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Abstracts

This paper investigates the ability of signature transformation to extract information from time-
series data, and take signature as features to forecast the short-term price movement in the largest
and most liguid foreign exchange market. The optimal signature features are determined by
examining the predictive power of various combinations of time-series data streams and model
parameters. The predictive classification models are established by Random Forest (RF), Extreme
Gradient Boosting (XGB) and Long-Short term memory (LSTM) neural network, and its practical
application is evaluated by backtesting trading strategies on 20 foreign exchange currency pairs.
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Introduction

Currencies markets is an over-the-counter (OTC) global marketplace that transacts 24 hours per
day and closing only weekend, where participants, such as central banks, hedge funds, retail forex
dealers, can buy, sell, exchange based on the exchange rates. From Triennial Central Bank Survey
(2019), the forex market is the largest and most liquid financial market in the world according to
its trading volume, and the worth of the entire global forex trading market is estimated to $2400
trillion [1]. Moreover, refer to Yan and Ouyang (2018), forex market prediction is an exciting
but challenging topic in the financial field because of the complex characteristics of financial time
series, such as non-linearity, non-stationary, and sequence correlation [2]. To construct a scientific
prediction financial time series model, an effective method of capturing the complex features of
financial data and powerful ability to learn features is necessary.

For extracting information from financial time series data, there are two primary schools based
on financial analysis in the market prediction: fundamental analysis and technical analysis. The
fundamental analysis in the forex market is to take the economic and political factors for countries
and prefer to be used in long term investments. Technical analysis is to evaluate the price by gener-
ating statistics based on the past time series data generally including open/high /low /close/volume
data streams, which is usually used by traders to determine market future performances, in the
meantime, it is sometimes criticized becanse of subjectivity. Ratto (2018) leveraged technical
analysis and machine learning to construct a trend prediction model, which achieved interesting
prediction performances [3]. Therefore, we first build a technical analysis based prediction and
take it as a benchmark.

Apart from financial analysis based predictions, the signature is a faithful mathematical method
to transform the time series data, and Hao Ni and Terry Lyons (2013) pointed out that the
possibility of using signature method in financial data information extraction and in machine
learning application [4]. Moreover, Gyurko and Lyons (2013) identified atypical market behaviour
and characterised the market impact of different parent orders on the FTSE 100 Index by using
signature capturing the information from the historical financial time series [5]. Hence, we will
try different approaches to establish various signature-based prediction models, and choose the
appropriate approach in this scenario, as well as compare it with the benchmark model (technical
analysis based).

Several machine learning methods are used in classification problems, such as logistic regression,
decision tree, ensemble learning, neural network, and support vector machine. In this paper, Ran-
dom Forest (RI), eXtreme Gradient Boosting (XGDBoost), and Long-short Term Memory (LSTM)
machine learning methods are used to establish predictive classification models. REF and XGBoost
classifiers are both ensemble tree methods, combining several tree models to an optimal predictive
model, but they construct tree structures in different approaches. Random forest classifier builds
lots of independent trees by bootstrapping and gathers the results from each tree in the end, while
XGBoost method takes the additive training method to optimise the tree at each iteration by
adding a weaker classifier, which has been widely used in financial market prediction by Nobre
(2019) and Yun (2021) because of its execution speed and model performance [6, 7). LSTM is
a recuwrrent neural network (RNN) architecture, but it introduces the memory cell, which deals
with the short-term memory problem of the RNN, and is suitable to grasp the information of
sequential data over time. In recent years, the LSTM network has proved to have a well-achieved
performance in financial data prediction, given its ability to distinguish between short-term and
long-term information. Kim and Kang (2019) compared various deep learning methods such as
multilayer perceptron (MLP) with the attention LSTM framework in financial time series predic-
tion [8], and Nelson (2017) obtained an average of 55.9% of accuracy in 15-minute trend prediction
of stock in IBoverspa Index [9].




This paper aims to build a robust predictive classification model to predict the short-term
up/down trend of various currency pairs in currency markets. We establish binary classification
predictive models by three machine learning methods (Random Forest, XGBoost and LSTM) and
evaluate the predictive power for these three methods in terms of their performances. In addition
to evaluate the performance of the predictive models, in financial markets, it is crucial to use
the predictive models to determine trading signals; we, therefore, take the backtesting of trading
strategy to evaluate the practical application of models.

In chapter 1, we introduce the definition and properties of the signature, as well as its application
in machine learning, and discuss why we can use signature as a feature set in application.

Chapter 2 shows how we use three machine learning methods (Random Forest, XGBoost, and
LSTM) to establish technical analysis based, time series based, and signature-based classification
prediction models in the AUDCAD cwrrency pair. Moreover, this chapter elaborates different
approaches clearly in the establishment of time series based and signature-based features. In
the end, based on the performances of the varions predictive classification models, we choose
the appropriate model, close signature + technical analysis based prediction, in 5-minute price
movement prediction.

Finally, in chapter 3, we implement the simple trading strategy for 20 currency pairs by taking
the chosen appropriate model to assess its practical performance in the financial market.




Chapter 1

Methodology

1.1 The Signature of a Path

A path X, := X(t) € B in euclidean space could be considered as a continuous function, mapping
from ¢ € [0, 7] to RY. In the context of signature, it is generally assumed that paths are piece-wise
differentiable to guarantee the properties and applications of signatures. Moreover, the denotation
of a path X; € R? is as

X 0.7 =RY Xy ={X}, X7, . X} (1.1.1)

where {X}, X2, ..., X} are coordinate paths. In quantitative finance, the path X, is usually the
multivariate time series data over the time interval [0, 7, where XX, ..._.X;j represent continuous
financial data such as open price, close price, trading volume, mid-price at time ¢.

1.1.1 The Integral of a Path

Signatures could be considered as a mathematical method to extract the information of paths,
and one of the basic mathematical intuitions to a continuous path X; is integration. For a one-
dimension path X; : [0,T] — R, the integral of a path X; is defined by

T T .
1:/ dX, :f Xt = X¢ — X, (1.1.2)

0 0

If we consider a two-dimensional path X, = {X}!, X2} € %, then we have an iterated integral as
T T )
I= / X2dX} = / XEXdt, (1.1.3)
0 0
which is essential to introduce the path signature as discussed following.

1.1.2 Signatures

As mentioned in above section, now we extend the path into a d-dimension, i.e., X; = {X}, X7, .._.Xf s
then we introduce an quantity

SCOb = [ aXi=Xi-Xi, - L2ed
Dt s

which represents a integral with respect to the i-th coordinate path of X, € R? on t € [0, 5], and it
describes the information of a coordinate path over time interval [0, s], i.e., the increment of path
X; along to i-th coordinate.

Moreover, since the path X; is d-dimensional, we alm to extract the information not only in
each coordinate, any pairs and combinations of coordinate paths also provide nontrivial infor-
mation of the path X,. First of all, consider the pairs of coordinate paths, X; and X, where
i,7 € {1,2,...,d}, then we define the double-iterated integral as

S(X)f,-_i:/ S(X);,__!d)(f:/ dXidX]. (1.1.4)
Oias

O<r<i<s




This double-iterated integral figures the information of the pairs of coordinate paths, and it is
intuitive to consider a k-fold iterated integral to obtain the information among k coordinate paths,

{X!i‘,sz, ‘..,X!"“} with 41, ...,4 € {1,2,3,...,d}, which is defined recursively as
k=3, S(X)§/" :[ S(X)2d X7 :[ dX [ dX2d X, (1.1.5)
O<t<s O<ty<ty<tz<s

k=n, S(X)p2i = f S(X)g =i = f dX{r..dXi,  (L16)
Yt s Oty <oty s

where n € N, and §(X)?+2- ™ {5 a mapping: [0,7] — R, which is a real-valued path, and these
quantities are the elements of signaturn

Definition 1.1.1 (The signature of a path). The signature of a continnous path X, : [0,7] — R,
is denoted as a collection of all iterated integrals of the path X, € R?, which is a infinite and
real-valued sequence as defined by

S = (LX) 1, S(X)E 1 oens SX)E 1, S(X g S(X )g'T oonnr) (1.1.7)

where 1 is the “zeroth” term by conventionally, the subscript of S(X )[}T is a infinite collection of
all multi-indexes
W= {{i1, .rin)|k = ig € {1, d}}

1.1.3 The Properties of Signatures

Now, we highlight the following properties related to the applications in this paper.

e Invariance under time reparametrisations Let consider the path X; and a reparametri-
sation ¢ : [0,T] — [S,U], 0 < ¢ < T, (i1,--- i) € W, then we have

dX .. dX}* :/ dXxh cdX (1.1.8)
Aulq---ukﬂ“ ' C Lscptn e <o A ol

" is invariant under the time

This shows that the element of path signature, S(Xjf}l__'r
reparametrisations of path X, t € [0,7] by reparametrising a surjective, continuous, non-
decreasing function ¢. Thus, we can claim that the augmentations such as lead-lag transfor-

mation remains the signature of the data stream 1.2.3.

e Shuffle Product Another fundamental properties of the signature is shuffle product, which
shows that any product of iterated integrals could be represented by a linear combination
of iterated integrals. Consider a path X; : [0,T] — B, 0 < s < w < T, two multi-
indexes Wy = (4, vig), Wo = (J1.- -+ o) With (40,0 Jig), (G1o-o- odk) € {1,--- . d}, and
Wy, Wa € W, then there exists a W3 < W such taht

SX)ESX) =Y S0 (1.1.9)

ERY s i su
WaeW

This property implies that the product of the two terms of signatures could be expressed
by the combination of higher order elements of signatures, which enables ns to apply the
signature in the regression analysis.

e Chen’s identity: Let X, : [0,7] — RY, there there exists a binary operation @ such that
forany 0 <0< s<t<u<T, we have

Set(X) @ S (X) = S5e (X)),

e Signature of linear paths: If alinear path X, : [0, 7] — B4, which is denoted as X, = a-+bt,
for some a, b € RY, then for all # € [0,7] and W = (iy,- - ,4z), we have

seow, = L=t Hm

i=1




e Uniqueness Hambly and Lyons (2010) showed that there is a tree-like equivalence be-
tween S(X)s; and the function v — X, — X.,u € [s,t] [10]. Moreover, the existence of
i € {1,-++,d} such that the signature term S(X); , is monotone increasing, which is suffi-
cient to the uniqueness. This property implies a unique relationship between path and its
signature, and the truncated signature could be seen as a projection of the path from a in-
finite dimensional space to a lower dimension, and the first few terms of signatures extracts
the most information of the path, this is why we use the truncated signature in the appli-
cation, which could not only contain the useful information of the path but also reduce the
dimensions.

1.2 Practical Application of Signature

In above sections, we discuss how to compute the signature of a continuous path theoretically,
while in the real-life problem, we usually observe a sequential data stream {X;}. Thus, we need
to transform discrete data streams to a continuous path X, then to get the signature according
to its definition. There are several transformation methods applied in the signature computation
as shown below.

1.2.1 Signature Augmentation

The time-series data is a one-dimensional sequence with an index of time order, represented by
{ X}, with n successive equally spaced time points (per minute/day/year). Morrill and Ferma-
nian (2020) grouped four categories for variations in the signature of a path, which are augmenia-
tion, windows, transforms, and rescaling [11].

