Imperial College
London

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

Bootstrapping Past Inflation Returns

Author: Tao Yu (CID: 01198635)

A thesis submitted for the degree of

MSe in Mathematics and Finance, 2020-2021




Declaration

The work contained in this thesis is my own work unless otherwise stated.




Abstract

With the resurgence of sustained inflation for the first time in many decades, investors are
now faced with the question of how to allocate assets during economic scenarios having little to
no recent data, and a scarcity of first-hand experience. A key question for investors is whether
long term inflation over the next few years may be accompanied with by stagnation, or interest
rate rises, and what these interactions will mean for the wider economy. While it is impossible to
predict with high certainty what economic scenarios may arise, understanding what happened in
past periods which had similar economie conditions can provide valuable insight into the actions
we need to take today. In this thesis, we propose a simple framework for analyzing the past returns
of certain assets under defined economic scenarios. We consider a number of methods for applying
statistical inference to antocorrelated financial time series and apply these to a number of pressing
inflation scenarios today.
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Introduction

The work carried out during this thesis was completed with the Wealth Management Team at
Mazars UK with support and guidance from the Quantitative Solutions team. The Wealth Man-
agement Team at Mazars holds a portfolio for its clients, which is managed by an investment team
that makes strategic and tactical asset allocation decisions every quarter. In the recent years, the
team has been interested in introducing more advanced quantitative and data driven perspectives
on top of their existing fundamental and econometric work, and this is what led to this project. A
key question for the investment team this year has been how to allocate assets as inflation rose to
historic levels during the past year, and determining what we could learn from past time periods
when similar rates of inflation were observed.

In addition to simply calculating historical returns, it is important to the investment team to
understand the statistical significance of results: if one asset class records positive returns during
past inflationary periods, is this trustworthy? Is there enough data to make a strong judgement
or is there too much uncertainty in the estimation of parameters?

Aside from obtaining the results themselves, this project was designed for one additional pur-
pose: To determine whether having a quantitative analyst on the Mazars Wealth Management
investment team to assist with investment decisions is viable. Ultimately the judgement has been
that it is, and in part due to the work undertaken during this thesis, the Wealth Management
team has for the first time created a full-time quantitative analyst position within its Wealth
Management practice.

This thesis will be structured as follows: In Chapter 1, we will discuss our motivations for
carrying out this type of research and our objectives, in Chapter 2 we will describe the statistical
techniques we used, in Chapter 3 we will apply the methods of Chapter 2 to real data and look at
a number of recently relevant scenarios relating to inflation, growth, and interest rate hikes, and
in Chapter 4 we will present our conclusions.




Chapter 1

Learning From the Past

1.1 Motivation

In October 2020, one of the most renowed quantitative strategists and head of quantitative strategy
at Bernstein, Inigo Frazer Jenkins, provocatively stated [1] that he was no longer a gquant, arguing
that the industry has often attached too little importance to the changing of market regimes.
Indeed in a world where shocks like COVID-19 can happen, and in which large purchases by the
United States Federal Reserve can have profound impacts on the economy , we must ask ourselves,
if the validity of statistical techniques and backtests are at the mercy of changing regimes, what,
it any, is the place that that quantitative techniques have within long term investment strategy?

Total Assets of the Federal Reserve

Trillions of US Dellars

2004 2006 2008 2010 2012 2014 2016 2018 2020
Date

Figure 1.1: Between 17 March 2020 and 17 March 2021, the total number of assets held by the
Federal Reserve, rose by $4.7 trillion due to actions taken by the Federal Reserve to combat the
economic disruptions caused by the COVID-19 Pandemic [2]. This policy had a significant impact
on the corporate bond market, increasing liquidity and reducing transaction costs. While clearly
very impactful for the economy, it is clear that one cannot rely on statistical models to predict
such regime changes (source: FRED).

There is never a guarantee that the future will closely resemble the past. Nevertheless, the
intelligent asset allocation strategist must form their decisions based on a careful understanding
of the world, and part of this requires an accurate understanding of past events. It is a common
occurrence in investment committee meetings that different analysts will remember past events
differently. Did stocks go up during times of high inflation? Did bonds do poorly in times of low
growth? Were these events indicative of a pattern or simply a coincidence? These are questions
that any investor must seek to know the answer to objectively.

Therefore, in this paper, we provide a framework for more objectively analyzing the past per-
formance of different asset classes under various economic scenarios, with inflation being studied
in the most detail. We examine a number of techniques for applying bootstrapping techniques to
financial return data that violate common independent and identically distributed (iid) assump-




tions, and apply these techniques to a number of recently relevant economic scenarios relating to
the historically high inflation rates that have been seen in recent times. Finally we will discuss the
results obtained and how they may be used to make more informed investment decisions.

