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Abstract

We propose a structural credit model for large portfolios of defaultable assets. In par-
ticular, we consider that each company’s asset value process follows a jump-diffusion
with a non-linear drift arising from a contagion mechanism. Motivated by Bush et al.
(2011), the processes are connected via global market factors, represented by a common
noise and jump process. The joint density of the portfolio is described by a stochastic
partial differential equation (SPDE). We derive the regarding SPDE and find an explicit
expression for its solution by studying the law of a conditional McKean-Vlasov problem.
Via a calibration exercise, we evaluate the contribution of the contagion for a post-crisis
period.

Key words: portfolio credit modelling, contagious jump-diffusion, SPDE, structural
model
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Introduction

Credit derivatives are financial instruments which help investors to secure themselves from credit
risk arising from a portfolio of defaultable assets. Before the credit crisis, they have formed
the second largest product class in the global over-the-counter (OTC) market. Until today the
outstanding notional on these products is immense. This fact gives rise to establish mathematical
models for pricing purposes and risk management. Traditionally, there are two main types of
models to capture the default risk of a single obligor: reduced-form and structural models. While
the first ones are widely used in the industry, the second type has the advantage to be directly linked
to a economic grounding. However, for credit basket derivatives, like a CDO index, one needs a
model capturing the default risk for multiple names. Following this fact, a structural model for this
purpose is proposed in [2]. Here a firm’s asset value is mainly driven by two diffusion processes and
the dependence between the companies arises from an exposure to a common market process. This
setup gets extended in [1], by adding a common compound Poisson process. Therefore, the firm
values are described by jump-diffusions. Independent of this, [3] proposed to include a contagion
mechanism on top of the diffusion model. The idea is that defaults within the system have a
negative impact on the asset value of the remaining companies. In this thesis, we study a firm
value process that consists of a jump-diffusion and a contagion. Therefore, it can be seen as part
of a family of works extending the model presented in [2]. One feature that all extensions have in
common is that the joint density, determining the losses of a defaultable portfolio, can be described
by a stochastic partial differential equation (SPDE). In particular, the solution of the latter turns
out to be the limit of the empirical measure in case that the population of the underlying system
is large enough. This thesis can be distinguished into one part studying the upper SPDE for our
model setup and one trying to numerically implement it. The latter aims to evaluate the benefits
arising from the contagion term while matching market spreads of credit derivatives.

The thesis is structured as follows. The first chapter is of an introductory character. It clarifies the
terminology of systemic and credit risk and presents how both are modelled in the state-of-the-art
literature. Moreover, we give a brief overview of some credit derivatives and their regarding pricing
functions. In Chapter 2, we present structural models for a single or multiple names following the
presentation given in [1, Sections 3 and 4] and extend them by adding a contagion mechanism as
proposed in [4]. Finally, we demonstrate how the multi-name model can be used to approximate
the distances-to-default of companies considered to be particles within a finite particle system.
In Chapter 3, we mainly study the case that the population size of the system tends towards
infinity and derive a SPDE for the joint density of this large basket case. Moreover, we illustrate
the impact of each parameter in the limiting model by plotting the density evolution for different
market scenarios. In Chapter 4, we provide a short outline on how to calibrate the model so that
it fits spreads of a CDO index observed in the market. In addition, we compare our results to
the ones presented in [1] to analyse if the contagion mechanism provides more flexibility to match
spreads especially for dates after the crisis of 2007.
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Chapter 1

Systemic and Credit Risk

In this chapter, we give an introduction to systemic and credit risk. Besides stating how these
notions are defined in the current literature, we also present methods to model both types of risks
mathematically. Moreover, we derive pricing formulas for common credit derivatives, which we
partly use later in a calibration exercise.

1.1 Systemic Risk

Following [5, Section 1.1], there are five main categories of risk faced by financial institutions, in
the following called banks for simplicity:

1. Credit Risk: The risk of not being payed a stipulated repayment on an outstanding invest-
ment caused by the default of a counterparty on their contractual obligations.

2. Market Risk: The risk of an unexpected change in the value of a financial position triggered
by changes in the market prices or value of the respective underlying such as a stock or index.

3. Liquidity Risk: The risk that adjusting financial positions in the market might impact its
price since it cannot be bought or sold fast enough due to a lock of marketability.

4. Operational Risk: The risk of losses resulting from fraud, external events or most impor-
tantly inadequate internal processes, people and operations.

5. Systemic Risk: The risks stemming from the interlinkages in the financial market, where
the failure of a single bank might cause a cascading failure of other market participants.

It is noteable that the first four categories above only concern banks individually, while systemic risk
relates to the entire financial market. Therefore, the latter can be seen from a more macroeconomic
perspective although it can have dramatic consequences for individual market members. In the
following paragraph we introduce systemic risk in more detail.
In general, there are not one but many definitions of systemic risk emphasizing different aspects of
the same underlying idea of this risk category. However, as stated in [6, Section 1.4] one can agree
that at least the following three ingredients are essential to speak of systemic risk:

1. Triggering Event: This can be any event, either of internal or external nature, impairing the
banks in the system. In case the trigger is caused by something outside of the system we speak
of exogenous shock, like a natural disaster. On the contrary, the event is called endogenously
if it arises from within the system. A failure in being able to pay back obligations due to
mismanagement is one example for the latter.

2. Propagation of stress within the system: The shock initialised by an event as described
above begins to spread through the the system of banks. Via direct or indirect interdepen-
dence between the latter, other members are affected by the initial event. This phenomenal
is comparable with the contagion of a disease within in a group of humans. Due to this
similarity one also speaks of financial contagion. In [6] it is written that there are four main
channels for contagion within a financial system. The first, but more indirect, reason for

6



contagion is the asset allocation found in modern financial markets. Different banks tend
to invest in common and similar assets. This leads to correlated portfolios and hence to
susceptibility to similar types of shocks. However, this is not a channel for contagion in a
narrow sense, it is a tinderbox for a financial market especially in combinations with the
following channels. A main type of financial contagion is called default contagion. The wide
range of modern financial products like swaps, derivatives and securities cross-holdings lead
to many linkages between different banks. In case of the default of one bank, other banks
need to write off possible interbank assets. This can cause major losses due to the disrupted
promised payments from the defaulted bank. Such shocks are the channel for default con-
tagion. As a consequence of the many links between the institutions, this can even create
a default cascade, i.e. the bankruptcy of one bank can trigger the default of many others.
The next channel of contagion concerns with liquidity. One speaks of funding illiquidity if
a bank has not enough liquid assets to meet short term obligations towards others. As a
reaction it recalls or not rolls over their issued loans. However, this will bring other banks in
the same situation and so this behaviour will spread through the market. This is the channel
for liquidity contagion. Lastly, the last channel for financial contagion are asset fire sales. In
case some shock in the market diminishes the capital of at least one bank.It begins to sell
some of its held assets to meet for example regulatory leverage constraints. However, in case
the amount of sold assets is big enough, the price of the asset will drop by a simple supply
and demand argument. This would not only reduce the asset’s value of the affected bank
but also brings other institutions in the same position. The latter is in particular boosted by
the asset correlation explained above.

3. Significant macroeconomic impact: Lastly, one should be aware of the fact that the
financial system serves several purposes for the entire economy, for example the supply of
credit or the provision of liquidity in the market. Therefore, a failure of wider parts of the
financial industry has also a huge impact on the non-financial economy.

The similarity between financial contagion and the contagion of a disease between humans was well
illustrated in the speech [7] by the economist Haldane in 2009. He compared the financial crisis
of 2007/08 with the SARS epidemic in 2002/03. He stated that both events were triggered by
external event strikes. The resulting fear about the uncertain future caused panic and overreaction
in the market and society respectively. In both cases, the global collateral damage was immense
and demonstrated how a ”flap of a butterfly’s wing” can trigger a wide spread of the initially local
shock. He continues by explaining that both phenomenal were the result of the behaviour of a
stressed complex network web with a big amount of interconnections. A similar analogy could be
observed concerning the current COVID-19 epidemic that caused even more dramatic reactions
than the similar SARS virus. However, at today’s state of knowledge, one can not say if the
regarding reactions from politics and economy can be seen as an overreaction. Nevertheless, it is
observable how the growth of uncertainty in the market goes along with the spread of the disease.
Events, like the crises described above, demonstrate how important the understanding of contagion
dynamics and external shocks is. However, before we present three main streams of research in
the field of systemic risk, it is important to highlight the difference between the latter and the
often confused systematic risk. While systemic risk is the risk that the failure of a single or a
group of market members can cause negative effects on the entire system, systematic risk can be
seen similar to market risk. It describes how market instability can cause losses to for example
certain investments. One can replace the terminology with the more common one of the volatility
in the market. Besides the underlying fluctuations due to trading activity, it also incorporates
macroeconomic effects like recession or inflation.

