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Abstracts

Interpreting the predictions made by deep neural networks has become an important topic in recent

years: understanding what is happening inside the networks can be very challenging. Interpretabil-

ity enables us to understand how the prediction process is being modeled, and gives us insight into

how to improve the networks. The purpose of this paper is to investigate the interpretability of

the neural networks used to perform the calibration for the Heston model.

This project is twofold: firstly build a neural network reproducing the relationship between

volatility smiles and model parameters in the Heston model, and evaluate the performance of

this network and secondly, apply interpretability models to the neural network obtained, and

particularly find out which input feature impacts the model output the most.

We construct two neural networks for comparison: a Convolutional Neural Network and a

Feedforward Neural Network. The following Interpretability models are implemented throughout

this paper: local surrogate models (LIME, DeepLIFT, and LRP), Shapley values, and other in-

terpretable methods (Saliency Maps, Gradient * Input, Integrated Gradients, and Occlusion). By

reviewing the attributions of the input features in each method, we conclude that the feature im-

portance computed by Shapley values should be chosen to be the benchmark in deep calibration

for the Heston model. The attributions for each network output, i.e. the model parameters in the

Heston model, indicate some model intuitions that match what we expect in the Heston model.
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Chapter 1

Introduction

In recent years, deep neural networks have been applied to various types of classification and

prediction problems. The models have successfully achieved near-human accuracy levels in ap-

plications such as digit recognition, image analysis, text mining, speech recognition, video games

and so on [1]. Apart from those fields, the financial industry is also making use of deep learning

in several applications including portfolio management, algorithmic trading, cryptocurrency and

blockchain studies, fraud detection, and model calibration [2].

Once a neural network model is trained and it gives some predictions, it is natural to ask

yourself these questions: can I trust these predictions? what is the logic behind the network? how

does the model output relate to my data?

It would be hard to answer those questions because of the complexity of deep neural networks.

Due to the demand for understanding and trusting models, the concept of ”interpretability” in

deep learning is proposed.

What Is Interpretability?

As claimed by Molnar (2019) [3], there there is no specific mathematical definition of interpretabil-

ity. One (non-mathematical) definition is proposed by Miller (2017) [4]: ”Interpretability is the

degree to which a human can understand the cause of a decision.” Another one is by Kim et al.

(2016) [5]: ”Interpretability is the degree to which a human can consistently predict the model’s

result.”

Accuracy and Interpretability

Neural networks are nonlinear and non-local, and they can be trained by minimizing the cost

function on the last layer and then iterating backward via backpropagation. Usually, we can

obtain very accurate results for input data by fitting the neural networks. For example, it is
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widely used in training feedforward neural networks for supervised learning.

Nevertheless, understanding what is happening on the network can be very challenging, even

in the simple case of a feedforward neural network that has high prediction accuracy. One might

want to interpret the weights in the first layer of the input data, and consider it as a one-to-many

relationship. The problem is that there is a loss after layer one, and after that the relationship be-

comes many-to-many. Non-local effects of the neural network are taken through backpropagation.

Therefore, it is difficult to understand what is going on in connecting the input and the output

inside the model.

Interpretability in Heston Model Calibration

Now it is natural to consider a practical instance for the interpretability of neural networks. In this

thesis, we focus on the Heston model calibration with neural networks, and apply interpretability

models to the obtained networks. Rough volatility model calibration with neural networks is

commonly done by 2 directions: one approach is to train a neural network given model parameters

to price the options (equivalently implied volatilities) and calibrate the model parameters with

standard statistical solvers (indirect, model parameters to volatilities ) [6]; the other approach is

to train a neural network that can directly produce the relationship between volatility smiles and

model parameters (direct, volatilities to model parameters) [7]. In particular, the second direct

approach of Heston calibration is used in this context, since it makes more sense in the industry

practice.

1.1 Literature Review

First of all, the thesis is initially inspired by the presentation at Quant Minds given by Brigo

(2019) [8]. It gives general insights about the role of interpretability in deep learning and what

kind of interpretable methods can be used. Then, it is considered what particular application

should be chosen for this project. Thanks to the survey by Ozbayoglu et al. (2020) [2], the recent

deep Learning applications in finance are summarised in this paper, from which we can get an

overview of the ongoing research within the financial field.

Once the deep neural network application of Heston model calibration is decided for this project,

related works are reviewed for preparation. Horvath, Muguruza and Tomas (2019) [6] introduce

Deep Learning Volatility from the neural network perspective, focusing on pricing and calibration in

rough volatility models. It is the indirect approach for calibration that is mentioned previously. The

authors presented a 2-step deep calibration procedure: firstly the map from the model parameters

to the implied volatilities is learned by a neural network; secondly use traditional solvers to calibrate
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the most optimal model parameters. Additionally, the authors attempt a direct approach, called

inverse map in this paper, which is implemented in a convolutional neural network in the case

of Bergomi models. Inspired by this, we imitate the inverse map method and modify the neural

network architecture to fit the Heston model, which will be described in Section 2.3.1. Recently,

Roeder and Dimitrof (2020) [7] come up with an alternative direct approach where the relationship

between implied volatilities to model parameters is approximated by a feedforward neural network.

The authors compare the results obtained from both direct and indirect approaches, and conclude

that it is more efficient and accurate to use the direct approach to rough volatility model calibration.

Based on their findings, we construct a feedforward neural network in this project detailed in

Section 2.3.2.

For the interpretability of neural networks, Chakraborty et al. (2017) [1] report a survey of prior

works of interpretability in deep learning models. Monlar (2019) [3] publish a book integrating

theoretical background and implantation examples of current interpretable methods. This book

is helpful for readers to build a framework of how to make deep learning models interpretable.

As it is mentioned before, some neural network models can produce accurate predictions but

might give poor interpretability. Sarkar et al. (2016) [9] discuss the trade-offs between accuracy

and interpretability in machine learning, and proposed the TREPAN algorithms which can draw

decision trees form neural networks.

A lot of researchers have come up with state-of-the-art interpretable methods. LIME (Lo-

cal Interpretable Model-agnostic Explanations) [10] was proposed by Ribeiro, Singh and Guestrin

(2016), which is able to explain the predictions of any classifier or regressor. The Python package

LIME is built up for users, which is available at [11]. Lundberg and Lee (2017) [12] modify clas-

sical Shapley values to a unified framework for interpreting predictions, namely SHAP (SHapley

Additive exPlanations), along with implementation package SHAP available at [13]. Bath et al.

(2015) [14] present LRP (Layer-Wise Relevance Propagation) to interpret classification decisions of

automated image classification, from which we expect it can be applied to other neural networks.

In the paper of Simonyan, Vedald, and Zisserman (2014) [15], visualisation of image classifica-

tion models are addressed by computing a class of Saliency map. It can be considered to be a

possible method measuring the feature attributions, especially for convolutional neural networks.

Sundararajan, Taly and Yan (2017) [16] present a gradient-based attribution method, Integrated

Gradients, that is driven by two fundamental axioms, namely Sensitivity and Implementation In-

variance. Shrikumar et al.(2016) [17] introduce DeepLIFT ((Learning Important FeaTures) and

Gradients * Input to compute importance scores, and conclude that DeepLIFT significantly out-

performs gradient-based methods. Additionally, Shrikumar et al. (2017) continued their work and

published a more detailed paper with experiments in [18]. But for the purpose of implementation,
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DeepLIFT was rescaled with a modified chain rule according to Ancona et al. (2018) [19]. Ac-

tually, Ancona et al. experiment gradient-based attribution methods (Saliency maps, Gradient *

Input, Integrated Gradients, DeepLIFT, and LRP) and perturbation-based attribution methods

(Occlusion and Shapley Value sampling) in [19]. In particular, Occlusion is an extension of the

occluding method proposed by Zeiler and Fergus (2014) [20]. Apart from LIME and SHAP, all the

interpretable methods can be implemented in DeepExplain [21] with Python.