1.2 Methodology

Our approach will be to study the returns of a large number of economic, equity and bond indexes,
outlined in Appendix A, which will be our interface to the performance of the corresponding asset
classes under simple buy-and-hold strategies. In particular, we wish to estimate the average returns,
historical sharpe ratio, and the level of uncertainty in the estimation ol these quantities during
these periods. More than simply calculating values, it is crucial that we must establish statistical
significance for any conclusions we reach: any parameter we estimate must be accompanied with
a confidence interval, showing the uncertainty in the estimate, and any comparison made must
be done with attention paid to whether differences are a matter of coincidence or true deviations
between two datasets.

The purpose of our analysis is to obtain a better understanding of the past. It is practically
very difficult to define economic scenarios such that individual occurrences of the scenario are all
comparable. Case in point: inflation has been affected by factors as diverse as wars, revolutions, and
pandemics. Therefore, we cannot expect our results to directly hold out of sample. Nevertheless,
such backward looking analysis can augment the understanding and experience of an investment
analyst.

The statistical dynamics of stock returns are characterized by a number of stylized facts which
ensure that one must be careful when modelling and estimating returns. Particularly salient to
our purposes include the following:

e Returns do not follow a normal distribution

e Returns are often heavy tailed and asymmetric

e Returns are not independent: squared returns and absolute returns are serially correlated
o Volatility is clustered and highly persistent

In light of these properties of financial returns, we find it appropriate to use bootstrap techniques
for the estimation of parameters and construction of confidence intervals for our purposes, and we
shall outline some of the technigues which may be used to bootstrapping financial time series
returns in the next section.




Chapter 2

Bootstrapping of Financial Time
Series

2.1 The Standard Bootstrap

The bootstrap, introducted by Efron in [3] works by sampling with replacement. Given empirical
return data:

T1, 72,73, .., Tn (2.1.1)

and a sample statistic T'(r1,r2,73,...,7n ), one may calculate a bootstrap confidence interval for the
statistic of level «v as follows:

1. Let ri,rh,r4,...,r5 be a sample from the discrete uniform distribution {ry,rs,rs,...,r, } in-
dependently and with replacement for each i in 1,..., B where B is the number of bootstrap
iterations. It is important that this sample is of the same size as the original sample. This
is our bootstrap resample.

2. Calculate T¥ = T(r},ri,ri,...,rL) for i in range 1, ..., B.
3. Caleulate §f =1} —T(ry,7o,...,7,) foreach i = 1,2,..., B.
4. Calculate the a/2 and (1 — a/2) critical values of {§; }5 : & 122001 _a/2)

5. Then, our 100(1 — &)% bootstrap confidence interval for 1" is given by

[T(r1,ra s Tn) = 800, T(r1, 72,0 ) = 811 o). (2.12)

Bootstrapping carries a number of advantages for our purposes. It is model free, and takes into
account that our data may be non-normal or assymmetric. [t also allows one to estimate C(Jmplox
statistics 7" in a simple way. This makes it applicable to a wide range of data.

In principle, bootstrapping should ensure that the empirical distribution of the resampled data
r%,j = 1,...,n should have the same distribution as the original data. However, for this to hold, it
is important to note that bootstrapping assumes that the returns are independent and identically
distributed. This is generally not the case for financial data returns; returns generally exhibit
autocorrelation and volatility clustering. Figure 2.1 shows how bootstrapping can destroy the
autocorrelation structure of returns.

2.2 Block Bootstrapping

The classical remedy to the problem of bootstrapping correlated data is to use block bootstrap-
ping. In block bootstrapping, instead of individual observations, blocks of data are sampled with
replacement from the raw data. Following this, the remaining procedure is the same as in Section
2.1




Autocorrelation of S&P500 returns

Autocorrelation of S&P500 squared returns
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Figure 2.1: Left Column: Raw returns.

Right Column: Squared Returns. While raw returns

have low autocorrelation, squared returns show significant and persistent autocorrelation. This
autocorrelation structure is destroyed by regular bootstrapping, while block bootstrapping and
GARCH models can help to alleviate this problem.