¢ Augmentations: These transform time series into one or more new series, and then compute
signatures.

e Windows: Slide the time series into several windows and apply the signature transform
locally.

e Transform: Different techniques to extract the information, including signature and logsig-
nature.

¢ Rescaling: Approaches to normalised the terms in signature, we will take pre-signature
scaling in this paper, which is to multiply the input data stream by some scaling factor
ac R

A simple augmentation is to add time to the original data {X;}! ,, which transforms the
original data from a one-dimensional sequence into two-dimensional sequence by adding a new
sequence.

Definition 1.2.1 (AddTime Augmentation). Given a sequence data stream {X,}" ;, then we
transform it by taking

2 n—1
n

. 1
XAddTln]c:{figxi};l:1:{(Oer)r(;rXQ)r( .:XI‘]).“":( rXu)}r (121)

n
where {#;}_, is a time sequence of length n adding to the original data.

Hambly and Lyons {2010) proposed adding time information to the original time series, and
makes sure the uniqueness of the signature [10].

Definition 1.2.2 (Basepoint Augmentation). Given a sequence data stream {X;}® ,, then we
tailor it by adding a zero at the beginning of the time series:

XBasepoint — {0, X}, X, ), (1.2.2)
which makes the signature more sensitive to the time series proposed by Kidger and Morrill (2020).

Another augmentation approach is the Lead-Lag transformation, which maps a one-dimensional
sequence into two-dimensional sequence by combining lead and lag sequences, which is given by:

10




Definition 1.2.3 (Lead-lag augmentation). Consider a one-dimensional sequence data {X;}L,,
then we take the transformation as

yLead-Lag _ {XLcad.XLag} = {XLcad = { X0, X, Xo, Xy, Xy oo, X0, X1, Xy X}y
XLag = {X]_. Xl,X2, XQ,X:i, ---_~XH—QrXH—er“—]-?X“}?
(1.2.3)
where XT€ad and XT2& are respectively 2(n — 1) sequences, and comprising of a two-dimensional

sequence data stream.

Refer to Chevyrev and Kormilitzin (2016), one key property of Lead-Lag augmentation is to
capture the quadratic variation of the time series data, which is a important characteristic for
financial data [12].

Given above signature angmentations we discussed, piece-wise linear interpolation and rec-
tilinear interpolation are two main approaches to embed discrete data points into a continuous
path. Now, we take the close price and log return of Bitcoin from 1st to 15th May as our sequen-
tial data stream (minute-by-minute data, see Figure 1.1), and apply the lead-lag augmentation of
original data, then take picce-wise linear interpolation to obtain the a continuous lead-lag paths
respectively (see Figure 1.2).

T A o A ]
SR T 11
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(a) Close price of Bitcoin (b} Log-return of Bitcoin

Figure 1.1: Close price and log-return of Bitcoin from 1st to 15th May (minute-by-minute data)
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(a) Lead-lag transformation of close price (b} Lead-lag transformation of log-return price

Figure 1.2: Lead-lag transformation of close price and return ol Bitcoin from 1st to 15th May
(minute-by-minute data)

1.2.2 Signature as a Feature Set in Time Series Analysis

Financial data is a time-varying dynamics data, lots of methods such as (Gaussian process regression
model introduced in the financial time series analysis and volatility modelling, Han and Zhang
(2016) aimed to use the stochastic nature of Gaussian process to capture the time-varying dynamics
of financial times series [13]. Rough path theory is a mathematical method which models the
interactions between highly oscillatory rough paths, and is recently used in the stochastic analysis

11




fields. Signature is called a certain graded feature of a data stream and is a fundamental object
in rough path theory. Lyons and Ni (2013) used the signature as a feature set in linear regression
problem [4]. Moreover, the relationship of signature and Brownian motion validates the feasibility
of using signature to capture the stochastic nature.

Theorem 1.2.4 (Uniqueness of signature of Brownian motion). Let W be a standard d-dimensional
Brownian motion, and S(W)y; is the Stratonovich signatures of Brownian motion W up to time
t, then all Brownian motion sample paths up to time t could be determined by their signature
S(W)(o,e) up to time re-parameterisation almost surely.

The signature could also be approximated by a linear function as the following theorem states:

Theorem 1.2.5 (Signature Approximation). Let f be a function whose deriative exists in every
point, and f is a continuous function from S1 — B, where S1 is a compact subset of S(VP(.J,R)),
where VP(.J,R%) is the space of continuous functions mapping from J to RY with finite p- variation,
and the element of it is a path. Given these, for every e > (0, there exists a linear function L such
that for every a € Sy,

|f(a) — L{a)| < .

The uniqueness of signature of a path we discuss before and Theorem 1.2.4 show the relationship
between a path and its signature from deterministic and probabilistic perspectives. Hence, we can
roughly says that there is a one-to-one correspondence of the path and its signatures, thus the
smooth function on a path space can be regarded as a smooth function on a signature space.
Besides, from Theorem 1.2.5 we know that any continuous function f on the signature spaces can
be approximated by the a linear function on the signature. In other words, the linear function on
the signature can be viewed as the basis functions for the smooth function on the signature locally.
Moreover, in time series data analysis, signature could extract the path information effectively
if the time reparametrisation does not influence its outputs because of the invariance under time
reparametrisation of signatures. It is noticed that, in practical application, we only have the order-
sequence time series data point at discrete time stamps. If we want to extract the path information,
daily data is not enough for signature to summarise the information, which is why we use the data
on a minutely basis in this paper.

1.2.3 Signature in Machine Learning

Machine learning is a computer programming applying statistical theory to optimise performance
criterion by using past experience, then we use the model we train to predict the unseen future.
In machine learning method, we firstly meet with a data mining problem, which requires us to
extract useful information from a large amount of raw data as features, then uses these to train
and make a prediction, aiming to determine a model with a high accuracy in out of sample.

As discussed, given a series of discrete data, embedding these data into a continuouns path
and compute its signatures is a useful approach to extract important information of original data.
Thus, involving signature transformation in the data mining problem helps us to determine the
features in machine learning process. The workflow is as shown below:

augmentations

discrete data continuous path — signature of path — features of data. (1.2.4)

interpolation
The sensitivity to the geometric shape of a path is the attribute of signature, which leads to
grasp the characteristic features [rom sequential data, then the extracted features are used in the
machine learning applications. In guantitative finance, time-series financial data ideally fits into
the signature method since it is natural to determine a path for the time-ordered sequential data.

12




Chapter 2

FX Rate Movements Prediction

This chapter aims to deal with a classification predictive modelling problem in financial time-series
data by using different classifiers, called the sequence classification, where we use some sequence
of time-ordered inputs to predict a category for the sequence. Refer to Huynh and Dang (2017),
the sequence classification can be more challenging since the inputs we select from historical data
can vary in length and may have a high dimensionality [14].

There are three large types of sequence classification methods, feature-based classification, se-
quence distance based classification, and model based classification. What we are dealing with
is the feature-based classification problem, in which the feature extraction plays a key role. In
our [ramework, we evaluate the performance of ‘signature method’ in information extraction by
evaluate the performance of signature based prediction models.

This chapter uses different feature extraction techniques (technical analysis and signature trans-
form) to predict the direction movement of foreign exchange (Forex) exchange rates in different
length trends. Moreover, by evaluating the statistics metrics, such as ont-of-sample accuracy,
cross-validation accuracy and Fl-score, we will have more insights into the predictive power of
length trends and the performance of the feature extraction techniques.

2.1 Framework Formalization

This section first discusses how to create features and outputs in a time series framework without
and with signature methods. Then, we introduce statistics scores and the cross-validation method
to construct an evaluation framework. Finally, we present the theorem of machine learning used
(RF, XGBoost, LSTM) briefly.

Current Point Forecast Point
| I | X, | X, | |x_l| X, |xc+,| | | X, |
¥ I
Feature Derivation Window Forecast Window
Current Point Forecast Point
| X, | % | iy | | X, |x¢+1 |xc+z| | |xm|
Feature Derivation Window Forecast Window

Figure 2.1: Two overlapping windows for a data stream X = {Xj,..., X, 41}
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2.1.1 Predefined Categories

First of all, we slice the minute-by-minute foreign exchange rate data stream into multiples over-
lapping windows, and each window is composed of three parts, a feature derivation window, a
current point and a forecast point, which is as shown in figure 2.1. Then, we label the output
variable and extract features in each window to build the corresponding dataset.

Our aim is to predict the direction of the Forex market trend, and the market trend can
be divided into upward and downward categories, respectively representing a strong rising and
dropping. Considering a N-sample dataset, §:({) represents a market movement between time £+
and time t as

d:(l) = PC(t+1)— PC(t), (2.1.1)

where PC'(t) is the close price at time ¢, then we label each output y,(I)',i=1,--- ,N as

N 1, if 4(t) =0,
{y:(t)}?:l:{_l it o(t) (2.1.2)

otherwise,

representing the direction trend between at time ¢ + [ and ¢.

2.1.2 Features Extraction

Features Extraction is a critical part of the feature-based classification, and we will derive feature
vectors from feature derivation windows. Many attempts are experimented with for market trend
prediction based on raw historical data, technical analysis, fundamental analysis, and sentiment
analysis. Ratto and Merello (2018) have shown a relatively high directional accuracy in a 1-week
ahead prediction of stock portfolio prediction by taking technical indicators and SVM [3]. Technical
indicators are mathematical calculations to describe the information of historical price and helps
analyse the market future movement. Moreover, the signature method is also a technique to extract
information from multivariate time series data. Inspired by these, we first use technical indicators
to predict the l-minute ahead forex rate market trend by taking different machine learning methods,
next combining the signature method to evaluate its performance. Hence we aim to take different
approaches to involve signature methods in features extraction to see il the signature method
extracts valuable information and improves the predictive classification model.

Now, we first discuss how to work out the signature transform on d-dimensional time series
denoted as X = (X, Xy, -+, X},), where h is the length of the time series, and X; € R? for each
i € {1,2,..,h}, then a n sample dataset sliced from this time series is as shown in table 2.1 if
we directly use X'h‘ = (Xi1, Xio. o Xih )i=1,.n as features in each sample. Then, we involve
the signature method into feature extraction by the following steps, and the data framework is
therefore as shown in table 2.2 :

j=hy

e (optional) take the AddTime/Lead-Lag angmentations for {Xi._j}'-,;=1 foreachi=1,---,n

o embed {A,,}j:‘f into a continuous path P for eachi=1,--- ,n

e compute the truncated signature S(FP;)|;, for each P;, i = 1,--- ,n, where L is the truncation
level

e use the terms of S(P;) for each path P;, ¢ = 1,--+ ,n, and remove the first constant term 1
and standardise the signatures by columns if needed

After introducing the signature transformation of the financial data, we tuwrn to discuss the
construction of technical analysis based features, time-series based features, and signature-based
features.