1.2 Approaches to model Systemic Risk

As already mentioned, the mortgage crisis of 2007/08 demonstrated the importance of the math-
ematical understanding of complex financial networks. In this section, we briefly highlight the
existing research on this field. One can distinguish between three main lines of approaches to
model systemic risk within a system of banks. The first and probably oldest line of research in
this field is based on the concept of quantitative risk measures like the value-at-risk (VaR) and
expected-shortfall (ES). As an review on monetary risk measures we refer to [8, Chapter 6] or
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[9, Chapter 4]. The VaR, as the most famous measure of risk used by banks, only focuses on
individual institutions ignoring its interdependence with others in the financial system. In [10],
the conditional value-at-risk (CoVaR) is introduced. As the name indicates, the CoVaR is defined
as the VaR of some bank i given that a certain shock occurred to another bank j. Therefore,
this measure does not look at banks as isolated members of the financial market but incorporates
their interlinkages. While the CoVaR applies the concept of the classic VaR, one can also intro-
duce systemic risk measure relying on the ES. To state examples, the marginal expected-shortfall
(MES) and systemic expected-shortfall (SES) are defined in [11]. To understand the first one, we
consider the classical ES of the entire banking system. The MES is given by the partial derivative
of the ES with respect to the exposure of a single bank. Therefore, it can be seen as the expected
short-term losses of the bank given that the market takes a loss greater then its VaR. Related to
this, the SES is the penchant of a single bank to hold too less capital in case the system itself
is undercapitalised. Hence, it can be seen as a measure for a bank’s contribution to the overall
systemic risk. Besides the techniques inspired by classic monetary risk measures, there is also a
more axiomatic approach, which is for instance described in [12]. The method involves considering
a multi-dimensional random variable representing certain risk factors within the financial system.
Via aggregation functions those different factors are summarised in a single univariate variable.
Measuring the risk in the system then reduces to apply a so-called base risk measure which can be
seen as measure for a single institution. Therefore, the idea is to aggregate the certain factors so
that the entire system can be treated as a single representative bank. A similar approach is also
presented in [13].
The second main approach to understand systemic risk and contagion incorporates models based
on a network structure. The financial system containing several banks can be considered as a graph
whose nodes represent the institutions and the edges their connections established by different types
of contractual obligations. The probably most famous model was introduced by Eisenberg and Noe
in [14]. It represents all liabilities between the nodes in the system by a so called nominal liability
matrix L. Moreover, it considers exogenous operating cash flows for each institution represented
by a vector e. Those two quantities are sufficient to characterise the financial system, denoted
by (L, e). By adding a clearing vector the model can be used to understand the consequences of
defaults of banks and the dynamics of the clearing process. For further reading, we refer to [6] or
the study in [15]. The main drawbacks of network-based models are that they are in general static
and one needs data of the entire financial system considered to calibrate them.
Those two disadvantages can be avoided by using the third approach of modelling systemic risk,
dynamic continuous-time mean fields. One of the illustrative works, using a mean-field limit to
establish a model of lending and borrowing banks, is given by [16]. They represent the log-
capital of several banks by a diffusion process respectively. Correlations between the institutions
are modeled using correlated Brownian motions driving the diffusion processes. Fouque and Sun
introduce dynamics, so that the log-capital processes converge to independent Ornstein-Uhlenbeck
processes, in case the number of banks in the system tends to infinity. This model is studied in more
detail in [17]. In contrary to the network-based models, mean field models offer greater dynamics
and stochastic structure. However, they often do not incorporate the interlinkages between the
banks in the detail that network models do. Nevertheless, this can be an advantage when it comes
to calibrating the model to data. Due to considering the mean field limit, aggregated data is
often sufficient. The model introduced in this thesis can be seen as mean field model, build on a
structural mechanism for the banks’ default. The structural approach is often used in credit risk
models and can be seen as the main alternative to intensity models. In section 1.4, we give a short
introduction to the idea behind structural models.

1.3 Credit Risk

Following the explanations in [18, Chapter 1], credit risk is any risk associated with all kind of events
linked to credit. These includes changes in the credit rating or quality of an institution, variations of
credit spreads and the risk that a default event happens. Moreover, it can be distinguished into the
two subtypes reference credit risk and counterparty credit risk. The first one considers a contract
between two default-free entities which depends on the default event of a third reference party not
being an active part of the contract. One example for such a contract is a credit default swap
(CDS) between two not defaultable parties. This type of financial agreement will be introduced
in more detail in one of the following sections. On the other hand, counterparty credit risk plays
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an important role within the OTC market. Contracts traded this way are not backed by any
clearinghouse or public exchange. Therefore, in case that both contract parties are defaultable,
they are exposed to the risk that the respective counterparty defaults and is not able to meet its
obligations. This uncertainty is often overcome by some form of collateral agreement. Nevertheless,
to assess the fair value of any contract it is essential to quantify the default risk, which is exactly
the risk that a counterparty can not meet its contractural obligations. Following [19, Page 1],
credit risk is defined as ”the risk that an obligor does not honour his payment obligations”. Note
that here the idea of default and credit risk coincide. Moreover, one can distinguish between three
main components of credit risk:

1. Arrival Risk: This risk describes the uncertainty whether a default will occur to a coun-
terparty or a reference entity or not. This risk is quantified by the probability of a default.
By denoting the default time of interest by τ and considering a contract of time horizon T ,
the probability of default within the contract life time is given by P(τ < T ).

2. Timing Risk: In contrast to the arrival risk, it captures not only whether or not a default
happens but the uncertainty about when precisely the latter occurs. Therefore, one is now
interested in P(τ ∈ [tk−1, tk]) for any partition 0 = t0, t1, ..., tn−1, tn = T . Note that those
first two components of credit risk are described by the probability density function of the
time of default.

3. Recovery Risk: It describes the unknown severity of the loss in case of a default. The latter
may depend on the type of default or possible agreements within a contract. Conventionally,
in many contracts, which are exposed to default risk, a so called recovery rate (REC) is
defined. This quantity is expressed by a fraction of the contract’s notional value which is
paid to the creditor in case of a default. For example, if one assumes REC=40%, the creditor
receives 40% of the outstanding payment by the defaulting counterparty. Since the recovery
can vary depending on the market situation, the recovery risk is measured by the conditional
distribution of the recovery rate, i.e. by P(REC = x | τ < T ).

In this thesis, we will focus less on this third component but much more on the occurrence of
default events and its consequences for a system of different individual banks. In the following
section, we describe one of the main ideas of modelling default events.

1.4 Structural Models

The models used to describe default events can be mainly distinguished into intensity and structural
models. The first type does not explain the reason for an occurring default, whereas the second
focuses more on studying why a bank or firm in general defaults. The model proposed in this
thesis belongs to the class of (multi-dimensional) structural models. Therefore, we only give an
introduction to this family of models. For an overview of intensity models or in general a more
detailed survey we refer to [18], [19] or [20]. The following statements are mainly based on the
summary given in [21, Section 1.2]. The idea behind this kind of models is that a company defaults
in case its asset value falls below a certain default barrier. Merton assumes that a firm’s life is
linked to its ability to repay obligations to counterparties. Therefore, he considers that default
can only happen at a terminal time point T ≥ 0, e.g. the maturity of an issued bond. Until today
many structural models are inspired by this original idea. In the basic model [22], the asset value
of a company is described by a stochastic process (At)t≥0 described by

dAt = µAtdt+ σAtdWt,

where µ is the mean rate of returns, σ the asset’s volatility and W is a standard Brownian motion.
Under the risk neutral measure it is assumed that the mean of the returns equals the risk-free rate
r. Therefore, the risk-neutral dynamics are given by

dAt = rAtdt+ σAtdWt.

As already mentioned, defaults can only occur at time T in case the terminal asset value hits a
certain barrier level D. It follows that the time of default, denoted by τ , is defined by
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τ =

{
T , if AT ≤ D
∞ , otherwise.

By a simple application of Itô’s formula, we get the well-know explicit expression

AT = A0 · exp

{(
r − σ2

2

)
T + σWT

}
.

Therefore, it follows easily that the probability of default under the risk-neutral setting is given by

P(AT ≤ D) = Φ

 log
(
D
A0

)
−
(
r − σ2

2

)
T

σ
√
T

 ,

where Φ(·) is the standard normal distribution function. To lose the dependence on σ and D, it is
common to introduce the distance-to-default notion

Xt :=
1

σ
(log(At)− log(D)).

In particular, we get

Xt =
1

σ

(
log(A0) +

(
r − σ2

2

)
t+ σWt − log(D)

)
= X0 + βt+Wt,

where β := 1
σ (r − σ

2 ) and we used the fact that X0 = 1
σ (log(A0) − log(D)). Using the notion of

the distance-of-default, we can rewrite the time of default as

τ =

{
T , if XT ≤ 0

∞ , otherwise

with new probability of default

P(XT ≤ 0) = Φ

(
−X0 − βT√

T

)
.

In 1976, Black and Cox proposed in [23] a variant of Merton’s model to incorporate defaults not
only at maturity time. Their approach is based on the theory of passage times. The idea is that
we are not only interested in the terminal distance-to-default XT , but on the quantity over a whole
period. In other words, the time of default considered now is given by

τ = inf{t > 0 : Xt = 0}.

The infimum indicates that the default happens at the first passage time of the distance-to-default
at the origin. Clearly, one big advantage of structural models and especially Merton’s model is that
the assumption and the underlying dynamics allow to asses the value of the assets and credit risk
in general. In particular, as shown above, there exists a range of quantities which can be computed
by a closed-form formula. However, there are some disadvantages to the Merton model. One main
is that it only considers defaults to happen at a terminal time point T . This problem was solved
by Black and Cox as presented above. Nevertheless, both models assume a continuous process to
model the asset value of a firm. Our model tries to overcome this shortcoming by adding jump
processes to the underlying process. Inspired by [1], we consider a Poisson process in addition to
the Brownian motion. Lastly, one disadvantage of structural model in general is that they do not
capture the capital structure of a bank in detail. For example, the debts are often considered to
be constant or follow a specific evolution in time.