1.2 Structure of the Project

The remainder of this thesis is structured into three parts: methodology, results, and conclusion.

In Chapter 2, the background of Heston model calibration is recalled briefly in Section 2.1.

Section 2.2 describes the routine of how we generate synthetic data and process the input data

before feeding them to the neural networks. The architectures of our self-defined neural networks

are introduced in Section 2.3. The theoretical knowledge of Interpretability models in Section 2.4

contains: local surrogate models (LIME, DeepLIFT, and LRP), Shapley values, and other inter-

pretable methods (Saliency Maps, Gradient * Input, Integrated Gradients and Occlusion).

Chapter 3 shows the implementation results of the above interpretability models. The attri-

bution difference between the convolutional neural network and the feedforward neural network is

analysed in each method.

In Chapter 4, our findings are summarised and the conclusions are made. In the end, we specify

the future work and possible improvements to this project.

10



Chapter 2

Methodology

2.1 The Heston Model

In this section, we recall the basic concepts of the Heston model. Define St as the price of asset and

vt as the instantaneous variance, which follow a stochastic process and a CIR process respectively.

The Heston model [22] is written as

dSt = rStdt+
√
vtStdW1t

dvt = κ(θ − vt)dt+ σ
√
vtdW2t

dW1tdW2t = ρdt

where dW1t and dW2t are the Brownian motions with correlation ρ and r is the risk free rate. The

five model parameters to be calibrated, P = [v0, ρ, σ, θ, κ], are as follow:

• v0: the initial value of the variance.

• ρ: the correlation between the two Brownian motions (note that ρ ∈ [−1, 1]).

• σ: the volatility of the volatility (non-negativity).

• θ: the long term average variance of the asset price.

• κ: the speed at which vt reverts to θ (non-negativity).

Moreover, the Feller condition should be satisfied while calibrating the model:

2κθ > σ2. (2.1.1)

The Feller condition ensures that the instantaneous variance, vt, is strictly positive.
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When calibrating the Heston model we aim at finding the optimal model parameters P =

[v0, θ, κ, σ, ρ] such that model results best match the market data. This is effectively a non-linear

constrained optimization problem: minimise the error between market implied volatilities (or mar-

ket option quotes) and the volatilities (or option prices) estimated by the Heston model.

2.2 Synthetic Data

In this section, we generate the synthetic features (volatility matrix) and labels (model parameters

P = [v0, ρ, σ, θ, κ]) to build the training dataset for later use. Then apply ZCA whitening to process

the input data before feeding it to the neural network.

2.2.1 Data Generation

The idea of data generation is, we randomly generate the Heston model parameters v0, ρ, σ, θ, κ for

labels with large enough size, and calculate the corresponding implied volatility surface for input

features. Firstly, we define bounds for each model parameter as shown in Table 2.1, and randomly

generate each parameter using a uniform distribution. Once the parameters are obtained, select

the data points that satisfy the Feller condition (2.1.1).

parameter v0 ρ σ θ κ
lower bound 0.0001 -0.95 0.01 0.01 1.0
upper bound 0.04 -0.1 1.0 0.2 10.0

Table 2.1: Heston Model Parameter Bounds

Next, build a Heston pricer and computed the implied volatilities. Particularly in this con-

text, assume that the interest rate r and the dividend rate q are 0, and the spot price is 1.

Choose a set of strikes K = [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5] and maturities T =

[0.1, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.0] to evaluate the prices corresponding to the model parameters.

So the dimensions of the volatility matrix are 8 strikes × 11 maturities. Notice that the strikes

here are actually moneynesses since the spot price is defined as 1. The Heston pricer relies heavily

on the Quantlib python package, which gets the Net Present Value (NPV) as the option price in

the Heston analytical pricing engine [23]. Then, the Py vollib package is used to compute the

implied volatility surface.

Finally, we generate such dataset with 10,000 features and labels. To be specific, the input data

is a collection of 88 (= 8× 11) volatilities and the corresponding output are 5 model parameters.

Then the whole dataset is split into a training set of 8500 data points and a testing set of 1500

data points. If we look specifically at the first volatility matrix of the input data in the testing set,

fix the maturity to be 1 so the volatility smile is shown as an asymmetric U-shape in Figure 2.1(a).
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However in the case of the volatility smile at the 4000th entry of the training set with fixed maturity

T = 1, the smile is monotonic. Therefore, our synthetic data does not guarantee a specific shape

of the volatility smile.

(a) 0th Observation at Test Input Data (b) 4000th Observation at Train Input Data

Figure 2.1: Volatility Smiles with T = 0.1

2.2.2 Input Data Preprocessing

It is well-known that substantial differences in the scales of the input data can lead to difficulties

while training and cause instabilities. For example, in the case of a model with large weight values,

it can suffer from poor performance during learning and become overly sensitive to input values

which may lead to a high generalization error.

On the other hand, a target variable with a high spread of values can potentially result in

large error gradient values and cause drastic changes in weight values during training and make

the model unstable.

Therefore, it is common practice to standardize the input data to numerically aid the training

of the neural network. For the Convolutional Neural Network the data was scaled to have a mean

of 0 and a variance of 1, whereas for the Feedforward Neural Network the data was scaled in a

range from 0 to 1. Both methods are acceptable and either could have been applied. In addition,

after scaling the input data of the Feedforward Neural Network, A whitening process is taken in

to account.

Furthermore, ZCA-Mahalanobis whitening [24] was tested on the input data. Where ZCA

stands for ”zero-phase component analysis”. The aim of ZCA-Mahalanobis whitening is to de-

correlate the input matrices by multiplying the centred input data by a de-correlation matrix. In

this way the data is linearly transformed so that the sample correlation matrix of the training data

is the identity. This whitening process presents the advantage that the de-correlation is achieved

by only applying minor changes to the original input.
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If we let X be the original input data, then Xw can be defined as the whitened input data and

Xw = XW.

Here W is the whitening matrix:

XTX = Cov(X),

XTX = UdUT ,

D = d−1/2,

W = EDET ,

where the columns of E are the normalised eigenvectors. Therefore,

Cov(Xw) = XT
wXw = EDETXTXEDET = EDETCov(X)EDET = EDETE dETEDET ,

Cov(Xw) = I.

Figure 2.2 and Figure 2.3 display the correlation matrix for the train data before and after

whitening. As expected, Figure 2.2 shows that the implied volatilities are highly correlated and

dependent on the relative positions of the data points: neighbouring volatilities express strong

correlations. Figure 2.3 shows how the whitening operation has not proven successful in this

dataset due to the problems observed at the bottom right of the correlation matrix.

Initially, the whitening pre-processing was presumed to improve the performance of the neural

networks, since the neural networks are expected to learn the correlations between the volatilities

at different grid points of the volatility surface. However, after testing the effect of whitening on

the Heston model calibration with both the Convolutional Neural Network and the Feedforward

Neural Network, it was found that it did not improve the performance. Previous research had

proved the positive impact of whitening in the calibration of other models such as the Rough

Bergomi model [7], however, in the case of the Heston model its correlation structure seems to

cause problems to the whitening process.

Note that even though it cannot improve the performance of deep calibration, we still carry

out the ZCA whitening on the input data of the Feedforward Neural Network in particular, whose

architecture is defined in the next section.
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Figure 2.2: Correlation Matrix of the Train Data for Heston Model Calibration Before Whitening.

Figure 2.3: Correlation Matrix of the Train Data for Heston Model Calibration After Whitening.
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2.3 Neural Network Architectures

Two different neural network architectures were considered to calibrate the Heston model. One

being a feedforward neural network, which is the first and simplest type of artificial neural network

devised and the second a convolutional neural network, which is a class of deep neural network

most commonly applied to analyzing visual imagery and that has proven to outperform the classical

feedforward network in many applications. Their performance will be compared later, for now let’s

focus on their respective architectures.