2.1.2.1 Technical Indicators Features

A large mumber of technical indicators could be chosen to anticipate the future market trend.
We choose ten technical indicators as features as shown in Table 2.3, which describes the trend,
momentum, volatility and volume of the market. The technical indicators could be denoted as
inputs as shown

TI(t)={TI(t).TI(t)a,..., TI(t)st}. (2.1.3)
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Table 2.1: Data Frame - Without Signature Transformation

Features Qutputs
t ta e th—1 th

)fh] = X1 A1 Aihi1 A1k 51

Xy = Xo1 Xao e Xa ho—1 Xon, 12

Kny = i Xap v X3 hy—1 X3 h, Ys
)fh,,_z = X, 21 AN, oo cee X2k Xo—2.h, s Yn—2
Xim—] = Xn—].._]. Xu—l._? Xu—l._hn—l—l Xu—l.in.-] Un—1

KXp, = X X cee Xohy 1 Kh, Un

Table 2.2: Data Frame - With Signature Transformation

Features Outputs

m 8] T ey T

i S S S e S1 Y1
(1) (2) (1.1) (1,2) 1

S5 S5 S5 S; S5 Y2
) (2) {1.1) 1,2) 1

Sy Sy Sy Sy e 53 Y3
(1) (2) (11) 1,2) I

Sul—]Z S“Z_] 2 S“]._f] S“]__E] T Su—2 Yn—2
(1) (2) (1.1) (1,2) I

'Su_— 1 'Su_— 1 S;_A—L S;_‘— 1 e Sh Yn—1
(1) (2) (1.1) (1,2) 1

s gl 8l s gl Y

where represents f technical indicators computed at time ¢, and the responding outcome variable is
Y (1) denoted as equation 2.1.2. Furthermore, in order to extract as much information as possible of
historical prices, we compute the technical indicators with different time parameters N. For exam-
ple, Exponential Moving Average (EMA), RSI are computed at [10,12, 14, 16, 18, 20, 22, 24, 26, 28]
periods. Finally, we take the open/high/low/close price and volume at time £, together with the
technical indicators as features, thus the matrix form of the dataset is shown as Table 2.4.

2.1.2.2 Time Series

First we start from the simple features, just take the historical close price of different lengths as
features, to evaluate its predictive power, the data frame is shown in the Table 2.5. Moreover,
technical indicators in Table 2.3 primarily are derived from multivariate time series, including
high/low/close/volume time series. Hence, one intuition is to take the raw multivariate time
series as features in the predictive model. However, for high-frequency time series forecasting, we
generally need a longer timestamp for historical data. At the same time, a large number of inputs
would cause the over-fitting problem and poor predictive performance.

2.1.2.3 Signature Based Features

There are five approaches to generate the signature based features as shown below.

1. Close price signature based

Owr goal is to predict the direction movement of close price, and we would like to examine
whether the signature method extracts the information of close price well, so we first compute
the signatures of close price and take it as features. Suppose we denote the raw forex close
price as {PC;}"_ |, PC; € R, where we slice a series of close price into several windows with
a length H feature derivation window. In that case, the raw dataset is as shown in table 2.5.
Finally, we follow the above signature transformation steps to compute its signature with
angmentation and a truncation level. The structure of the final dataset is as shown in Table
2.2

2. Multivariate time series signature based prediction
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Table 2.3: Technical Indicators

Categories Technical Indicators Formula
Simple Moving Average SMAx(H) = + Z:‘\:l PC(t— k)
(SMA)
Trend Exponential Moving Average EMAN() = j“C‘(a‘](N'—i_L] + EMAp(t—1)(1— \#ﬂ]
(EMA)
Moving Average
Convergence Divergence EMAN(t)— EMAN (), N<M
(MACD)
Stochastic Oscillator 100 x [PC(t) — miny (PL)]/[maxy (PH) — miny (PL)]
(SO)
Momentum Williams(%R) 100 x [maxy (PH) — PC(t)]/[maxy (PH) — miny (PL)]

Relative Strength Index
(RSI) 100 — 100/(1 + 49)

Upper Band(t) = SMAN () + 2 x stdy
Volatility Bollinger Bands (BB) Middle Band(t) = SMAy(t)
Lower Band(t) = SMAN(t) — 2 x stdy

Average True Range
(ATR) ATR(t) = ATR(t — 1) (N — 1) + TR(t)/N

. PH(t)+PL(t) axy (PH)+miny(PL)
Distance Moved = - j LI ';"'“"\‘ .

Ease of Movement( EMV) Box Ratio = Volume(t) x (PH(t) — PL(t))/Scale
Volume EMV(t) = Distance Moved/Box Ratio
Force Index (FI) FI(t) = (PC(t) — PC(t — 1)) x Volume(t)

FIn(t) = EMA(FI(t)

N : the time parameters,
PO(t)/PH(t)/PL(t)/PC(t)/Volume(t): the open/high/low/close/price and volume at time ¢,
maxy(-), miny(-): the maximum, minimum value in the past N time period.

Table 2.4: Data Frame - Technical Indicators Features

Features Outputs
OHLCV (t)* TI(t)

PO(t) . Volume(t) TI(th - TI(t)¢ y(t)
PO(t+1) . Volume(t + 1) TI(t), . TI{t)s y(t +1)
PO(t+ N —2) : Volume(t + N —2) | TI(i), . TIt) s | y(t+ N —2)
PO+ N-1) . Volume(t + N —1) | TI(t), .. TIt); | ylt+N-1)

TOHLCV(t) = [PO(t), PH(t), PL(t), PC(t), Volume(t)]

16




Table 2.5: Close Price Based Prediction

Features Qutputs
f to e fh1 th
PCy, PCy PCy PCyp w1
-P(;Q:l IJCQ__l cee -'PC'Q.}:—L PCQ__h Y2
I}("m— 1,1 -’Pcrm— 1.1 e ’P(jm —1,h—1 j}(*'m -1k Ym—1
PCma PCrn e PCm -1 PCu UYrm

Technical indicators used as features are mainly calculated by the past high/low /close /volume
series, so we can compute the signatures for the 5-dimensional mmltivariate time series of
length h. There are two ways to calculate the signature of high-dimensional data, one is to
take signature transformation directly on the multivariate streams, the second is to work out
the signature for individual one-dimensional data stream.

Technical indicators signature based prediction

Based on the Table 2.4, we can specify the technical indicators as

{TIt)W o, = ({SMAi(t) Lier, {EMA;(1)}jes, {MACD;()}jes, {RSL;(1)}je1, {SO;()}jer.

(WLt} jer, ABBu;(t) ek {BBa; () }jes, {BBLj()}jes {ATR;(D}jes,
{£oM;(t)}jes, 1F15(E)}jes

where I=1{2, 4, 6, 8, 10, 12, 14, 16, 18, 20},
I={10, 12, 14, 16, 18, 20, 22, 24, 26, 28}.

Finally, we get the 120 features for technical indicators, and each technical indicator is
computed with respect to 10 different time parameters. Thus, we calculate the signatures
of each technical indicator stream, then create signature-based technical indicator features.
There are also two approaches to compute the technical indicators signature based features,
one is to take { SN A;(t) }icq as a stream of data of length 10 and compute its signature, while
another one is to select the relative important technical indicators with time parameters, and
calculate the signature on its own historical data stream of a length h.

Technical indicator + time series signature based

We select the meaningful technical indicators from the technical indicators based prediction
model, then combine the time series signature based features, to see whether the performance
of model improves after adding the time series signature-based features.

2.1.3 Evaluation
2.1.3.1 Evaluation Scores

In binary classification, there are four types prediction results based on their actual labels predicted
labels as true positive, false positive, true negative and false negative, which as shown in Table
2.6. In order to see whether a classification prediction model solves our goal well, it is not enough
to evaluate the performance only based on model accuracy. Thus, we take four standard mea-
sures, Accuracy, Recall, Precision, # Score to evaluate the performance of predictive classification
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Table 2.6: Confusion matrix of binary classification

Predicted
Negative Positive
Negative TN EP
Actual poditive | FN TP

models, and these statistics scores is calculated as below:

Accuracy — — L FIN
TN+FP+FN+TP’
P
Recall = 7578
Precision = L
TP+FP’
2 x Recall x Precision
Fy =

Recall+Precision

Recall is calculated by dividing the number true positive with the total nmumber of true positive
and false negative, which measures the completeness of the classification model. Precision is a
number of true positive divided by the true positive and false positive, it measures the exactness
of the model. F balances the recall and precision, and we expect a high accuracy, recall, precision
and Fi score.

2.1.3.2 Cross-Validation Method

Since the overlapping window we used in time series forecasting is not independent with each other,
so the traditional k-fold cross-validation method is not an appropriate evaluation in this case. Thus,
we use the ‘increasing-window’ technique to assess the performance of model, and this technique
is as shown in figure. This technique makes sure that the each validation fold will not overlap with
each other and hence obtain a reliable result. Moreover, considering the recency problem caused in
the time series data proposed by Yao (1995), we set a recency margin between train & validation
set and the test set [15]. In this case we set a 5-fold increasing window cross-validation.

1FOLD |
SR vatdaden
2FOLD |
Validation |
3FOLD
Validation |
4FOLD |
o Tan validation |
5FOLD
R, vaoaion|
1 .
Time I
 Temevede e
Recency
Effect

Figure 2.2: Increasing Window Cross Validation
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2.1.4 Classifier Algorithms

We are dealing with the supervised learning problem, which means that we use the training data to
predict the target variable y;. We take random forest, XGBoost, and LSTM to build the predictive
classification models. According to Liaw and Wiener (2002), Random forest and X(GBoost are both
constructed from the decision tree algorithms, and both belongs to the “ensemble learning” method,
which generate lots of classifiers and combine their results together in the end [16]. Moreover, these
two algorithms differ in tree construction and results combinations. In supervised learning, we need
to optimise the objective function such that finding the best parameters ¢ to fit the training data.
The objective function consists of the training loss L(#), which decides the predictive power in the
training set, and regularization term 2(f)) controlling the overfitting:

N

objective(fl) = L(f) Zf diow) + Y QS (2.1.4)
k

1}(=Zf;(ri1,f; eF (2.1.5)

k=1

where §; is the predicted outcome, K is the number of trees, NV is the sample size, and f is a function
in the set F, which is the set containing all possible classification and regression trees. Random
forest uses bagging method while XGBoost takes boosting method to optimised this objective
function.

2.1.4.1 Random Forest Classifier

The random forest algorithms is constructed from the decision tree ensembles, which consists of the
a set of classification and regressions (CART). The core idea of random forest is a bootstrapping
algorithm which bootstraps sample at each iteration to build a CART model, and repeats this
multiple times, then finally combines all trees together to make a final prediction. Because of
the bootstrapping, then the successive tree is independent of the previous ones. The algorithm is
taking bootstrap procedures in each iteration as shown below:

1. Draw nee bootstrap samples from the data.

2. For each samples, generate an unpruned classification tree by randomly choosing my,, of the
predictors, and select the best split among these chosen variables.

3. Aggregate the ngee tree grown in the the bootstrap sample and take the majority votes to
predict the ‘out-of-bag’ data.

Random forest mainly has only two parameters, the number of variables in each node, and the
number of trees in the forest, also it is not very sensitive for their values. Moreover, the random
forest provides the information of variable importance, which helps us to reduce the number of
predictors, hence obtain a simpler and more readily interpret able model.

2.1.4.2 XGBoost Classifier

eXtreame Gradient Boosting (X(GBoost) is a gradient boosted decision trees method and dominated
in machine learning field because of execution speed and model performance. Instead ol training
models independently as random forest does, XGBoost trains model in a sequential order, and
it takes additive training method to optimised the objective function at each step. The additive
strategy adds a new weaker classifier to correct the errors of the previous one, and then update
the objective function. Let the predicted outcome at step ¢ in XGBoost learning process denoted
as 7; ¢, then the predicted ontcome 3; 441 at next step t + 1 is updated based on the earlier one as

t+1

iarr = 3 ful@i) = Jia + fria (). (2.1.6)

k=1
Hence we update the objective function at step t, and optimise it :

N t N t

objective(f); = Y I(i 1, yir) Z = Uie1 + fulxi), yire Z . (2.1.7)

i
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In each iteration, outcomes are weighted based on the prediction power, and in the end to take a
weighted average to generate a final outcome. Overall, XGBoost just the push the extreme of the
computation limits of machine to obtain a state-of-the-art result based on the additive training
strategy proposed by Chen (2016) [17].