1.5 Credit Derivatives

Being interested in default events and probabilities, we now give a brief introduction on credit
derivatives. They are financial instruments which transfer credit risk from a protection buyer to
a protection seller. The contracts can be either based on a single third reference entity or a pool
of defaultable assets. Credit default swaps (CDS) are possibly the most popular representative
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of the first group. As stated in [21], they are designed to offer protection against the default of
a reference entity in exchange for a periodically paid premium. While a CDS depends only on
a single name, collateralized debt obligations (CDOs) are based on a basket of names. In the
following subsections, we briefly state the most important characteristics of those two products
and introduce pricing formulas. The subsequent explanations are inspired by [2], [21], [24] and
[25].

1.5.1 Credit Default Swaps (CDS)

By purchasing a CDS, the buyer ensures that the regarding seller of the contract compensates the
loss given the default of a third entity. Therefore, this agreement involves three different parties,
while one of them is not an active part but only acts as a reference on whose possible default
the contract depends on. In exchange for the insurance against possible losses, the buyer of the
CDS has to periodically pay a fee, called CDS spread and denoted by SCDS , to the initiator of
the agreement. The payments are made until maturity of the contract or the actual default of the
reference firm. If the latter occurs, the seller has to pay the loss-given-default LGD to the buyer.
Assuming a unit notional, we have that LGD = 1−REC. Following the notation in [21, Section
3.4.1], we denote by Ta the starting time of the contract and Tb the maturity. Moreover, from
now on Ti with i = a+ 1, ..., b are the payment dates for the CDS spread. The payment intervals
are given by ∆j := Tj − Tj−1 and the value of the bank account at time t is denoted by b(t).
Furthermore, we assume that the risk-free interest rate r and the recovery rate REC are constant
and that trading is frictionless and continuous in time. In this case, we can write the discounted
running cashflow at initial time Ta = 0 seen from the payer side of the CDS as

Πa,b = LGD

b∑
i=a+1

1

b(Ti)
1{Ti−1<τ≤Ti} − SCDS

b∑
i=a+1

∆i

b(Ti)
1{τ>t}.

The first term is called the protection leg of the CDS and the second one fee leg. To get the fair
value of both legs respectively, we need to take expectation under an appropriate pricing measure
P. Hence, for the fee leg of the CDS it follows that its value is given by

Vfee-leg = SCDS

b∑
i=a+1

∆i

b(Ti)
P(τ > t),

where the quantity P(τ > t) is called the survival probability of the reference entity under the
pricing measure P. On the other side, it follows similarly for the protection leg that

Vprotection-leg = LGD

b∑
i=a+1

1

b(Ti)
P(Ti−1 < τ ≤ Ti).

Since we know that at time Ta = 0 the fair price of the contract must ensure that the value of
both legs must be equal, we can follow that the fair CDS spread is given by

SCDS =
LGD

∑b
i=a+1

1
b(Ti)

P(Ti−1 < τ ≤ Ti)∑b
i=a+1

∆i

b(Ti)
P(τ > t)

. (1.1)

1.5.2 Colletarlized Debt Obligation (CDO)

A CDO is a financial instrument consisting of fixed-income securities whose payments depend on
credit events within a portfolio of defaultable assets. A portfolio can consist, for example, of loans,
mortgages or CDSs. In this thesis, we focus on a so-called synthetic CDO, whose underlying pool
of assets only consists of CDSs. The seller of such a CDO chooses the portfolio of companies and
a maturity for the product beforehand. Easily spoken, the originator sells CDSs on each company
within the portfolio, where each CDS has the same maturity as the CDO itself. The principal of
the latter equals the sum of the individual CDS principals. The seller of this product has cash
inflows in form of regular payments, called CDO spreads. On the other hand, there are cash
outflows in case a company in the underlying portfolio defaults. A CDO is structured in a way
so that different risk profiles are offered to possible investors. The choice of the riskiness of an
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investment then depends on the individual risk appetite. The risk profiles are called tranches.
In general, one can distinguish between three main categories of tranches, which then may be
divided into several subcategories. The tranche connected to the most risk is often called equity
tranche. The underlying assets are often unrated or at least highly speculative. The middle risk
profile is called mezzanine tranche, which is of investment-grade. The lowest risk is summarised
in the senior tranche, whose underlying asstes can have a AAA rating. The different tranches are
characterised by an attachment point a and detachment point d > a. Normally, those quantities
refer to percentages of the underlying portfolio notional. The liabilities for the cash outflows depend
on the seniority of the different tranches. In case of a default in the company portfolio, the CDO
originator needs to make insurance payments to the counterparties of the respective CDSs. If the
amount of these payments with respect to the CDO principal lie beneath the detachment point
of the equity tranche, only investors of this risk profile are responsible. In case it is so high that
it is between the attachment and detachment point of the mezzanine tranche, the payments are
carried out on the equity tranche entirely and partly one the mezzanine tranche. This liability rule
is called waterfall and is characteristic for many asset-backed securities. An investor investing into
a specific tranche of the CDO periodically pays a spread, denoted by SCDO, on the outstanding
notional of the tranche.

Following [1] and [2], we introduce pricing formulas for a single CDO tranche and a CDO index.
For the latter we consider an underlying portfolio consisting of N CDSs. Each CDS has a notional
of N0 = 1/N . At any time t the outstanding notional of the portfolio is given by

Ñt = N0

N∑
i=1

1{τ i>t},

where τi denotes the default time of the i-th reference entity. We denote the spread of the CDO
index by SIND. Using the notations introduced in the last section about CDSs, we can write the
discounted payoff at initial time Ta = 0 from the view of the CDO originator as

Πa,b = SIND

b∑
j=a+1

∆j

b(Tj)
ÑTj − (1−REC)

b∑
j=a+1

1

b(Tj)
(ÑTj−1

− ÑTj ),

where we assumed that the recovery rates of the portfolio companies are the same and constant.
We can call the first term again fee leg and the second protection leg. By taking risk-neutral
expectation we obtain the fair value of both legs respectively. For the fee leg we get

Vfee-leg = SIND

b∑
j=a+1

∆j

b(Tj)
E
[
ÑTj

]
= SIND ·N0

b∑
j=a+1

∆j

b(Tj)

N∑
i=1

P(τi < Tj),

where P(τi < Tj) is the probability of company i to survive the payment date Tj . Similarly, we
get for the protection leg

Vprotection-leg = (1−REC)

b∑
j=a+1

1

b(Tj)
E
[
ÑTj−1

− ÑTj
]
.

Again using the fact that at time 0 both legs need to be of the same fair value, we finally get the
CDO index spread

SIND =
(1−REC)

∑b
j=a+1

1
b(Tj)

E
[
ÑTj−1

− ÑTj
]

∑b
j=a+1

∆j

b(Tj)
E
[
ÑTj

] . (1.2)

In the next step, we want to present a formula for a single CDO tranche. Here we assume that the
recovery rate may differ between the firms in the portfolio. First, we define the total loss process
at time t of the entire portfolio by

Lt :=

N∑
i=1

Li1{τi<t}, (1.3)
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where Li = N0(1−RECi) for RECi being the recovery rate of entity i. The outstanding notional
of the tranche is then given by

Zt := [d− Lt]+ − [a− Lt]+ (1.4)

and the tranche loss as

Yt := [Lt − a]+ − [Lt − d]+.

Using those quantities, we get that the discounted cashflows seen from the CDO originator’s view
is given by

Πa,b = SCDS

b∑
j=a+1

∆j

b(Tj)
ZTj −

b∑
j=a+1

1

b(Tj)
(Ztj−1 − ZTj ).

By taking risk-neutral expectation, we can identify the fair value of the fee and protection leg
respectively. For the first we obtain

Vfee-leg = SCDS

b∑
j=a+1

∆j

b(Tj)
E[ZTj ]

and for the protection

Vprotection-leg =

b∑
j=a+1

1

b(Tj)
E
[
Ztj−1

− ZTj
]
.

Again using the fact that the par spread makes the CDO fair at the initial time 0 finally gives

SCDO =

∑b
j=a+1

1
b(Tj)

E
[
Ztj−1

− ZTj
]

∑b
j=a+1

∆j

b(Tj)
E[ZTj ]

. (1.5)

This shows that to find the par spread of the tranche of a CDO, it is essential to know the
distribution of the outstanding notional of the tranche, defined in (1.4). The formula demonstrates
that this boils down to work out the distribution of the loss process L as given in (1.3). This
motivates that the model introduced in this thesis should be used to model the distribution of this
process.
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Chapter 2

Extending Merton’s Model

In this chapter, we introduce the main model approaches used in this thesis. In the first section,
we state the dynamics of the asset value of a single name. For this purpose, we use the jump-
diffusion model introduced by Merton in 1976. Although we model the assets by a geometric
Brownian motion like in the classical Black-Scholes framework, we introduce a jump process,
represented by a Poisson process with normally distributed jump heights. Expanding the study
of one single bank, we consider a system of banks in the following section. To incorporate the
interdependence between the institution, established for example by borrowing and lending, we
include a dependence structure by introducing a system-wide noise on top of the idiosyncratic
driver, which only influences the individual banks respectively. Moreover, we introduce a contagion
mechanism as proposed in [4]. Lastly, we derive a notion of the distance-to-default for each company
in the system. Those quantities are finally expressed in form of a finite particle system.