2.3.1 Convolutional Neural Network Architecture

The Convolutional Neural Network starts with an input layer which has no parameters to be

calibrated but it is rather created to define the input shape of the training data. After that, a

2-dimensional convolutional layer with 3×3 filters is defined and ELU is chosen to be the activation

function for this layer. The convolutional layer is meant to extract features from the input and

aim at highlighting the most important attributes of the data. Different filters were tested but

3 × 3 filters proved to be the best performing filters after a thorough experimentation process.

The convolutional layer uses 32 filters and generates 32 volatility matrices for every matrix fed to

the neural network during training. Subsequently, max pooling is applied to the output, which

again aims at highlighting the most important features and a 2 × 2 kernel is used, which halves

the dimension of the input. After that, the output is flattened into a 3× 4× 32 = 384 input vector

and the fully-connected part of the neural network takes on. The flattened data is passed onto a

dense layer which outputs a vector of just 50 entries and that again makes use of ELU activation

functions. Note that the ELU activation function was chosen over other activation functions such

as the ReLU or the Leaky ReLu. The ELU activation function presents a number of advantages

over these other activation functions: it avoids the dying ReLU problem and the ELU function

tends to converge cost to zero faster than the other functions and in general produces more accurate

results. Other modifications such as the SeLU activation function were also tested, but they were

found to underperform compared to ELU. Lastly, we concatenate 5 different layers with a single

output, one for each of the five Heston model parameters that need to be calibrated and make use

of custom activation functions that improve the performance of the neural network. The costume

activation functions essentially are hyperbolic tangent functions which have been normalised. A

slightly different normalisation is applied to the activation function of the output layer of each

of the five Heston model parameters, taking into consideration the respective numerical ranges in

which each of the parameters are expected to lie. This architecture effectively equates to a total

of 19,825 trainable parameters.
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When training the model the root mean square error is used as the loss and the Adam optimi-

sation algorithm is implemented, which is a combination of gradient descent with momentum and

RMSprop algorithms. It uses the squared gradients to scale the learning rate like RMSprop and

it takes advantage of the momentum by using the moving average of the gradient instead of the

gradient itself like SGD with momentum.

Figure 2.4 shows the architecture of the convolutional neural network. Detailed summary are

presented in Figure A.1 in Appendix.

Figure 2.4: CNN Model Summary

2.3.2 Feedforward Neural Network Architecture

The Feedforward Neural Network presents a much simpler architecture as opposed to the previ-

ously presented Convolutional Neural Network. It consists of three fully connected dense layers

and a single output layer that generates a five output vector corresponding to the Heston model

parameters. Three layers with decreasing number of neurons were found to be enough to obtain

excellent results. Only 10,3 96 trainable parameters are required. Half the amount of those for the

Convolutional Neural Network. In this case, convolutional and max pooling layers were avoided.

In the case of the Feedforward Neural Network the mean squared logarithmic error is used

instead of the root mean square error, since it seems to be the best suited for this architecture
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after contrasting its performance with other typical losses and the Adam optimiser is used again

during training.

Figure 2.5 shows a summary of the feedforward neural network architecture. Detailed summary

are presented in Figure A.2 in Appendix.

Figure 2.5: FNN Model Plot

2.4 Interpretability Models

Let f be the original model to be explained and f̂ the deep neural network estimation. The goal

is to explain the single prediction y = f̂(x) based on the input x. In explanation models, the

simplified input x′ is often used, which maps itself to the original input x. That is, there exists

a mapping function hx such that x = hx(x′). With x fixed, the simplified input x′ has each

component as binary, with 1 meaning that the input component is present, 0 absent. ’Absent’ here

means a feature value is equal to the dataset mean.

Input x will have some components k equal to the mean of that component across the dataset

(absent, x′k=0) and other components j different (present, x′j = 1). For example, denote the input

averages with m and other values with z,

x = [z1, z2,m1,m2] =⇒ x′ = [1, 1, 0, 0].

Then,

h[z1,z2,m1,m2]([1, 1, 0, 0]) = [z1, z2,m1,m2].

Given the input x, an explanation model is a local model g on the simplified input such that,

ideally, g(z′) ≈ f̂(hx(z′) for z′ ≈ x′.
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Definition 2.4.1 (Additive Feature Attribution). The explanation model is an additive g

g(z′) = φ0 +

M∑
i=1

φiz
′
i, (2.4.1)

where M is the number of simplified input features, z′ ∈ {0, 1}M is the coalition vector, and

φi ∈ R.

This model attributes an effect φi to each feature i. φ0 is the response when all zi are set to

their dataset means, so that all z′ are zero. The effects of all features are summed to estimate the

output f(x) of the original model output.

Local surrogate models are interpretable models that are able to explain individual predictions

of machine learning models. Specifically LIME, DeepLIFT, and LRP are local surrogate models

that use equation (2.4.1) locally in x to fit the φ and get the possible explanations. They will

be introduced in the following Section 2.4.1, 2.4.2 and 2.4.3. Shapley values that give model

explanations in a global way, will be discussed in Section 2.4.4.

2.4.1 Local Surrogate: LIME

LIME (Local Interpretable Model-agnostic Explanations) [10] is a technique that explains predic-

tions of any classifier or regressor by learning an interpretable model locally around the prediction.

LIME is an additive feature attribution method since it uses a local linear explanation model that

is consistent with equation (2.4.1) in Definition 2.4.1. Here the simplified inputs x′ are considered

as ”interpretable inputs”. The mapping function hx maps a binary vector of interpretable inputs

x′ into the original input space, that is, x = hx(x′). Different input spaces use different mapping

functions.

Mathematically, LIME aims at minimising the following objective function:

ξ = arg min
g∈G

L (f, g, πx′) + Ω(g) (2.4.2)

where g is the explanation model for instance x′ that minimise the loss function L, and G is

a family of possible explanations. g measures how close the explanation is to the prediction of

original model. Ω penalises the complexity of g and thus Ω(g) is the model complexity in the

minimization. The local kernel πx′0 are the weights in loss L over a set of samples in the simplified

input space, which measures how large the neighborhood around instance x′ is. Specifically, the

explanation model g here satisfies equation (2.4.1) and the loss L is a squared loss. Thus, we can

solve the objective function (2.4.2) by using penalised linear regression.
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2.4.2 Local Surrogate: DeepLIFT

DeepLIFT [17, 18] (Deep Learning Important Features) is a method that explains the prediction of

deep learning neural networks recursively. For each input xi, the attribution C∆xi∆y
is computed

by setting the effect of that input xi to a reference value which is opposed to its original value.

In this case, the mapping function hx converts the binary vector x′ into the original input space:

x = hx(x′) with 1 in x′ meaning that the original values are taken and 0 meaning that the reference

value is taken instead. The author of [18] specifies the reference values as a typical uninformative

background value for the feature.

Also a ”summation-to-delta” property should be satisfied in DeepLIFT, i.e.,

n∑
i=1

C∆xi∆t = ∆t

where t = f(x) is the model output, and ∆t = t − t0 = f(x) − f(a) is the difference from the

reference input value a. C∆xi∆t
can be considered as the amount of difference between t from

reference that is attributed to or ’blamed’ on the difference-from-reference of xi. If we define

φi = C∆xi∆t, then the explanation model has the form of equation (2.4.1).

Furthermore, in our context DeepLIFT is implemented with a modified chain rule proposed

by Ancona et al [19]. Mathematically, we define zij = w
(l+1,l)
ji x

(l)
i to be the weighted activation

of a neuron i of layer l onto neuron j in the next layer, and bj the additive bias of unit j.