2.1.4.3 LSTM Classifier

The LSTM networks are the particular type of recurrent neural network (RNN) which is as shown
in Figure 2.3, this network architecture illustrates a direct connection between nodes along to the
temporal sequence, which allows it to describe the sequential input {Xg. -+, X;}, but it is only
able to memorise the short sequences. However, the LSTM networks we choose here have proved
to distinguish the recent and early information successfully because of introducing memory cell to
preserve the time related information and hidden dependencies in the data, therefore it is widely
used in Natural Language Processing and time series analysis.

The architecture of LSTM is shown in Figure 2.4, and the memory cell is the fundamental unit
of LSTM as shown in Figure 2.4(a). A memory cell includes three data ports, input gate ,, forget
gate fi, and output gate o;. These gates control the information interactions among input data
and neighbor neurons. Based on the Figure 2.4(b), at time ¢, suppose we receive the input x; and
the output from neighbours hs—1, and historical information C¢—1 from time 0 to t — 1, and the
cell generates output hy and adds the information to update historical information C'; at time ¢.

o The forget gate f; € [0,1] decides whether to remember or forget the previous information,
which is based on the new information #; and historical information h; , as shown in 2.1.12,
and is wrapped in the sigmoid function.

¢ AC represents how much information will be added to C} after introducing the new infor-
mation input r;, which is wrapped by the tanh function of the historical information hy 4
and x; as shown in 2.1.9.

The input gate i; controls the portion information of previous output h;—; and input z; at
time ¢ as shown in 2.1.10, the input gate wrapped in the sigmoid function, hence the value
of i; is in the range [0, 1].

e The state vector C; containing information from time 0 to t is determined by two part as
shown in 2.1.11. One is the previous state C;_;, which is controlled by the forget gate f;:
it f; = 0, then forget all previous information from 0 to . Another is AC' controlled by the
input gate #,;, meaning how much new information is added in terms of the value of the input
gate.

The output gate o; is determining by h;_; and x; as shown in 2.1.12, and it decides how
much information from C; will be used to generate an output h; of this memory cell as shown
in 2.1.13.

fo = (Wi [hs—1, 2] + by), (2.1.8)
AC; = tanh (We - [he—1. 2] + be), (2.1.9)
i = (Wi [he—1, 26 + bi), (2.1.10)
Cr = fo % Cioq +is % ACh, (2.1.11)
o= (Wy-[h_1,m +b,), (2.1.12)
he = 0; = tanh (C}). (2.1.13)
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Figure 2.4: LSTM

2.2 Empirical Investigation

This section constructs various predictive classification models based on different features, and
then we choose the optimal features by comparing their performances. In the feature selection
process, we construct the models by using random forest and XGBoost, and then use the LSTM
networks to build the model only for the optimal features.

2.2.1 Data
2.2.1.1 Data Description

The value of currency currency depends on ‘free float’ or ‘fixed float’, free-floating currency is
determined by the supply-demand force such as U.S. dollar, Japanese yen, and British pound,
while the value of fixed-floating currency is set by the government. The data set we select to
examine signature’s ability of information extraction is 20 free-floating foreign exchange pairs 1-
minute data from 2019 to 2020. We first take the ‘aundcad’ foreign exchange pair to establish
predictive classification models given various features and different model parameters. Then, we
determine the optimal features by comparing their performances, and then evaluate its generality
by applying it to build models for 20 currency pairs.

In features selections process, we split the ‘audcad’ pair in 2019 into a test set (20%) and a
training set (80%), then the resulting training sample size is 284,511 and the test sample size is
70,128.

2.2.1.2 Data Prepossessing

In most machine learning methods, the weights of the model are initialised in the small random
sample then updated by optimisation algorithins and estimates error. According to Bishop (1995),
it is nearly advantageous to scale the input data and obtain a fast and stable learning process [18].
However, data scaling would be more complex since there is no best way to preprocess input data.
There are generally two approaches to preprocess the data, standardisation and normalisation,
and standardisation assumes data follows Gaussian normal distribution. Since the financial data is
heavy tail and not normally distributed, in order to get reliable results, the Min-Max normalisation
is used on data, which scales the raw data into the range of [0, 1].
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2.2.2 Machine Learning Establishment

Supervised learning algorithms, including gradient boosting, random forest and neural network
we discussed, need to set hyperparameters before running them. We first intuitively initialise
hyperparameters for random forest and XGBoost as shown in Table 2.7, 2.8 respectively. After
selecting the optimal features and model parameters, we then take the tuning process to find best
hyperparameters to improve the performance. Moreover, we tune the hyperparameters for LSTM
models after determining optimal features. The tuning process is taken in section 2.3.2.

e Random Forest: The hyperparameters of random forest can be categorised as three parts
by their functions, and list the essential hyperparameters we considered [19] :

the structure of the individual tree: ‘min_leaf_ leaf” specifies the minimum number
of samples in the terminal node, and a lower value leads to generate tress with a large
depth of the forest. It would be better to set a higher value in the large dataset from
the perspective of computational cost.

the structure of the forest: ‘n_estimators’ (the number of trees in the forest), this
generally sets a sufficiently high number of trees in the random forest to ensure having
more different predictions than obtaining optimal performance.

the randomness of the sampling: ‘max_features’ (the mumber of drawn candidate
features in each split) are the central hyperparameters for the random forest. The lower
ralue of my,., variables result in generate in different and less correlated trees and hence
yield better performance in prediction. At the same time, it could also lead to building a
tree based on suboptimal variables and unstable models for the general case. Generally,
a large value of my,, for high dimensional predictors or many relevant predictors, and
a low value for a small number of variables or many irrelevant predictors. Thus in our
case, we initially choose a low value of ‘n_estimators’ because of large dataset we have.

¢ XGBoost: XGBoost provides a large number parameters and could be divide into three
distinct categories, general parameters (booster, num_features), booster parameters
(learning rate,gamma, max_depth,etc), learning task parameters (objective, eval metric,
seed). We choose a ‘gbtree’ booster method, and [‘error’,‘logloss’| for binary classification,
where error is a binary classification error rate, and logloss is negative log-likelihood.

Table 2.7: Random Forest Hyperparameters (Initial)

Parameters Parameters
bootstrap True min samples_leal 1
criterion gini min_samples_split
max_depth 4 min_weight fraction leal | 0.0
max_features anuto n_estimators 100
max_leaf nodes None n jobs. None
max_samples None oob score False
min impurity decrease | 0.0 random state True
min impurity split 1 verbose 0
warm start False

After establishing random forest and XGBoost, we take them to build the predictive classifica-
tion models based on various features.
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Table 2.8: XGBoost Hyperparameters (Initial Setting)

Parameter
booster ‘gbtree’
max_depth 4
min_child_weight None
learning rate 0.1
n_estimators 100
subsample 0.5
colsample_bytree None
eval_metric [ ‘error’, ‘logloss’]
gamma None
seed 1000

2.2.3 Technical Indicator Based Prediction

We take 12 technical indicators with respect to time parameters and current OHLCV (open,
high, low, close, volume) price as features shown in Table 2.4 to set up a predictive classification
model. In order to evaluate the predictive power in future trend of different lengths, we set the
forecast window range from 1 minute to 21000 minutes (around 3 weeks). The results of out-of-
sample accuracy and cross-validation accuracy of technical indicators based prediction for forecast
windows of different lengths are shown in Table 2.9.

We can see that the 2/3-week (16000/21000 minutes) ahead prediction has a relatively higher
cross-validation accuracy (RF:75.64%, Xgboost:72.70%), but with a higher standard deviation
(RF:15.22%, Xgboost:16.71%). In addition, the out-of-sample accuracy first decreases when the
length of the forecast window range from 1 minute to 1 hour, then start to increase from approxi-
mately 6 hours (360 minutes). Moreover, the standard deviation of cross-validation accuracy ( RF:
52.66 %, Xghoost: 52.97%) of 1-minute ahead prediction is relatively low { RF: 0.75 %, Xghoost:
0.72%), afterwards it increases as the prediction trend is longer. Although the cross-validation
accuracy performs well under a longer forecast trend such as 2/3 weeks (RF: 75.64%/77.02%,
Xgboost: 72.70%/71.96%), the resulting standard deviation is comparatively higher (Xgboost:
16.71%/16.55%). Moreover, to better examine the performance of the classification model, the
confusion matrices of the 1/5/1000/16000-minute ahead predictive classification model and F
scores are shown in Table 2.10 and Table 2.11. The short-term (1-30 minutes) trend and long-term
(16000/21000 minutes) trend prediction both have a relatively high Fj scores, which indicates a
satisfactory precision and recall. To summary, the results of the predictive power of different length
forecast window suggest that:

e Higher prediction accuracy for a long forecast window but a high volatility of accuracy
indicated by a high standard deviation of cross-validation accuracy

e The accuracy of the short window is relatively low, but the standard deviation of the cross-
validation accuracy is low, hence its performance is more stable, and it is safer to use in
prediction and guide investors to determine trading signals

In the following sections, we evaluate if the signature-based prediction could improve the cross-
validation accuracy, lower its standard deviation, and obtain a stable predictive model. Due to
the characteristics of the predictive ability of different length trends, for example, high accuracy
is accompanied by high standard deviation and low accuracy is accompanied by low standard
deviation, we aim to examine the predictive power of short-term trend by taking signature-based
prediction. The 5-minute ahead prediction has a relative higher accuracy and a lower standard
deviation in cross-validation, therefore, in the following sections, we build predictive classification
models to predict the future 5-minute trend movement.