A number of versions of block bootstrapping have been devised, involving variations in the way
blocks are chosen and the size of the blocks. A number of these have been studied in [4], and we
will summarize them below:

In the following sections we will use the following setup: Let our original sample be the sequence
{ri}i=;. Then, define r; = 7(; yod n) for i > n such that we periodically extend the series. Finally,
denote by B(i, k) = (ri,7i41. s "itp—1 ). the block of size k > 1 starting from r;

2.2.1 Moving Block Bootstrapping (MBB)

In moving block bootstrapping, one samples blocks with replacement from the collection of blocks

(Bli,l):i=1,... n—1+1} (2.2.1)

where [ is the fixed block size. To be precise, our final bootstrap resample will consist of
B(I,1),...,B(1,l) (2.2.2)
where b= | 7| and ©1,... I are discrete uniform random variables taking values i = 1,...,n—[+1

2.2.2 Nonoverlapping Block Bootstrapping (NBB)
In NBB, we disallow choosing overlapping blocks; we choose from the following without replacement
(B((i— 1)l +1,1): 1 <i < b} (2.2.3)

where our final bootstrap sample is once again given by (2.2.2)

2.2.3 Circular Block Bootstrapping (CBB)

In circular block bootstrapping, one samples blocks with replacement from the collection of blocks
[B(i,0):1<i<n), (2.2.4)

that is, we allow wrapping around of the start and the end of the data. The purpose of allowing
this wrap around is to prevent systematic undersampling ol data from the start and end of the
time series, which oceurs in MBB due to the fact that indexes less than [ or greater than n—{+1
oceur in fewer of the blocks the set (2.2.1)

2.2.4 Stationary Bootstrap (SB)

Stationary block bootstrapping differs from the methods previously mentioned because the block
size is no longer fixed, but exponentially distributed. This method is notable for producing boot-
strap samples which are statistically stationary, as proved by [5].

2.2.5 Block Size Selection

As noted in [6], the size of blocks has a crucially important role in determining the bias and
variance of a block bootstrap estimator. Therefore it is of critical importance to choose appropriate
block sizes (or mean block sizes in the case of stationary bootstrap). Fortunately, [7] provides an
automatic block size selection algorithm for selecting the optimal block size for the Stationary and
Circular Block bootstraps. The method is sensitive to the autocorrelation function of the time
series and has been demonstrated to attain excellent performance in choosing the optimal block
size in [8].

2.2.6 Comparison of Block Bootstrapping Methods

The block bootstrapping methods mentioned above are compared in [4]. It was found that all
four methods have the same amount of bias asymtotically, but have different leading terms in
expansions of their variance.

Ultimately the conclusion of [4] is that methods with overlapping blocks are to be preferred
and that the Stationary Bootstrap typically leads to larger mean-squared errors. Thus, we find
that circular block bootstrapping is the best method for our purposes as it has the added feature
over moving block bootstrapping of not under-sampling data at the start and end of series.
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Autocorrelation of simulated GARCH Process
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Figure 2.2: Autocorrelation of Simulated Garch Process using the arch package in Python

2.3 Parametric methods/Monte Carlo

Another approach which can be used to respect the correlation structure when estimating pa-
rameters from financial time series is to assume certain time series models. Models such as the
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model were designed to be
able to capture the properties of financial returns and thus we felt that such methods merited
serious consideration. We ultimately found that these methods did not suit our purposes very
well, however we will still ontline the work that we carried out in this area in order to explain our
reasoning for preferring the approaches in Section 2.2.

2.3.1 GARCH Models

The generalized autoregressive conditional heteroskedasticity (GARCH) model, introduced by [9]
is generally considered to be one of the most important models for returns of financial returns.
A process (X;)iez is a GARCH(p, q) process if it is strictly stationary, and for a positive valued
process (o, )z satisfies

» q
X, =07, ot=ag+ Y o X}, + Y Biot (2.3.1)
i=1 j=1
for t € Z where aeg > 0, ; > 0,i = 1,...,pand 3; > 0,5 = 1,...,q, and (Z;)icz being a series

of iid square-integrable random variables with mean 0 and variance 1 [10]. This may be further
extended [11] to a Constant Mean Garch Model, (R )sez,

R, =p+X, (2.3.2)

which allows for the process to have a constant mean. In practice, lower order GARCH models are
the most used, with GARCH(1, 1) perhaps being the most popular, and thought to be a good fit
to logarithmic return data. The standard ¢ distribution is also commonly used for the distribution
of Z; as it has heavier tails than the normal distribution. Thus, we will focus on GARCH(1,1)
with standard t errors in the forthcoming discussion.

An important feature of GARCH models is that they are able to capture the autocorrelation
structure and volatility clustering properties of returns. In Figure 2.2 a GARCH(1, 1) model
is simulated, showing significant antocorrelation in the squared series, but essentially negligible
autocorrelation in the original series.