Each attribution of unit i indicates the relative effect of the unit activated at the original input

x compared to the activation at some reference input x̄ (baseline). Reference values z̄ji for all

hidden units are obtained by running forward pass through the neural network with input x̄, and

recording the activation of each unit. The baseline is to be determined by the user and is often

chosen to be zero. Therefore, let φci (x) = r
(l)
i be the attributions at the input layer for neuron c,

then

r
(L)
i =

 Si(x)− Si(x̄) if unit i is the target unit of interest

0 otherwise

where the algorithm starts with the output layer L. Finally, the ”Rescale Rule” is defined as

r
(l)
i =

∑
j

zji − z̄ji∑
i′ zji −

∑
i′ z̄ji

r
(l+1)
j .

The modified chain rule is adopted and the original ”Reveal-Cancel” rule [18] is not considered for

the implementation purpose.
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2.4.3 Local Surrogate: LRP

LRP (Layer-wise Relevance Propagation) [14] is able to explain the predictions of deep neural

networks. It is notable that LRP can be associated with DeepLIFT: fix the reference activations of

all neurons to be zero in DeepLIFT, then it becomes LRP interpretation. Hence, for the mapping

function x = hx(x′), 1 in the binary vector x′ represents that the original value of an input is

taken, and 0 means that 0 values are taken. Additionally, it satisfies the additive feature attribu-

tion method structure given in equation (2.4.1).

Now we have introduced three local surrogate models in this context. Here comes the question of

how to train and obtain a local surrogate model. As Molnar [3] summarised:

• Select an instance x whose model prediction is to be explained.

• Perturb your dataset and generate model predictions for these new data points.

• Set weights for the new samples based on their proximity to the instance x.

• Train the explanation model g with weights on the dataset with variations.

• Interpret the obtained prediction by explaining the local model g.

2.4.4 Global Interpretation : Shapley Values

Classic Shapley Value Estimation

Shapley values originated from cooperative game theory and were coined by Shapley [25] in 1953.

Shapley values are a method for assigning payouts to players depending on their contribution to

the total payout: the Shapley value is the average marginal contribution of a feature value across

all possible coalitions. Note that the Shapley value is not equivalent to the difference in prediction

when the feature is removed from the model. This method shows how the payout is distributed

among the features.

Given N players. For coalition of players S, f(S) is expected sum of payoffs (gain) that

members of S can obtain by cooperation, and f(Φ) = 0. Since Shapley values distribute total

gains to collaborating players, the player i gets

φi =
∑

S⊆N\{i}

|S|!(N − |S| − 1)!

N !
(f (S ∪ {i})− f (S)) . (2.4.3)

Equivalently,

φi =
∑

coalitions withouti

marginal contribution of i to coalition

number of coalitions sans i of this size

The Shapley values, φi, satisfy the following four properties:
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(i) Efficiency: total gain is recovered. ∑
i

φi = f(N).

(ii) Dummy: if a player that does not add marginal value, φ = 0.

(iii) Symmetry: if 2 players contribute with the same marginal value to any subset to which they

are added, their payoff portion φ is the same.

(iv) Additivity: if a game is composed of two subgames, the payoffs calculated on the subgames

can be added, which should match the payoffs calculated for the full game.

With the above four properties, the payout can be considered as fairly distributed among all the

features.

Shapley values can be used in the context of machine learning and interpretability by assuming

that each feature value of the instance is a player in a game where the prediction is the payout.

So the game is a prediction task for a single instance of the dataset and the gain is the actual

prediction for the particular instance minus the average prediction for all instances. Therefore, the

Additive Feature Attribution structure for Shapley values is

g(z′) = φ0 +

M∑
i=1

φiz
′
i,

with

φi(f̂ , x) =
∑

z′⊆x′\{i}

|z′|!(M − |z′| − 1)!

M !

(
f̂ (hx(z′ ∪ {i}))− f̂ (hx(z′))

)
.

Intuitively, feature values (xj)j enter in random order, and all values contribute to the predic-

tion. The Shapley values of xi is an average (on orders) of change in the prediction that current

receives when xi joins. In deep neural networks, the four Shapley value properties become the

following:

(i) Efficiency: the sum of feature contributions must be equal to the difference between the

prediction for input x and the average, that is,

∑
i

φi(f̂ , x) = f̂(x)− E[f̂(x)].

(ii) Dummy: a feature j that does not change the predicted value, regardless of in which coalition

of feature values it is replaced with its mean, has Shapley values 0. For all S ⊆ {x1, . . . , xM},

if

f(S ∪ {xj}) = f(S),
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then

φj = 0.

(iii) Symmetry: If two feature values j and k contribute equally to any possible coalition, their

contributions φ should be the same. In other words, for all S ⊆ {x1, . . . , xM}\{xj , xk}, if

f(S ∪ {xj}) = f(S ∪ {xk})

then

φj = φk.

(iv) Additivity: : for a combined prediction of f and F , the respective Shapley values are φj(f)+

φj(F ). Suppose a random forest is trained, so the prediction is an average of many decision

trees. Additivity guarantees that for a feature value, the Shapley value can be calculated for

each tree individually. Then average them, and thus the Shapley value for the feature value

for the random forest is obtained.

SHAP (SHapley Additive exPlanations) Values

SHAP (SHapley Additive exPlanations) [12] is proposed by Lundberg and Lee in 2016, and it is

based on optimal Shapley Values. It provides explanations for the prediction of an instance x by

calculating the contribution of each feature to prediction. The authors built SHAP as a unified

measure of feature importance, and some methods to effectively generate them such as: Kernel

SHAP (Linear LIME + Shapley values), Tree SHAP (Tree explainer + Shapley values), and Deep

SHAP (DeepLIFT + Shapley values). Additionally, SHAP combines many global interpretation

methods that are based on aggregations of Shapley values.

SHAP specifies the additive feature attribution explanation as equation (2.4.1). For a coalition

vector x′ of all 1’s, i.e., all the feature are ”present”, then equation (2.4.1) becomes

g(x′) = φ0 +

M∑
i=1

φix
′
i.

Note that Shapley values works when satisfying four properties: Efficiency, Dummy, Symmetry,

and Additivity. Naturally, SHAP satisfies those four properties as well since it is built on Shapley

values. However, Lundberg pointed out another three desired properties that SHAP should satisfy,

which is the main difference with Shapley values. The three properties are as follows:

(1) Local accuracy: the original model f is approximated by a specific input x, then the ex-

planation model should at least match the model output f with simplified input x′. Let
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φ0 = f(hx(0)) be the model output when all simplified inputs x′ are missing, i.e. set to be

0, then

f(x) = g(x′) = φ0 +

M∑
i=1

φix
′
i.

The explanation model g(x′) matches the original model f(x) when x = hx(x′).

(2) Missingness: features missing in the original input should have no impact.

x′i =⇒ φi = 0.

(3) Consistency: some simplified input’s contribution increases or remains the same due to the

change of a model, then the input’s attribution should be consistent with the change, i.e.,

not decrease. Assume fx(z′) = f(hx(z′)), and z′\i means that z′ = 0 are setted. For any

two models f and f ′ which satisfy

f ′x(z′)− f ′x(z′\i) ≥ fx(z′)− fx(z′\i)

for all input z′ ∈ {0, 1}M , then

φi(f
′, x) ≥ φi(f, x).

The authors also claimed that only one possible explanation model g satisfies Definition 2.4.1 and

above SHAP properties (1)-(3):

φi(f, x) =
∑
z′⊆x′

|z′|! (M − |z′| − 1)!

M !
[fx (z′)− fx (z′\i)] (2.4.4)

where the number of non-zero elements in z′ is denoted by |z′|, and z′ ⊆ x′.

It is challenging to compute exact SHAP values. But they still can be approximated by com-

bining current additive feature attribution methods. Then, the model linearity and the feature

importance are two optional assumptions that can simplify the calculation:

f (hx (z′)) = E [f(z) | zS ]

= EzS̄ |zS [f(z)]

≈ EzS̄ [f(z)]

≈ f ([zS , E [zS̄ ]]) .