2.1 The Single Name Structural Model

In this section, we introduce Merton’s approach to model the asset value of a single bank. For this
we follow the explanations given in [1, Section3]. In the following, let the process (At)t≥0 describe
the evolution of the latter over time. We assume that under the real world measure it follows the
dynamics

dAt = (µ− λν)Atdt+ σAtdWt +At−dJt, (2.1)

where (Wt)t≥0 denotes a standard Brownian motion and (Jt)t≥0 a compound Poisson process of
the form

Jt :=

Nt∑
k=1

(Yk − 1). (2.2)

with µ ∈ R, σ ∈ R+ and ν := E[Y1 − 1]. In the upper definition, the process (Nt)t≥0 denotes a
Poisson jump process with intensity λ > 0 and Y1, Y2, ... are i.i.d random variables denoting the
jump heights of the compound Poisson process. Following Merton, we assume the jump height to
be log-normally distributed, i.e.

log(Yk) ∼ N (µY , σ
2
Y ) for all k = 1, 2, 3, ....

Since we are especially interested in negative jumps, one can assume that µY < 0. One objective
of this thesis is to give a model, which can be used to price some credit derivatives. Therefore, we
need to establish a risk neutral setting. While the existence of an equivalent martingale measure P
follows directly from Girsanov’s theorem, the market is not complete. In other words there exists
a range of possible choices for the measure P. In fact, we get by a direct computation that

d(e−rtAt) = e−rt(µ− r)Atdt+ e−rtσAtdWt + e−rtAt−(dJt − λνdt)
= e−rt(µ− r − λν)Atdt+ e−rtσAt(dW

P
t − θdt) + e−rtAt−dJt

= e−rt(µ− r − λν − σθ + λPνP)Atdt+ e−rtσAtdW
P
t + e−rtAt−d(Jt − λPνP),
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where θ is such that

W P
t := Wt + θt , t ≥ 0

is a P-Brownian motion by Girsanov’s theorem, λP is the new arrival rate of the jump process and
νP = EP[Y1 − 1]. Hence, we need

µ− r − λν − σθ + λPνP = 0

so that the discounted asset value is a martingale under P. Following Merton, we choose λP = λ
and νP = ν and therefore obtain the market price of risk by

θ =
µ− r
σ

.

In particular, we get that the dynamics of the process (At)t≥0 under P are given by

dAt = (r − λν)Atdt+ σAtdWt +At−dJt. (2.3)

In the next step, we would like to find an explicit expression for the asset value at a given time t.
Before we do that, we introduce the jump measure corresponding to a jump process (Jt)t≥0 by

PJ(ω, ·, ·) :=

∆Jt 6=0∑
t≥0

δ(t,∆Jt), (2.4)

where δx denotes the Dirac measure centered around x. Intuitively, for any measureable set B ⊂ R
we have that the quantity PJ([0, t], B) gives the number of jumps of J occurring between time 0
and t with a jump height lying in B. Before applying Itô’s formula for jump-diffusion processes to
the logarithmic asset value process, we first note that

dAct := (r − λν)Atdt+ σAtdWt

denotes the continuous part of the asset dynamics and on the contrary

dAdt := At−dJt

the discontinuous one. So we finally obtain by Itô’s formula, incorporating the discontinuity arising
from the jumping part, that

log(At) = log(A0) +

(
r − λν − σ2

2

)
t+ σWt +

∫ t

0

∫
R

log(As− + x)− log(As−)PJ(ds, dx),

which can be rewritten as

log(At) = log(A0) +

(
r − λν − σ2

2

)
t+ σWt +

Nt∑
k=1

log(At− + (Yk − 1)At−)− log(At−).

By rearranging and using the basic logarithmic laws, this finally leads to the explicit expression

At = A0 exp

{(
r − λν − σ2

2

)
t+ σWt

} Nt∏
k=1

Yk. (2.5)

The last expression indicates that the change of the asset value in case of a jump is meant in a
multiplicative sense and hence is a relative change in the value. Let from now on Tk ≥ 0 denote
the time of the k-th jump of the process. Then we indeed observe that for k = 1, 2, 3, ...

ATk
ATk−

= Yk.
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2.2 The Multi-Name Structural Model

Extending the setup of only considering the asset of a single bank, we now consider a system of
N banks, as in [1, Section 4]. The asset value of bank 1 ≤ i ≤ N is described by the process
(Ait)t≥0. While we keep consistent with the dynamics (2.3) of one individual bank, we need to
incorporate some dependence structure within the system. We now assume that the process Ai

can be described by

dAit = (r − λν)Atdt+ σAtdW̃
i
t +At−dJ

0
t ,

where we consider the Brownian motion to be defined as a sum with the aim to establish correlation
using the idea of a one-factor model. In particular, we define

W̃ i
t := ρW 0

t +
√

1− ρ2W i
t , t ≥ 0,

where the processes W 0 and W i are independent standard Brownian motion respectively and
ρ ∈ [0, 1) a parameter capturing the correlation. Moreover, we have that J0 is of the form

J0
t =

Nt∑
k=1

(Yk − 1) , t ≥ 0

with again N denoting a Poisson process with respective intensity rate λ and Y1, Y2, ... i.i.d. random
variables with log(Y1) ∼ N (µY , σ

2
Y ). Note that the correlation between the processes is established

by the dependence on the common jump process J0. To highlight the dependence structure between
the different asset value processes, we from now on consider the following dynamics under the
martingale measure P

dAit = (r − λν)Atdt+ σAt

(
ρdW 0

t +
√

1− ρ2dW i
t

)
+At−dJ

0
t . (2.6)

Note that the martingale property is achieved by the fact that the compound Poisson process is
compensated within the drift term. Indeed, it holds by Wald’s equation that

E
[
J0
t

]
= E

[
Nt∑
k=1

(Yk − 1)

]
= E [Nt]E[Y1 − 1] = λtE[Y1 − 1] =: λtν.

The processesW i is a idiosyncratic factor, which has effects on each bank’s asset values individually.
It is used to model the more gradual effects on the asset, like the management of the regarding bank.
Similarly, the factors W 0 and J0 represent system-wide developments. Examples for continuous
underlying factors are unemployment rates or the general economic health, for instance indicated
by the S&P500. On the other hand, political decisions or pandemics may cause a sudden drop in
the asset value of all banks in the system. The intensity of N , λ, can be seen as measuring the
frequency of such economy-wide shocks. In a later section, we introduce a possible extension to
the model which considers idiosyncratic jumps.

2.3 Introducing a Contagion Mechanism

Following [4, Section 1.3], one main objective of this thesis is to incorporate contagion within the
system of banks. To do this, we first need to define a method to capture how much influence a
single bank has on the entire system, i.e. to measure its systemic importance. For that we assign
a weight to each institution. The weights are defined by

aNi :=
ai(X

i
0)∑N

j=1 aj(X
j
0)
, (2.7)

for i = 1, ..., N . The parameters ai(·) are assumed to be bounded by some positive constants
c, C > 0 so that c < ai(·) < C. Moreover, as already implied by their definition they depend on a
quantity Xi

0, which indicated the healthiness of bank i at the initial time of the studied time period.

Trivially, we observe that
∑N
i=1 a

N
i = 1, which shows that the importance should be understood

in a relative sense. Lastly, we get by the constant bounds that
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aNi =
ai(X

i
0)∑N

j=1 aj(X
j
0)
≤ C

cN
= O

(
1

N

)
, as N → +∞.

This behavior demonstrates that by construction not a single bank alone can have too much impact
in the entire system, in case the amount of institutions is big enough.
In the following, we introduce a contagion mechanism to model the (negative) effect of a bank’s
default on others in the financial system. Instead of assuming this possible loss in form of jumps,
we consider a gradual loss occurring within a short time period after the default of lets say bank
j. In order to model the magnitude of loss faced by a bank i 6= j, we use the relative weight aNj ,
displaying the relative importance, and a new constant contagion parameter α ≥ 0. The gradual
realisation of the loss is modelled by the process

Lj,Nt :=

∫ t

0

k(t− s)1{s≥τj}ds, (2.8)

where the functional k ∈ C∞(R+
0 ) is assumed to satisfy ‖k‖1 = 1. This last property demonstrates

the density-like behavior of k. Due to this fact, we refer to the latter as the impact kernel from
now on. The monetary loss in the asset value is modelled by means of discounting. In particular,
the asset value before the default gets updated by the rule

Ai· 7→ Âi· := exp

{
−aNj

∫ ·
0

αdLj,Ns
}
Ai· , i 6= j. (2.9)

To better understand this gradual discounting, we present two special cases in the following re-
marks.

Remark 2.1. Assume that t < τj , i.e. the default of bank j has not occurred yet. Trivially, we
see that the indicator inside the loss process at time t is always zero for all s ∈ [0, t] and so the
impact on the other banks is also zero.

Remark 2.2. Now assume that t ≥ τj + ε for an arbitrary small ε > 0. Moreover, we assume that
supp(k) = [0, ε], i.e. the impact kernel only ”lives” for a short period of time. Then we observe
that

Lj,Nt =

∫ t

0

k(t− s)1{s≥τj}ds =

∫ t

τj

k(t− s)ds.

Moreover, we observe that for all s < t−ε we have t−s > ε. Therefore, for all such s the functional
k is zero due to its support. It follows that∫ t−ε

τj

k(t− s)ds = 0

and so by change of variable to r := t− s, we obtain

Lj,Nt =

∫ t

t−ε
k(t− s)ds =

∫ ε

0

k(r)dr = 1.

The last equation follows from the assumption that ‖k‖1 = 1. Hence, regarding the discounted
asset value at time t = τj + ε we get

Âit = exp

{
−aNj

∫ t

0

αdLj,Ns
}
Ait = exp

{
−αaNj

}
Ait.

In the case that N is large enough, we have that aNj is small due to the fact that aNj = O
(

1
N

)
.

