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Abstract

In this paper, we study the utility maximization problem with different utility functions and
stochastic factor models. There are four methods to solve the utility maximization problem, such
as primal HJB, dual HJB, primal FBSDE and dual FBSDE. Our goal in this paper is to prove that
these four methods have the exact same solutions for the utility maximization problem. We first
solve the utility maximization problem under geometric brownian motion assumption for power
utility function and non-HARA utility function. Closed formula solutions can be found showing
that we can get the exact same solution by these methods. Then we study this problem under
stochastic factor models. We can not get the closed formula solution in this case. So we use
numerical method to plot all the wealth processes from these four methods and compare them.
We check results with different time step size and calculate the mean square error to compare all
methods precisely. We conclude that we can have the same solution by these four methods.
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Chapter 1

Introduction

The utility maximization is a basic problem in mathematical finance and the axiomatic foundation
of it can be tracked back to Von Neumann and Morgenstern[24]. The goal of this problem is to
maximize the agent’s expected utility of the wealth at the end of time period by constructing
investment strategy in the market. Utility maximization problem is essentially optimal investment
problem. The trading strategies include short selling, borrowing and other restrictions. See [12]
for details.

Stochastic theory has a significant influence on solving financial problems. In 1951, Kiyosi Itô
established the theory of stochastic differential equation of Brownian motion in [11], which opened
a new way to study Markov process. J.L Doob published Stochastic processes [7] in 1953, where
the basic theory of stochastic processes were systematically defined. With the development of
stochastic theory and dynamic portfolio optimization, Merton published two landmark papers
[19][20] about Hamilton-Jacobi-Bellman equation in a Markovian context that introduced optimal
portfolio selection problem in continuous time. By stochastic control methods, Merton got the
optimal investment strategies and a closed formula for the value function. Pliska[23], Cox and
Huang[4][5], Karatzas et al.[13] had further researches and solved the optimal investment problem
in a non-Markov setting.

By solving the primal HJB equation, we can get the solution of utility maximization problem.
However, it is hard to solve the HJB equation for most utility functions. That led to emergence
of dual control method which provides an powerful tool to solve the utility maximization prob-
lem. Xu and Shreve[25] firstly employed the stochastic duality theory of Bismut[2] to study the
no-short-selling constrained optimal investment problem. The dual approach to the utility maxi-
mization problem was initial formulated in a complete market by Pliska[23], Cox and Huang[4] and
Karatzas, Lehoczky and Shreve[13]. Karatzas et al.[14], He and Pearson[9][10] and Kramkov and
Schachermayer[15][16] then used this method in the incomplete market. Cvitanić and Karatzas[6]
considered the case of constrained strategies. This approach is to convert constrained problem into
a family of unconstrained problems and find a optimal one. Dual problem can be transformed into
primal problem by derivation. However, it is sometimes difficult to obtain the corresponding dual
problem. Labbé and Heunis[17] introduced a simply method to construct the corresponding dual
problem. Although dual problem are often easier to solve than primal method, sometimes we still
can’t find the closed formula solution for dual problem. In this case, numerical method should be
used to solve primal problem and dual problem.

Bismut[3] introduced backward stochastic differential equations(BSDEs) in the linear case in 1976.
Pardoux and Peng studied the general nonlinear case in the paper [21]. Their connections with
mathematical finance, stochastic control and partial differential equations make BSDEs popular.
El Karoui, Peng and Quenez published the first paper[8] about applications of BSDEs in math-
ematical finance. BSDEs provides a probabilistic representation for nonlinear PDEs, extending
the Feymann-Kac formula for linear PDEs. Thus this representation creates a possibility to use
numerical method to solve nonlinear PDEs. Øksendal and Sulem[26] proved that the relationship
between optimal primal wealth processes, optimal strategy processes and optimal adjoint processes
of dual problem obtained from forward and backward stochastic differential equations(FBSDEs).
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Li and Zheng[18] constructed the necessary and sufficient conditions for both the primal and dual
problems in terms of forward and backward stochastic differential equations. By this formula, we
can get the results of primal problem by solving the corresponding dual FBSDEs and vice versa.

In this paper, we study the utility maximization problem with different utility function. Four
methods are used to solve this problem such as primal HJB, dual HJB, primal FBSDEs and dual
FBSDEs. The goal of this paper is to prove we can get the exact same solution for this problem
by four methods. The market model setting and theorems used in this paper are mainly referred
to the paper written by Li and Zheng[18] and this paper is mainly divided into two parts. In
the first part, we set up the market model. Here we assume that market has only two assets,
one risk-free asset and one risky asset satisfying geometric Brownian motion(GBM). We solve
the utility maximization problem with all coefficients are constant and control set K = R. We
first use Dynamic Programming Principle to get the HJB equation and solve the primal problem.
One example about power utility function is given to show that the primal HJB method works.
However, primal HJB method has some shortcomings in solving complex utility functions such as
non-HARA utility function. Then we construct the dual problem and find the dual process. We
can find that the dual problem can be converted into the primal problem. Then necessary and
sufficient conditions theorems and dynamic relations of primal and dual problems are introduced.
We compare results of dual HJB and dual FBSDEs for power utility function and non-HARA utiliy
function to show that two methods have the exact same solutions. In the second part, we try to
solve the utility maximization under the stochastic factor model and control set is still the whole
space. We divide the second part into three subsections. In the first subsection, the drift term
of risky asset price is replaced by CIR a affine process. We have semi-linear PDEs from primal
method and dual method which can be represented by BSDEs [22]. Further research on how to
solve the BSDEs in this problem can be discussed in the future. The only difference between the
second subsection and the first subsection is the utility function. We use log utility function in
this subsection. The value functions can be solved from primal HJB and dual HJB equations by
ansatzs. Primal FBSDEs and dual FBSDEs approaches can be solved numerically. We plot sam-
ple paths of optimal wealth processes and optimal control processes for four methods to compare
the solution of each method. In addition, we compute the mean squared errors for each method.
We do the same work in the third subsection as we do in the second subsection. The only differ-
ence is that the drift term of risky asset price goes from H to

√
H and we consider two special cases.

The rest of the paper is organized as follows. Chapter 2 and Chapter 3 correspond to the first part
and the second part mentioned above. Chapter 4 concludes the paper.
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Chapter 2

Unconstrained Utility
Maximization Problem under
Geometric Brownian Motion

2.1 Market Model Set up

Let W = (Wt)0≤t≤T be a standard 1-dimension Brownian motion on a complete filtered probability
space (Ω,F ,F,P) where F = (Ft), t ∈ [0, T ] is the natural filtration induced by W , and T > 0 is a
fixed termial time.

We denote by P(0, T ;RN ) the set of all RN -valued progressively measurable processes on [0, T ]×Ω,
by S2(0, T ;RN ) the set of processes Y in P(0, T ;RN ) such that

E[ sup
0≤t≤T

|Yt|2dt] <∞

and by H2(0, T ;RN ) the set of processes Z in P(0, T ;RN ) such that

E[

∫ T

0

|Zt|2dt] <∞

Assume market has two assets, risk-free asset(saving account) S0, risky asset S, satisfying SDE:{
dS0(t) = rS0(t)dt

dS(t) = S(t)(µdt+ σdW (t))
(2.1.1)

with S0(0) = 1, S(0) = S > 0, where r, µ, σ are all constant, W is a standard Brownian motion.
We also assume that σ > 0.

Assume πt is an Ft−adapted process,
∫ T
0
π2
t dt < ∞ a.s. and πt is proportional portfolio pro-

cess. Define the set of admissible portfolio strategies by

A := {π ∈ H2(0, T ;R) : π(t) ∈ K = R for t ∈ [0, T ] a.e.}

Given any π ∈ A, we define Xπ
t is the investor’s total wealth at time t. Then πtX

π
t is amount of

money invested in S and (1−πt)Xπ
t is amount of money in saving account S0. The wealth process

Xπ satisfies SDE:
dXπ(t) = Xπ(t)[(r + π(t)σθ)dt+ π(t)σdW (t)] (2.1.2)

with initial wealth Xπ(0) = x, where θ = µ−r
σ is the market price of risk.

Let U : R+ , [0,∞) → R be a given utility function that is twice continuously differentiable,
strictly increasing, strictly concave and satisfy the following conditions:

U(0) = lim
x→0

U(x) > −∞, lim
x→0

U
′
(x) =∞, lim

x→∞
U
′
(x) = 0
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We set U(x) = −∞ if x < 0.

Define the value function of the expected utility maximization problem as

V , sup
π∈A

E[U(Xπ(T ))] (2.1.3)

V (t, x) = sup
π∈A

E[U(Xπ(T ))|Xπ(t) = x] (2.1.4)

To avoid trivialities, we assume that

−∞ < V < +∞

2.2 Dynamic Programming Principle and Primal HJB Method

From Bellman[1], we have the following theorem.

Theorem 2.1.1 (Dynamic Programming Principle) For any h ≥ 0

V (t, x) = sup
π∈A

E[V (t+ h,Xπ
t+h)|Xπ

t = x] (2.2.1)

This theorem has a significant influence on solving stochastic control problem. Assume V ∈ C1,2.
By Ito’s formula, we have

V (t+ h,Xπ
t+h) = V (t, x) +

∫ t+h

t

(
∂V (s,Xπ

s )

∂s
ds+

∂V (s,Xπ
s )

∂x
dXπ

s +
1

2

∂2V (s,Xπ
s )

∂x2
d[Xπ, Xπ]s)

= V (t, x) +

∫ t+h

t

(
∂V

∂s
+
∂V

∂x
(rXπ

s + πsX
π
s θσ) +

1

2

∂2V

∂x2
π2
sX

π
s
2σ2)ds

+

∫ t+h

t

∂V

∂x
πsXsσdWs (2.2.2)

Substituting (2.2.2) to DPP(2.2.1), then canceling V (t, x), we can get:

0 = sup
π
E[

∫ t+h

t

(
∂V

∂s
+
∂V

∂x
(rXπ

s + πsX
π
s θσ) +

1

2

∂2V

∂x2
π2
sX

π
s
2σ2)ds|Xπ

t = x] (2.2.3)

divide by h > 0 on both sides of the equation(2.2.3) and then let h→ 0. By Mean Value Theorem,
s→ t, Xπ

s → Xπ
t = x, we can get

∂V (t, x)

∂t
+ rx

∂V

∂x
+ sup

π
(πxθσ

∂V

∂x
+

1

2
π2x2σ2 ∂

2V

∂x2
) = 0 (2.2.4)

called Hamilton-Jacobi-Bellman(HJB) equation. Terminal condition is given by

V (T, x) = sup
π
E[U(Xπ(T ))|Xπ(T ) = x] = U(x)

Value function V (t, x) satisfies HJB equation, thus we need to solve PDE(2.2.4). If V is strictly
concave in x, then Vxx < 0. The maximum point π∗ in (2.2.4) satisfies

xθσVx + π∗x2σ2Vxx = 0

which gives

π∗t,x = − θ
σ

Vx
xVxx

(2.2.5)

Substituting π∗ into HJB and simplifying the expression, we get

Vt + rxVx −
1

2
θ2
V 2
x

Vxx
= 0 (2.2.6)
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with terminal condition V (T, x) = U(x). (2.2.6) is hard to solve because it is a nonlinear PDE. We
need to guess an ansatz for it. Here is an example where we can solve the primal HJB equation
directly to get the solution of utility maximization problem.