(2.4.5)

where S is the set of non-zero indices in z′, and S̄ is the set of features that are not in S. The

first equation in (2.4.5) means that SHAP explanation model simplifies input mapping, and in the

second equation the expectation is taken over ZS̄|ZS
. Then it is approximated by assumption of
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feature independence. The final approximation is obtained by assuming model linearity.

Deep SHAP

From [17] we know there is a connection between DeepLIFT and Shapley Values that leverages

extra knowledge about the compositional nature of deep neural networks to improve computation

performance. Additive feature attribution method DeepLIFT follows properties of local accuracy

and missingness, and Shapley values is the only attribution values that follows the consistency

properties. It motivates us to consider DeepLIFT as a compositional approximation of SHAP

values, that is, Deep SHAP.

Deep neural network is a compositional model that are comprised of many simple components.

When it comes to Deep SHAP, the SHAP values for smaller components of the neural network are

computed, and then combined into SHAP values for the entire network. Within the network like

Figure 2.6, pass DeepLIFT multipliers and backwards through the network:

mxjf3
=

φi (f3, x)

xj − E [xj ]

∀j∈{1,2}myifj =
φi (fj , y)

yi − E [yi]

myif3 =

2∑
j=1

myifjmxjf3 chain rule

φi (f3, y) ≈ myif3
(yi − E [yi]) linear approximation

Figure 2.6: Compositional Model Structure

In this context, Deep SHAP is implemented for our neural networks in later Section 3.4

2.4.5 Other Methods

In this section, gradient-based attribution methods (Saliency Maps, Gradient * Input, and Inte-

grated Gradients) and perturbation-based attribution methods (Occlusion) will be introduced.

Assume a deep neural network has the model output f(x) = [f1(x), . . . , fC(x)] given an input
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x = [x1, . . . , xM ], where C is the total number of output neurons. For a specific neuron c, the goal

is to compute the attributions φc = [φ1, . . . , φM ] for input features.

Saliency Maps

Saliency Maps [15] is one of the back-propagation methods that computes attributions by taking

absolute values of the partial derivative of the target output f with respect to the input feature

xi. Thus it is notable that the Saliency attributions are always positive because of the absolute

value of gradients, indicating which input features need to be changed the least to affect the target

output the most. Nevertheless, positive and negative evidence that might be present in the input

can be detected in Saliency due to the absolute value.

Gradients * Input

Gradients * Input [17] aims to improve the sharpness of the attribution maps. The attribution is

obtained by taking signed partial derivatives of the model output with respect to the input and

then multiplying the input itself:

φci = xi ×
∂fc(x)

∂xi
.

Moreover, Shrikumar et al. pointed out that LRP reduces to Gradients * Input when all activations

are piecewise linear and bias terms are included in the calculation.

Integrated Gradients

Integrated Gradients [18] was proposed similarly with Gradients * Input, and it gives the attri-

butions also by calculating the partial derivative of the model output with respect to each input

feature. Thus the attribution is written as

φci = (xi − x̄i) ·
∫ 1

α=0

∂fc(x̃)

∂ (x̃i)

∣∣∣∣
x̃=x̄+α(x−x̄)

dα.

In contrast to Gradients * Input which computes a single derivative given input x, Integrated

Gradients measures the average gradient with input varying from a baseline x̄ to x linearly. The

baseline is often defined by zero.

Moreover, it is worthy to mention that Gradients * Input satisfies the following property:

the attributions must sum up to the difference between the model output and the model output

evaluated at the baseline, i.e.,
N∑
i=1

φci (x) = fc(x)− fc(x̄).
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This property is also called ”summation-to-delta” like DeepLIFT in Section 2.4.2 or ”Efficiency”

like Shapley values in Section 2.4.4.

Occlusion

In Occlusion [20], we replace one input feature xi with a zero baseline, and then evaluate the effect

of this perturbation on the target output. In other words,

φci = fc(x)− fx(x[xi=0]),

where x[xi=0] means the i-th element of a sample x ∈ RM has been replaced by 0.
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Chapter 3

Results

In this section, we use TensorFlow 2.3 in our neural networks. SHAP and LIME are implemented

in TensorFlow 2.3. The rest of the local surrogate models and other methods are implemented in

TensorFlow 1.15.

3.1 Neural Network Performance

Both the convolutional and the feedforward neural network structures previously described were

trained using the EarlyStopping callback function supported by the Python Keras package.

This callback function was used to monitor the value loss during training and avoid over-fitting

of the neural networks. From Figure 3.1 and Figure 3.2, which show the training history for the

convolutional and the feedforward neural network, we can conclude that indeed no over-fitting

occurred since training accuracy increased and loss decreased for both the training and validation

data during training.

In case of over-fitting we would have seen the performance of the neural network improve for the

training data but decrease for the validation data: the blue and red lines in the plots would have

deviated from each other as the number of epochs increased. Nevertheless, this was successfully

avoided. The convolutional neural network was trained for just over 300 epochs and the feedforward

neural network for about 1750 epochs before the training was interrupted by the callback function.

Both models achieved an accuracy of well over 90% for both the training and validation datasets.

Figure 3.3 and Figure 3.4 overleaf, display the relative errors between the predicted Heston

model parameters and the labels for the test data for the convolutional and the feedforward neural

network respectively. As can be seen in the figures, the relative errors obtained by the feedforward

neural network are significantly smaller. Although it has been found that in general convolutional
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Figure 3.1: CNN Training History

Figure 3.2: FNN Training History

neural networks outperform feedforward networks, especially in tasks such as image recognition and

data-driven personalised advertising, our results indicate that this is not the case when calibrating

the Heston model. The convolutional neural network applies 3×3 kernel filters and max pooling to

the training data which to some extent causes information loss. On the other hand, the flattened

feedforward neural network avoids this problem. For image recognition this is not an issue since

the main features of the image are of most importance to the neural network, whereas the Heston

model calibration is found to be overly sensitive to the information loss caused by these types of

layer operations. Note that in image recognition the aim is often to simply label an image, to

calibrate the Heston model the exact values for the parameter outputs are required instead.

Another main handicap when trying to learn the Heston model calibration using neural networks

is the model parameter identifiability due to the nature of the volatility matrices. As Roeder [7]

mentioned, there exist Heston parameterizations which differ significantly on the values of the

Heston parameters but correspond to similar implied volatility surfaces. This explains that in the

case of both neural network structures, although most of the predictions are quite accurate and

relatively close to the 0.0% relatively error mark, several outliers that appear to be substantially

far from the rest of the data points can be found.

Lastly, Figure 3.5 and Figure 3.6 give a better insight into the feedforward neural network.

The fact that the performance of the neural network is good for both the training and testing data

29



Figure 3.3: CNN Relative Errors of each Individual Model Parameter

Figure 3.4: FNN Relative Errors of Each Individual Model Parameter
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Figure 3.5: CNN Predicted and Target Model Parameters and Reconstruction Errors
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Figure 3.6: FNN Predicted and Target Model Parameters and Reconstruction Errors
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implies that the model is able to perform well when predicting unseen data. Notice that only the

predictions for ρ are slightly worse as compared to the other four model parameters. Nevertheless,

the reconstruction error for all parameters (the difference between target and predicted parameters)

is concentrated around zero, which is an indicator that no systematic error is present.

Note that although the Feller condition was imposed during the synthetic data generation

process the neural network output prediction P does not always satisfy the Feller condition. The

Feller condition is satisfied in 99.63% of the cases for the FNN training data and for 99.73% of the

testing data for the FNN and similarly, for 99.82% and 99.67% of the training and testing data for

the CNN. This is because the Feller condition has not being imposed within the neural network

architecture. Both the CNN and the FNN try to blindly approximate the calibration process

without accounting for the boundary condition. In future work, we could consider adding an extra

feature to the neural networks so that they do impose this condition by default on the output data.

This could be done by reparameterising the output P and using the new reparametrised output

P ′ to compute the loss function during training as suggested by Sondak [26].

