control to find the lower bound under the OU
process with power and non-HARA utilities and estimate the gap of UB and LB. We apply the
dual control Monte-Carlo method to compute the bounds and suggest some simple forms of the
dual control γt. For power and non-HARA utilities, if γ is taken as γt = m(t) + η(t)µt with m
and η being piecewise constant functions, we can find a closed-form formula of upper bound. For
power utility, we use the benchmark value to check bounds tight. Numerical tests show that the
choice γt = m(t)+η(t)µt outperforms the other choices of γt, and the difference between the upper
and lower bounds can be decreased if the number of sampling increases. Moreover, the upper and
lower bounds method is accurate, reliable and robust.
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Appendix A

Technical Proofs

In this paper we need to solve a number of times the following equation to obtain a closed-form
solution of C(t).

C ′(t) = aC2(t) + bC(t) + d, t ≤ t ≤ t

with the terminal conditions C(t) = c, where all coefficients are constants. Assume that b2−4ad > 0

and m1

m2
/∈ [e−k1(t−t, 1], where

k1 =
√
b2 − 4ad, m1 =

−b− k1

2a
, m2 =

−b+ k1

2a
.

Then we can obtain (
1

D −m1
− 1

D −m2

)
dD = a(m1 −m2)dt

Solving the above equation, the closed-form solution for C(t) on interval [t, t] is given by

C(t) =
m1 −m2

1− k2exp(k1(t− t))
+m2, k2 =

c−m1

c−m2

In this paper, c = 0, t = 0 and t = T .
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