Example 2.2.1(power utility function) U is a power utility function defined by

U(x) =
1

β
xβ , x ∈ (0,∞)

where β ∈ (0, 1) is a constant. In this case, we know that V (t, x) = U(x)f(t). Substituting it into
(2.2.6), we can get

1

β
xβ
∂f

∂t
+ rxxβ−1f − 1

2
θ2

x2β−2f2

(β − 1)xβ−2f
= 0

Simplifying this equation to get a ODE for f

1

β
ft + rf − θ2

2(β − 1)
f = 0

with the terminal condition f(T ) = 1. By solving this ODE, we can get f

f(t) = exp(β(r +
θ2

2(1− β)
)(T − t))

So the value function V (t, x) is

V (t, x) = U(x)f(t) = U(x) exp(β(r +
θ2

2(1− β)
)(T − t))

The maximum of the Hamiltonian in the HJB equation is achieved at

π∗(t, x) = − θ
σ

Vx
xVxx

=
θ

(1− β)σ

Substituting π∗(t, x) = θ
(1−β)σ into the wealth equation we get the wealth process Xπ

t satisfying a

linear SDE

dXπ∗

t = Xπ∗

t

(
(r +

θ2

1− β
)dt+

θ

1− β
dWt

)
with initial wealth Xπ(0) = x

The optimal wealth process is given by

Xπ∗

t = x exp((r +
(1− 2β)θ2

2(1− β)2
)t+

θ

1− β
Wt)

In this example, the utility function is power utility so we can solve the HJB PDE easily, which
means primal HJB method works. However, if U is not power(or log) such as non-HARA utility
function, it is difficult to solve the HJB PDE. In next section, we will introduce Dual Control
Method to solve Utility Maximization problem.

2.3 Dual problem and Dual HJB Method

First of all, we define the dual function of U as

Ũ(y) = sup
x>0

(U(x)− xy) (2.3.1)

If y < 0, we can easily have Ũ(y) =∞ . Ũ is twice continuously differentiable, strictly decreasing
and strictly convex on (0,∞).

The dual process Y is a strictly positive and has the following semi-martingale decomposition:

dY (t) = Y (t)(αdt+ βdW (t)), 0 ≤ t ≤ T
Y (0) = y (2.3.2)
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We need to choose α and β such that XπY is a super-martingale for all admissible control process
π ∈ A.

By applying Ito’s lemma, we have

d(Xπ(t)Y (t)) = Xπ(t)dY (t) + Y (t)dXπ(t) + d[Xπ, Y ]t

= Xπ(t)Y (t)[(α+ r + π(t)θσ + π(t)βσ)dt+ (π(t)σ + β)dW (t)]

Xπ(0)Y (0) = xy

XπY is a super-martingale if and only if

α+ r + π(t)θσ + π(t)βσ ≤ 0

for all π ∈ K a.s. for a.e. t ∈ [0, T ]. Thus we can have

α+ r + δK(−σ(θ + β)) ≤ 0

where δK(z) = supπ∈K{−πz} is the support function of the set −K.

Define v = −σ(θ + β). We have

α ≤ −(r + δK(v)), β = −(θ−1v + θ)

According to the assumption, we know K = R and σ > 0. Then we can get:

θ + β = 0, β = −θ
α+ r ≤ 0, α ≤ −r (2.3.3)

Recall the definition of dual function of U :

Ũ(y) = sup
x>0

(U(x)− xy)

We have
U(x) ≤ Ũ(y) + xy,∀x, y > 0

and the equality holds if and only if U
′
(x) = y. Therefore,

E[U(Xπ(T ))] ≤ E[Ũ(Y (T ))] + E[Xπ(T )Y (T )] ≤ E[Ũ(Y (T ))] + xy

which leads to
sup
π
E[U(Xπ(T ))] ≤ inf

y,α
(E[Ũ(Y (T ))] + xy)

For any fixed y, the solution Y of SDE(2.3.2) satisfying condition(2.3.3) is bounded above by the
process Y (y) satisfying the SDE:

dY (y)(t) = −Y (y)(t)(rdt+ θdW (t)), 0 ≤ t ≤ T
Y (y)(0) = y (2.3.4)

That is equivalent to Y (t) ≤ Y (y)(t) a.s. for 0 ≤ t ≤ T . Then E[Ũ(Y (T ))] ≥ E[Ũ(Y (y)(T ))] for
any fixed y because Ũ is a strictly decreasing function. We can get the optimal α is −r. The dual
process Y satisfies

dY (t) = −Y (t)(rdt+ θdW (t)), 0 ≤ t ≤ T
Y (0) = y (2.3.5)

The optimal value of the dual minimization problem is defined by

Ṽ , inf
y∈(0,∞)

(xy + E[Ũ(Y (T ))]) (2.3.6)

Define V̂ (t, y) = E[Ũ(Y (T ))|Y (t) = y] and

Ṽ (t, x) = inf
y∈(0,∞)

(xy + V̂ (t, y)) (2.3.7)
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Any ŷ ∈ (0,∞) satisfying xŷ + E[Ũ(Y (T ))] = Ṽ (x) is called the optimal dual control and the
corresponding Y is called the fgoptimal dual process.

Then we will solve the dual minimization problem. For 0 ≤ t ≤ T , minimum points is obtained by
solving

∂V̂ (t, y)

∂y
+ x = 0 (2.3.8)

Since V̂ (t, ·) is strictly convex, V̂y(t, ·) is strictly increasing. That means there exists unique y
solving (2.3.8), write it ỹ = y(t, x). Since the process start from time 0, by setting t = 0, we have
ŷ = y(0, x). Then we can get:

Ṽ (t, x) = V̂ (t, y(t, x)) + xy(t, x) (2.3.9)

By (2.3.9):

Ṽt = V̂t + V̂y
∂y

∂t
+ x

∂y

∂t

= V̂t + (V̂y + x)
∂y

∂t

= V̂t (2.3.10)

Ṽx = V̂y
∂y

∂x
+ y + x

∂y

∂x
= y (2.3.11)

Ṽxx =
∂y

∂x
(2.3.12)

By (2.3.8):

∂(V̂y + x)

∂x
= V̂yy

∂y

∂x
+ 1 = 0

⇒
∂y

∂x
= − 1

V̂yy

∴

Ṽxx = − 1

V̂yy

Recall
V̂ (t, y) = E[Ũ(Y (T ))|Y (t) = y]

dY (t) = −Y (t)(rdt+ θdW (t)), 0 ≤ t ≤ T

By Feynman-Kac Theorem[22], V̂ satisfies a linear PDE(called dual HJB equation):

V̂t − ryV̂y +
1

2
θ2y2V̂yy = 0, V̂ (T, y) = Ũ(y) (2.3.13)

Substitute y, V̂y, V̂yy, V̂t into (2.3.13)

Ṽt − rṼx(−x) +
1

2
θ2Ṽ 2

x (− 1

Ṽxx
) = 0

Ṽt + rxṼx −
1

2
θ2
Ṽ 2
x

Ṽxx
= 0 (2.3.14)

that is exactly the HJB equation

Ṽ (T, x) = inf
y∈(0,∞)

(xy + V̂ (T, y)) = inf
y∈(0,∞)

(xy + Ũ(y)) = U(x)

We have shown that Ṽ is a classical solution to the HJB equation and satisfies the terminal con-
dition. The significance of this result is that we no longer to guess a solution form of the HJB
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equation, which is almost impossible for general utility function except for power or log utility
functions. That means we can find a representation of the classical solution to the HJB equation
via two simple convex dual operations and solution of a linear PDE.

Here are two examples of solving Utility Maximization problem by this method.

Example 2.3.1(power utility function) U is a power utility function defined by U(x) =
1
βx

β , x ∈ (0,∞), where β ∈ (0, 1) is a constant. In this case, the dual problem can be written as

Ṽ (t, x) = inf
y∈(0,∞)

(xy + E[Ũ(Y (T ))|Y (t) = y] = inf
y∈(0,∞)

(xy + V̂ (t, y))

The dual function of U is

Ũ(y) = sup
x>0

(
1

β
xβ − xy)

Taking derivative with respect to x of 1
βx

β − xy and set it equal to be 0, we have

xβ−1 − y = 0, x = y
1

β−1

Then the dual function can be written as Ũ(y) = − 1
αy

α where α = β
β−1 is a negative constant.

And the dual value function is given by

V̂ (t, y) = E[Ũ(Y (T ))|Y (t) = y]

where Y satisfies the SDE(2.3.5). By calculating, we have

V̂ (t, y) = Ũ(y) exp((
1

2
α(α− 1)θ2 − αr)(T − t))

where θ = µ−r
σ .

To solve

inf
y∈(0,∞)

(xy + V̂ (t, y))

We can take derivative with respect to y and then set it to be 0. We have:

x− yα−1 exp((
1

2
α(α− 1)θ2 − αr)(T − t)) = 0

Then we can get ỹ = y(t, x)

y(t, x) = x
1

α−1 exp((−1

2
αθ2 +

αr

α− 1
)(T − t))

ŷ = y(0, x) = x
1

α−1 exp((−1

2
αθ2 +

αr

α− 1
)T )

⇒
V (t, x) = Ṽ (t, x) = xy(t, x) + V̂ (t, y(t, x)) = U(x) exp(β(r +

1

2
θ2

1

1− β
)(T − t))

Recall that π∗(t, x) = − θ
σ

Vx
xVxx

. By calculating Vx = xβ−1 exp(β(r + 1
2θ

2 1
1−β )(T − t)) and Vxx =

(β − 1)xβ−2 exp(β(r + 1
2θ

2 1
1−β )(T − t)) and then substituting them into this equation, we have

π∗(t, x) =
θ

(1− β)σ

Substituting π∗(t, x) = θ
(1−β)σ into the wealth equation we can get

dXπ∗

t = Xπ∗

t

(
(r +

θ2

1− β
)dt+

θ

1− β
dWt

)
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with initial wealth Xπ(0) = x

The optimal wealth process is given by

Xπ∗

t = x exp((r +
(1− 2β)θ2

2(1− β)2
)t+

θ

1− β
Wt)

Compared with example 2.2.1, example 2.3.1 get the exact same solution of optimal wealth
process by using dual HJB method.

Example 2.3.2(non-HARA utility function) Another example is the non-HARA utility max-
imization. U is a non-HARA utility function defined by U(x) = 1

3H(x)−3 + H(x)−1 + xH(x) for

x > 0, where H(x) =
√

2(−1 +
√

1 + 4x)−1/2. In this case, the dual function of U is

Ũ(y) = sup
x>0

(
1

3
H(x)−3 +H(x)−1 + xH(x)− xy)

Taking derivative with respect to x of 1
3H(x)−3 +H(x)−1 + xH(x)− xy and set it equal to be 0,

we have
−H(x)−4H

′
(x)−H(x)−2H

′
(x) +H(x) + xH

′
(x) = y

By calculating, we can get −H(x)−4H
′
(x)−H(x)−2H

′
(x) + xH

′
(x) = 0, which means H(x) = y.