11
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Figure 2.3: Quantile-Quantile plot of standardized residuals of GARCH model fitted S&P500
returns with Student’s t errors. One can see significant deviations in the distribution particularly
at the extremes

If we believe that a GARCH model is a good fit to our data, the GARCH model allows for
statistical inference to be carried out in a straightforward way. Maximum likelihood estimators,
along with asymptotic results for the distribution of these estimators have been derived [10] and
calculated standard errors are readily available for parameters such as g through software packages.
Alternatively, we may take a Monte Carlo approach, by simulating the data using the estimated
parameters and assumed distribution for Z; in order to obtain Monte Carlo confidence intervals.

We gave serious consideration to using these techniques over the block bootstrapping technicues
outlined in section 2.2. Ultimately, we decided against this for practical reasons. Primarily, our
concern was with ensuring that these models are a good fit to a large number of indexes, as the
quality of results is largely dependent on how good of a fit the model is. Our intention is to apply
these methods to around 50-60 indexes, where it would be impractical to assess the goodness of
fit for each model. In addition, this constraint means that it is also impractical to consider the
best GARCH variants for each index (for example different values of p and g, different variants
of GARCH, different distributions for standard errors, and other variants of GARCH such as
IGARCH, GJR-GARCH, etc).

It is also our intention in the implementation side of things to create a program which can
recreate our analysis for arbitrary new scenarios and new indicies at a moment’s notice, and
the need to assess fits each time the components of the model are modified makes this process
considerably less efficient.
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Chapter 3

US Inflation Case Study

3.1 Motivation

The question of how to invest in inflationary times is a question that investment managers have
not needed to consider in decades. Following the sharp rise in inflation during the COVID-19
pandemic, and economic shocks caused by restrictions and lockdowns, investors are faced with the
prospect of a number of uncertain long term economic scenarios over the next few years. A number
of scenarios of particular interest to Mazars are outlined in Table 3.2

Scenario Deseription
Stagflation High inflation coupled with low economic growth
Inflation + Growth High inflation coupled with higher economic growth rates

High Inflation, Interest Federal Reserve increasing the federal funds rate to combat inflation
Rate Hikes

High Inflation, No In- High Inflation, but the Federal Reserve takes no action

terest Rate Hikes

Table 3.2: Inflation Scenarios

It is of course extremely difficult to perfectly anticipate any of these scenarios before they
happen, and even harder to perfectly predict how they will affect markets. Hence we instead aim
to obtain a good understanding of what happened when each of the scenarios occurred in the past.
Such knowledge can then be nsed to inform and gnide our decisions as it becomes more clear which
scenarios are more likely. In this section, we will start by defining our scenarios clearly, and then
explain our methodology for analyzing the past performance.

3.2 Defining Scenarios

3.2.1 Inflation

It is difficult to precisely quantify inflation. More than one measure exists for measuring inflation:
Personal consumption expenditure, Consumer Price Index, GDP deflator, to name a few, each
having their own limitations and drawbacks, which have been hotly debated by economists for
decades.

Moreover, two fundamental issues with inflation measures are highlighted by [12]: The defla-
tionary forces of technology, and the fact that the baskets of goods relied on by many inflation
indexes, can often be non-representative for a given investor, or even somewhat arbitrary.

In the end, we must accept that there is no perfect measure of inflation. For our purposes, we
follow the decision of [12] which, in a similar analysis, use the United States Consumer Price Index
(CPI) as reported by the Bureau of Labor Statistics as their measure of inflation. As with any
index of inflation, this has its flaws [13]: it is a lagging indicator, and the fixed basket of goods can

13




often be non-representative. Nevertheless, there are two advantages to using this measure. Firstly,
the CPI has a large amount of historical data, going as far back as 1913, and secondly, it is the
most popularly used measure of inflation, meaning that is the measure that market participants
ultimately react to.

As inflation is defined by a rise in prices, we consider the year on year percentage rise of CPI
and set the cutoff between high and low inflation at 3%. Figure 3.1 shows the full year on year
CPI rate time series along with the periods when this was above 3%.

Scenario: US Inflation Above 3%

25
—— US CPI Year on Year
20+ g 3%
154
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[~
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~154

T T T T T T
1920 1940 1960 1980 2000 2020

Figure 3.1: US CPI Year on Year rate
Shaded regions indicate high inflation (> 3%) and non-shaded regions indicate low inflation
(< 3%)

3.2.2 Growth

The most common measure of economic growth is by far the Gross Domestic Product (GDP).
Similarly to the Consumer Price index, the GDP has been highly scrutinized and criticized by
economists as a measure of economic growth. Nevertheless, it is still considered an extremely
important measure [14], which is capable of capturing important economic events such as recessions.