Moreover, we are interested in determining important features of technical indicators based pre-
diction. Then we compute the important features for 5-minute ahead trend prediction in XGBoost
model, which are as shown in figure 2.5. In the 5-minute step ahead prediction, the Stochastic Os-
cillator (SO}, Relative Strength Index (RSI), Exponential Moving Average (EMA ), Simple Moving
Average (SMA) and current trading volume are among the top 10 important characteristics.
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Table 2.10: Confusion Matrix of 1/5,/1000/16000-minute ahead Technical Indicator based Predic-

tion (XGBoost)

Table 2.9: Technical Indicators Based Prediction

Length | Out-of-Sample(%) CV (%) Std (%)
RF XGB RF XGB RF XGB
1 53.24 53.19 52.66 5297 | 0.75 0.72
5 52,45 5H2.43 52.08  52.35 1.25 0.99
15 52.66 52.61 52.25  5H1.82 1.26 1.15
30 H2.48 52.03 52,503 H2.44 | 2.07 1.38
60 50.95 49.35 52.63  53.07 | 2.54 2.09
360 51.23 53.05 56.17 5274 | 6.92 4.67
600 55.00 55.59 56.03 5351 | 11.23 TA48
B00 56.63 60.05 57.12  50.25 | 14.39  11.93
1000 h7.72 61.41 5892 53.39 | 16.22 13.13
3000 62.47 62.57 41.33  50.93 | 23.82 17.03
5000 65.82 65.58 4541 50.93 | 32.67 17.03
=000 63.56 61.21 41.80 61.46 | 39.54 24.33
16000 | 68.57 67.12 ThG4  T2.70 | 15.22  16.71
21000 5H3.34 55H.83 7T.02 7196 | 19.22  16.55

l-minute ahead

Predicted Trend

Actual Down 8405 25259
Trend Up 7714 29059
Directional Accuracy 53.19%
S-minute ahead Predicted Trend
Down Up
Actual Down 16203 17544
Trend Up 15391 20104
Directional Accuracy 52.43%
1000-minute ahead Predicted Trend
Down Up
Actual Down 30363 TRE9
Trend Up 19171 12705
Directional Accuracy 61.41%
16000-minute ahead Predicted Trend
Down Up
Actual Down 27794 6640
Trend Up 16670 20824

Directional Accuracy

67.12%




Table 2.11: I'1 Scores in Technical Based Prediction

1 5 15 30 60 360 600 800 1000 3000 5000 8000 16000 21000

REF 65.17 57.56 57.28 56.77 51.19 10.48 22.72 23.92 25.01 33.84 40.44 49.56 68.15 55.00

F (%
1 (%) XGB 63.82 56.53 56.85 53.91 18.40 57.32 27.18 53.50 46.61 38.55 40.25 48.75 68.89 59.01

The Important Features in Short Trend Prediction
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Figure 2.5: The Important Features in Technical Indicator Based Prediction for 5-minute Future
trend

2.2.4 Time Series Based Prediction
2.2.4.1 Close Price Based Prediction

We directly use the close price of different lengths as input data in the close price based prediction.
According to Let (2005), a large number of features contains much complicated information, which
is hard to discern for machine learning algorithms [20], so we set the historical window of lengths
ranging from 5 minutes to 360 minutes. The accuracy of this prediction model is as shown as Table
2.12. Compared with the technical indicators based prediction, the accuracy is around one percent
lower whatever the lengths of historical window using RF and XGB, moreover the performance
decreases slightly as the longer historical data we choose. The results show that technical indicator
based prediction performs better than close price based prediction, which is reasonable, since the
technical indicators consists of more information. Moreover, Table 2.13 shows that the close price
based prediction models constructed by random forest and XGBoost method both have a lower
prediction accuracy for future down trend indicated by lower recall scores.

Table 2.12: Close Price Based Prediction

Length | Out-of-Sample(%) CV (%) Std (%)
RF XGB RF XGB RF  XGB
5 51.52 51.35 51.01  50.68 | 0.39  0.58

15 5127 51.37 50.97  50.68 | 0.39  0.58
30 51.24 51.39 5111 50.73 | 0.40 0.73
60 51.29 51.28 51.06  50.68 | 0.44 1.02
360 51.29 51.35 50.92  50.98 | 045  0.44
TI 52.66 52.43 52.25 52.35 | .26 0.99

2.2.4.2 Multivariate Time Series Based Prediction

This section takes open, high, low, close, volume data streams as features and sets the historical
range from 5 minutes to 60 minutes. Table 2.14 shows that the accuracy of multivariate time series
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Table 2.13: Precision/ Recall /F} Scores in Close Price Based Prediction

15-minute length (RF)

15-minute length (XGB)

Precision Recall
Down 0.48 0.02
Up 0.51 0.98

Fl-score

0.04
0.67

Precision Recall Fl-score
0.51 0.01 0.02
0.51 0.99 0.68

based prediction is much lower than the technical indicated based prediction. Besides, the technical
indicators are generated by these five time-series data streams. Hence the results illustrate that,
the technical indicators extract the hidden valnable information of historical financial data, which
could be used for future trend prediction. The precision/ recall / F1 scores show that the technical
analysis based prediction have a better predictive ability in the rising trend than the downward
trend.

Table 2.14: Multivariate Time Series Based Prediction

Lengths | Out-of-Sample(%) CV (%) Std (%)
RF XGB RF XGB RF  XGB
5 51.30 51.20 51.00  50.50 | 043  0.82
15 51.31 51.21 50.86  50.39 | 0.66 0.54
30 51.32 51.22 50.83  50.09 | 0.67 0.72
60 51.34 51.30 51.05  49.87 | 0.41 0.71
TI 52.66 52.43 52.25 52.35 | 1.26 0.99

Table 2.15: Precision/ Recall /F} Scores in Multivariate Time Series Based Prediction

15-minute length (RF) 15-minute length (XGB)

Precision Recall Fl-score | Precision Recall Fl-score
Down 0.45 0.00 0.01 0.47 0.02 0.05
Up 0.51 1.00 0.638 0.51 0.97 0.67

2.2.5 Signature Based Prediction

We aim to see if signature-based prediction extracts valuable information from historical data and
obtain an interesting performance. For the signature-based prediction, there are lots of model
parameters to determine, as shown in Table 2.16, where we have different model parameters that
illustrate various combinations to calculate the signature of the data stream. Moreover, the rela-
tively important model parameter is the length of the historical window since it depends on how
much data to be extracted, which directly impacts the quantity and quality of features extraction
in this kind of feature-based classification. Thus, first, we try different lengths of historical windows
in model construction and choose an appropriate historical window as input data or compute the
signatures.

2.2.5.1 Close Price Signature Based Prediction

In signature based close price prediction, we first fix other model parameters in signature trans-
formation, and find an appropriate length of the historical data stream for information extraction.
Thus we set the length of historical data stream range from 5 minutes to 1000 minutes, and the
results in Table 2.17 show that a longer close price historical window, a lower accuracy we obtained.
Table 2.18 also presents a overall performance of the close price signature based prediction in terms
of on the Precision/ Recall/ F] scores.

e Close price signature based vs Technical analysis based:
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Table 2.16: Model Parameters

Parameters
Historical Window Length [5, 15, 30, 60, 360, 600, 1000]
Truncation Level [1,2,3,4,5,6,7, 8
Scaling Factor [0.001, 0.01, 0.1, 1, 10, 100, 1000]
Transformation [Signature, Logsignature|
. [AddTime + Basepoint, AddTime, Lead-Lag,
Augmentation o -
i Lead-Lag + AddTime, AddTime+Lead-Lag|

To be specific, the eross-validation accuracy drops from 52.95% (XGBoost) to 50.74% (XG-
Boost) as the historical window increase from 15 minutes to 1000 minutes. Moreover, the
15-minute length closing price signature-based prediction performs a bit better than tech-
nical indicators based prediction in 5-minute trend forecast, which has a relatively higher
cross-validation accuracy (XGBoost: 52.95% wvs 52.06% ) and a lower standard deviation
(XGBoost: 0.85% vs 0.87%).

e Close price signature based vs Close price based:

Compared with the short length historical window of close price based prediction in section
2.2.4.1, the same length (15 mins) historical window of close price signature based prediction
has approximately two percent higher cross-validation prediction accuracy (RE: 50.97% vs
51.90% , XGB: 50.68% vs 52.95 %). At the same time, the close price signature based
prediction model have a better predictive power both for the rising and downward trend
indicated by a higher recall and precision scores in Table 2.18

To summarise, the close price signature-based prediction performs better than the close price-
based prediction and has a similar performance as the technical indicators-based prediction, further

proving the ability of signature transformation in information extraction on the historical data
stream.

Table 2.17: Close Price Signature Based Prediction

Lengths | Out-of-Sample(%) CV (%) Std (%)
RF XGB RF XGB | RF  XGB
5 52.59 52.55 52.05  51.92 | 0.94 095
15 52.53 52.59 51.90 52.95 | 0.94 0.85
30 52.51 52.24 51.79 52,06 | 1.21 0.96
60 52.24 52.35 51.85  51.70 | 1.27 1.34
360 51.36 51.63 50.80  51.43 | 0.60  0.65
1000 51.01 50.49 50.75  50.74 | 0.91  0.80
TI 52.66 52,43 52.25 52.35 | 1.26 0.99
Parameters Parameters
Truncation Level 4 Augmentation AddTime
Transformation | Signature | Seale of Time Series 1
Forecast Window ]

2.2.5.2 ‘Signature Return’ Based Prediction

There is another to compute the close price signature-based prediction by considering the close
return rather than the close price itsell. Now we evaluate which approach provides a better
extraction ability in financial data. Inspired by Gyurkd and Lyons’s work (2020) [21], we preprocess
the financial time series before signature transformation by the following step:
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Table 2.18: Precision/ Recall /F} Scores in Close Price Signature Based Prediction

S-minute length (REF)

S5-minute length (XGB)

Precision Recall Fl-score | Precision Recall Fl-score
Down 0.52 0.39 0.44 0.52 0.40 0.45
Up 0.53 0.66 0.59 0.53 0.65 0.58

L5-minute length (REF)

15-minute length (XGB)

Precision Recall Fl-score | Precision Recall Fl-score
Down 0.51 0.41 0.46 0.52 0.42 0.46
Up 0.53 0.63 0.58 0.53 0.63 0.58
1000-minute length (RE) 1000-minute length (XGB)
Precision Recall Fl-score | Precision Recall Fl-score
Down 0.49 0.12 0.19 0.51 0.25 0.34
Up 0.51 0.88 0.65 0.52 0.76 0.62

e Compute log-returns for close price with a time interval A¢, which is chosen based on the
prediction scenario:
r(t, A¢) := log PC(t + A¢) — log PC(t), (2.2.1)

where r(t, A;) represents the log-return of close price on (f + A, ).
e Calculate the signatures for the generated log-returns data stream.

Results are as shown in Table 2.19. We also establish the models in different lengths of close
price historical window from 5 minutes to 10 minutes. Observing that whatever the length of
the historical window, the cross-validation accuracy is one per cent lower than technical indicated
based and close price signature-based prediction (15 mins, XGB: 51.14% vs 52.35% vs 52.95%), as
well as has the lower predictive power for the downtrend compared with the close price signature
based prediction. In conclusion, the log-return signature-based prediction does not perform as well
as the close price signature-based prediction. Hence this approach of preprocessing financial data
is not suitable in this scenario.