Therefore, using a Taylor expansion of the exponential functional, we get that exp
{
−αaNj

}
≈(

1− αaNj
)
, which finally leads to

exp
{
−αaNj

}
Ait ≈

(
1− αaNj

)
Ait. (2.10)

This illustrates that in case that the impact kernel restricts the negative impact of another bank’s
default to a short period after the regarding default, we have that by time τj + ε the asset value of
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bank i 6= j is lowered by the proportion αaNj from its initial value.
4

As time passes by, more banks may default. Therefore, by continuing to apply the discounting
procedure, we get in general for i = 1, ..., N that

Âit =
∏
j 6=i

exp

{
−aNj

∫ t

0

αdL̂j,Ns
}

= exp

−∑
j 6=i

aNj

∫ t

0

αdL̂j,Ns

 , (2.11)

where L̂j,Nt = 0 in case that bank j has not defaulted by time t and the updated process

L̂j,Nt :=

∫ t

0

k(t− s)1{s≥τ̂j}ds

with the new defined time of default

τ̂j := inf
{
t > 0 : Xj

t ≤ 0
}
,

where we have used the distance-to-default

Xj
t = log(Âjt )− log(Dj

t ).

In the next section, we put emphasize on the resulting model for the distance-to-default process
Xj . Before we do this, we introduce the loss process as

LN· :=

N∑
j=1

aNj 1{·≥τj}. (2.12)

Evaluating this process at time t gives the proportion of banks in the system, which have already
defaulted by time t and hence are considered to be dropped out of the system. We can use LNt to
rewrite the discounted asset value of bank i for t ≤ τ̂i as

Âit = exp

−∑
j 6=i

aNj

∫ t

0

αdL̂j,Ns

Ait = exp

−aNj
∫ t

0

∑
j 6=i

αdL̂j,Ns

Ait

= exp

−
∫ t

0

αd

∫ t

0

k(t− s)
N∑
j=1

aNj 1{t≥τj}ds

Ait

= exp

{
−
∫ t

0

αd

(∫ t

0

k(t− s)LNt ds
)}

Ait.

Therefore, by defining

LNt :=

∫ t

0

k(t− s)LNs ds (2.13)

we end up with the expression

Âit = exp

{
−
∫ t

0

αdLNs
}
Ait. (2.14)

2.4 Modelling the Distances-To-Default

In this section, we want to derive the dynamics for the individual distances-to-default, which finally
lead to a finite particle system. For this purpose, recall that the healthiness of bank i at time t is
given by Xi

t . In the following, we consider the system of banks as a number of interacting particles.
At time t, each such particle is described by

Xi
t = log(Âit)− log(Di). (2.15)
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Using the expression for the updated asset value (2.14), we derive

Xi
t = log

(
exp

{
−
∫ t

0

αdLNs
}
Ait

)
− log(Di

t) = log(Ait)− log(Di
t)−

∫ t

0

αdLNs .

Note that the first two terms describe the distance-to-default without having discounted the asset
value at time t, which is given by Y it . Hence, for t < τ̂i we get the dynamics

dXi
t = dY it − αdLNt , for i = 1, ..., N.

Our goal is to rewrite the above equation in terms of the independent Brownian motions W 0,W i

and the Poisson process N . To do this, we use the dynamics of a single asset value for any i as
above

log(Ait) = log(A0) +

(
r − λν − σ2

2

)
t+ σ

(
ρW 0

t +
√

1− ρ2W i
t

)
+

Nt∑
k=1

log(Yk),

where the last term is again a compound Poisson process. Since we assume the default barrier to
be constant, we note that Xi

0 = log(Ai0)− log(Di). This follows from the assumption that no bank
has defaulted by the initial time. In particular, this yields

log(Ait)− log(Di) = Xi
0 +

(
r − λν − σ2

2

)
t+ σ

(
ρW 0

t +
√

1− ρ2W i
t

)
+

Nt∑
k=1

log(Yk).

For simplicity, we use the general drift parameter µ := (r−λν− σ2

2 ) and denote the jump height by
Π := log(Y ). Note that the default time of bank i can now be written as τi := inf{t > 0 : Xi

t ≤ 0}.
Using those notations, we can state a finite system of interacting particles by

dXi
t = µdt+ σ

(
ρdW 0

t +
√

1− ρ2dW i
t

)
+ ΠdNt − αdLNt

LNt =
∫ t

0
k(t− s)LNs ds , where LNt :=

∑N
j=1 a

N
j 1{t≥τj}

τi := inf{t > 0 : Xi
t ≤ 0}.

The upper dynamics depend on some parameter, which can be interpreted as followed:

• µ models the return of the assets in the absence of any contagion in the system.

• σ describes the volatility of a bank’s assets also in absence of any interaction.

• ρ demonstrates how correlated the assets are in a contagion-free market. In particular, it
reflects the influence of the common noise process W 0.

• Π is the random jump height of the underlying common Poisson process, which leads to a
perfect jump correlation.

• α is the already mentioned contagion parameter, which captures that in case of bank i’s
default the others lose a proportion αaNi of their asset value.
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Chapter 3

From the Finite System to the
Large Basket Limit

This chapter builds the theoretical cornerstone of the thesis. As initially studied in [2], we are
interested in the case that the population size of the particle system tends to infinity. We hope
to find an appropriate approximation for this large basket case. In [1], the model from [2] gets
extended by a jump processes and [4] added a contagion mechanism. As already indicated in the
last chapter, we will combine those two extensions in one model. Firstly, we show how the finite
system, shortly mentioned above, can be expressed using an empirical measure denoted by νN .
Moreover, we give arguments for the well-posedness and uniqueness of the resulting system. After
proving the evolution equation for the measure νN in form of a weakly formulated SPDE, we
study how the latter behaves in the limit, i.e. in case N → +∞. In addition, we demonstrate how
the same results can be received by considering the law of a conditional McKean-Vlasov problem.
Lastly, we illustrate how the different parameters of the model affect the movements of the particles
by heat plotting the evolution of their density.

3.1 Empirical Measure

Similarly to what is stated in [2, Section 3], we introduce the empirical measure of the particles
Xi
t , i = 1, .., N , at time t as

νNt :=

N∑
i=1

aNi 1{t<τi}δXit , (3.1)

where δx denotes the Dirac measure centered at x. Note at this point that the mapping

νN· =

N∑
i=1

aNi 1{·<τi}δXi· : t 7→ νNt

takes values in the sub-probability measures on R. For any subset S ⊆ R, νNt (S) then simply
gives the proportion of the particles that have survived until time t and lie in S while each particle
is weighted by the individual weight aNi . In particular, we can observe the following relationship
with the loss process

νNt (0,∞) =

N∑
i=1

aNi 1{t<τi}δXit (0,∞) =

N∑
i=1

aNi 1{t<τi} = 1− LNt .

We can use this identity to rewrite the finite particle system explicitly depending on the measure
νNt . To make things more general, we from now assume that the jump process is of the form

J0
t =

N0
t∑

k=1

Yk, (3.2)
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where N0 denotes a Poisson process with intensity rate λ and (Yk)k≥1 is a sequence of i.i.d. random
variables being independent of N0 and following a distribution $. As before, the regarding Poisson
random measure is defined by

PJ0(ds, dx) =
∑

0<s≤t

δ(s,∆J0
s )(ds, dx). (3.3)

Having this in mind, the finite particle system can be expressed as
dXi

t = µdt+ σρdW 0
t + σ

√
1− ρ2dW i

t + dJ0
t − αdLNt

LNt = (k ? LN )t , L
N
t := 1− νNt (0,∞)

νNt :=
∑N
i=1 a

N
i 1{t<τi}δXit , τi := inf{t > 0 : Xi

t ≤ 0}.

(3.4)

3.2 Well-Posedness and Uniqueness of the Finite Particle
System

Considering the system as stated in (3.4), we now provide arguments that the latter is well-posed
and admits an unique solution for any N ≥ 1. To see this, we write XN = (X1, ..., XN ) and state
the system as a vector-valued SDE

dXN
t = µdt+ σ

(
ρW0

t +
√

1− ρ2dWt

)
+ dJ0

t − αdLNt , (3.5)

where W0
t = (W 0

t , ...,W
0
t ) ∈ RN and Wt = (W 1

t , ...,W
N
t ) ∈ RN . The following argumentation

follows similar ideas as presented in [4, Section 3]. It is mainly based on the fact that on every
interval between the defaults and jumps in the system, the random variable LNt is F0-measurable.
So we can find an unique solution of the system for the intervals lying between the default and
jump times of the particles. Due to this fact, we can solve the system inductively by constructing
its solution on every such interval by local continuous systems denoted by X(k),N , k = 1, 2, ....
Lastly, the uniqueness follows since those systems have an unique solution by [4] and the fact that
there are only finitely many defaults and jumps in the system. Before we go into more detail, we
introduce some crucial random times. From now on, τ i,N denotes the default time of particle i,
i = 1, ..., N , within the system XN . Similar to this, we introduce the first time a particle in the
m-th local systems defaults by

%
(m),N
1 := inf{t > 0 | ∃i ∈ {1, ..., N} : X

i,(m),N
t ≤ 0}. (3.6)

Lastly, we introduce Tn, which denotes the n-th jump time of the process J0. At time 0, we are
starting the first local system X(1),N . The evolution of its particles is described by the processes
Xi,(1),N , i = 1, ..., N . Since there are no defaults at time 0, we have that LNt = 0 until the first
default or jumps occurs. Hence, the first system moves continuously without any contagion term
to incorporate. In particular, the dynamics of the system can be described by

dX
(1),N
t = µdt+ σ

(
ρW0

t +
√

1− ρ2dWt

)
, (3.7)

where X
(1),N
t = (X

1,(1),N
t , ..., X

N,(1),N
t ) ∈ RN , W0

t = (W 0
t , ...,W

0
t ) ∈ RN and Wt = (W 1

t , ...,W
N
t )

∈ RN . As a next step, we need to distinguish two cases. First, assume that %
(1),N
1 < T1, which

indicates that at time %
(1),N
1 the first particle in X(1),N defaults before the first jump occurs.