3.2 Activation Visualization

Activation maps can be used to obtain a visual representation of activation numbers at various

layers of the network as a given image progresses through as a result of various linear algebraic

operations. In our case, we can effectively treat the volatility matrix as being equivalent to a black

and white image [27].

We now specifically look at how the CNN works in the initial 2-dimensional convolutional layer.

The convolutional layer has 32 filters with 3× 3 kernel size. We get the weights of these filters and

normalise the values to [0,1] so we can visualise them as shown in Figure 3.8.

Figure 3.7: CNN Convolution Filters
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The first layer output can be visualised by considering the convolutional layer as a sub-model.

We effectively generate a new model consisting of a single layer corresponding to the convolutional

layer and with the original model input layer. We can now feed one of the volatility matrices from

the test data into the new model and visualise the output. This is what we know as the activation

of a layer.

Figure 3.8: Visualisation of the Original Volatility Matrix Fed Into the Convolutional Neural
Network.

The original volatility matrix of dimensions (8,11,1) gets transformed into 32 new matrices

with size (6,9) as shown in Figure 3.9. The 32 matrices are generated by one of the filters of the

convolutional layer each, so that the original volatility matrix changes dimensions from (8,11,1) to

(6,9,32). Note that the output matrices have two less rows and columns than the original input

matrix, this is because the model is using 3 × 3 filters which cannot be applied around the edges

of the original matrix.

Similarly, another model consisting of the input, convolutional and max pooling layer can be

generated to visualise the output of the max pooling layer. Feeding the same volatility matrix

as before we obtain Figure 3.10. Note that due to the nature of the max pooling operation the

number of rows and columns of the matrices are halved rather than dropping the edges of the

matrix. The dimensions get reduced from (6,9,32) to (3,4,32).

Finally, the dense layer between the five output layers can be visualised. After the max pooling

layer, the matrices are flattened and fed into the dense layer that outputs a vector with 50 entries

which is plotted in Figure 3.11.

The same method can be applied to visualise the output of the feedforward neural network.

The activation of each dense layer is shown in Figure 3.12. The figure illustrates how the flattened

volatility matrix is gradually transformed by each of the dense layers.
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Figure 3.9: CNN Feature Maps After Convolutional Layer

Figure 3.10: CNN Feature Maps After Max Pooling Layer

Figure 3.11: CNN Feature Map of the Dense 1 Layer
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(a) Dense 1 output

(b) Dense 2 output

(c) Dense 3 output

Figure 3.12: FNN Feature Maps

3.3 Local Surrogate Models

3.3.1 LIME

LIME (Local Interpretable Model-agnostic Explanations) is designed to explain classifiers and

neural networks performing image recognition. However, in our case, we should treat the neural

network as a regressor and perform a local approximation around an individual prediction using

an explanation model (here a linear model is used). Implementation can be done by using LIME

in Python. In particular, the Huber Regressor is chosen for its robustness against outliers [28].

Take the 0th κ in the test set for illustration. As shown in Figure 3.13(a), over 1500 prediction

ranged from 1.17 to 9.77, the 0th predicted value of CNN is 6.28. For this particular prediction,

the top most volatility position is (T = 0.3,K = 0.7) close to At The Money (ATM) with short

maturity, followed by (T = 1.8,K = 0.5) with extreme maturity far away from ATM, and they

both influence the predicted value positively since they are coloured in orange. Blue coloured

components, on the other hand, have a negative contribution to the model output. The Feature

Value table specifies the input value of each feature which is also coloured either in orange or blue.

Note that the feature values in Figure 3.13(a) and 3.13(b) are the scaled input data as described

in Section 2.2.2, not the original volatility matrices.

As for the FNN in Figure 3.13(b), the predicted value is 6.47 which is quite close to the value

predicted by the CNN, but the range of the FNN predictions is slightly widened compared to the

CNN. Note that in Section 2.2.1, κ is generated from 1.0 to 10.0 according to Table 2.1, which

indicates that the FNN seems to cover the entire range of the model parameter. In the case of the

FNN, the topmost features concentrate around long term maturities such as T = 2.0, T = 1.2 and

T = 1.5, while the top 2 strikes are within ATM positions.

It is noteworthy that the above attribution results are just only one of the possible scenarios

of LIME interpretation for the CNN and the FNN. If you run the LIME interpreter for the same

instance (0th observation of κ) again, you will probably get totally different feature attributions
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(a) CNN

(b) FNN

Figure 3.13: LIME Attributions of κ at 0th Observation
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but the predicted value remains the same. This confirms that LIME uses a local explanation

model and attributes importance locally, so that we obtain a slightly different interpretation from

the same input entry every time.

3.3.2 DeepLIFT

DeepExplain in Python provides the implementation for rescaled DeepLIFT, in which a modified

chain rule is applied as discussed in [19]. Attributions are computed through the test dataset, and

the baseline x̄ here is chosen by default to be a zero array (with the same size as the input). These

attributions have the shape of (1500, 8, 11) for the CNN and (1500, 88) for the CNN. To draw

the feature importances, attributions of CNN should be reshaped to (1500, 88). Some attribution

might be negative values which contribute negatively to the model output. In particular, we

take the absolute value of all attributions to focus on the impact in terms of magnitude, ignoring

whether the impact is positive or negative. Then, take the mean of attributions over 1500 samples

to get the overall feature importance of 88 volatility positions. Note that the same measuring

methodology will be applied in the following interpretability models.

Figure 3.14and 3.15 presents the overall impact on the model output P within 1500 test samples.

The heat maps are also attached with light colour indicating the high attribution values and dark

colour the low attribution values. It can be seen that the lightest colours appear on both sides

of the strike range (wings), and in the positions within T = 1.2 borderline; while in the case of

the FNN, we can see that the lightest colours are located around short maturities T = 0.1 and

T = 0.3. However, its topmost features lie in the extreme strikes, K = 1.5 and K = 0.6.

Figure 3.14: CNN DeepLIFT Attributions and Heat Map
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Figure 3.15: FNN DeepLIFT Attributions and Heat Map

3.3.3 LRP

LRP (Layer-wise Relevance Propagation) can also be implemented in DeepExplain, and it is

recommended with ReLU and Tanh nonlinearities. Particularly, ε-LRP with ε-rule [14] is imple-

mented for our neural networks. In addition, the value of ε must be greater than zero, and here ε

is defaulted by 0.0001.

It can be seen from Figure 3.16 that, for the CNN the most influential features lie at large

strikes, K = 1.4, K = 1.2 and K = 1.3, which are at the right wing positions. At the same time,

the topmost features in the FNN in Figure 3.17 are the ones with strikes at both left and right

wings: T = 0.7, T = 1.5, and T = 1, 4.

It seems that both the CNN and the FNN agree with volatilities of short maturities and extreme

strikes dominating the most influential features. However, the top influential strikes tend to lie at

the right wing of strike range for the CNN, while lie at both ends for the FNN.

Figure 3.16: CNN LRP Attributions and Heat Map
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Figure 3.17: FNN LRP Attributions and Heat Map

3.4 Shapley Values

In this section, the Shapley values of the CNN and the FNN are calculated to analyse their impact

on the model output. Recall that the size of the test subset is 1500, so the Shapley values have

dimensions (1500, 8, 11) for the CNN and (1500, 88) for the FNN (the input is flattened in the case

of the FNN). Additionally, we measure the feature importance of the model input by taking the

mean of the absolute Shapley values, which is representative of the average impact on the model

output magnitude.

SHAP Summary Plots and SHAP Feature Importance

The SHAP summary plots shown on the left of Figure 3.18 and Figure 3.19 combine both feature

importance and effects. Each point drawn on the summary plot corresponds to a Shapley value for

a feature and an instance. The position on the x-axis is determined by the Shapley value and the

position on the y-axis by the feature. For the Heston model calibration, each feature is an entry

of the input volatility matrix for a given maturity and strike. The features are ordered from most

to least important.