2.2.5.3 Multivariate Time Series Signature Based Prediction

We now work out signature extraction of Open/High/Low/Close/Volume time series, and high
dimensionality comes with the complexity and computational cost in signature transform. Thus, it
is imperative to preprocess data streams properly to ensure that the signature transform extracts
information efficiently for our target goal. Consider a d-dimensional time series X, = {X,;}/L, of
length n in each sliding window, there are three approaches we tried as following:

e Approach 1: Calculate the signatures of each time series separately, and then combine them
into features.

e Approach 2: Calculate the signature for a 5-dimensional time series.

e Approach 3: Dimensionality reduction of data. From the technical indicators based predic-
tions, we discover four data streams play important role in prediction, high/low /close /volume
data streams. Inspired by Gyurko and Lyons’s work in 2013 [5], we do the next following
steps for these three data streams:

AddTime Augmentation:

ug, = (t; —ty) /(1. —to), (2.2.2)
the normalised close price: PC(t;),i =1,..,n
the standardised spread at each time :

s(ti) := PH(t;) — PL(t;). (2.2.3)




Table 2.19: Log-returns Signature Based Prediction

Lengths | Out-of-Sample(%) CV (%) Std (%)
RF XGB RF XGB RF XGB
5 51.65 5l1.81 51.80 51.21 0.74 0.59

15 51.64 51.70 51.13  51.14 | 1.05 1.14
30 51.94 51.74 51.53 5139 | 095  0.80
60 52.23 52.18 51.42 5148 | 093 033
360 52.12 52.16 51.57  5L.70 | 098  1.36
1000 52.18 51.60 51.61 5143 | 099 046
TI 52.66 52.43 52.25 52.35| 1.26 0.99

Parameters Parameters
Truncation Level 4 Augmentation AddTime
Transformation | Signature | Scale of Time Series 1
Forecast Window 5

Precision/ Recall /F} Scores in Close Price Signature Based Prediction

15-minute length (RF) 15-minute length (XGB)
Precision Recall Fl-score | Precision Recall Fl-score

Down 0.50 0.32 0.39 0.51 0.31 0.40

Up 0.52 0.70 0.60 0.52 0.69 0.60

the normalised cumulative volume:

vy, = Volume(t;)/ Z Volume(t; ). (2.2.4)

Thus we use above components to compose a time-series denoted as X = (Weiy Priy Sti, 0
For the angmentation, we choose to do the lead transformation of X and then pair it with
the lag-transformation of log close price p;, aiming to capture the quadratic variation pattern
of price, then the resulting input streams are of the form as

(Z.s', )Qu . ((u]uml p]a.--,\\l s\]l."r\ll I]a.-,\nl

i=0 ‘= s, o Ps; 2 Se Vs P

lagyy2n a9
#))izo- (2.2.5)
Subsequently we compute the signature for each time series up to the truncation level of 4,
and take these signature together as feature vector in the multivariate time series prediction.

We follow the same step to select model parameters as in the signature-based close price pre-
diction, and the results for three different signature computation approaches mentioned above are
as shown in Table 2.20. We can see that the signature-based multivariate time series prediction
does not have a better performance than the technical indicator based forecast at the given model
parameters. In addition, the approach of signature computation slightly affects the performance
of the model, especially the size of the feature vector. Specifically, if we compute the signature of
each time series separately, there is much freedom in choosing model parameters, such as trunca-
tion level, augmentation, and the series length, in each signature transform. Moreover, the large
size of the features in the model might cause overfitting problem, and impacts of open/high/low /-
close/volume series on market trend are distinguished, so it would be better to work out data
processing for each time series before signature transform.




Table 2.20: Multivariate Time Series Signature Based Prediction

Parameters Selection

Parameters

Truncation Level

Transformation

Forecast Window

Parameters
3/4 Augmentation AddTime
Signature | Scale of Time Series 1
5

Approach 1 (Truncation Level = 4)

Length Out-of-Sample(%) CV (%) Std (%)
Random Forest XGboost | Random Forest XGboost | Random Forest XGboost
5 51.32 51.33 50.96 50.49 0.40 0.23
15 51.34 51.22 50.98 50.12 0.40 0.25
30 51.32 51.13 50.91 49.84 0.34 0.88
60 51.26 51.20 50.51 52.03 0.37 0.65
TI 52.66 52.43 52.25 52.35 1.26 0.99
Approach 2 (Truncation Level = 3)
Length Out-of-Sample(%) CV (%) Std (%)
Random Forest XGboost | Random Forest XGboost | Random Forest XGboost
5 51.34 51.24 51.03 419.91 0.37 0.34
15 51.31 50.82 51.07 50.34 0.39 0.35
30 51.33 51.22 50.84 50.15 0.40 0.51
60 50.31 51.08 50.90 50.25 0.41 0.26
TI 52.66 52.43 52.25 52.35 1.26 0.99
Approach 3 (Truncation Level = 4)
Length Out-of-Sample(%) CV (%) Std (%)
Random Forest XGboost | Random Forest XGboost | Random Forest  XGhoost
b} 52.28 51.64 51.33 0.94 0.86
15 52.26 51.75 51.79 0.95 0.83
30 51.94 51.66 51.53 1.06 1.06
60 1.26 51.44 51.41 51.40 0.55 0.45
TI 52.66 52.43 52.25 52.35 1.26 0.99
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2.2.5.4 Technical Indicator Signature Based Prediction

There are two approaches to set up signature-based technical indicators prediction. The results of
these two approaches are as shown in Table 2.21.

e Approach 1: Calculate the signature for each technical indicator stream ordered by its time
parameters

— Each technical indicator is computed with ten different time parameters, and we have
12-dimensional technical indicator data streams. Thus, for this approach, we have
12-dimensional time series with a fixed length of 10. We do not consider selecting
the best historical lengths in this case rather than examining the predictive power of
different truncation levels. We set the range of truncation levels as [2,3,4]. We do not
choose a higher truncation level due to the computation cost for the high dimensional
data stream. There also are difficulties for algorithms to learn models with the high
complexity of features. Based on the experiences from the multivariate time series
signature-based prediction, we decide to compute the signature for each data stream
separately.

~ From the results in Table 2.21, we can see that the accuracy rises slightly as the trunca-
tion level increases, but do not perform better than technical indicator based prediction,
which shows that the signature transformation in this case do not extract the valnable
information but hide some valuable information from technical indicators.

e Approach 2: Select the meaningful technical indicators and time parameters, generate a
time series of technical indicators at a chosen time parameter, then calculate the signature
of the data stream

~ In the second approach, we first choose the meaningful technical indicators based on
the important features of technical indicators based prediction. Figure 2.5 shows that
stochastic oscillator (S0), relative strength index (RSI), exponential moving average
(EMA), simple moving average (SMA) play important roles among all technical indica-
tors features, and we choose to generate {SO4. RS, EM Ags, SM Agy} 4-dimensional
time series, and then generate the signature for each data stream of increasing historical
lengths. In this approach, as the above steps in time series signature based prediction,
we compare the predictive power of different lengths historical window ranging from 5
minutes to 360 minutes.

—~ Table 2.21 shows that a one percent lower cross-validation accuracy obtained in this
approach, and points out that this approach does not extract the valuable information
from technical indicators.

To sum up, the technical indicators signature-based prediction results illustrate that the sig-
nature transform could not extract valuable information from the technical indicators. One guess
for this is that the technical indicators at each time point t are computed from the raw historical
data trying to extract the information of the data and use the statistics to represent the past in-
formation. At the same time, the signature transformation also tries to extract information for the
historical data, the extraction ability might overlap between these two approaches. In other words,
if we use the signature method on the technical indicators, some valuable information hidden in
the raw historical data might lose, then is not extracted by the signature transform method.

2.2.5.5 Ensemble of Technical Indicators + Close Price Signature Based

Based on the finding so far, the performances of close price signature based prediction and tech-
nical indicators based prediction are very similar to each other, what we have to do next is to
evaluate whether the information extracted by these two approaches (technical indicators and sig-
nature transform) is overlapped and whether there exists an improvement of performances when
we combine these two feature extractions. Thus, we take the close price signature based, together
with meaningful financial technical indicators, to build a new predictive classification model. We
choose the top 10 important features as shown in Figure 2.5, and it is noticeable that the stochastic
oscillator has a higher weight among 125 features and it is generated by high/low/close time series
together as shown in 2.3. We expect this new model (technical indicators + close price signature
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Table 2.21: Technical Indicator Signature Based Prediction

Parameters Selection

Jarameters Jarameters
Truncation Level Augmentation AddTime
Transformation | Signature | Scale of Time Series 1
Forecast Window 5
Approach 1
Truncation | Qut-of-Sample(%) CV (%) Std (%)
RF XGB RF XGB RF XGB
2 51.34 51.20 51.04 5177 | 0.35 0.33
3 51.33 51.28 51.04 50.60 | 0.35 0.18
4(300) 51.33 51.32 51.04  50.74 | 0.35 0.19
TI 52.66 52.43 52.26 52.35 | 1.26 0.99

Approach 2 (Truncation Level = 4)

Lengths | Out-of-Sample(%) CV (%) Std (%)

RF XGB RF XGB RF XGB

5 51.36 51.25 51.04 51.06 | 0.35 0.34

15 51.31 51.24 51.04 5187 | 0.35 0.35
30 51.31 51.51 51.04 50.66 0.35 0.40
60 51.35 51.32 51.04 50.60 0.35 0.34
360 51.25 50.86 51.12 50.87 | 0.30 0.85
TI 52.66 52.43 52.25 52.35 | 1.26 0.99

based) outperforms those models which only consider technical indicators or close price signature
based alone.

e Features Selection: We mainly compare three models in this section, which are

New model: Ensemble of 10 Technical Indicators + Close Price Signature Based

Benchmark: 10 Technical Indicators Based (B1) and Close Price Signature Based (B2)

e Historical Window Length: We compare the predictive power of historical windows of
different lengths range from 5 minutes to 1000 minutes.

¢ Results Analysis: The Table 2.22 shows that the accuracy for different lengths of historical
windows is similar to each other. However, the 15-minute length has a relative high out-of-
sample accuracy (XGB: 52.74 % Jand low standard deviation ol cross-validation (0.81%).
Moreover, the performance of ‘Ensemble of Technical Indicators + Close Price Signature’
based prediction has a similar predictive power with the other two benchmarks models.
They both achieved around 52% out of sample and cross-validation accuracy. However, we
see that the signature-based predictions generally has a lower standard deviation of the cross-
ralidation accuracy (B2: 0.94%, 0.85 %, new:0.81% ), which illustrates that a signature-based
prediction would be a bit more stable.

There is no significant improvement in the accuracy after the combination, indicating that the
information extracting by the signature transformation and technical analysis is overlapped
to a degree. However, the improvement on the standard deviation of the cross-validation
accuracy suggests that the signature-based prediction would provide a more stable prediction,
which might be because it extracts some information that technical indicators do not grasp.




Table 2.22: Ensemble of Technical Indicators + Close Price Signature Based

Parameters Selection

Parameters Parameters
Truncation Level 4 Aungmentation AddTime
Transformation | Signature | Scale of Time Series 1
Forecast Window B]
Length Out-of-Sample (%) CV(%) Std(%)
RF XGB RF XGB RF  XGB
5 52.54 52.70 52.51 52.31 1.06 1.29
15 52.47 52.74 52.19 52.14 1.02 0.81
30 52.42 52.31 52.23 52.32 0.98 1.15
60 52.43 52.46 52.25 5196 | 1.11 1.29
360 52.50 52.48 52.21 51.66 | 1.14  0.92
1000 52.50 52.32 52.21 52.50 | 1.14 1.49
Benchmark
B1 (15 min) | 52.44 52.48 52.09 52.17 | 1.21 1.20
B2 (15 min) | 52.53 52.59 51.90 52.95 | 0.94 0.85

2.3 Parameters Selection

According to the above feature selection results, we choose the prediction model based on the
‘technical indicators and closing price signature ' to forecast future 15-minute trend. Then, we
take different model parameters, such as augmentation and truncation levels, in the chosen model
to evaluate the impact of different model parameters and determine the appropriate ones.