As with the consumer price index, the GDP has the benefits of having a large amount of
historical data, and being a measure which is widely used and reacted to by market participants.

3.2.3 Combined Inflation and Growth Scenarios

Inflationary periods are often characterized by the type of growth during that period. For example,
high Inflation coupled with low growth (stagnation) is commonly referred to as “stagflation”. In
a stagflationary environment, prices rise, and money loses value while economic growth stagnates,
leading to wages decreases and unemployment, creating misery for everyday people on two fronts.

Scenario: US Growth Below 3%
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Figure 3.2: Low Growth
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Scenario: High Inflation, Low Growth
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Figure 3.3: High Inflation, Low Growth (Stagflation)
Scenario: High Inflation, High Growth
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Figure 3.4: High Inflation, High Growth (Managed Growth)

Such a scenario has a vastly different effect on the overall economy compared to one where inflation
is coupled with high growth. We define the High Inflation, Low Growth Scenario to be when
inflation is above 3% and Growth is below 3%, and the High Inflation, High Growth Scenario to
be when inflation is above 3% and growth is above 3% and illustrate these scenarios in Figures 3.3
and 3.4

3.2.4 Interest Rate Hikes

A key question for markets is whether the Federal Reserve will raise interest rates in order to
combat higher inflation. We create two additional scenarios based around this question. For the
High Inflation and Interest Rate Hikes scenario, we take all time periods when inflation rose above
3%, and restricted the scenario to only the periods where the Federal Funds Target Rate was raised
by at least 0.5% at one point during that period.

Conversely, the High Inflation and No Interest Rate Hikes scenario consists of inflationary
periods where the Federal Funds Target Rate was never raised by more than 0.5% at any point
during the period. We illustrate these scenarios in Figures 3.5 and 3.6.

3.3 Data Preprocessing

Before using our data we undertake the following preprocessing steps

e Converting Daily Data to weekly data: We use weekly data to calculate returns. That
is, the price level on each Friday. Owr justification is the following: Global markets tend to
normalize at the end of the week. That is to say that, news which broke during the week
tends to be fully priced in by the end of the week in all geographical markets. For a long

15




Inflation and Interest Rate Hikes
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Figure 3.5: High Inflation, Interest Rate Hikes
0 Inflation and No Interest Rate Hikes
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Figure 3.6: High Inflation, No Interest Rate Hikes

Scenario Number From To

1 1948-03-31  1948-06-29
2 : 1957-03-29
3 1957-06-30  1957-09-27
4 1958-01-31  1958-06-27
5 1967-12-31  1968-03-29
6 1969-09-30  1971-06-29
7 1974-03-31  1976-03-30
8 1979-06-30  1981-09-29
9 1981-12-31  1983-06-29
10 1987-03-31  1987-06-29
11 1989-12-31  1991-10-30
12 1991-12-31  1992-01-30
13 1992-03-31  1992-06-29
14 1995-06-30  1995-07-28
15 2000-12-31  2001-03-30
16 2001-04-30  2001-07-30
17 2003-03-31  2003-04-29
18 2007-10-31  2008-11-28
19 2011-04-30  2011-12-30
20 2021-04-30  2021-05-27

Table 3.3: Individual periods of High Inflation, Low Growth Scenario
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term investment strategist, intra-week data often represents noise which is better left out of
their analysis.

e Interpolating Missing Data. Many financial time series exhibit irregularities in reporting
frequency; sometimes data may be reported monthly until a certain data, after which data
becomes available daily. Other times, data may simply be missing for certain dates. To
combat this problem we use a simple linear interpolation between known values of each time
series in order to obtain a weekly time series of values containing only Fridays in every case.
This step is carried out before caleulating returns. We believe that it is reasonable to assume
that on average, the level of a time series moves between two known time points in a linear
fashion. Furthermore, we believe it is far more desirable to perform a linear interpolation as
opposed to a backward-looking fill of missing values, as this would result in many returns of
exact value (), where there are consecutive Fridays without any data.

e Calculation of weekly returns: Returns are calculated as a simple arithmetic return:
re = (py—pPi—1)/Pe—1- The use of logarithmic returns was also considered: #; = logp,—logp;
as these are commonly used, especially in time series modelling due to the fact that log returns
are additive. Ultimately we decided it would be more useful to use arithmetic returns as this
is a scale which is more familiar to investment teams: logarithmic returns can differ from
arithmetic returns by a significant amount when the magnitude of the return is large.