Then the dual function can be written as Ũ(y) = 1
3y
−3 + y−1 + xy − xy = 1

3y
−3 + y−1. And

the dual value function is given by

V̂ (t, y) = E[Ũ(Y (T ))|Y (t) = y]

where Y satifies the SDE(2.3.5). So we have Y (T ) = Y (t) exp(−(r + θ2

2 )(T − t)− θWT−t)

Therefore,

V̂ (t, y) = E

[
1

3
y−3 exp(3(r +

θ2

2
)(T − t) + 3θWT−t) + y−1 exp((r +

θ2

2
)(T − t) + θWT−t)

]
=

1

3
y−3 exp(3(r +

θ2

2
)(T − t))E[exp(3θWT−t)] + y−1 exp((r +

θ2

2
)(T − t))E[exp(θWT−t)]

=
1

3
y−3 exp(3(r +

θ2

2
)(T − t)) exp(

9θ2(T − t)
2

) + y−1 exp((r +
θ2

2
)(T − t)) exp(

θ2(T − t)
2

)

=
1

3
y−3 exp((3r + 6θ2)(T − t)) + y−1 exp((r + θ2)(T − t))

Same as the example 2.3.1, we also need to solve

inf
y∈(0,∞)

(xy + V̂ (t, y))

Taking derivative with respect to y and then set it to be 0. We have:

x = y−4 exp((3r + 6θ2)(T − t))− y−2 exp((r + θ2)(T − t))

xy4 − exp((3r + 6θ2)(T − t))− y2 exp((r + θ2)(T − t)) = 0

y2 =
exp((r + θ2)(T − t)) +

√
exp((2r + 2θ2)(T − t)) + 4x exp((3r + 6θ2)(T − t))

2x

ỹ = y(t, x) =
1√
2x

[
exp((r+ θ2)(T − t)) +

√
exp((2r + 2θ2)(T − t)) + 4x exp((3r + 6θ2)(T − t))

] 1
2

And ŷ = y(0, x). Then

V (t, x) = Ṽ (t, x) = xy(t, x) + V̂ (t, y(t, x))

= xỹ +
1

3
ỹ−3 exp((3r + 6θ2)(T − t)) + ỹ−1 exp((r + θ2)(T − t))

13



Recall that π∗(t, x) = − θ
σ

Vx
xVxx

, Vx = Ṽx = ŷ and Vxx = Ṽxx = − 1
V̂yy

, we have

π∗(t, x) =
θ

σ

ŷV̂yy
x

We can get V̂yy from previous equation. Then

π∗(t, x) =
θ

σ

4ŷ−4 exp((3r + 6θ2)(T − t)) + 2ŷ−2 exp((r + θ2)(T − t))
x

Substituting π∗(t, x) = θ
σ

4ŷ−4 exp((3r+6θ2)(T−t))+2ŷ−2 exp((r+θ2)(T−t))
x into the wealth equation we

have

dXπ∗

t =

[
θ2
(

4ŷ−4 exp((3r + 6θ2)(T − t)) + 2ŷ−2 exp((r + θ2)(T − t))
)

+ rXπ∗

t

]
dt

+ θ

(
4ŷ−4 exp((3r + 6θ2)(T − t)) + 2ŷ−2 exp((r + θ2)(T − t))

)
dWt

Equation 2.3.8 holds for all π ∈ A. Thus we have

Xπ∗

t = Y −4t exp((3r + 6θ2)(T − t))− Y −2t exp((r + θ2)(T − t))

where Yt satisfies

dY (t) = −Y (t)(rdt+ θdW (t)), 0 ≤ t ≤ T
Y (0) = ŷ

We have Yt = ŷ exp(−(r + θ2

2 )t− θWt) and

Xπ∗

t = Y −4t exp((3r + 6θ2)(T − t))− Y −2t exp((r + θ2)(T − t))

= ŷ−4 exp(4(r +
θ2

2
)t+ 4θWt) exp((3r + 6θ2)(T − t))

+ ŷ−2 exp(2(r +
θ2

2
)t+ 2θWt) exp((r + θ2)(T − t))

= ŷ−4e3(r+2θ2)T e(r−4θ
2)t+4θWt + ŷ−2e(r+θ

2)T ert+2θWt

2.4 Necessary and sufficient conditions for primal problems

In this part, all the setting, lemmas and theorems are from Li and Zheng[18]. There will be N
risky assets and all coefficients are processes.

Recall the wealth process Xπ
t satisfying SDE:

dXπ
t = Xπ

t [(r(t) + πT (t)σ(t)θ(t))dt+ πT (t)σ(t)dWt]

with initial wealth x, where θ(t) = µ(t)−r(t)
σ(t) and W is a standard Brownian motion. The value

function is
V , sup

π∈A
E[U(Xπ(T ))]

V (t, x) = sup
π∈A

E[U(Xπ(T ))|Xπ(t) = x]

Given an admissble control π ∈ A and a solution Xπ, the associated adjoint equation is the
following linear BSDE in the unknown processes p1 ∈ H2(0, T ;R) and q1 ∈ H2(0, T ;RN )

dp1(t) = −[(r + πT (t)σ(t)θ(t))p1(t) + qT1 (t)σT (t)π(t)]dt+ qT1 (t)dW (t)

p1(T ) = −U
′
(Xπ(T )) (2.4.1)

Define the Hamiltonian function H by

H(t, x, π, p1, q1) , x(r(t) + πTσ(t)θ(t))p1 + xπTσ(t)q1 (2.4.2)
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Then the adjoint process is a pair of processes (p1, q1) satisfying the following BSDE

dp1(t) = − ∂

∂x
H(t,Xπ(t), π(t), p1(t), q1(t))dt+ qT1 (t)dW (t)

with the terminal condition p1(T ) = −U ′(Xπ(T )), which is the BSDE(2.4.1).

Lemma 2.4.1 Let π∗ ∈ A and strictly positive, adapted process Xπ∗ satisfy the SDE(2.1.2).
Then there exists a unique solution (p̂1, q̂1) to the adjoint BSDE(2.4.1).

Theorem 2.4.2 (Primal problem and associated FBSDE) Let π∗ ∈ A. Then π∗ is opti-
mal for the primal problem if and only if the solution (Xπ∗ , p̂1, q̂1) of FBSDE

dXπ∗(t) = Xπ∗ [(r(t) + π∗T (t)σ(t)θ(t))dt+ π∗T (t)σ(t)dW (t)]

Xπ∗(0) = x

dp̂1(t) = −[(r(t) + π∗T (t)Tσ(t)θ(t))p̂1(t) + q̂1
T (t)σT (t)π∗(t)]dt+ q̂1

T (t)dW (t)

p̂1(T ) = −U
′
(Xπ∗(T )) (2.4.3)

satisfies the condition

−Xπ∗(t)σ(t)[θ(t)p̂1(t) + q̂1(t)] ∈ NK(π∗(t)), ∀t ∈ [0, T ],P− a.s. (2.4.4)

where NK(x) is the normal cone of the closed convex set K at x ∈ K, defined as

NK(x) , {y ∈ RN : ∀x∗ ∈ K, y(x∗ − x) ≤ 0}

According to the assumption, we know all coefficients are constant, σ > 0 and K = R. Then we
have

θp̂1(t) + q̂1(t) = 0 (2.4.5)

Substituting (2.4.5) into (2.4.3) we have

dXπ∗(t) = Xπ∗ [(r + π∗(t)σθ)dt+ π∗(t)σdW (t)]

Xπ∗ = x

dp̂1(t) = −rp̂1(t)dt− θp̂1(t)dW (t)

p̂1(T ) = −U
′
(Xπ∗(T )) (2.4.6)

2.5 Necessary and sufficient conditions for dual problems

In this part, all the setting, lemmas and theorems are from Li and Zheng[18]. There will be N risky
assets and all coefficients are processes. We address the dual problem. We assume that for any
(y, v) ∈ (0,∞) × D, E[Ũ(Y (y,v)(T ))2] < ∞ to ensure the existence of an optimal solution. Given
an admissible dual control (ŷ, v̂) ∈ (0,∞)×D with the dual process Y (ŷ,v̂), the associated adjoint
equation for dual problem is the following linear BSDE in the unknown processes p̂2 ∈ H2(0, T ;R)
and q̂2 ∈ H2(0, T ;RN )

dp̂2(t) = {[r(t) + δK(v̂(t))]p̂2(t) + q̂2
T (t)[θ(t) + σ−1(t)v̂(t)]}dt+ q̂2

T (t)dW (t)

p̂2(T ) = −Ũ
′
(Y (ŷ,v̂)(T )) (2.5.1)

Since p̂2Y
(ŷ,v̂) is a martingale, we can find p̂2(t), 0 ≤ t ≤ T from the relation

p̂2(t)Y (ŷ,v̂)(t) = E[p̂2(T )Y (ŷ,v̂)(T )|Ft] = −E[Ũ
′
(Y (ŷ,v̂)(T ))Y (ŷ,v̂)(T )|Ft] (2.5.2)

Lemma 2.5.1 Let (y, v) ∈ (0,∞) × D and Y (y,v) be the corresponding state process satisfying
the SDE(2.3.4). Then the random variable Y (y,v)(T )Ũ

′
(Y (y,v)(T )) is square integrable and there

exists a solution to the adjoint BSDE(2.5.1)
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Theorem 2.5.2 (Dual problem and associated FBSDE) Let (ŷ, v̂) ∈ (0,∞)×D. Then (ŷ, v̂)
is optimal for the dual problem if and only if the solution (Y (ŷ,v̂), p̂2, q̂2) of FBSDE

dY (ŷ,v̂)(t) = −Y (ŷ,v̂)(t){[r(t) + δK(v̂(t))]dt+ [θ(t) + σ−1(t)v̂(t)]dW (t)}
Y (ŷ,v̂)(0) = ŷ

dp̂2(t) = {[r(t) + δK(v̂(t))]T p̂2(t) + q̂2
T (t)[θ(t) + σ−1(t)]}dt+ q̂2

T (t)dW (t)

p̂2(T ) = −Ũ
′
(Y (ŷ,v̂)(T )) (2.5.3)

satisfies the condition

p̂2(0) = x

p̂2(t)−1[σ(t)]−1q̂2(t) ∈ K
p̂2(t)δK(v̂(t)) + q̂2(t)σ−1(t)v̂(t) = 0,∀t ∈ [0, T ]P− a.s. (2.5.4)

2.6 Dynamic relations of primal and dual problems

We state the dynamic relations of the optimal portfolio and wealth processes of the primal problem
and the adjoint processes of the dual problem and vice versa from Li and Zheng[18].

Theorem 2.6.1 (From dual problem to primal problem) Suppose that (ŷ, v̂) ∈ (0,∞) × D
is optimal for the dual problem. Let (Y (ŷ,v̂), p̂2, q̂2) be the associated process that solve the FB-
SDE(2.5.3) and satisfies condition (2.5.4). Define

π∗(t) ,
[σ(t)]−1q̂2(t)

p̂2(t)
, t ∈ [0, T ] (2.6.1)

Then π∗ is the optimal control for the primal problem with initial wealth x. The optimal wealth
process and associated adjoint process are given by

Xπ∗(t) = p̂2(t)

p̂1(t) = −Y (ŷ,v̂)(t)

q̂1(t) = Y (ŷ,v̂)(t)(σ−1(t)v̂(t) + θ(t)) (2.6.2)

Theorem 2.6.3 (From primal problem to dual problem) Suppose that π∗ ∈ A is optimal
for primal problem with initial wealth x. Let (Xπ∗ , p̂1, q̂1) be the associated process that satisfies
the FBSDE(2.4.3) and condition (2.4.4). Define

ŷ , −p̂1(0)

v̂(t) , −σ(t)[
q̂1(t)

p̂1(t)
+ θ(t)], ∀t ∈ [0, T ] (2.6.3)

Then (ŷ, v̂) is the optimal control for the dual problem. The optimal dual process and associated
adjoint process are given by

Y (ŷ,v̂)(t) = −p̂1(t),

p̂2(t) = X π̂(t),

q̂2(t) = σT (t)π̂(t)X π̂(t). (2.6.4)

Here are two examples that we use primal and dual FBSDE method to solve the maximization
problem.