2.3.1 Model Parameters Selection

In this case, we aim to assess the model’s performance under different model parameters and choose
appropriate model parameters, the model parameters we need to specify as shown in 2.16 except
for the historical window length. For model parameters, generally, the more information extracted,
the higher truncation level we set. Besides, we do not know which augmentation, scaling factor,
transformation works well in this scenario. The selection process is taken as follow step:

1. Fix other model parameters, try different augmentations as shown in Table 2.23. ‘A+B’
means that we do ‘A’ augmentation first and then ‘B’ angmentation. Table 2.23 shows
that ‘AddTime’ and ‘LeadLag + AddTime’ angmentations outperform other angmentations.
Moreover, these two augmentations have the same result. Additionally, ‘LeadLag’ and ‘Ad-
dTime+LeadLag’ have the same performance as well. We can conclude that the ‘LeadLag’
and ‘AddTime’ combination’s order affects the predictive power. We finally choose ‘Ad-
dTime" augmentation in our model, now fix it to examine other model parameters

2. Fix the optimal angmentation selected by step 1, and try different scaling factor a € R,
where o = (0.001,0.01,0.1, 1, 10, 100, 1000). Table 2.24 shows that rescaling does not impact
the ability of the signature to extract the information of the data stream a lot. Hence, we
do not do any rescaling in our time series data.

3. We fix the rescaling factor as o = 1 and ‘AddTime augmentation’, then we try different trans-
formations, including log-signature and signature. Finally, found that signature performs a
better result compared with log-signature in this scenario.

4. Finally, we examine the predictive power in increasing truncation levels. We expect a higher
truncation level providing a better performance since it would extract more information.
However, the high signature depth also leads to a large nunber of the signature terms to be
considered, and it would be more complicated for the algorithm to learn the hidden relation-
ship between variables. Based on the results of Table 2.25, the accuracy does not change two
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much as the truncation level increases, the out of sample is generally around 52.50% and the
cross-validation accuracy for all depth levels is above 52% with a 1% standard deviation. This
means that there are no many differences in various truncation levels. Moreover, there exists
a trade-off between the information extraction and the low-dimensional features. We finally
select a medium wvalue of the truncation level, 4, which could extract sufficient information
and would not generate high-dimensional features.

Based on the above selections, the optimal model parameters we choose is as shown in Table

2.26.

Table 2.23: Results in Different Augmentations

Augmentation Out-of-Sample (%) CV(%) Std (%)
RI XGB RI XGB | RF  XGB
AddTime + Basepoint | 52.43 52.51 52,18 5212 | 1.04 1.01
AddTime 52.47 52.74 52,19 52,14 | 1.02 0.81
LeadLag 52.36 5245 52.25 51.98 1.20 0.94
LeadLag + AddTime | 52.47 52.74 52.19 52.14 | 1.02 0.81
AddTime + LeadLag | 52.36 52.45 52.25 51.98 | 1.20 0.94

Table 2.24: Results in Different Rescaling Factors
Rescaling Factor | Out-of-Sample (%) CV(%) Std(%)

RF XGB RF XGB RF XGB

0.001 52.42 52.74 52.23 5213 1.12 0.94

0.01 52.39 52.74 52.33 51.96 | 1.10 0.83

0.1 52.36 52.69 52.24  52.27 | 1.09 0.99

1* 5247 52.74 52.19 5214 | 1.02 081

10 52.53 52.70 52.13 5222 | 1.04 0.79

100 52.45 52.74 52.18 52.18 1.03 0.92

1000 52.43 52.72 52.14 5214 | 0.97 0.89

Table 2.25: Results in Different Truncation Levels
Truncation Level | Out-of-Sample (%) CV(%) Std (%)

RF XGB RF XGB | RF XGB

1 52.40 5247 52.22 5232 | 1.55 1.03

2 52.47 52.44 52.28 52.37 | 1.12 1.13

3 52.42 52.59 5220 5234 | 1.52 098

4 52.47 52.74 52.19 52.14 1.02 081

5 52.43 52.57 52.22 52.21 1.03 063

6 52.52 52.54 52.11 5217 | 1.00  1.01

T 52.44 52.80 5213 5228 | 1.09 0.77

8 52.46 52.77 5213 5213 | 111 0.80

2.3.2 Hyperparameters Tuning

¢ Random Forest: We now do hyperparameter tuning after determining the model parame-
ters. For the random forest classifier, the initial hyperparameters used in the above sections
are as shown in Table 2.7. Based on the discussion in the section 2.2.2, we set a relatively
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Table 2.26: Optimal Model Parameters

Yarameters
Historical Window Length 15
Truncation Level 4
Scaling Factor 1
Transformation Signature
Augmentation AddTime

large node size (‘min_sample_leaf’), 5, to decrease the running time since we have a large sam-
ple dataset of 284,511 observations. Moreover, in the tuning process, we mainly consider the
hyperparameters that control the structure of the forest and the randomness of the sampling,
so we tune the number of trees (n_estimators), the number of features (max_features), and
the depth of forest (max_depth). Thus we take the randomized search to tune the Random
Forest as shown in Table 2.3.2, the optimal parameters we choose are bolded.

Table 2.27: Results of Hyperparameters Tuning for Random Forest

Parameters
n_estimators [ 50, 100, 150, 200, 250, None |
max_features [ fauto’, ‘sqrt’ |
max _depth [2, 4,6, 8,10, None |
Accuracy
Out-of-Sample’ 52.60 (52.52)
CV% 52.15 (52.11)
Std% 1.09 (1.00)

¢ XGBoost: Table 2.8 illustrates the hyperparameters we set before, and now we do the
hyperparameters tuning by taking randomized search. The result of hyperparameters tuning
for XGBoost is shown in Table 2.28, and found that the out-of-sample accuracy and cross-
ralidation respectively increase around 0.30% and 0.20% after tuning.

Table 2.28: Results of Hyperparameters Tuning for XGBoost

Parameters
learning rate [0.05, 0.1, 0.15, 0.2, 0.3]
n_estimators [50, 100, 200, 300, 500]
max_depth [2, 3, 4, 5, 6]
sub_sample [0.5, 0.6, 0.7, 0.8]
Accuracy After (Before)
Out-of-Sample % 52.87 (52.54)
CV% 52.35 (52.17)
Std% 0.75 (1.01)

o LSTM: We now establish the LSTM prediction model for the optimal features and model
parameters. There are five hyperparameters to be determined, and we also take the ran-
domised search to determine the optimal one. The tuning results are as shown in Table
2.29:
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Table 2.29: Results of Hyperparameters Tuning for LSTM

Parameters
learning rate [0.01, 0.05, 0.08, 0.1, 0.5, 0.8]
layers 1,2, 3
epochs [5, 10, 20, 30|
hidden dimension (10, 20, 30, 40, 50, 100|
batch gize (100, 250, 500, 750, 1000]

2.4 Conclusions

The above features selections process is summarised as shown in Figure 2.6 and we built as the
following five types:

1. Technical Analysis Based Prediction
2. Time Series Based Prediction
3. Time Series Based Signature Based Prediction

4. Technical Analysis Signature Based Prediction

5. Time Series Based Signature Based Ensemble of Technical Analysis Prediction

We built the technical analysis based prediction model first to evaluate the predictive power of
the different length future trends. Then we found that the short-term prediction is much stable
compared with the long-term predictions. Hence we chose a 5-minute ahead prediction because
of its stability in model performance. Next, we tried various approaches to compute the time
series and technical indicators signature-based predictions. By comparing these signature features
based predictions with features based predictions ( the same features used to compute signature),
we found that signature extracts valuable information from the raw historical time series data,
but does not grasp the valuable information from technical indicators time series. Moreover, we
found that the close price signature-based prediction has a similar performance as the technical
indicators-based prediction, indicating that the information extracted from close price only by
signature methods has an equivalent ability in future trend prediction as the information extracted
by technical indicators from high-dimensional times series (high/low /close/volume).

Tachnical Analysis Based

I

S-minute ahead prediction

Time Series Based Time Series Signature Based Technical Anakysis

/ \ / \ Signature Based
(Close Price Multivariate Close Price Multivariate
Time Series Time Series

NN

Clase Price  Close Log Approach Approach Approach

+Signature  return + 1 2 3
‘AF Signature
Pa

$

Close Price +Signature + Technical Analysis Based Prediction

Figure 2.6: Features Selection Process
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Chapter 3

Trading Strategies

This chapter uses the ‘close price signature ensemble of technical indicators based prediction’ to
guide trading strategies. The model predicts market movement in the next [ = 5 minutes by taking
technical indicators and close price signature as features. Furthermore, we not only build a model
to predict up and down trend in foreign rate market, but also build another specialised model to
predict a flat trend, and implement trading strategy based on these two models together.

3.1 Framework Establishment

Specifically, the predictive binary classification model helps us implement the trading strategy by
the following two approaches.

e Approach 1: The trading signals are determined based on up/down trend prediction model
only, which is denoted as

Iiﬂ?'?-_(]‘, if g}!(lllr]up,-"duwn =1,

(3.1.1)
short, if ge()"P/9ov =,

{signaly(1)};2, = {

where §,(1)"P/4o%" represents the | -minute up/down trend prediction of the model at time
t, and we take a long position in the next | mimtes if the model predicts the rising trend,
take a short position in the next ! minutes if the model predicts the dropping trend.

However, in reality, we have to consider the transaction cost in every trade, which depends
on market volatility and the currency pair. Thus the price movement needs to be higher enough
to make up for the transaction cost. In the currency market, the transaction cost consists of the
commission fees and the bid-ask spread. Now, we estimate the transaction costs by considering
the bid-ask spread only. If we let the bid-ask spread as S;, then we label the output variables in
the flat-trend prediction model as

{.U:("-')}EI\;LZ{L § s, (312)
0, otherwise,

where y;(I) = 1 represents a non-change trend in the next [ minute when the price movement
is smaller than the spread. Then, we take the same features of predicting up/down trends to
establish a predictive binary classification model for non-change trend forecasting. However, in this
non-change trend classification predictive model, the non-change trend is the majority class in a 3-
minute period and hence involves an imbalanced classification challenge, which means the number
of samples in each class is not balanced. The imbalanced problem in the dataset could not be
ignored since most machine learning algorithms assume a balanced class, and the bias in the dataset
would result in a poor prediction in the minority class. The two techniques, oversampling and
undersampling, provide a naive idea to rebalance our dataset by randomly resampling the examples
of minority class and removing the majority class examples to generate a balanced distribution
in the training dataset. We take the undersampling technique to balance the training set since
we still have approximately 180,000 samples in the training dataset after undersampling, which is
sufficient for the algorithm to learn a reliable model. Thus, we have the following approach to set
up a trading strategy.
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e Approach 2: Establish a specialised model to predict the flat trend, then set up trading
signals according to the flat-trend and up/down trend predictions. The trading signals are
determined as:

|'!:'J?‘?._(}_. if g}!(”upflluwn — 1 and g}!“)nmn—clmng{: — 0,
{signal,(1)}L, =< short, it g (0" = 0 and g (D"omtree =, (3.1.3)

no action, others,

where g ([)"on-change represents the prediction of the [-minute non-change trend of the model,
and we take the long/short position only when the up/down prediction model has a rising/-
dropping trend prediction and non-change prediction model forecast a high volatility trend
in the next | minutes.