After these preprocessing steps, the return data is filtered so as to include only dates which fall
within the scenario of interest. Block bootstrapping is then run on these filtered returns to obtain
the results of Section 3.4

3.3.1 Quantities to Estimate by Bootstrapping

We are interested in bootstrapping the mean returns as well as the risk adjusted returns (Sharpe
Ratio). These are among the most commonly used indicators of performance in the financial
industry and they are among the most important factors looked at by the investment team at
Mazars.

Quantity | Formula
Annualized Return (I+I3 )P -1
Anmualized Sharpe \ISQG], 7 = sample mean, s = sample standard deviation

Table 3.4: Quantities to Estimate

For both quantities we annualize the returns from weekly to monthly. It is true that the
formulas used for annualization in Table 3.4 use an iid assumption in order to make the jump from
weekly returns to yearly returns. However, we perform this annualization only to bring the figures
to a scale that is more familiar, and hence we believe that such operations are reasonable for this
purpose.

3.3.2 Performance Relative To Long Term Average

Aside from knowing how different asset classes performed during scenarios, we would also like
to know how these performances compare to the overall performance of these assets overall: both
inside and outside the scenario. We aim to obtain an idea of this by bootstrapping from the returns
within the scenario, and then the returns overall, and then subtracting the former bootstrapped
statistic from the latter. In this way we can create a confidence interval for the performance of an
asset class relative to its long term performance.

3.3.3 Indexes

We use a large number of indexes, retrieved from Thomson Reuters Eikon as well as Bloomberg
Terminals for our analysis. A full list of indexes used are included in the appendix.

Wherever possible, we aim to use Total Return Indexes. While a standard price index like the
S&P500 tracks the capital gains of an asset class, a total return index tracks both the capital gains
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as well as any cashflows such as dividends or interest payments. These features make total return
indexes a more accurate representation of the performance of the index for shareholders [15].

We also include a number of relative indexes. In the following results these are listed with names
similar to “Consumer Staples vs World”. The aforementioned index is constructed by dividing the
MSCI Consumer Staples Index by the MSCI World Index, and represents the relative performance
of consumer staples as compared to the MSCI World. That is, if this index rises, it means that
consumer staples are performing particularly well compared to equities overall.

A fundamental challenge for us is finding indexes with enough data to form significant conclu-
sions. In our selection process we chose to use only indexes which have had at least twenty years
of data. While having more data is always desirable, we believe that ineluding indexes with less
data is still valuable if statistically significant conclusions can be reached. We include the start
dates of each index in Appendix A.

3.4 Results

3.4.1 Presentation of Results

Our results consist of bootstrapped confidence intervals for the statistics outlined in Section 3.3.1,
first calculated within the relevant scenarios, and then calculated relative to their long term average
as in Section 3.3.2.

We use Circular Block Bootstrapping for our analysis, using the optimal block size selection
method in [8], for the reasons we outlined in Sections 2.2.6 and 2.3.1. We display results as bar
charts with 95% confidence intervals shown in black error bars. All figures displayed are in percent
terms.
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3.5 Summary of results

In this section we will focus on mean returns as they provide the most clear interpretations.
However, we note that looking at historical sharpe ratios does not appear to significantly change
our overall conclusions.

3.5.1 High Inflation, Low Growth

In a stagflationary environment, we find that equities perform particularly poorly, both on an
absolute basis, and relative to long term average, with statistically significant negative returns
in a majority of indexes considered. Within Currencies, we find that the Pound Sterling and
Euro underperform relative to the US dollar, and the same for the Pound Sterling relative to
the Japanese Yen. Bond indexes are a mixed story, with some indexes showing positive returns
and others showing negative or inconclusive results. Within relative indexes, we find that the
Consumer Staples vs World, United Kingdom vs World and Health vs World indexes are positive
to a statistically significant level.

3.5.2 High Inflation, High Growth

We find that in contrast to a stagflationary environment, many equities classes have positive
returns during high inflation and high growth, although not higher relative to their long term
average in most cases. Exchange rates do not show positive or negative returns as strongly as the
Stagflationary environment, and Gold performs quite well. World Value vs Growth, Utilities vs
World and Financials vs World perform well. We believe this is a good demonstration that the
specific type of inflation matters when considering past returns, and justifies the use of GDP in
the definition of our scenarios.