Example 2.6.1(power utility function) Recall that power utility function U(x) = 1
βx

β , Ũ(y) =

1−β
β y

β
β−1 , Ũ

′
(y) = −y

1
β−1 . We have calculated before that Y (T ) = y exp(−(r+ θ2

2 )T−θWT ). Then
we can get

Y (ŷ)(T ) = ŷ exp(−(r +
θ2

2
)T − θWT )
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Since p̂2Y
(ŷ) is a martingale, we have

p̂2(t)Y (ŷ)(t) = E[p̂2(T )Y (ŷ)(T )|Ft] = −E[Ũ
′
(Y (ŷ)(T ))Y (ŷ)(T )|Ft]

= E[Y (ŷ)(T )
β
β−1 |Ft]

= ŷ
β
β−1 exp(− β

β − 1
(r +

θ2

2
)T − θβ

β − 1
Wt) exp(

1

2
θ2(

β

β − 1
)2(T − t))

So we can get p̂2(t)

p̂2(t) = ŷ
β
β−1 exp(− β

β − 1
(r +

θ2

2
)T − θβ

β − 1
Wt) exp(

1

2
θ2(

β

β − 1
)2(T − t))

ŷ−1 exp((r +
θ2

2
)t+ θWt)

= ŷ
1

β−1 exp(− β

β − 1
rT +

1

2

βθ2

(β − 1)2
T ) exp(− θ

β − 1
Wt) exp(rt+

1

2

(1− 2β)θ2

(β − 1)2
t)

By Theorem 2.5.2, we need to satisfy three conditions. The second and third conditions always
hold by our assumption. We need to check the first condition.

p̂2(0) = ŷ
1

β−1 exp(− β

β − 1
rT +

1

2

βθ2

(β − 1)2
T ) = x

Only when ŷ = xβ−1 exp(βrT − 1
2
βθ2

β−1T ), the first condition holds. Therefore, we can get

p̂2(t) = x exp(rt+
1

2

(1− 2β)θ2

(β − 1)2
t+

θ

β − 1
Wt)

Applying Ito’s lemma on p̂2, we have

dp̂2(t) = p̂2

[(
r +

(1− 2β)θ2

2(β − 1)2
+

1

2
(

θ

1− β
)2
)
dt+

θ

1− β
dWt

]
Comparing with FBSDE(2.5.3), we have

q̂2(t) =
θ

1− β
p̂2(t)

Applying Theorem 2.6.1, we have

π∗ =
q̂2(t)

σp̂2(t)
=

θ

(1− β)σ

Xπ∗(t) = p̂2(t) = x exp(rt+
(1− 2β)θ2

2(1− β)2
t+

θ

1− β
W (t))

Compared with example 2.3.1, example 2.6.1 get the exact same solution of optimal wealth by
using dual FBSDE method.

Then we need to verify the optimal control and wealth process are correct. Define ŷ = −p̂1(0),

v̂(t) = −σ[ q̂1(t)p̂1(t)
+ θ] = 0

We know that dXπ∗(t) = Xπ∗ [(r + π∗(t)σθ)dt+ π∗(t)σdW (t)], then we have

dXπ∗(t) = Xπ∗(t)((r +
θ2

1− β
)dt+

θ

1− β
dWt)

H(t, x, a, p1, q1) = x(r +
θ2

1− β
)p1 + x

θ

1− β
q1

Then we have

−dp̂1(t) = ((r +
θ2

1− β
)p̂1(t) +

θ

1− β
q̂1(t))dt− q̂1(t)dWt

= rp̂1(t)dt+ θp̂1(t)dWt
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⇒
p̂1(t) = p̂1(0) exp(−(r +

θ2

2
)t− θWt)

So we have
Y (ŷ)(t) = −p̂1(t)

We can also get
p̂2 = X π̂(t)

q̂2 = σT (t)π̂(t)X π̂(t)

which means the optimal control and wealth process are correct.

Example 1.5(non-HARA utility function) Recall that non-HARA utility function U(x) =
1
3H(x)−3 +H(x)−1 +xH(x) for x > 0, where H(x) =

√
2(−1+

√
1 + 4x)−1/2. Ũ(y) = 1

3y
−3 +y−1,

Ũ
′
(y) = −y−4− y−2 and ŷ = 1√

2x

[
exp((r+ θ2)T ) +

√
exp((2r + 2θ2)T ) + 4x exp((3r + 6θ2)T )

] 1
2

.

We have calculated before that Y (T ) = y exp(−(r + θ2

2 )T − θWT ). Then we can get

Y (ŷ)(T ) = ŷ exp(−(r +
θ2

2
)T − θWT )

p̂2(t)Y (y)(t) = E[p̂2(T )Y (y)(T )|Ft] = −E[Ũ
′
(Y (ŷ)(T ))Y (y)(T )|Ft]

= E[Y (ŷ)(T )−3 + Y (ŷ)(T )−1|Ft]

= ŷ−3e3(r+
θ2

2 )T e3θW (t)e
9θ2

2 (T−t) + ŷ−1e(r+
θ2

2 )T eθW (t)e
θ2

2 (T−t)

So we can get p̂2(t)

p̂2(t) = ŷ−4e3(r+2θ2)T e(r−4θ
2)t+4θW (t) + ŷ−2e(r+θ

2)T ert+2θW (t)

We need to satisfy the first condition. Thus we have

p̂2(0) = x = ŷ−4e3(r+2θ2)T + ŷ−2e(r+θ
2)T

ŷ =
1√
2x

[
exp((r + θ2)T ) +

√
exp((2r + 2θ2)T ) + 4x exp((3r + 6θ2)T )

] 1
2

Applying Ito’s lemma on p̂2, we get

q̂2(t) =

[
4ŷ−4e3(r+2θ2)T e(r−4θ

2)t+4θW (t) + 2ŷ−2e(r+θ
2)T ert+2θW (t)

]
θ

Applying Theorem 2.6.1, we have

π∗ =
q̂2(t)

σp̂2(t)

Xπ∗(t) = p̂2(t) = ŷ−4e3(r+2θ2)T e(r−4θ
2)t+4θW (t) + ŷ−2e(r+θ

2)T ert+2θW (t)

Compared with exaple 2.3.2, example 2.6.2 get the exact same solution of optimal wealth by
using dual FBSDE method.

We also need to do verification. Define ŷ = −p̂1(0), v̂(t) = −σ[ q̂1(t)p̂1(t)
+ θ] = 0

We know that dXπ∗(t) = Xπ∗ [(r + π∗(t)σθ)dt+ π∗(t)σdW (t)], then we have

dXπ∗(t) = Xπ∗(t){[r + θ
q̂2(t)

p̂2(t)
]dt+

q̂2(t)

p̂2(t)
dWt}

H(t, x, a, p1, q1) = x(r + θ
q̂2(t)

p̂2(t)
)p1) + x

q̂2(t)

p̂2(t)
q1
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Then we have

−dp̂1(t) = ((r + θ
q̂2(t)

p̂2(t)
)p̂1(t) +

q̂2(t)

p̂2(t)
q̂1(t))dt− q̂1(t)dWt

= rp̂1(t)dt+ θp̂1(t)dWt

⇒
p̂1(t) = p̂1(0) exp(−(r +

θ2

2
)t− θWt)

So we have
Y (ŷ)(t) = −p̂1(t)

We can also get
p̂2 = X π̂(t)

q̂2 = σT (t)π̂(t)X π̂(t)

which means the optimal control and wealth process are correct.
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Chapter 3

Unconstrained Utility
Maximization Problem under
Factor Models

In this chapter, we study utility maximization problem for different utility functions under different
stochastic factor models. The volatility term of risky asset price is still constant and the drift term
of risky asset price becomes a process.

3.1 Primal HJB Method

3.1.1 Power utility function under Stochastic Factor Model 1

In this part, the drift term of risky asset price process will be replaced by CIR affine process, not
constant vector. K = R and we will consider power utility function.

Same as before, we assume market has two assets, risky-free asset S0, risky asset S, satisfying
SDE: 

dS0(t) = rS0(t)dt

dS(t) = H(t)S(t)dt+ σS(t)dW (t)

dH(t) = k(c−H(t))dt+ σ1
√
H(t)dW (t)

(3.1.1)

with S0(0) = 1, S(0) = S,H(0) = h, where r, σ, k, c, σ1 are all constant, W is a standard Brownian
motion.

The wealth process Xπ satisfies SDE

dXπ(t) = (1− π(t))Xπ(t)rdt+ π(t)Xπ(t)
dS(t)

S(t)

= (1− π(t))Xπ(t)rdt+ π(t)Xπ(t)(H(t)dt+ σdW (t))

= Xπ(t)[(r + π(t)(H(t)− r))dt+ π(t)σdW (t)] (3.1.2)

The value function is

V (t, x, h) = sup
π∈A

E[U(Xπ(T ))|Xπ(t) = x,H(t) = h] (3.1.3)

with terminal condition V (T, x, h) = 1
βx

β where U is power utility function.

We can get the HJB equation:

∂tV + k(c−h)∂hV +
1

2
σ2
1h∂hhV + sup

π∈A
{x(r+π(h− r))∂xV +

1

2
(xπσ)2∂xxV +xπσσ1

√
h∂xhV } = 0

(3.1.4)
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Now we need to solve (2.4).

Firstly, we need to find the optimal π∗ for

sup
π∈A
{x(r + π(h− r))∂xV +

1

2
(xπσ)2∂xxV + xπσσ1

√
h∂xhV }

Taking derivative with respect to π and then make it to be 0, we can get

π∗ = − (h− r)Vx + σσ1
√
hVxh

σ2xVxx
(3.1.5)

Substituting π∗ into HJB, we have

∂tV + k(c− h)∂hV +
1

2
σ2
1h∂hhV + xr∂xV −

[(h− r)∂xV + σσ1
√
hVxh]2

2σ2∂xxV
= 0 (3.1.6)

Assume that V (t, x, h) = U(x)f(t, h). Then we can get

∂tV = U(x)∂tf

∂hV = U(x)∂hf

∂hhV = U(x)∂hhf

∂xV =
β

x
V

∂xxV =
β(β − 1)

x2
V

∂xhV =
β

x
U(x)∂hf

Substituting them into HJB and then canceling U , we have

∂tf + k(c− h)∂hf +
1

2
σ2
1h∂hhf + βrf − β[(h− r)f + σσ1

√
h∂hf ]2

2σ2(β − 1)f
= 0

π∗ = − (h− r)f + σσ1
√
h∂hf

σ2(β − 1)f

with the terminal condition f(T, h) = 1 and dH(t) = k(c−H(t))dt+ σ1
√
H(t)dW (t).