Without loss of generality we give this particle the index i1. Then we can easily construct the first

default time of the system XN by τ i1,N = %
(1),N
1 . This event causes the particle to drop out of

the system XN . Therefore, we need to update the loss process LN accordingly, so that LNτi1 = ai1 .
Now that this process does not equal zero anymore, the contagion mechanism enters the system
and has to be taken into account when starting the second local system X(2),N . Moreover, the
latter only consists of N −1 particles, which we denote by Xij ,(2),N , j = 2, ..., N , with initial value

X
ij ,(2),N
0 = X

ij ,(1),N

%
(1),N
1

. The contagion at time t is captured by L(2),N
t = (k ? L(2),N )t, where L(2),N
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is constantly equal to ai1 for the lifetime of this second system. In the following, we assume that
supp(k) = [0, ε] for any ε > 0. The continuous dynamics of the new system can be expressed by

dX
(2),N
t = µdt+ σ

(
ρW0

t +
√

1− ρ2dWt

)
− αdL(2),N

t , (3.8)

where X
(2),N
t = (X

i2,(1),N
t , ..., X

iN ,(1),N
t ) ∈ RN−1, W0

t = (W 0
t , ...,W

0
t ) ∈ RN−1 and Wt =

(W i2
t , ...,W

iN
t ) ∈ RN−1. Next, we consider the case that T1 ≤ %

(1),N
1 . In this case, the sys-

tem XN jumps before the first particle in the first local system hits zero. However, the jump itself
might push some of the particles below or equal to zero. Therefore, we need to check if some
defaults get triggered or not. If the latter is the case, we can just start the second local system
moving continuously and without any contagion. Equivalently to the last case, the particles of this

system are denoted by Xij ,(2),N , j = 1, ..., N , with initial condition X
ij ,(2),N
0 = X

ij ,(1),N
T1−

+ ∆J0
T1

.

The actual dynamics are then described by

dX
(2),N
t = µdt+ σ

(
ρW0

t +
√

1− ρ2dWt

)
, (3.9)

where X
(2),N
t = (X

i2,(1),N
t , ..., X

iN ,(1),N
t ) ∈ RN−1, W0

t = (W 0
t , ...,W

0
t ) ∈ RN−1 and Wt =

(W i2
t , ...,W

iN
t ) ∈ RN−1. However, if the jump at T1 has caused the default of k particles indexed

by i1, ..., ik it follows that

τ i1,N = ... = τ ik,N = T1.

Moreover, the loss process is updated so that LNT1
=
∑k
j=1 aij and the regarding particles are

removed from XN so that the second system X(2),N has only a population size of N−k. Therefore,

following the prior notation it consists of the particles Xij ,(2),N , j = k + 1, ..., N with X
ij ,(2),N
0 =

X
ij ,(1),N
T1−

+∆J0
T1

. The value of the contagion at time t is given by L(2),N
t = (k?L(2),N )t, where L(2),N

is constantly equal to
∑k
j=1 aij during the lifetime of the system. Incorporating this contagion term,

we then have

dX
(2),N
t = µdt+ σ

(
ρW0

t +
√

1− ρ2dWt

)
− αdL(2),N

t , (3.10)

where X
(2),N
t = (X

ik+1,(1),N
t , ..., X

iN ,(1),N
t ) ∈ RN−k, W0

t = (W 0
t , ...,W

0
t ) ∈ RN−k and Wt =

(W
ik+1

t , ...,W iN
t ) ∈ RN−k.

Continuing in the same way, we get that in both cases above the system X(2),N runs until the
first of its particles hits zero or the time a jump in XN occurs. As a next step, we would start
the third local system X(3),N similar to above. Note that from now on, one has to check if the
new local system starts before the contagion of the prior has been completely materialised in case
it got stopped due to a default. Taking the start of the third system as an example, this means

that we need to check if %
(2),N
1 < ε. If this is the case, the system X(3),N inherits the remaining

contagion term in form of the additional drift term L(2),N
t − L(2),N

%
(2),N
1

. As said in the beginning, we

use the local systems X(1),N , X(2),N , X(3),N ,... to inductively construct the unique solution of the
particle system XN on each interval between a default or jump.

3.3 Evolution Equation of the Empirical Measure

Following the ideas from [4, Section 3.1], we want to find an equation for the evolution of the
empirical measure. Firstly, for a continuous function ψ and measure ζt we write

〈ζt, ψ〉 =

∫
ψ(x)ζt(dx). (3.11)

In the following, we want to focus on continuous functions that are rapidly decreasing. For this
purpose, we introduce the so-called Schwartz space S as

S := {φ ∈ C∞(R) : ‖φ‖α,β <∞ ∀α, β ∈ N}, (3.12)

where we have the semi-norm
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‖φ‖α,β = sup
x∈R
|xαφ(β)(x)|

with φ(β) denoting the β-th derivative of φ. Note that this derivatives actually exists for all β ∈ N
by the assumption that φ ∈ C∞(R). We equip the space S with the topology induced by the
semi-norms ‖ · ‖α,β . Moreover, we denote by S ′ its topological dual space. The latter one is
called the space of tempered distributions or space of slowly increasing distributions. Then we
can consider the empirical measure νN living in DS′ [0, T ], which consists of all S ′-valued right
continuous processes with left limits (cádlág) on the interval [0, T ]. Lastly, we from now on assume
the test functions to live in the space

S0 := {φ ∈ S : φ(x) = 0 ∀x ∈ (−∞, 0]}. (3.13)

This property of the test functions φ yields that for any i = 1, ..., N and time t ≥ 0 it holds

φ(Xi
t)1{t<τ i} = φ(Xi

t∧τ i).

Using this fact, we can write (3.11) in terms of a test function and the empirical measure as

〈νNt , φ〉 =

N∑
i=1

aNi 1{t<τi}

∫
R
φ(x)δXit (dx) =

N∑
i=1

aNi φ(Xi
t∧τ i). (3.14)

In the following, we show how to obtain a single evolution equation for the dynamics of the upper
empirical measure. Moreover, we can show that in the large population, the idiosyncratic noise
W i vanishes due to the averaging via the weights aNi . Those results are stated in the following
proposition and proved below. The argumentation follows closely [4, Proposition 3.2] with the
regarding changes arising from the jump process.

Proposition 3.1 (Finite evolution equation). For all N ≥ 1 we have that

d〈νNt , φ〉 =〈νNt , µ∂xφ+
1

2
σ2∂xxφ〉dt+

〈
νNt , σρ∂xφ

〉
dW 0

t

− 〈νNt , α∂xφ〉dLNt +

∫
R
〈νNt− , φ(·+ y)− φ〉PJ0(dt, dy) + dINt (φ),

for every test function φ ∈ S0, where the idiosyncratic part, IN (φ), satisfies

E
[
sup
t≤T
|INt (φ)|2

]
= O

(
1

N

)
as N →∞.

Proof. Recall from above that for any test function φ ∈ S0 we have the expression

〈νNt , φ〉 =

N∑
i=1

aNi φ(Xi
t∧τi).

Applying Itô’s formula for jump-diffusions to the stopped process (Xi
t∧τi)t≥0 with the stopping

time τi := inf{t > 0 : Xi
t ≤ 0} yields

φ(Xi
t∧τi) =φ(Xi

0) +

∫ t

0

µ∂xφ(Xi
s∧τi)ds+

∫ t

0

σρ∂xφ(Xi
s∧τi)dW

0
s

+

∫ t

0

σ
√

1− ρ2∂xφ(Xi
s∧τi)dW

i
s −

∫ t

0

α∂xφ(Xi
s∧τi)dL

N
s

+
1

2

∫ t

0

σ2∂xxφ(Xi
s∧τi)ds+

∫ t

0

∫
R

[φ(Xi
s−∧τi + y)− φ(Xi

s−∧τi)]PJ0(ds, dy),

where P0
J(ω, ·, ·) denotes the Poisson random measure of the jump process J0. Applying the

empirical measure to the upper process yields in differential notation
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d〈νNt , φ〉 =〈νNt , µ∂xφ+
1

2
σ2∂xxφ〉dt+

〈
νNt , σρ∂xφ

〉
dW 0

t

− 〈νNt , α∂xφ〉dLNt +

∫
R
〈νNt− , φ(·+ y)− φ〉PJ0(dt, dy) + dINt (φ),

with

INt (φ) :=

N∑
i=1

∫ t

0

aNi σ
√

1− ρ2∂xφ(Xi
s∧τ i)dW

i
s .

This proves the first statement of the upper proposition. For the second part, we focus on the
idiosyncratic part IN (φ). By the Burkholder-Davis inequality, it holds

E
[
sup
t≤T
|INt (φ)|2

]
≤ CE

[
〈IN (φ)〉T

]
for some constant C. The independence of the W i’s yields

E
[
〈IN (φ)〉T

]
= E

( N∑
i=1

∫ t

0

aNi σ
√

1− ρ2∂xφ(Xi
s∧τ i)dW

i
s

)2


= E

[
N∑
i=1

∫ t

0

(aNi )2σ2(1− ρ2)(∂xφ(Xi
s∧τi))

2ds

]

≤ ‖∂xφ‖2∞
N∑
i=1

E
[∫ t

0

(aNi )2σ2(1− ρ2)ds

]

≤ σ2t‖∂xφ‖2∞
N∑
i=1

(aNi )2 = O
(

1

N

)
,

as N → +∞. This gives the second result of the proposition and ends the proof.