On the other hand, the plots shown on the right of Figure 3.18 and Figure 3.19 are called

the SHAP Feature Importance plots. We display one of these plots for each of the Heston model

parameters. The aim of the plots is to highlight the importance of features with large absolute

Shapley values. We average the absolute Shapley values per feature across the data to obtain the

global importance. Once again, the features are sorted from most to least important [3].

In Figure 3.18 and Figure 3.19, each row represents one model parameter of the calibrated

Heston model: v0, ρ, σ, θ and κ from top to bottom. Although all Shapley values were calculated,

here we only show the top 20 most important for practical reasons.

From Figure 3.18 and Figure 3.19 we can see that the features which affect v0 the most are

close to At The Money positions with short maturities: (T = 0.1,K = 1.0) and (T = 0.1,K = 0.9)
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for the CNN and (T = 0.1,K = 0.9) and (T = 0.1,K = 1.1) for the FNN. This is reasonable since

v0 is the initial value of the variance, this is, the initial level of the volatility process and helps

set the reference level of the smile. In other words, it can be concluded that shorter maturities

are more relevant to v0 and At The Money volatilities are more important while setting an initial

point for the instantaneous variance process vt.

In the case of the correlation ρ we can observe that the most important features tend to be

towards the extremes of the smile: (T = 0.1,K = 1.4) and (T = 0.1,K = 0.9) for the CNN

and (T = 0.1,K = 1.5) and (T = 0.1,K = 0.7) for the FNN. The correlation needs information

regarding the shape of the smile, by looking at the wings, which are at the extremes, the neural

network can determine whether the smile is symmetric or not and whether it is U-shaped, skew or

monotonic.

Next, we shall analyse the behaviour of σ, which is the volatility of the volatility. The larger

sigma, the more randomness in the future instantaneous variance of the stock price. This means

more pronounced smile features in the future. The CNN seems to relate σ more to the overall

position of the smile, relating it to the At The Money smile volatility: (T = 0.1,K = 1.0). On the

other hand, and more intuitively, the FNN seems to relate sigma more to the wings of the smile:

(T = 0.3,K = 0.5) and (T = 0.1,K = 1.5). This is a substantial discrepancy between the CNN

and the FNN. It is interesting to note that the FNN gives better results than the CNN and is more

in line with our intuition on σ.

θ, which is the long term average variance of the asset price, is expected to be mostly influenced

by the long term behaviour of the data. Indeed, we find that for the CNN the features with most

importance are at (T = 1.5,K = 1.2) and (T = 1.5,K = 1.1) and at (T = 1.5,K = 0.5) and

(T = 1.8,K = 0.5) for the FNN

Finally, the reversion speed κ also seems to mostly consider positions relatively close to the wings

of the smile such as (T = 0.6,K = 0.5) and (T = 0.3,K = 0.8) for the CNN and (T = 0.3,K = 0.7)

and (T = 0.3,K = 0.8) for the FNN.

Overall, we expect v0 to capture information related to the level of the smile, and ρ, σ and κ

to the shape of the smile.

Figure 3.20 presents the overall feature importance for the model output P . It is equivalent

to summing the previous Shapley values for the set of parameters v0, ρ, σ, θ and κ and sorting the

summation from most to least important. In Figure 3.20(a), the top 10 volatilities that contribute

the most to the CNN output are mainly near ATM positions, and the maturities T = 0.1 and

T = 0.3 dominate the rank. On the other hand, Figure 3.20(b) indicates that the volatilities that

contribute the most to the FNN output do not necessarily have to be ATM. Some of the strikes are

at extreme positions, e.g. K = 1.5 and K = 0.5 and the majority of the maturities are T = 0.1 and
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Figure 3.18: CNN SHAP Values and Feature Importance of Each Model Parameter
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Figure 3.19: FNN SHAP Values and Feature Importance of Each Model Parameter
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(a) CNN

(b) FNN

Figure 3.20: SHAP Values Overall Feature Importance
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T = 0.3. We can also notice that the input data entries that affect the most the feature outputs are

volatilities at (T = 0.1,K = 1.0) and (T = 0.1,K = 0.9) for the CNN and the FNN respectively.

Overall, ATM volatilities at maturity T = 0.1 have the greatest impact on the model calibration.

We can conclude that the Shapley values, which aim at capturing the overall behaviour of the

neural networks, are in agreement with the common market practise of giving higher weights to At

The Money positions during calibration. We have not used any kind of weighting or bias towards

At The Money positions during the neural network calibration and regardless, the top feature of

Figure 3.20 is still At The Money for both the CNN and the FNN. However, note that the FNN,

which is more accurate than the CNN, still gives a lot of importance to other features which are

not necessarily close to the At The Money positions.

SHAP Explanation Force Plots and Clustering SHAP values

Shapley values can also be visualised as ”forces”. Each feature value can be thought of as a force

that either increases or decreases the prediction. The prediction starts from the average of all

predictions, which is taken as the baseline (or base value). Each Shapley value is then represented

as an arrow in the plot, that either pushes to increase or decreases the prediction. Positive values

that push to increase the prediction are represented in red and negative values that push to decrease

the prediction in blue. The red and blue colour features are stacked together on the edges of the

force plot to show their values on hover and how much those features influence the final output

value. All the forces balance each other out at the actual prediction [3].

Figure 3.21 displays two sample force plots for the CNN and the FNN force respectively. These

force plots are generated using the first observation (out of 1500 samples) in the test dataset to

predict the model output v0. Let’s consider Figure 3.21(b) as an example, the base value lies

between 0.5 and 0.55 as indicated by the grey vertical line. On the other hand, the model output

value is 0.61, which is highlighted in bold in the plot. As expected the base value and model output

do not coincide, although they are relatively close. Note that the volatility input with maturity

T = 0.1 and strike K = 1.0 has the highest positive value impact on both the CNN and the FNN

force plots.

If we repeat the force plot over 1500 observations and put them together vertically, it becomes

the force plot for all data as shown in Figure 3.22, known as the Clustering SHAP values. Notice

that the amplitude of the CNN force plot for all data is small in the middle but large both at the

beginning and the end. While the scale of FNN does not change much for mostly all data except

the last ones. Force plots of the other model parameters ρ, σ, θ and κ can be visualised with the

same method.
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(a) CNN

(b) FNN

Figure 3.21: Force Plots of v0 (0th Observation)

(a) CNN

(b) FNN

Figure 3.22: Force Plots of v0 (All Data)
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Decision Plot

For better illustration, we use the first 10 observations in our test dataset and plot the decisions

of our networks. The decision plots are shown in Figure 3.23. Each feature seems to push the

direction of the model output values. It is interesting to point out the decision paths ”converge” to

a narrow range of predicted output in the FNN, while in the CNN the paths fluctuate to opposite

direction in the middle of the plot. The most functioning features are mostly ATM in the CNN,

while in the FNN the features in the converging part are mostly at the wings of the smile.

(a) CNN (b) FNN

Figure 3.23: Decision Plots of v0 (All Data)

3.5 Other Methods

In complement to the local surrogate models and Deep SHAP, other interpretability methods are

implemented for the purpose of full comparison. In the following sections, results of Saliency

Maps, Gradients * Input, Integrated Gradients and Occlusion will be displayed. The attributions

obtained by these methods are the overall feature importance, i.e., the impact of the 5 parameters

on P . Additionally, they all can be implemented by using DeepExplain.

3.5.1 Saliency Maps

Saliency Maps always generates positive attributions because of its definition, the absolute value

of the partial derivative of the model output with respect to the input feature. Hence, there is

no need to take the absolute value of all attributions since they are positive already. Then we

just take the mean value over 1500 attrition for test samples and draw the bar plot and heat map

47



shown in Figure 3.24 and Figure 3.25.

It is interesting to find out the volatility of (T = 0.1,K = 1.4) is the most important feature

for both the CNN and the FNN. Particularly, we observe the most influential strikes for the FNN

are mostly located at the wings as shown in the heat map of Figure 3.25, while for the CNN the

most attributed strikes seem to be randomly located in the heat map of Figure 3.24.