This is a semilinear PDE in the form

−∂tf − Lf − g(t, h, f, σ1
√
h∂hf) = 0

where Lf = k(c − h)∂hf + 1
2σ

2
1h∂hhf and g(t, h, f, σ1

√
h∂hf) = βrf − β[(h−r)f+σσ1

√
h∂hf ]

2

2σ2(β−1)f . We

shall represent the solution to this PDE by means of BSDE

−dYt = g(t,Ht, Yt, Zt)dt− ZtdWt, YT = f(T, h) = 1 (3.1.7)

where Yt = f(t,Ht), Zt = σ1
√
Ht∂hf(t,Ht). The solution to the BSDE provides a solution to the

semilinear PDE.

3.1.2 Log utility function under Stochastic Factor Model 1

In this part, the only difference from part one is that we use log utility U(x) = log(x)
and we know that lim

β→0

1
β (xβ − 1) = log(x)

The value function is

V (t, x, h) = sup
π∈A

E[U(Xπ(T ))|Xπ(t) = x,H(t) = h] (3.1.8)
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with terminal condition V (T, x, h) = log(x) where U is log utility function.

We will get the same HJB equation,

∂tV + k(c− h)∂hV +
1

2
σ2
1h∂hhV + xr∂xV −

[(h− r)∂xV + σσ1
√
hVxh]2

2σ2∂xxV
= 0 (3.1.9)

Assume that V (t, x, h) = log(x) + f(t, h). Then we can get

∂tV = ∂tf

∂hV = ∂hf

∂hhV = ∂hhf

∂xV =
1

x

∂xxV = − 1

x2

∂xhV = 0

Substituting them into HJB, then we have

∂tf + k(c− h)∂hf +
1

2
σ2
1h∂hhf + r +

(h− r)2

2σ2
= 0 (3.1.10)

π∗ =
h− r
σ2

(3.1.11)

with the terminal condition f(T, h) = 0 and dH(t) = k(c −H(t))dt + σ1
√
H(t)dW (t). Using the

Feynman-Kac formula for f , we can get the Feynman-Kac representation for f

f(t, h) = E[

∫ T

t

−r − (Hs − r)2

2σ2
ds|Ht = h] (3.1.12)

Then we can get the value function V (t, x, h) = log(x) + E[
∫ T
t
−r − (Hs−r)2

2σ2 ds|Ht = h]

3.1.3 Power utility function under Stochastic Factor Model 2

In this part, we will use the power utility function and we assume market has two assets, risky-free
asset S0, risky asset S, satisfying SDE:

dS0(t) = rS0(t)dt

dS(t) =
√
H(t)S(t)dt+ σS(t)dW (t)

dH(t) = k(c−H(t))dt+ σ1
√
H(t)dW (t)

(3.1.13)

with S0(0) = 1, S(0) = S,H(0) = h, where r, σ, k, c, σ1 are all constant, W is a standard Brownian
motion.

The wealth process Xπ satisfies SDE

dXπ(t) = (1− π(t))Xπ(t)rdt+ π(t)Xπ(t)
dS(t)

S(t)

= (1− π(t))Xπ(t)rdt+ π(t)Xπ(t)(
√
H(t)dt+ σdW (t))

= Xπ(t)[(r + π(t)(
√
H(t)− r))dt+ π(t)σdW (t)] (3.1.14)

The value function is

V (t, x, h) = sup
π∈A

E[U(Xπ(T ))|Xπ(t) = x,H(t) = h] (3.1.15)
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with terminal condition V (T, x, h) = 1
βx

β where U is power utility function.

Then we can get the HJB equation:

∂tV +k(c−h)∂hV +
1

2
σ2
1h∂hhV + sup

π∈A
{x(r+π(

√
h−r))∂xV +

1

2
(xπσ)2∂xxV +xπσσ1

√
h∂xhV } = 0

(3.1.16)

Firstly, we need to find the optimal π∗ for

sup
π∈A
{x(r + π(

√
h− r))∂xV +

1

2
(xπσ)2∂xxV + xπσσ1

√
h∂xhV }

Taking derivative with respect to π and then make it to be 0, we can get

π∗ = − (
√
h− r)Vx + σσ1

√
hVxh

σ2xVxx
(3.1.17)

Substituting π∗ into HJB, we have

∂tV + k(c− h)∂hV +
1

2
σ2
1h∂hhV + xr∂xV −

[(
√
h− r)∂xV + σσ1

√
h∂xhV ]2

2σ2∂xxV
= 0 (3.1.18)

Assume that V (t, x, h) = U(x)f(t, h). Then we can get

∂tV = U(x)∂tf

∂hV = U(x)∂hf

∂hhV = U(x)∂hhf

∂xV =
β

x
V

∂xxV =
β(β − 1)

x2
V

∂xhV =
β

x
U(x)∂hf

Substituting them into HJB and then cancel U , we have

∂tf + k(c− h)∂hf +
1

2
σ2
1h∂hhf + βrf − β[(

√
h− r)f + σσ1

√
h∂hf ]2

2σ2(β − 1)f
= 0

π∗ = − (
√
h− r)f + σσ1

√
h∂hf

σ2(β − 1)f

with the terminal condition f(T, h) = 1 and dH(t) = k(c−H(t))dt+ σ1
√
H(t)dW (t).

This is a semilinear PDE in the form

−∂tf − Lf − g(t, h, f, σ1
√
h∂hf) = 0

where Lf = k(c − h)∂hf + 1
2σ

2
1h∂hhf and g(t, h, f, σ1

√
h∂hf) = βrf − β[(

√
h−r)f+σσ1

√
h∂hf ]

2

2σ2(β−1)f . We

shall represent the solution to this PDE by means of BSDE

−dYt = g(t,Ht, Yt, Zt)dt− ZtdWt, YT = f(T, h) = 1

where Yt = f(t,Ht), Zt = σ1
√
Ht∂hf(t,Ht). The solution to the BSDE provides a solution to the

semilinear PDE.
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Ansatz:V (t, x, h) = U(x)f(t, h), f(t, h) = expA(t) +B(t)
√
h+ C(t)h. Then we can get:

∂tV = V (A′(t) +B′(t)
√
h+ C ′(t)h)

∂hV = V (
1

2
B(t)h−

1
2 + C(t))

∂hhV = V [(
1

2
B(t)h−

1
2 + C(t))2 + (−1

4
B(t)h−

3
2 )]

∂xV =
β

x
V

∂xxV =
β(β − 1)

x2
V

∂xhV =
β

x
V (

1

2
B(t)h−

1
2 + C(t))

Substituting them into HJB and then cancel V , we have

(A′ +B′
√
h+ C ′h) + k(c− h)(

1

2
Bh−

1
2 + C) +

1

2
σ2
1h[(

1

2
Bh−

1
2 + C)2 + (−1

4
Bh−

3
2 )] + βr

−
[
√
h− r + σσ1

√
h( 1

2Bh
− 1

2 + C)]2β

2σ2(β − 1)
= 0 (3.1.19)

π∗ = −
(
√
h− r) + σσ1( 1

2B(t) + C(t)
√
h)

σ2(β − 1)
(3.1.20)

Let coefficients of h−
1
2 , 1,
√
h, h be 0. We can get

h−
1
2 : 0 =

1

2
kcB(t)− 1

8
σ2
1B(t)

1 : 0 = A′(t) + kcC(t) +
1

8
σ2
1B

2(t) + βr −
β( 1

2σσ1B(t)− r)2

2σ2(β − 1)

√
h : 0 = B′(t)− 1

2
kB(t) +

1

2
σ2
1B(t)C(t)−

β(σσ1C(t) + 1)( 1
2σσ1B(t)− r)

σ2(β − 1)

h : 0 = C ′(t)− kC(t) +
1

2
σ2
1C

2(t)− β(σσ1C(t) + 1)2

2σ2(β − 1)

(3.1.21)

We first consider 0 = 1
2kcB(t)− 1

8σ
2
1B(t) There are two cases: B(t) = 0 or 1

2kc−
1
8σ

2
1 = 0.

Case1: B(t) = 0. Under this condition, we also need one assumption that r = 0 to make

the equation
√
h : 0 = B′(t)− 1

2kB(t) + 1
2σ

2
1B(t)C(t)− β(σσ1C(t)+1)( 1

2σσ1B(t)−r)
σ2(β−1) hold. Then we

need to solve A(t), C(t).

Let’s consider the equation 0 = C ′(t)− kC(t) + 1
2σ

2
1C

2(t)− β(σσ1C(t)+1)2

2σ2(β−1) . We have

C ′(t)− (k +
σ1β

σ(β − 1)
)C(t) + (− σ2

1

2(β − 1)
)C2(t)− β

2σ2(β − 1)
= 0

Let a1 = − σ2
1

2(β−1) , b1 = k + σ1β
σ(β−1) , and c1 = β

2σ2(β−1) . Then we have,

C ′(t) + a1(C(t)− b1
2a1

)2 − (
b21

4a1
+ c1) = 0

Let C(t) = χ(t) + b1
2a1

, φ =
b21
4a1

+ c1, and a1 = 1
k1

, we can get χ(T ) = − b1
2a1

∂tχ

k1φ− χ2
=

1

k1

This is Riccati equation and we can get the solution

χ(t) =
√
k1φ

1 + ζe2γ(T−t)

1− ζe2γ(T−t)
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where

γ =

√
φ

k1
and ζ =

b1
2a1

+
√
φk1

b1
2a1
−
√
φk1

We have already known C(t) and B(t) = 0, then we can get the solution of A(t) by 0 = A′(t) +

kcC(t) + 1
8σ

2
1B

2(t) + βr − β( 1
2σσ1B(t)−r)2

2σ2(β−1) = A′(t) + kcC(t)

A(t) =

∫
−kcC(t)dt+ constant

we can get the value of constant by terminal conditon A(T ) = 0. After that, we get the solution
for the HJB equation.

Case2: 1
2kc−

1
8σ

2
1 = 0. Under this condition, we need to solve A(t), B(t) and C(t).

Let’s first consider the equation 0 = C ′(t)− kC(t) + 1
2σ

2
1C

2(t)− β(σσ1C(t)+1)2

2σ2(β−1) . Same as Case1, we

can have C(t) = χ(t) + b1
2a1

χ(t) =
√
k1φ

1 + ζe2γ(T−t)

1− ζe2γ(T−t)

where

γ =

√
φ

k1
and ζ =

b1
2a1

+
√
φk1

b1
2a1
−
√
φk1

a1 = − σ2
1

2(β − 1)
, b1 = k +

σ1β

σ(β − 1)
, c1 =

β

2σ2(β − 1)
, φ =

b21
4a1

+ c1, a1 =
1

k1

Then we need to solve B(t) by 0 = B′(t)− 1
2kB(t) + 1

2σ
2
1B(t)C(t)− β(σσ1C(t)+1)( 1

2σσ1B(t)−r)
σ2(β−1) . We

have

B′(t) + (
1

2
σ2
1C(t)− 1

2
k − βσ2

1

2(β − 1)
C(t)− βσ1

2σ(β − 1)
)B(t) = − βr

σ2(β − 1)
− βrσ1
σ(β − 1)

C(t)

Let 1
2σ

2
1C(t)− 1

2k−
βσ2

1

2(β−1)C(t)− βσ1

2σ(β−1) = P (t), − βr
σ2(β−1) −

βrσ1

σ(β−1)C(t) = Q(t). Then we can get

B′(t) + P (t)B(t) = Q(t)

The solution is

B(t) =

∫
µ(t)Q(t)dt+ constant

µ(t)

µ(t) = e
∫
P (t)dt

We can get the value of constant by terminal conditon B(T ) = 0. After solving C(t) and B(t), we

can get the solution of A(t) by 0 = A′(t) + kcC(t) + 1
8σ

2
1B

2(t) + βr − β( 1
2σσ1B(t)−r)2

2σ2(β−1)

A(t) =

∫
−kcC(t)− 1

8
σ2
1B

2(t)− βr +
β( 1

2σσ1B(t)− r)2

2σ2(β − 1)
dt+ constant

we can get the value of constant by terminal conditon A(T ) = 0. After that, we get the solution
for the HJB equation.