3.4 The Limit SPDE

In this section, we finally want to study the case that the size of the particle system tends to infinity
in more detail. Similar to [4, Section 4.2], we want to state the limit SPDE of ν := limN→+∞ νN

in its weak formulation, i.e. with respect to a test function φ ∈ S0. It is important to mention
that we consider the weak convergence of the empirical measure with respect to the Skorokhod
M1 topology on the space DS′ . For a detailed introduction of this topology applied to the setting
of distribution-valued processes we refer to [26].

Theorem 3.2 (The limiting SPDE). The sequence (νN )N≥1 is tight on the space (DS′[0,T ],M1)
for any T > 0. Moreover, for each limit (ν,W 0, J0) the following SPDE is satisfied almost surely

〈νt, φ〉 = 〈ν0, φ〉+

∫ t

0

〈νs, µ∂xφ〉ds+

∫ t

0

〈νs, σρ∂xφ〉dW 0
s +

1

2

∫ t

0

〈νs, σ2∂xxφ〉ds

−
∫ t

0

〈νs, α∂xφ〉dLs +

∫ t

0

∫
R
〈νs− , φ(·+ y)− φ(·)〉PJ0(ds, dy),

(3.15)

where Lt :=
∫ t

0
k(t − s)Lsds and Lt := 1 − νt(0,∞) for all t ∈ [0, T ] and arbitrary test function

φ ∈ S0.
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3.4.1 Outline of the proof of Theorem 3.2

We give a detailed outline of the argumentation for the proof of the theorem above. Note that the
following is not a rigorous proof but only presenting the main ideas while leaving out some of the
topological details. We divide the explanations into four steps to give them a certain structure.

Step 1: In the first step, we want to emphasise why the sequence (νN )N≥1 is tight on the space
(DS′ [0, T ],M1) for any T > 0. By the first part of Theorem 3.2. in [26], it is sufficient to show
the M1 tightness of the process t 7→ 〈νNt , φ〉 on DR for any function φ ∈ S0. This can be done by
using Theorem 12.12.3 from [27]. As stated there, we need to check two sufficient conditions. The
first one follows directly from the fact that for any t ∈ [0, T ] we have

|〈νNt , φ〉| ≤
N∑
i=1

|aNi φ
(
Xi
t∧τ i

)
| ≤ ‖φ‖∞

N∑
i=1

aNi = ‖φ‖∞

for all N ≥ 1. For the second condition, we define for any t ∈ [0, T ]

ν̂Nt :=

N∑
i=1

aNi δXi
t∧τi

. (3.16)

Then we end up with the decomposition

〈νNt , φ〉 = 〈ν̂Nt , φ〉+ φ(0)LNt . (3.17)

Note that the process LN is monotonically increasing and φ(0) constant. Therefore, we were able
to write 〈νNt , φ〉 as a sum with one monotone part, which is negligible to the M1 modulus of
continuity. So it is sufficient to work with the normal modulus of continuity of ν̂N . So to control
the increments it is mainly important to show that for all s, t ∈ [0, T ] it holds

E[|J0
t − J0

s |2] = O(t− s),
which follows by the property of the Poisson process J0. Moreover, like in the same proposition we
obtain that one can conclude the weak convergence of the loss process, i.e. LN ⇒ L∗, which can
be written as L∗ = 1− ν∗(0,∞) in case one has νN ⇒ ν∗ and that the limit ν∗ is a subprobability
measure. Since we have tightness of (νN )N≥1 on the space (DS′ [0, T ],M1), it follows naturally that
(νN , LN ,W 0, (N0, Y 0)) is tight on the product space (DS′ [0, T ],M1)×(DR,M1)×(DR,unif-top)×
((DR,unif-top) × (RN ,prod-top)), where we mean the uniform and product topology. Note that
the process J0 is fully described by the processes N0 and Y 0.

Step 2: In this rather short part of the argumentation, we note that the sequence (νN )N≥1 is
relatively compact on (DS′ [0, T ],M1). This follows directly from the second part of Theorem 3.2.
in [26].

Step 3: The relative compactness from above enables us to extract a weakly convergent subse-
quence, which we denote by (νN , LN ,W 0, (N0, Y 0)) and its weak limit by (ν∗, L∗,W 0, (N0, Y 0)).
In the following, we have a closer look on the convergence behaviour. Firstly, we note that by
νN ⇒ ν∗ on (DS′ [0, T ],M1) we also have that 〈νNt , φ〉 ⇒ 〈ν∗t , φ〉 in (DR,M1) for any φ ∈ S. From
now on, we restrict us to test functions φ ∈ S0. As argued in Remark 4.6. in [4], we get that the
weakly convergent subsequence has a further subsequence with the almost sure Skorokhod repre-
sentation property. Therefore, we can consider a sequence (ν̃N , L̃N ,WN , (NN , Y N )), which has the

almost sure pointwise limit (ν̃∗, L̃∗,W ∗, (N∗, Y ∗)) in (DS′ [0, T ],M1)×(DR,M1)×(DR,unif-top)×
((DR,unif-top) × (RN ,prod-top)). For every N ≥ 1, we have that (ν̃N , L̃N ,WN , (NN , Y N )) has
the same law as (νN , LN ,W 0, (N0, Y 0)). The same holds for the regarding limiting processes.
With this in mind, note that by the decomposition (3.17) we see that 〈νN , φ〉 can only jump when
the compound Poisson process J0 jumps. Therefore, also the process 〈ν̃N , φ〉 is almost surely
continuous except from the jumps

∑
0<s≤t

∆〈ν̃Ns , φ〉 =

NNt∑
l=1

〈ν̃NTNl−
, φ(·+ Y Nl )− φ〉,

where TNl denotes the l-th jump time of the Poisson process NN . In addition, we see that for
the time between the jumps, the paths of 〈ν̃N , φ〉 behave like a Brownian motion with bounded
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drift coming from the constant µ and the bounded contagion term. This again holds since this is
especially almost surely true for 〈νN , φ〉. Those two properties of the converging subsequence give
us, in combination with the definition of the M1-convergence, that jumps in the limiting process
〈ν̃∗, φ〉 have to arise from matching jumps in the approximating 〈ν̃N , φ〉. In other words, assume
that there is a jump in the limit at time t. Then the upper result states that this is only possible
if there is a sequence tN → t with 〈ν̃NtN (ω), φ〉 → 〈ν̃∗t (ω), φ〉 and 〈ν̃NtN−(ω), φ〉 → 〈ν̃∗t−(ω), φ〉 for all

ω ∈ Ω. In particular, it holds that ∆〈ν̃NtN (ω), φ〉 → ∆〈ν̃∗t (ω), φ〉. One should note at this point that
under the M1-convergence it is not natural that there are matched jumps. Rather it is possible
that jumps can appear in the limit of purely continuous processes unlike if one works with the
uniform or J1-convergence. So it is crucial to understand that the matched jump can only arise
from the fact that a jump in the limit can not be approximated by the Brownian motion part with
bounded drift of the sequence 〈ν̃N , φ〉. Thanks to this elementary observation, we know precisely
the time and magnitude of the jumps of 〈ν̃N , φ〉. In particular, assume that t∗ is a jump time of
the limit process 〈ν̃∗, φ〉. Then it follows that for all ω ∈ Ω it holds

〈ν̃NTNl −(ω), φ(·+ Y Nl (ω))〉 = 〈ν̃NTNl (ω), φ〉 −→ 〈ν̃∗t∗(ω), φ〉

and

〈ν̃NTNl −(ω), φ〉 −→ 〈ν̃∗t∗(ω), φ〉

with TNl (ω) → t∗ for some integer l ≥ 1. Clearly this implies T ∗l = t∗ in the light of the
uniform convergence NN (ω) → N∗(ω). Furthermore, by shifting the test function φ ∈ S0 by
the limiting height of the l-th jump, the test function still lives in the space of test functions, i.e.
ψ := φ(·+ Y ∗l ) ∈ S0. Then it follows that

〈ν̃NTNl −(ω), ψ〉 −→ 〈ν̃∗t (ω), ψ〉 = 〈ν̃∗t (ω), φ(·+ Y ∗l (ω))〉

and therefore

〈ν̃NTNl −(ω), φ(·+ Y Nl (ω))〉 = 〈ν̃NTNl −(ω), ψ + φ(·+ Y Nl (ω))− ψ〉

=〈ν̃NTNl −(ω), ψ〉+ 〈ν̃NTNl −(ω), φ(·+ Y Nl (ω))− ψ〉 −→ 〈ν̃∗t∗(ω), φ(·+ Y ∗l (ω))〉.

The last convergence result arises from the fact that

∣∣∣〈ν̃NTNl −(ω), φ(·+ Y Nl (ω))− ψ〉
∣∣∣ ≤ 〈ν̃NTNl −(ω), |φ(·+ Y Nl (ω))− ψ|〉

≤
∥∥φ(·+ Y Nl (ω))− φ(·+ Y ∗t (ω))

∥∥
∞ ≤ C|Y

N
l (ω)− Y ∗l (ω)| −→ 0

for some constant C > 0. In conclusion, the jumps of the limiting process 〈ν̃∗, φ〉 happen with
probability 1 precisely at the limiting jump times of 〈ν̃N , φ〉, i.e. at T ∗1 , T

∗
2 , .... Moreover, they are

of the form

∆〈ν̃∗T∗l , φ〉 = 〈ν̃∗T∗l − , φ(·+ Y ∗l )〉 − 〈ν̃∗T∗l , φ〉.