3.5.3 High Inflation, Interest Rate Hikes

We find it is difficult to make strong conclusions about the positivity or negativity of returns for
many of the indexes in this scenario as many confidence intervals are wide, perhaps owning to a
lack of data. We find that High Dividend Yield stocks in the UK perform well, along with the
World Value vs Growth and Financials vs World indexes. Global Aggregate Bonds (legatruu) and
Inflation Linked Bonds also show statistically significant positive returns.

3.5.4 High Inflation, No Interest Rate Hikes

The High Inflation, No Interest Rate Hikes scenario is reminiscent of the stagflationary environ-
ment. Equities also perform poorly, Pound Sterling and Euro underperform relative to the US
dollar, and the Pound Sterling underperforms relative to the Japanese Yen. Once again, Health
Vs World and Consumer Staples vs World show positive returns.

3.6 Utility in Investment Management

We make no assertion that the results that we obtained are likely to hold out of sample. Within
Mazars, these results will necessarily be supplemented with further qualitative analysis, based on
world news, historical research, analyst opinions, and more. Thus at Mazars, our intention is to
use such analysis as the starting point for how we will consider questions such as how to invest
during inflation. This is because we believe that is is crucial to start from a point of scientific
objectivity, giving ourselves the correct prior beliefs, before moving onto the qualitative side.

3.6.1 Individual Periods

When we wish to investigate an individual index further during a specific scenario, we may consider
what happened to this index in each separate time period when this scenario held. For example, the
High Inflation, Low Growth Scenario, happened 20 separate times in the past; these are outlined
in Table 3.3.

If the investment team have determined that a certain index is worth looking into in more
detail, we can run circular block bootstrapping on each individual period of a scenario. To make
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High Inflation, Low Growth: S&P 500 Index - CBOE
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Figure 3.23: Visualization of the S&P 500 during periods of High Inflation and Low Growth

the results of such computations more interpretable we have developed the visualization in 3.23.
We place bars at the periods where each individual part of the scenario occurred, each having a
width which corresponds to the length of the period. The green part of the bar represents the
portion of the confidence interval above the point estimate, and the red part of the bar represents
the portion of the confidence interval below the point estimate, with the point estimate being right
in the middle. We can also clearly notice from such plots how the width of the confidence interval
is affected by the lack of data: scenarios which happened for a shorter period of time show much
larger confidence intervals.

We will not include these graphs for every scenario and index in this thesis, but we intend these
visualizations to be a invaluable guide when using our analysis for decision making within Mazars.




Chapter 4

Conclusion

During this project, we designed a simple framework for analyzing past returns of asset classes
under different economic scenarios. We find that an approach using block bootstrapping is the
most suitable for our needs, and implement this approach in order to investigate a number of
pressing economic scenarios involving inflation: high economic growth, low economic growth and
interest rate hikes. We find that it is possible to make statistically significant conclusions about
a large number of indexes, and that the type of inflation is eritically important: inflation coupled
with low growth has vastly different effects on returns to inflation coupled with high growth.

We argue that such analysis is invaluable to investors faced with unfamiliar scenarios for which

they have little experience with, and offers an objective starting point for further analysis. This is
a view which is shared by the wealth management team at Mazars, and in part due to the results
obtained and the Python tool created {Appendix B), has resulted in the creation of a full time
Quantitative Analyst role for the first time within the Wealth Management practice of Mazars UK.

Going forward we believe that there is still scope for improvements and extensions to our
analysis. These may include improvements in the definition of existing scenarios, inclusion of
additional variables (such as employment), inclusion of indexes with a longer history, as well as

possibly more advanced simulation methods. In any case, it is our belief that our framework will
be used in Mazars to help guide investment decisions in unfamiliar economic scenarios for years to
come.