3.2 Dual HJB Method

3.2.1 Power utility function under Stochastic Factor Model 1

Define the dual function of U by

Ũ(y) = sup
x>0

(U(x)− xy)
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For power utility function U(x) = 1
βx

β , we can get Ũ(y) = 1−β
β y

β
β−1 .

The dual process Y is a strictly positive and has the following semi-martingale decomposition:

dY (t) = Y (t)(α(t)dt+ β(t)dW (t)), 0 ≤ t ≤ T
Y (0) = y (3.2.1)

We need to choose α and β such that XπY is a super-martingale for all admissible control process
π ∈ A.

By Ito’s formula, we have

d(Xπ(t)Y (t)) = Xπ(t)dY (t) + Y (t)dXπ(t) + d[Xπ, Y ]t

= Xπ(t)Y (t)[(α(t) + r + π(t)(H(t)− r) + π(t)β(t)σ)dt

+ (π(t)σ + β(t))dW (t)]

Xπ(0)Y (0) = xy

XπY is a super-martingale if and only if

α(t) + r + π(t)(H(t)− r) + π(t)β(t)σ ≤ 0

for all π ∈ K a.s. for a.e. t ∈ [0, T ]. So we can have

α(t) + r + δK(−(H(t)− r)− β(t)σ) ≤ 0

where δK(z) = supπ∈K{−πz} is the support function of the set −K.

Define v(t) = −(H(t)− r)− β(t)σ. We have

α(t) ≤ −(r + δK(v(t))), β(t) = −(σ−1v(t) + σ−1(H(t)− r))

According to the assumption, we know K = R and σ > 0. So we have v(t) = 0. Then we can get:

α(t) + r ≤ 0, α(t) ≤ −r

β(t) = −H(t)− r
σ

(3.2.2)

So we can get the dual process:

dY (t) = −Y (t)(rdt+
H(t)− r

σ
dW (t)), 0 ≤ t ≤ T

Y (0) = y (3.2.3)

The optimal value of the dual minimization problem is defined by

Ṽ = inf
y∈(0,∞)

(xy + E[Ũ(Y (T ))]) (3.2.4)

Define the dual value function

V̂ (t, y, h) = E[Ũ(Y (T ))|Y (t) = y, H(t) = h] (3.2.5)

with the terminal condition V̂ (T, y, h) = Ũ(y).

So we can get the HJB:

∂tV̂ + k(c− h)∂hV̂ +
1

2
σ2
1h∂hhV̂ + [−ry∂yV̂ +

(h− r)2y2

2σ2
∂yyV̂ −

(h− r)yσ1
√
h

σ
∂yhV̂ ] = 0 (3.2.6)
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Assume that V̂ (t, y, h) = Ũ(y)f̃(t, h). Then we can get

∂tV̂ = Ũ(y)∂tf̃

∂hV̂ = Ũ(y)∂hf̃

∂hhV̂ = Ũ(y)∂hhf̃

∂yV̂ = − β

1− β
y−1V̂

∂yyV̂ =
β

1− β
y−2V̂ + (

β

1− β
)2y−2V̂

∂yhV̂ = − β

1− β
y−1Ũ(y)∂hf̃

Substituting them into HJB and then cancel Ũ , we have

∂tf̃ + k(c− h)∂hf̃ +
1

2
σ2
1h∂hhf̃ +

βr

1− β
f̃ +

(h− r)2β
2σ2(1− β)2

f̃ +
(h− r)σ1

√
hβ

σ(1− β)
∂hf̃ = 0 (3.2.7)

with the terminal condition f̃(T, h) = 1 and dH(t) = k(c−H(t))dt+ σ1
√
H(t)dW (t).

This is a semilinear PDE in the form

−∂tf̃ − Lf̃ − g(t, h, f̃ , σ1
√
h∂hf̃) = 0

where Lf̃ = k(c−h)∂hf̃+ 1
2σ

2
1h∂hhf̃ and g(t, h, f̃ , σ1

√
h∂hf̃) = βr

1−β f̃+ (h−r)2β
2σ2(1−β)2 f̃+ (h−r)σ1

√
hβ

σ(1−β) ∂hf̃ .

We shall represent the solution to this PDE by means of BSDE

−dYt = g(t,Ht, Yt, Zt)dt− ZtdWt, YT = f(T, h) = 1

where Yt = f̃(t,Ht), Zt = σ1
√
Ht∂hf̃(t,Ht). The solution to the BSDE provide a solution to the

semilinear PDE.

3.2.2 Log utility function under Stochastic Factor Model 1

Same as before, the only difference from part one is that we use log utility U(x) = log(x). The
dual function of log utility function is Ũ(y) = − log(y)− 1

We will get the same HJB equation,

∂tV̂ + k(c− h)∂hV̂ +
1

2
σ2
1h∂hhV̂ + [−ry∂yV̂ +

(h− r)2y2

2σ2
∂yyV̂ −

(h− r)yσ1
√
h

σ
∂yhV̂ ] = 0 (3.2.8)

Then we need to guess the solution of V̂ .

Ansatz:V̂ (t, y, h) = Ũ(y) + f̃(t, h) with terminal condition f̃(T, h) = 0. Then we can get:

∂tV̂ = ∂tf̃

∂hV̂ = ∂hf̃

∂hhV̂ = ∂hhf̃

∂yV̂ = −1

y

∂yyV̂ =
1

y2

∂yhV̂ = 0

Substituting them into HJB, then we have

∂tf̃ + k(c− h)∂hf̃ +
1

2
σ2
1h∂hhf̃ + r +

(h− r)2

2σ2
= 0 (3.2.9)
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with the terminal condition f̃(T, h) = 0 and dH(t) = k(c −H(t))dt + σ1
√
H(t)dW (t). Using the

Feynman-Kac formula for f , we can get the Feynman-Kac representation for f̃

f̃(t, h) = E[

∫ T

t

−r − (Hs − r)2

2σ2
ds|Ht = h] (3.2.10)

Then we get V̂ (t, y, h) = Ũ(y) + f̃(t, h) = − log(y)− 1 + E[
∫ T
t
−r − (Hs−r)2

2σ2 ds|Ht = h].

By Ṽ = inf
y∈(0,∞)

(xy + E[Ũ(Y (T ))]), we need to take derivative with respect to y and then set

it to be 0. Then we get

−1

y
+ x = 0

We can get the optimal y and then we have

Ṽ (t, x, h) = x ∗ 1

x
+ log(x)− 1 + E[

∫ T

t

−r − (Hs − r)2

2σ2
ds|Ht = h]

= log(x) + E[

∫ T

t

−r − (Hs − r)2

2σ2
ds|Ht = h] (3.2.11)

Compared with primal HJB method, we get the same solution by dual method.

3.2.3 Power utility function under Stochastic Factor Model 2

In this part, we will use the power utility function and we assume market has two assets, risky-free
asset S0, risky asset S, satisfying SDE:

dS0(t) = rS0(t)dt

dS(t) =
√
H(t)S(t)dt+ σS(t)dW (t)

dH(t) = k(c−H(t))dt+ σ1
√
H(t)dW (t)

(3.2.12)

The wealth process Xπ satisfies SDE

dXπ(t) = Xπ(t)[(r + π(t)(
√
H(t)− r))dt+ π(t)σdW (t)] (3.2.13)

The dual process satisfies SDE:

dY (t) = −Y (t)(rdt+

√
H(t)− r
σ

dW (t)), 0 ≤ t ≤ T

Y (0) = y (3.2.14)

The optimal value of the dual minimization problem is defined by

Ṽ = inf
y∈(0,∞)

(xy + E[Ũ(Y (T ))]) (3.2.15)

Define the dual value function

V̂ (t, y, h) = E[Ũ(Y (T ))|Y (t) = y, H(t) = h] (3.2.16)

with the terminal condition V̂ (T, y, h) = Ũ(y).

Then we can get the HJB equation:

∂tV̂ + k(c− h)∂hV̂ +
1

2
σ2
1h∂hhV̂ + [−ry∂yV̂ +

(
√
h− r)2y2

2σ2
∂yyV̂ −

(
√
h− r)yσ1

√
h

σ
∂yhV̂ ] = 0

(3.2.17)
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Ansatz:V̂ (t, y, h) = Ũ(y)f̃(t, h), f̃(t, h) = expA(t) +B(t)
√
h+ C(t)h. Then we can get:

∂tV̂ = V̂ (A′(t) +B′(t)
√
h+ C ′(t)h)

∂hV̂ = V̂ (
1

2
B(t)h−

1
2 + C(t))

∂hhV̂ = V̂ [(
1

2
B(t)h−

1
2 + C(t))2 + (−1

4
B(t)h−

3
2 )]

∂yV̂ =
β

y(β − 1)
V̂

∂yyV̂ =
β

y2(β − 1)2
V̂

∂yhV̂ =
β

y(β − 1)
V̂ (

1

2
B(t)h−

1
2 + C(t))

Substituting them into HJB and then canceling V̂ , we have

(A′ +B′
√
h+ C ′h) + k(c− h)(

1

2
Bh−

1
2 + C) +

1

2
σ2
1h[(

1

2
Bh−

1
2 + C)2 + (−1

4
Bh−

3
2 )]

− βr

β − 1
+

(
√
h− r)2β

2σ2(β − 1)2
− (
√
h− r)σ1

√
hβ

σ(β − 1)
(
1

2
Bh−

1
2 + C) = 0 (3.2.18)

Let coefficients of h−
1
2 , 1,
√
h, h be 0. We can get

h−
1
2 : 0 =

1

2
kcB(t)− 1

8
σ2
1B(t)

1 : 0 = A′(t) + kcC(t) +
1

8
σ2
1B

2(t)− βr

β − 1
+

βr2

2σ2(β − 1)2
+

σ1βr

2σ(β − 1)
B(t)

√
h : 0 = B′(t)− 1

2
kB(t) +

1

2
σ2
1B(t)C(t)− βr

σ2(β − 1)2
− σ1β

σ(β − 1)
(
1

2
B(t)− rC(t))

h : 0 = C ′(t)− kC(t) +
1

2
σ2
1C

2(t) +
β

2σ2(β − 1)2
− σ1β

σ(β − 1)
C(t)

(3.2.19)
Similarly, we first consider 0 = 1

2kcB(t) − 1
8σ

2
1B(t). There are also two cases: B(t) = 0 or

1
2kc−

1
8σ

2
1 = 0.