Figure 3.24: CNN Saliency Attributions and Heat Map

Figure 3.25: FNN Saliency Attributions and Heat Map

3.5.2 Gradients * Input

It is relatively fast to use Gradients * Input to compute the feature importance compared with the

other methods. But one drawback of this method is that it might be affected by noisy gradients

and saturation due to nonlinearities.

The overall impact on the output P of both neural networks is displayed in Figure 3.26 and

Figure 3.27. As observed from the two heat maps, the most influential features of both networks

are the ones with short maturities and they are mostly within T = 0.3. For strikes, it is the same

case as Saliency Maps that the most important strikes of the FNN tend to sit at both wings of

strike range, while the ones in the CNN are randomly sitting in different positions in the range.
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Figure 3.26: CNN Gradients * Input Attributions and Heat Map

Figure 3.27: FNN Gradients * Input Attributions and Heat Map
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3.5.3 Integrated Gradients

Integrated Gradients uses similar logic to Gradients * Input, but it performs steps iterations

through the network, varying the input from a baseline x̄. The steps here is defaulted by 100,

and the baseline is chosen to be the zero array with the same size as the input (without the batch

dimension since the same baseline will be used for all inputs in the batch).

The attributions and heat maps are shown in Figure 3.28 and 3.29 for the CNN and the FNN

respectively. Interestingly, for our CNN the important volatility features are randomly distributed

on the top half of the heat map. These volatilities seem to follow no particular pattern. However,

the heat map of our FNN has a similar pattern to the previous two methods, that is, the most

important maturities are under T = 0.3. Nevertheless, the strikes not only concentrate around the

wings like Saliency and Gradients * Input, but also ATM volatilities have a relatively great impact

on the model output.

Figure 3.28: CNN Integrated Gradients Attributions and Heat Map

Figure 3.29: FNN Integrated Gradients Attributions and Heat Map
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3.5.4 Occlusion

Unlike the last three methods that are based on gradients, Occlusion is a perturbation-based

method. It computes rolling windows of input data and replaces each window with zero values,

evaluating the effect of the perturbation on the model output. By default, the step is set to be 1,

and the shape of the window is also set to be 1. In the case of larger window shapes, the feature

attributions in each window will be summed up. Hence, the results might differ considerably for

different window sizes.

Figure 3.30 shows the attributions and the CNN heat map with default window shape of 1. It

is notable that features with the highest attribution are located on the left half of the heat map,

and moreover gather in the middle maturities such as T = 1.2 and T = 0.9.

As for our FNN, the window shape is set to be 1 (default) and 3, and the respective attributions

are computed as presented in Figure 3.31 and Figure 3.32. In Figure 3.31, the volatility distribution

is the same as the one in Saliency and Gradients * Input: the topmost features are within short

maturities T = 0.3, and located at the wings of the strikes. While in Figure 3.32 with a window

shape 3, the highest attributions are listed in almost the same order as the flatten volatility matrix.

So it does not make sense to use a larger window size in our case. Actually, larger window sizes

perform well when the input data present local coherence, for example, in the neural networks for

images. Recall that the input data of the FNN are processed by ZCA whitening which de-correlate

the input volatility matrices. Thus it is better to use a window size of 1.

Figure 3.30: CNN Occlusion [1×1] Attributions and Heat Map
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Figure 3.31: FNN Occlusion [1×1] Attributions and Heat Map

Figure 3.32: FNN Occlusion [3×3] Attributions and Heat Map
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Chapter 4

Conclusion

The conclusions are summarised in three aspects: which neural network should be chosen, what

have the interpretability models explained, and future possible improvement of deep calibration.

The Choice of Deep Calibration Network

The Convolutional Neural Network (CNN) constructed in this context is inspired by the architec-

ture of the networks for image processing. Also, we are curious about how the commonly used

Feedforward Neural Network (FNN) behave in deep calibration so that it is constructed as well.

Compared with the performances of our defined CNN and FNN in Section 3.1, we can conclude

the FNN should be chosen for Heston calibration since it outperforms the CNN significantly:

• The relative errors of predictions in the FNN are considerably smaller than the errors in the

CNN. Using the FNN gives precise calibrated Heston model parameter v0, ρ, σ, θ, and κ.

• The model architecture of this FNN is quite concise and thus easy to implement. It has

flattened input with dimension 88, while the input of the CNN is 2-dimensional (8,11).

Higher dimensions could be problematic in later interpretability implementation.

Insights from Interpretability Models

Neural networks are nonlinear and non-local due to the backpropagation. Local surrogate models

(LIME, DeepLIFT and LRP) are based on localization and often linearity, so that they give

different interpretations locally for each individual prediction. While Shapley Values, specifically

Deep SHAP, provides global interpretations for feature impact on the model output. Other popular

explainable methods are complementary to the interpretability models, namely Saliency Maps,

Gradients * Input, Integrated Gradients and Occlusion. In practice, it is natural for us to expect

ATM volatility to be the most influential one in the calibration, since this volatility is the most
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liquid one. By reviewing all the methods, Shapley Values seems to capture those features most.

Hence, it makes more sense to chose the global interpretable method Shapley Values to be the

attribution benchmark. Through all the results, we can roughly conclude that for the overall

feature importance, volatilities with short maturities around ATM positions contribute the most

to model output P = [v0, θ, κ, σ, ρ] for both the CNN and the FNN. Note that our neural networks

treat each entry of input equally, i.e. not weighted, but the networks still highlight ATM volatilities

as the most impactive ones. This confirms that it is reasonable that people usually add more weights

on ATM positions in traditional calibration solvers.

Additionally, there are some model intuitions from the attributions of each individual Heston

model parameter:

• The attributions of v0 captures the volatilities with short maturities and ATM positions as

the topmost features, since v0 set up the initial value of the variance process.

• For ρ the most impactive features tend to have extreme strikes, i.e. wings of the strike range.

This is reasonable since correlation needs information through the shape of the smile, so that

extreme strikes are more relevant to the correlation value.

• There is a substantial discrepancy of our networks in the behaviour of σ: the CNN tends to

relate σ more to the ATM smile volatility, while the FNN to the wings of smiles. It is known

that a larger σ generates more randomness in the future instantaneous variance which leads

to more noticeable smile features. Therefore, the FNN is more in line with our intuition on

σ.

• The long term mean θ has more relevance to longer maturity options, since intuitively it is

defined by long term average variance.

• κ, the reversion speed, tend to be more relevant to the volatilities close to the wings of the

smile. It makes sense because the speed which variance vt reverts to the long term mean θ

is expected to be large at extreme positions to make the reversion faster.

Future Work

As we mentioned in Section 2.3, the Feller condition was imposed for input data, but some output

predictions of both our networks violate the condition. Both the CNN and the FNN try to blindly

approximate the calibration process without accounting for this condition. In future work, we

could consider adding an extra feature to our neural networks so that they do impose the Feller

condition by default on the output data.

Shapley values can explain feature attributions for each model output v0, ρ, σ, θ, and κ individ-

ually. While our current local surrogate models only give overall attributions for the whole output
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P , not for individual features. Therefore, the interpretation of local surrogates can be extended

to the level of the individual features in the future. Then we can research the difference between

local surrogates and global interpretation in each model parameter in the Heston model.

Also, currently our neural networks are trained using synthetic data with self-defined bounds for

each model parameter. In reality the market data could be noisy. It would be more interesting to

use real market calibrated data to train the networks and produce attribution results. Additionally,

as of now the neural network input is just the volatility smiles with the interest rate, dividend and

spot price set to be fixed values. For future work, these market information should be taken

into account and considered as extra input data, which will require to modify our current neural

network architectures.
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Appendix A

Model Summary

Figure A.1: CNN Model Summary

Figure A.2: FNN Model Summary
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