Appendix A

Index Descriptions

Start Date  Currency
Index
Tokyo SE Stock Price (Dividend included) Index 1993-07-05 JPY
MSCI World Net Index USD End of Day 1998-12-31 USD
FTSE All-Share Total Return Index 1985-12-31 GBP
FTSE FTA 250 Total Return Index 1994-06-24 GBP
FTSE Smallcap Total Return Index GBP End Of Day 1994-06-24 GBP
MSCI Europe Net Index EUR End of Day 1998-12-31 EUR
EURO STOXX Small EUR Net Return Index 1999-01-04 EUR
MSCI Japan Net Index USD End of Day 1998-12-31 USD
MSCI Emerging Markets Net Index USD End of Day 1998-12-31 USD
MSCI World Materials Sector Net Index USD End of Day 1998-12-31 USD
Refinitiv/CoreCommodity CRB®) Index Excess Return 1994-01-03 USD
FTSE EPRA Nareit UK GBP Price Return Index 1989-12-29 GBP
UK Pound Sterling 3 Month ICE LIBOR 1986-01-02
MSCI Europe Ex United Kingdom Net Index USD End of Day 1998-12-31 USD
MSCI ACWI Large Cap Net Total Return USD Index 1995-01-02 NalN
MSCI World Mid Cap Net Total Return USD Index 1994-05-31 NaN
MSCI All Country World Small Cap Net Index USD End of Day 1994-05-31 USD
MSCI AC Asia ex Japan Net Total Return USD Index 2000-12-29  NaN
MSCI United Kingdom High Dividend Yield Gross Total Retuwrn Local Index  1998-12-31  NalN
MSCI US Small + Mid Cap 2200 Index 1992-05-29  NaN
STOXX Europe 600 USD Total Return 2001-01-02  NaN
S&P 500 Total Return 1988-01-04 USD

Table A.1l: Equity Indexes

Start Date  Currency
Index
United Kingdom 10 Year Benchmark 1979-01-02 GBP
United States 10 Year Benchmark 1953-04-15 USD
FTSE Actuaries UK Conventional Gilts All Stocks Index 1985-07-01  GBP
Legatrun Index 1990-01-01
Bloomberg Barclays World Ex UK Inflation Linked Bonds TR Hedged GBP  1997-01-01 USD

Table A.2: Bond Indexes
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Start Date  Currency
Index
UK Pound Sterling/Japanese Yen FX Cross Rate 1975-01-02  JPY
UK Pound Sterling/US Dollar FX Spot Rate 1971-01-04 USD
UK Pound Sterling/Euro X Cross Rate 1986-05-07 LEUR
Euro/US Dollar FX Spot Rate 1975-01-02  USD

Table A.3: Currency Indexes

Start Date Currency

Index

World Value vs Growth 1998-07-10  USD
Financials vs World 1969-12-31 USD
Industrials vs World 1969-12-31 USD
Tech vs World 1969-12-31 USD
Health vs World 1969-12-31 USD
Utilities vs World 1969-12-31  USD
Consumer Staples vs World  1969-12-31  USD
Consumer Discret vs World  1969-12-31  USD
Telecoms vs World 1969-12-31 USD
Materials vs World 1969-12-31 USD
Energy vs World 1969-12-31 USD
US vs World 1928-01-03 USD
UK vs World 1969-12-31 GBP
EU vs World Inde 1969-12-31 USD
Japan vs World 1969-12-31 USD
EM vs DM 1969-12-31  USD
Large Cap vs Mid Cap 1994-05-31 USD
Large Cap vs Small Cap 1994-05-31 USD

Table A.4: Relative Indexes
Start Date Cwrrency

Index

Gold Spot Multi-Contributor  1968-03-22 USD

Table A.5:

39
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Appendix B

Implementation, user interface
and Python Library

It is not our intention that the methods deseribed in this paper should be used for the above
scenarios only. Our vision is that these technigues may be used to analyze any economic scenario,
as they become relevant.

Therefore at Mazars, we have developed an object-oriented Python library from scratch in
which one can define complex economic scenarios and then automatically generate the type of
analysis presented in this thesis. Economic scenarios are implemented as classes in Python code
so that we may make use of inheritance and polymorphism to facilitate efficient code reuse.

As well as a Python interface, a user friendly interface is provided, designed using the bokeh
library. This interface was designed in order to allow a person without technical knowledge to be
able to create their own scenarios, add additional indexes of interest, and produce visualizations
similar to those produced above.
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Scenario Type

Comparison

First Timeseries
S&P 500

Comparison

=

Second Timeseries
| S&P 500 200 Day Moving Average
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22

Add
(a) Comparison Scenario
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First Timeseries
United States, GDP, % year on year, Standard®

Comparison

<

Compare to
3

Minimum consecutive time periods
2

(e) Compare to a number

Scenario Type
DropiRise

Time Series
Brent Crude Oil Benchmark Index (USD Excesv

Rise/Drop
Rise

Amount of drop/rise
0.1

Rise/Drop Type
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30d

Add

(b) Drop/Rise Scenario

Scenario Type

Custom

Name
Custom Scenario 1
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20152017, 191211987
y’

(d) Custom

Figure B.1: Different Scenarios which can be built out of the box by the scenario builder
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Figure B.2: Interactive plots of the scenario
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