Case1: B(t) = 0 and r = 0. In this case, we need to solve A(t) and C(t). Let’s consider
the equation 0 = C ′(t)− kC(t) + 1

2σ
2
1C

2(t) + β
2σ2(β−1)2 −

σ1β
σ(β−1)C(t). We have

C ′(t)− (k +
σ1β

σ(β − 1)
)C(t) +

1

2
σ2
1C

2(t) +
β

2σ2(β − 1)2
= 0

Let a2 = 1
2σ

2
1 , b2 = k + σ1β

σ(β−1) , and c2 = − β
2σ2(β−1)2 . Then we have

C ′(t) + a2(C(t)− b2
2a2

)2 − (
b22

4a2
+ c2) = 0

Let C(t) = χ(t) + b2
2a2

, φ =
b22
4a2

+ c2, and a2 = 1
k2

, we can get χ(T ) = − b2
2a2

∂tχ

k2φ− χ2
=

1

k2

This is Riccati equation and we can get the solution

χ(t) =
√
k2φ

1 + ζe2γ(T−t)

1− ζe2γ(T−t)

where

γ =

√
φ

k2
and ζ =

b2
2a2

+
√
φk2

b2
2a2
−
√
φk2
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We have known C(t) and B(t) = 0, then we can get the solution of A(t) by 0 = A′(t) +kcC(t) +
1
8σ

2
1B

2(t)− βr
β−1 + βr2

2σ2(β−1)2 + σ1βr
2σ(β−1)B(t) = A′(t) + kcC(t)

A(t) =

∫
−kcC(t)dt+ constant

we can get the value of constant by terminal conditon A(T ) = 0. After that, we get the solution
for the HJB equation.

Case2: 0 = 1
2kcB(t) − 1

8σ
2
1B(t). Under this condition, we need to solve A(t), B(t) and C(t).

Let’s consider the equation 0 = C ′(t)− kC(t) + 1
2σ

2
1C

2(t) + β
2σ2(β−1)2 −

σ1β
σ(β−1)C(t). Similarly, we

have C(t) = χ(t) + b2
2a2

χ(t) =
√
k2φ

1 + ζe2γ(T−t)

1− ζe2γ(T−t)

where

γ =

√
φ

k2
and ζ =

b2
2a2

+
√
φk2

b2
2a2
−
√
φk2

a2 =
1

2
σ2
1 , b2 = k +

σ1β

σ(β − 1)
, c2 = − β

2σ2(β − 1)2
, φ =

b22
4a2

+ c2, a2 =
1

k2

Then we need to solve B(t) by 0 = B′(t)− 1
2kB(t)+ 1

2σ
2
1B(t)C(t)− βr

σ2(β−1)2−
σ1β

σ(β−1) (
1
2B(t)−rC(t)).

We have

B′(t) + (
1

2
σ2
1C(t)− 1

2
k − βσ1

2σ(β − 1)
)B(t) =

βr

σ2(β − 1)2
− βrσ1
σ(β − 1)

C(t)

Let 1
2σ

2
1C(t)− 1

2k −
βσ1

2σ(β−1) = P (t), βr
σ2(β−1)2 −

βrσ1

σ(β−1)C(t) = Q(t). Then we have

B′(t) + P (t)B(t) = Q(t)

The solution is

B(t) =

∫
µ(t)Q(t)dt+ constant

µ(t)

µ(t) = e
∫
P (t)dt

we can get the value of constant by terminal conditon B(T ) = 0. After solving C(t) and B(t), we

can get the solution of A(t) by 0 = A′(t) + kcC(t) + 1
8σ

2
1B

2(t)− βr
β−1 + βr2

2σ2(β−1)2 + σ1βr
2σ(β−1)B(t)

A(t) =

∫
−kcC(t)− 1

8
σ2
1B

2(t) +
βr

β − 1
− βr2

2σ2(β − 1)2
− σ1βr

2σ(β − 1)
B(t)dt+ constant

we can get the value of constant by terminal conditon A(T ) = 0. After that, we get the solution
for the HJB equation.

3.3 FBSDE and dual FBSDE Method

Recall the theorem 2.4.2 and 2.5.2:

Theorem 2.4.2 (Primal problem and associated FBSDE) Let π∗ ∈ A. Then π∗ is opti-
mal for the primal problem if and only if the solution (Xπ∗ , p̂1, q̂1) of FBSDE

dXπ∗(t) = Xπ∗ [(r(t) + π∗T (t)σ(t)θ(t))dt+ π∗T (t)σ(t)dW (t)]

Xπ∗(0) = x

dp̂1(t) = −[(r(t) + π∗T (t)Tσ(t)θ(t))p̂1(t) + q̂1
T (t)σT (t)π∗(t)]dt+ q̂1

T (t)dW (t)

p̂1(T ) = −U
′
(Xπ∗(T )) (3.3.1)
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satisfies the condition

−Xπ∗(t)σ(t)[θ(t)p̂1(t) + q̂1(t)] ∈ NK(π∗(t)), ∀t ∈ [0, T ],P− a.s. (3.3.2)

where NK(x) is the normal cone of the closed convex set K at x ∈ K, defined as

NK(x) , {y ∈ RN : ∀x∗ ∈ K, y(x∗ − x) ≤ 0}

Theorem 2.5.2 (Dual problem and associated FBSDE) Let (ŷ, v̂) ∈ (0,∞)×D. Then (ŷ, v̂)
is optimal for the dual problem if and only if the solution (Y (ŷ,v̂), p̂2, q̂2) of FBSDE

dY (ŷ,v̂)(t) = −Y (ŷ,v̂)(t){[r(t) + δK(v̂(t))]dt+ [θ(t) + σ−1(t)v̂(t)]dW (t)}
Y (ŷ,v̂)(0) = ŷ

dp̂2(t) = {[r(t) + δK(v̂(t))]T p̂2(t) + q̂2
T (t)[θ(t) + σ−1(t)]}dt+ q̂2

T (t)dW (t)

p̂2(T ) = −Ũ
′
(Y (ŷ,v̂)(T )) (3.3.3)

satisfies the condition

p̂2(0) = x

p̂2(t)−1[σ(t)]−1q̂2(t) ∈ K
p̂2(t)δK(v̂(t)) + q̂2(t)σ−1(t)v̂(t) = 0,∀t ∈ [0, T ]P− a.s. (3.3.4)

3.3.1 Log utility function under Stochastic Factor Medol 1

In this part, we have 
dS0(t) = rS0(t)dt

dS(t) = H(t)S(t)dt+ σS(t)dW (t)

dH(t) = k(c−H(t))dt+ σ1
√
H(t)dW (t)

(3.3.5)

K = R and we will consider the log utility function.

For primal FBSDE, since K = R, we have q̂1(t) = −Ht−rσ p̂1(t). By theorem 2.4.2, we have

dp̂1(t) = −rp̂1(t)dt− Ht − r
σ

p̂1(t)dWt

p̂1(T ) = −U
′
(Xπ∗(T )) = − 1

X(T )

We need to find p0 such that p̂1(T ) = − 1
X(T ) . Now consider the optimal control problem

min
p0,π

E[(p̂1(T ) + 1
X(T ) )

2]. If we can manage to find p0 and π such that the minimum value is

zero, we are done. However, if we seek a numerical solution, there is no possibility we can get the
minimum value is 0 and we may be satisfied as long as the minimum value is sufficiently close to
0. To solve the optimal control problem numerically, we divide interval [0, T ] by n intervals with
step size ∆ = T/n and gird points t0 = 0, ti = ∆i, i = 1, ..., n. Assume on subinterval [ti, ti+1),
control π∗(ti) = α(ti) + β(ti)Hti is taken constant, where α(ti) and β(ti) are piecewise constant
within each subinterval. Using Euler scheme, we have

Hti+1
= Hti + k(c−Hti)∆ + σ1

√
Hti

√
∆Zti

Xti+1 = Xti +Xti(r + πti(Hti − r))∆ + πtiXtiσ
√

∆Zti

p̂1(ti+1) = p̂1(ti)− rp̂1(ti)∆−
Hti − r
σ

p̂1(ti)
√

∆Zti

For dual FBSDE, we can write it as following by theorem 2.5.2

dY (t) = −Y (t){rdt+
Ht − r
σ

dW (t)}

Y (0) = y

dp̂2(t) = {rp̂2(t) + q̂2(t)
Ht − r
σ
}dt+ q̂2(t)dWt

p̂2(T ) = −Ũ ′(Y ŷ(T )) =
1

Y (T )
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satisfies the condition

p̂2(0) = x0

p̂2(t)−1σ−1q̂2(t) ∈ R

p̂2(t)δK(v̂(t)) + q̂2
T (t)σ−1v̂(t) = 0,∀t ∈ [0, T ]P− a.s.

Same as before, we consider the optimal control problem min
y0,q2

E[(p̂2(T ) − 1
Y (T ) )

2]. To solve the

optimal control problem numerically, we divide interval [0, T ] by n intervals with step size ∆ = T/n
and gird points t0 = 0, ti = ∆i, i = 1, ..., n. Assume on subinterval [ti, ti+1), control q̂2(ti) is taken
constant. Using Euler scheme, we have

Hti+1
= Hti + k(c−Hti)∆ + σ1

√
Hti

√
∆Zti

Yti+1
= Yti − Ytir∆− Yti

Hti − r
σ

√
∆Zti

p̂2(ti+1) = p̂2(ti) + {rp̂2(ti) + q̂2(ti)
Hti − r
σ

}∆ + q̂2(ti)
√

∆Zti

with initial condition p̂2(0) = x0 and terminal condition p̂2(T ) = 1
Y (T )

We set the parameters as r = 0.05, k = 1, c = 1, σ = 1, σ1 = 0.5, β = 0.1, h0 = 0.5, x0 = 10, T =
1,∆ = dt = 0.01. By simulation method, we have the optimal parameters α(t) and β(t) as follows:

Figure 3.1: Optimal α(t) and β(t) from Primal FBSDE, dt=0.01

Using the optimal parameters α(t) and β(t), we can get π∗(t) = α(t) + β(t)H(t) from primal
FBSDE. Similarly, we can get π∗(t) from dual FBSDE by using the optimal parameter q2(t) and
theorem 2.6.3. Plot them on graph, we can get

Figure 3.2: Optimal Pi from Primal FBSDE and Dual FBSDE,dt=0.01
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We can see that in figure 3.2, the two optimal control processes overlap completely, which means
the optimal control should be the same from primal FBSDE and dual FBSDE.

We can also get the wealth processes from primal FBSDE and dual FBSDE:

Figure 3.3: Wealth Processes from Primal FBSDE and Dual FBSDE dt=0.01

We can see that the wealth processes from two method almost completely overlap, which means
we can get almost the same wealth processes by both methods and both methods are effective.

3.3.2 Power utility function under Stochastic Factor Model 2: Case 2

In this part, we have 
dS0(t) = rS0(t)dt

dS(t) =
√
H(t)S(t)dt+ σS(t)dW (t)

dH(t) = k(c−H(t))dt+ σ1
√
H(t)dW (t)

(3.3.6)

K = R and we will consider the power utility function.