3.2 Empirical Investigation

We use the Random Forest, XGBoost and LSTM in this implementation. We backtest the above
trading strategies on a monthly basis, from January to December 2020, by building predictive
classification model in the past twelve months to evaluate the robust performance of the trading
strategy. The backtest framework is based on the following rules:

e We assume that the predictions of the model can be generated immediately, and there is no
time lag when we execute trading positions.

e Each currency pair has its own pips that measures the change in value between the two
currencies.

e We buy/sell one unit currency pairs at each execution.
e No transaction fees considered.

e Assume a fix bid-ask spread in the entire period for Approach 2, and the spread is estimated
by 2 pips

e Assume that there are no short selling restrictions during the entire period. We start with
an initial balance of 100 (base currency), short 10% of the balance to execute the position,
and return it after exit the position (5 minutes).

e The initial balance of the next month is the balance of the previous month
e Suppose there is no interest rate in our backtesting framework

e We take the buy-and-hold strategy as a benchmark, to evaluate the profitability of the trading
strategies

Moreover, the balance of trading strategy updated at time ¢ as below:

B; = B; 1 + Profit,,

\ ) PC(t+1) (3.2.1)
I — o S B
Profit; = Invest Fund x [( PO ) 1],
where,
1 if signaly(l) = long,
Iy = { —1 if signal;(l) = short,
0 else,

where B, is the balance at time ¢ and I; is chosen based on the signals we obtain.
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3.3 Results

e Monthly accuracy results for rising/downward trends by Random Forest, XGBoost, and
LSTM are as shown in Figure 3.1, 3.2, 3.3. The 12-month average accuracy of each currency
pair is shown in the Table 3.1. The prediction performances of three machine learning
methods are similar. They all made good predictions on the “xauusd” pair, achieving a high
average accuracy rate (RF: 64.64%, XGB: 64.81%, LSTM: 58.33%) per month. Other pairs
generally have an average of 52% accuracy per month for these three methods. Moreover, we
can see that the performance for Random Forest and XGBoost are quite similar to each other,
it might because that they are both ensemble tree methods. Moreover, in most currency pairs
LSTM network has the similar performance as the random forest and XGBoost given the
hyper parameters we set, except for the xanusd pair, random forest and XGBoost outperforms
than LSTM model(RF: 64.64% vs 64.81% vs 58.33%). One possible reason for this is that the
hyperparameters setting for LSTM is more complicated for the random forest and XGBoost
methods, and the hyperparameters we set might not be suitable for all currency pairs, and
it i3 necessary to tune process in each currency pair individually.

The Accuracy of 20 Fx Pairs in 2020 (Random Forest)
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Figure 3.1: The Prediction Accuracy of 20 Fx Pairs from January to December in 2020 (Random
Forest)

The Accuracy of 20 Fx Pairs in 2020 (XGBoost)
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Figure 3.2: The Prediction Accuracy of 20 Fx Pairs from Jammary to December in 2020 (XGBoost)




The Accuracy of 20 Fx Pairs in 2020 (LSTM)
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Figure 3.3: The Prediction Accuracy of 20 Fx Pairs from January to December in 2020 (LSTM)

Table 3.1: Average accuracy (%) for 12 months in 2020 (20 foreign exchange pairs)

Forex Pair RF | XGB | LSTM
aundcad-1m | 51.90 | 52.13 | 52.28
audjpy-1m | 51.58 | 51.65 | 51.64
andusd-1m | 51.26 | 51.63 | 51.59
chfjpy-lm | 52.14 | 52.50 | 52.38
ethusd-1m | 52.89 | 52.97 | 52.01
euraud-1m | 51.67 | 51.60 | 51.64
eurcad-1m | 51.77 | 51.90 | 52.00
eurchf-1m | 53.01 | 53.59 | 53.26
eurgbp-lm | 52.26 | 52.19 | 52.48
eurjpy-1m | 52.07 | 52.26 | 52.20
eurusd-1m | 51.29 | 51.82 | 51.86
gbpead-1m | 52.13 | 52.20 | 52.01
gbpchf-1m | 52.11 | 52.16 | 51.93
gbpjpy-lm | 52.26 | 52.32 | 51.87
gbpusd-1m | 51.50 | 51.60 | 51.49
nzdusd-1m | 51.40 | 51.52 | 51.61
usdead-1m | 50.94 | 51.05 | 51.02
usdchf-1m | 51.79 | 51.99 | 51.87
usdjpy-1m | 52.04 | 52.12 | 52.01
xanusd-1m | 64.64 | 64.81 | 58.33

e We need to evaluate its practical application in the finaneial market, so we implement the
trading strategies by two mentioned approaches. The results of strategy simulations are as
shown in Table 3.2 and Table 3.3, where we take Random Forest, XGBoost and LSTM to
establish prediction models in Approach 1, and only take Random forest and XGBoost to
establish models in Approach 2. The results illustrate that a higher prediction accuracy leads
to higher profits in trading strategy implementation. We plot the results taking by Approach
1 and 2 for ‘andcad’ pair in Figure A.1 and A.2, which shows that the investment payofts
of these two approaches have a similar trend but the profit growth of Approach 2 will be
steeper. Moreover, after introducing the flat-trend prediction model for transaction costs
consideration, the profits reduce to an extent, which is more reasonable in the real-world
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financial market. However, it still makes money in most cases and has better performances
than the buy and hold strategy. The backtesting results for ‘eurgbp’ pair taking by three
machine learning methods is shown in 77, it can see that the trend of profits taken by these
three methods is similar most of the time, and LSTM performs better in the first quarter.
Significantly, they all predict a sharp dropping in December 2020, and the profits grow
smoothly throughout the year.

Table 3.2: The Return of 20 Fx Pairs in 2020 (Approach 1)

Return %

Forex Pair | Random Forest | XGBoost | LSTM | Buy and Hold
andcad-1m 32.75 34.20 46.56 7.57
andjpy-1m 20.99 19.04 15.76 3.47
audusd-1m 14.55 16.80 10.15 9.29
chfjpy-1m 46.94 50.94 58.56 3.507
ethusd-1m 1637.94 3054.72 83.50 473.18
eurand-1m 41.60 34.49 48.11 0.14
eurcad-1m 38.33 38.98 50.33 7.05
eurchf-1m 38.58 48.79 45.56 -0.61
eurghp-1m 53.60 57.87 61.47 6.04
eurjpy-lm 30.97 31.13 31.83 3.78
eurusd-1m 6.85 12.10 15.01 9.42
gbpcad-1m 94.96 92.27 111.34 0.70
gbhpchf-1m 52.20 52.64 51.05 -5.57
gbpjpy-1m 43.66 50.12 20.17 -2.06
gbpusd-1m 22.31 14.70 10.54 3.09
nzdusd-1m 17.84 24.81 12.66 6.91
usdead-1m 5.84 4.95 10.09 -1.88
usdchf-1m 14.15 17.93 16.48 -8.58
usdjpy-1lm 5.24 7.94 3.62 -6.61
xauusd-1m 22917.96 24589.36 | 2850.01 25.02
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Table 3.3: The Return of 20 Fx Pairs in 2020 (Approach 2)

Return %

Forex Pair | Random Forest | XGBoost | Buy and Hold
audcad-1m 11.48 14.79 T7.57
audjpy-1m 287 7.94 3.48
andusd-1m -3.68 10.39 9.29
chfjpy-1m 19.51 28.07 3.57
ethusd-1m 1057.70 1086.69 473.18
euraud-1m 12.08 30.67 0.14
eurcad-1m 20.12 22.17 7.05
eurchf-1m 19.55 19.94 -0.61
eurgbp-lm 20.74 37.54 6.04
eurjpy-1m 13.43 14.77 3.73
eurusd-1m 2.96 4.03 9.42
ghpead-1m 38.76 61.92 0.70
ghpchf-1m 20.07 31.72 -5.57
gbpjpy-1m 16.91 23.68 -2.06
gbpusd-1m 2.49 10.24 3.09
nzdnsd-1m -3.63 8.02 6.91
usdcad-1m -3.13 1.36 -1.88
usdchf-1m 4.61 2.85 -8.58
usdjpy-1m -2.22 -3.54 -6.61
xauusd-1m 3252.52 2516.83 25.02




Conclusion and Future Work

In this paper, we try different approaches to select the optimal features nsed for foreign exchange
currency trend prediction, including technical analysis based features, time-series based features,
and signature-based features, and show that the close price signature based model performs as well
as technical indicators based model in the short-term trend prediction.

The technical indicators based prediction has proved to achieve satisfactory performance in
financial market trend forecast. In the future trend prediction, high prediction accuracy is achieved
on the long-term (2/3 weeks) predictions but comes with the high volatility in the performances
proved by the increasing window cross-validation. Thus, we choose a short-term (5 minutes) trend
prediction in the whole paper. In the model selection process, we demonstrate that the close price
signature based predictive classification model leads to a decent prediction performance as the
technical indicators based prediction does, together with a lower standard deviation of the cross-
validation accuracy, which further manifests that the significant ability of signature transformation
in extracting information from time-series data. Significantly, technical indicators draw out the
information from five financial data streams, including open/high/low/close/volume, while the
close price signature based prediction grasps information only from the close price data stream,
demonstrating again the powerful ability of information extraction for signature transformation.

Moreover, the approach to compute the signature of time-series data is also vital for the quality
of the extracted information. We make much effort on trying different approaches in data pro-
cessing, choosing the best historical windows, determining the optimal time series data used for
extraction, selecting the optimal truncation levels, signature angmentations, rescaling factors and
so on. Through a large nmumber of comparisons, we find out that model parameters choice does
not affect the performance of the prediction model to a degree, while the type and the length
of time series data are essential for extracting valuable information by signature transformation.
Finally, we combine two important features for short-term trend prediction, technical indicators
and close price signature based features, where we select the top 10 meaningful technical indicators
and 15-minute length historical window to compute the signature, which generates a stable and
adequate prediction to assist us in determining the buy/sell signals in the trading strategy. We
also evaluate the practical application for this model by taking trading strategy backtesting for
20 foreign exchange pairs in 2020. In the model construction, we use the Random Forest (REF),
Extreme Gradient Boosting (XGB) and Long-Short Term Memory (LSTM) network to establish
the predictive classification model. We employ two approaches to implement the trading strategy
based on the predictive binary classification model in the backtesting framework. One is to identify
the trading signals only based on the rising/dropping trend prediction, but in reality, the transac-
tion cost is unavoidable, so we need to ensure that the price movement is sufficiently large enough
to make up the transaction cost. Based on this consideration, we construct one more specialised
model in flat-trend prediction, then combine this model with the price movement prediction model,
hence identifying a sufficiently large price movement. Even though the profits would decrease to
a great extent in this case, it is more reasonable in the financial market; at the same time, the
return of this trading strategy for 20 currency pairs are still higher than the buy-and-hold strategy.
Besides, the LSTM model does not perform better than the other two tree-based algorithms in
some specific currency pairs, which might be because its tuning process is more complicated than
the other two algorithms, and it might be necessary to tune it for each currency pair individually.

Forecasting financial market trend is a challenging issue in financial areas. What we discussed
in this paper provides a reliable way to predict the short-term price movement by introducing the
signature methods to dig out the hidden and valuable information from its historical data streams.
However, there are many attempts to be made to improve the performance of the predictive models.
For example, since there exists a correlation between some currency pairs, such as EURUSD and
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GBPUSD, thus more valuable information could be extracted for prediction from a correlated
currency pair. Moreover, the combination of volatility prediction and trend prediction model also
gives a possible way to identify buy or sell signals in the trading strategy.

44




Appendix A
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Figure A.1: Approach 1 - AUDCAD P&L and Real Price in 2020 (XGBoost)
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Figure A.3: The trading simulations for ‘EURGBP" pair in 2020 (RF, XGBoost, LSTM)
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