For primal FBSDE, since K = R, we have q̂1(t) = −
√
Ht−r
σ p̂1(t). By theorem 2.4.2, we have

dp̂1(t) = −rp̂1(t)dt−
√
Ht − r
σ

p̂1(t)dWt

p̂1(T ) = −U
′
(Xπ∗(T )) = −X(T )β−1

We need to find p0 such that p̂1(T ) = −X(T )β−1. Now consider the optimal control problem
min
p0,π

E[(p̂1(T ) + X(T )β−1)2]. If we can manage to find p0 and π such that the minimum value is

zero, we are done. However, if we seek a numerical solution, there is no possibility we can get the
minimum value is 0 and we may be satisfied as long as the minimum value is sufficiently close to
0. To solve the optimal control problem numerically, we divide interval [0, T ] by n intervals with
step size ∆ = T/n and gird points t0 = 0, ti = ∆i, i = 1, ..., n. Assume on subinterval [ti, ti+1),
control π∗(ti) = α(ti) + β(ti)

√
Hti is taken constant, where α(ti) and β(ti) are piecewise constant

within each subinterval. Using Euler scheme, we have

Hti+1
= Hti + k(c−Hti)∆ + σ1

√
Hti

√
∆Zti

Xti+1
= Xti +Xti(r + πti(

√
Hti − r))∆ + πtiXtiσ

√
∆Zti

p̂1(ti+1) = p̂1(ti)− rp̂1(ti)∆−
√
Hti − r
σ

p̂1(ti)
√

∆Zti
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For dual FBSDE, we can write it as following by theorem 2.5.2

dY (t) = −Y (t){rdt+

√
Ht − r
σ

dW (t)}

Y (0) = y

dp̂2(t) = {rp̂2(t) + q̂2(t)

√
Ht − r
σ

}dt+ q̂2(t)dWt

p̂2(T ) = −Ũ ′(Y ŷ(T )) = Y (T )
1

β−1

satisfies the condition

p̂2(0) = x0

p̂2(t)−1σ−1q̂2(t) ∈ R

p̂2(t)δK(v̂(t)) + q̂2
T (t)σ−1v̂(t) = 0,∀t ∈ [0, T ]P− a.s.

Same as before, we consider the optimal control problem min
y0,q2

E[(p̂2(T )−Y (T )
1

β−1 )2]. To solve the

optimal control problem numerically, we divide interval [0, T ] by n intervals with step size ∆ = T/n
and gird points t0 = 0, ti = ∆i, i = 1, ..., n. Assume on subinterval [ti, ti+1), control q̂2(ti) is taken
constant. Using Euler scheme, we have

Hti+1
= Hti + k(c−Hti)∆ + σ1

√
Hti

√
∆Zti

Yti+1 = Yti − Ytir∆− Yti

√
Hti − r
σ

√
∆Zti

p̂2(ti+1) = p̂2(ti) + {rp̂2(ti) + q̂2(ti)

√
Hti − r
σ

}∆ + q̂2(ti)
√

∆Zti

with initial condition p̂2(0) = x0 and terminal condition p̂2(T ) = Y (T )
1

β−1

For case 2, we set the parameters as r = 0.05, k = 1, c = 1, σ = 1, σ1 = 2, β = 0.1, h0 =
0.5, x0 = 10, T = 1,∆ = dt = 0.01 to match the condition 4kc = σ2

1 . By simulation method, we
have the optimal parameters α(t) and β(t) as follows:

Figure 3.4: Optimal α(t) and β(t) from Primal FBSDE, dt=0.01

Using the formula π∗(t) = α(t) + β(t)
√
H(t), optimal parameter q2(t) and theorem 2.6.3, we can

get the optimal control processes from primal FBSDE and dual FBSDE.
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Figure 3.5: Optimal Pi from Primal FBSDE and Dual FBSDE,dt=0.01

Similarly, we have the two almost coincide lines. This is same as the result we get in stochastic
factor model 1.

The wealth processes from primal FBSDE and dual FBSDE are shown as following:

Figure 3.6: Wealth Processes from Primal FBSDE and Dual FBSDE dt=0.01

Same as before, we can get the almost same results from primal FBSDE and dual FBSDE.

3.4 Numerical Verification

In this section, we will use numerical and simulation methods to show that we can get the exact
same wealth process by primal HJB, dual HJB, primal FBSDE and dual FBSDE for Log Utility
function under Stochastic Factor Model 1 and Power Utility function under Stochastic
Factor Model 2: Case 2.

3.4.1 Log Utility function under Stochastic Factor Model 1

In this part, we consider the log utility function we have

dS(t) = H(t)S(t)dt+ σS(t)dW (t)

dH(t) = k(c−H(t))dt+ σ1
√
H(t)dW (t)

dXπ(t) = Xπ(t)[(r + π(t)(H(t)− r))dt+ π(t)σdW (t)]

For primal method, using Euler scheme, we can get

Hti+1
= Hti + k(c−Hti)∆ + σ1

√
Hti

√
∆Zti
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Xti+1
= Xti +Xti(r + πti(Hti − r))∆ + πtiXtiσ

√
∆Zti

π∗(ti) =
Hti − r
σ2

For dual method, we know that

Xπ∗(t) = −∂V̂ (t, Ŷ (t))

∂Ŷ (t)
=

1

Ŷ (t)

dY (t) = −Y (t){rdt+
Ht − r
σ

dW (t)}

By using Euler scheme, we can get

Hti+1
= Hti + k(c−Hti)∆ + σ1

√
Hti

√
∆Zti

Yti+1
= Yti − Ytir∆− Yti

Ht − r
σ

√
∆Zti

We set the same parameters as before in the FBSDE methods and by simulation method, we can
get the wealth processes from primal HJB and dual HJB as following:

Figure 3.7: Wealth Processes from Primal and Dual HJB, dt=0.01

We plot wealth processes and optimal control processes from four methods in one figure to compare
the results.

Figure 3.8: Wealth Processes from Four Methods, dt=0.01
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Figure 3.9: Optimal Pi from Four Methods ,dt=0.01

From figure 3.8 and 3.9, we can see that four wealth processes have same trend all the time and
slightly difference. As time increase, the difference in values of four wealth processes becomes
larger. In addition, the optimal control processes from four methods are almost the same. Then
We calculate the mean square error of wealth process from other three methods in comparison to
the primal HJB. We have the mean square errors are 0.14153 for dual HJB, 0.02870 for primal
FBSDE and 0.02742 for dual FBSDE. MSEs are too small compared with the values of wealth
process. Thus we can consider the wealth processes from these four methods to be the same.

Then we use different time step size to see the effect of time step size. Other parameters won’t be
changed. We have the wealth processes and optimal control processes for dt = 0.02 and dt = 0.05
and we also calculate the MSEs for dt = 0.02 and dt = 0.05.

Method MSE dt = 0.01 MSE dt = 0.02 MSE dt = 0.05
Primal HJB 0 0 0
Dual HJB 0.14153 1.01434 3.49741

Primal FBSDE 0.02870 0.25264 3.48545
Dual FBSDE 0.02742 0.19643 1.03490

Table 3.1: Mean Square Error

Figure 3.10: Wealth Processes from Four Methods, dt=0.02
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Figure 3.11: Optimal Pi from Four Methods, dt=0.02

Figure 3.12: Wealth Processes from Four Methods, dt=0.05

Figure 3.13: Optimal Pi from Four Methods, dt=0.05

As can be seen in figure 3.8, 3.10 and 3.12, the simulation results become worse from four methods
as the time step size become larger. From t = 0 to t = 0.5, difference among four methods is slight.
But from t = 0.5 to t = 1, the difference among these wealth processes can be seen obviously. The
reason is that as time step size become larger, the simulation results become worse and error could
be accumulated as t increases. In addition, we know that as time step size increases, the error
becomes larger from table 3.1.
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3.4.2 Power utility function under Stochastic Factor Model 2: Case 2

In this part, we consider the power utility function we have

dS(t) =
√
H(t)S(t)dt+ σS(t)dW (t)

dH(t) = k(c−H(t))dt+ σ1
√
H(t)dW (t)

dXπ(t) = Xπ(t)[(r + π(t)(
√
H(t)− r))dt+ π(t)σdW (t)]

For primal method, using Euler scheme, we can get

Hti+1 = Hti + k(c−Hti)∆ + σ1
√
Hti

√
∆Zti

Xti+1
= Xti +Xti(r + πti(

√
Hti − r))∆ + πtiXtiσ

√
∆Zti

π∗(t) = −
(
√
h− r) + σσ1( 1

2B(t) + C(t)
√
h)

σ2(β − 1)

For dual method, we know that

Xπ∗(t) = −∂V̂ (t, Ŷ (t))

∂Ŷ (t)

We have already known that V̂ (t, y, h) = 1−β
β y

β
β−1 expA(t) +B(t)

√
h+ C(t)h, by taking derivative

of Ṽ with respect to y and setting it to be 0, we get ŷ(t) = xβ−1 expA(t) +B(t)
√
h+ C(t)h

1−β
,

and thus ŷ(0) = xβ−1 expA(0) +B(0)
√
h+ C(0)h

1−β
.

So we have
X(t) = Y (t)

1
β−1 exp (A(t) +B(t)

√
Ht + C(t)Ht)

dY (t) = −Y (t){rdt+

√
Ht − r
σ

dW (t)}

By using Euler scheme, we can get

Hti+1
= Hti + k(c−Hti)∆ + σ1

√
Hti

√
∆Zti

Yti+1
= Yti − Ytir∆− Yti

√
Ht − r
σ

√
∆Zti

We set the same parameters as befor to match the condition 1
2kc−

1
8σ

2
1 = 0. We first use numerical

method to find A(t), B(t) and C(t) for primal HJB and dual HJB. Then we use simulation method
to get the wealth processes. The results are shown below:

Figure 3.14: Wealth Processes from Primal and Dual HJB, dt=0.01

Then we plot wealth processes and optimal control processes from four methods in one figure to
compare the results.
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Figure 3.15: Wealth Processes from Four Methods, dt=0.01

Figure 3.16: Optimal Pi from Four Methods ,dt=0.01

We also calculate the mean square error of wealth process from other three methods in comparison
to the primal HJB. They are 5.55117, 0.25668 and 0.22774 separately for dual HJB, primal FBSDE
and dual FBSDE. We can get the same result that four methods will have the exact same solution
for utility maximization problem. There will the same effect of time step size that as the time step
size increases, the error becomes larger.

By numerical verification in two stochastic factor models and different utility functions, we have
proved that we have the exact same wealth process by primal HJB, dual HJB, primal FBSDE and
dual FBSDE, which means we can get same solution for utility maximization problem by these
four methods.
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Chapter 4

Conclusion

In this paper, we study the utility maximization problem under different models using four ap-
proaches. Under the simple assumption model, we can get the closed formula solution for this
problem with power utility function and non-HARA utility function by dual HJB and FBSDE. It
is clear that different methods have the exact same solution for the utility maximization problem.
However, we can not find the closed formula solution under complex models such as stochastic
factor models. In this case, we use numerical method to plot the wealth processes and optimal
control processes in one graph from primal HJB, dual HJB,primal FBSDE and dual FBSDE and
then compare the results. We also calculate the mean square error from other three methods in
comparison to the primal HJB. We can conclude that the wealth processes from these four methods
to be the same. Thus we can conclude that all the four methods can get the exact same solution
for the utility maximization problem given in this paper.

For further reseach, we can consider the utility maximization problem under constrained to find
whether we can get the same solution by primal HJB, dual HJB, primal FBSDE and dual FBSDE.
In addition, we use the BSDEs representation to provide a solution to the semilinear PDE. Can
we solve the BSDEs directly or we need to find a numerical solution to the BSDEs. It is also a
problem that we can consider in the future.
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