Step 4: Now that we understand the behavior of the convergence better, we focus on the weakly
convergent sequence (νN )N≥1. In the following, we present a martingale argument to see that this
finally leads to the desired limit SPDE. The structure and idea of the argumentation are inspired
by [4, Section 4.2]. First of all, we define for a fixed time t ≤ T and any φ ∈ S0

Ψ(νN ) :=

∫ t

0

〈νNs , Gφ〉ds (3.18)

and

Φ(νN , LN ) :=

∫ t

0

〈νNs , Hφ〉d(k ∗ LN )s, (3.19)
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where G and H are constants representing α, µ or σ2

2 . Then we get for any bounded Lipschitz
function f and appropriate constant C > 0 that

∣∣E[f(Ψ(νN ))]− E[f(Ψ(ν∗))]
∣∣ =

∣∣E[f(Ψ(νN ))− f(Ψ(ν∗))]
∣∣

≤CE
[
|Ψ(νN )−Ψ(ν∗)|

]
= CGE

[∣∣∣∣∫ t

0

〈νNs − ν∗s , φ〉ds
∣∣∣∣] .

One can ensure that the last term tends towards zero using the weak convergence. The same can
be shown for Φ. This implies that we have the weak convergence results Ψ(νN ) ⇒ Ψ(ν∗) and
Φ(νN , LN )⇒ Φ(ν∗, L∗) on R, since (νN , LN )⇒ (ν∗, L∗). Note at this point that for some φ ∈ S0

also the first two derivatives live in this space. So that the convergence of the integrals holds also
for them. Next, we define the process

M(νN , LN )t = 〈νNt , φ〉 − 〈νN0 , φ〉 −
∫ t

0

〈νNs ,
σ2

2
∂2
xxφ+ µ∂xφ〉ds−

∫ t

0

〈νNs , α∂xφ〉dLs. (3.20)

Using the weak convergence of the integrals shown before, we can use the same arguments as in
Prob. 4.8. in [4] to deduce that M(νN , LN )⇒M(ν, L) in R. Next, we introduce the process

J (ν̃N , Y N , NN )t =

NNt∑
l=1

〈ν̃NTNl−
, φ(·+ Y Nl )〉 − 〈ν̃NTNl−

, φ〉. (3.21)

Using the results from the previous step, we directly get that

J (ν̃N , Y N , NN )⇒ J (ν̃∗, Y ∗, N∗),

which naturally yields

J (νN , Y 0, N0)⇒ J (ν∗, Y 0, N0).

Moreover, we get for any t ≤ T

J (νN , Y 0, N0)t =
∑

0<s≤t

∆M(νN , LN )s

and the same for the limit (ν∗, N0, Y 0). Then again similar to Prob. 4.8. [4] and using the weak
convergence results one can show that

M(ν∗, L∗)− J (ν∗, Y 0, N0) (3.22)

is a continuous martingale. In the same manner, we can deduce the same for

(
M(ν∗, L)− J (ν∗, J0, N0)

)2 − ∫ ·
0

〈ν∗, σρ∂xφ〉2ds,

as well as

(
M(ν∗, L)− J (ν∗, J0, N0)

)
W 0 −

∫ ·
0

〈ν∗, σρ∂xφ〉2ds.

Finally, using (3.22) we see that

M(ν∗, L)− J (ν∗, J0, N0)−
∫ ·

0

〈ν∗, σρ∂xφ〉dW 0
s (3.23)

is a martingale. By applying the Doob-Meyer decomposition, we deduce by the martingale prop-
erties above that

〈
M(ν∗, L)− J (ν∗, J0, N0)

〉
=

∫ ·
0

〈ν∗, σρ∂xφ〉2ds

and
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〈
M(ν∗, L)− J (ν∗, J0, N0),W 0

〉
=

∫ ·
0

〈ν∗, σρ∂xφ〉2ds.

Finally, we observe that

〈
M(ν∗, L)− J (ν∗, Y 0, N0)−

∫ ·
0

〈ν∗, σρ∂xφ〉dW 0
s

〉
=〈M(ν∗, L)− J (ν∗, Y 0, N0)〉 − 2

〈
M(ν∗, L)− J (ν∗, Y 0, N0),

∫ ·
0

〈ν∗, σρ∂xφ〉dW 0
s

〉
+

〈∫ ·
0

〈ν∗, σρ∂xφ〉dW 0
s ,

∫ ·
0

〈ν∗, σρ∂xφ〉dW 0
s

〉
=

∫ ·
0

〈ν∗, σρ∂xφ〉2ds− 2

∫ ·
0

〈ν∗, σρ∂xφ〉2ds+

∫ ·
0

〈ν∗, σρ∂xφ〉2ds = 0.

This shows that the process (3.23) is a continuous martingale with zero quadratic variance and
hence constant. This in particular implies

0 =M(ν∗, L)t − J (ν∗, Y 0, N0)−
∫ t

0

〈ν∗, σρ∂xφ〉dW 0
s

= 〈ν∗t , φ〉 − 〈ν∗0 , φ〉 −
∫ t

0

〈ν∗, σ
2

2
∂2
xxφ+ µ∂xφ〉dW 0

s −
∫ t

0

〈ν∗s , α∂xφ〉dLs

− J (ν∗, Y 0, N0)−
∫ t

0

〈ν∗, σρ∂xφ〉dW 0
s ,

which finally gives the limit SPDE and proves the theorem, since

J (ν∗, Y 0, N0) =

Nt∑
l=1

〈ν∗Tl− , φ(·+ Yl)〉 − 〈ν∗Tl− , φ〉 =

∫ t

0

∫
R
〈ν∗s− , φ(·+ y)〉 − 〈ν∗s− , φ〉PJ0(ds, dy).

4

3.5 Stochastic McKean–Vlasov Problem

Inspired by [4], we show that the unique solution of the limit SPDE, denoted by ν, can also
be established as the conditional law of a ’conditional’ McKean-Vlasov type jump-diffusion with
absorption at the origin, given the processes W 0 and J0. This demonstrates the interesting fact
that you can approach the problem from both a SPDE and McKean-Vlasov point of view and
still end up with the same solution. The following proposition formulates this mathematically.
Moreover, the advantage of this second perspective is that it is easier to find an explicit expression
of the density process of the solving measure. The latter is stated and proved in Lemma 3.5.

Proposition 3.3 (McKean-Vlasov problem). Consider the probability measure

ν?t = P(X?
t ∈ · , t < τ? |W 0, J0) for τ? := inf{t > 0 : X?

t ≤ 0}, (3.24)

where the process X? is a solution to the following conditional McKean-Vlasov jump-diffusion
problem 

X?
t = X0 + µt+ σρW 0

t + σ
√

1− ρ2Wt − αL?t + J0
t

Lt = (k ? L?)t, L
?
t = P(τ? ≤ t |W 0, J0)

X0 ∼ ν0

Then the measure ν? satisfies the same SPDE as the limiting measure ν in Theorem 3.2.
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Before we can give the proof of the proposition, we need to prove the following lemma, which states
a result on the interchanging of stochastic integrals and conditional expectation as presented in [3,
Section 8].

Lemma 3.4. Let W be a Brownian motion with natural filtration {FWt }t≥0. Let H be a real-valued
adapted process with

E

[∫ T

0

H2
sds

]
<∞.

Then we have

E
[∫ t

0

HsdWs

∣∣∣∣ FWt ] =

∫ t

0

E
[
Hs | FWt

]
dWs.

Moreover, for a Brownian motion W⊥ independent of W we get

E
[∫ t

0

HsdW
⊥
s

∣∣∣∣ FWt ] = 0.

Proof. Assume that H is a simple process and of the form

Ht := Z1{t1<t≤t2} for 0 ≤ t ≤ T,

where Z is a Ft1 -measurable random variable. Then by independence of the increments of the
Brownian motion W it follows

E

[∫ T

0

HsdWs

∣∣∣∣ FWT
]

= E
[∫ t2

t1

ZdWs

∣∣∣∣ FWT ]
= E

[
Z(Wt2 −Wt1) | FWT

]
=

∫ T

0

E[Z | FWs ]1{t1<s≤t2}dWs

=

∫ T

0

E[Hs | FWs ]dWs.

In addition, by the fact that Z is Ft1-measurable, the tower property yields

E

[∫ T

0

HsdW
⊥
s

∣∣∣∣ FWT
]

= E
[∫ t2

t1

ZdW⊥s

∣∣∣∣ FWT ]
= E

[
Z(W⊥t2 −W

⊥
t1 ) | FWT

]
= E

[
E
[
Z(W⊥t2 −W

⊥
t1 ) | σ(Ft1 ,FWT )

]
| FWT

]
= E

[
ZE

[
(W⊥t2 −W

⊥
t1 )
]
| FWT

]
= 0.

Note that we have used that the process W⊥ and especially its increments are independent of
the sigma-algebra σ(Ft1 ,FWT ). The statement of the lemma follows now immediately by measure
theoretical induction.

Proof of Proposition 4.2.1. First, we observe that for any test function φ ∈ S0 it holds

〈νt, φ〉 = E
[
φ(X?

t )1{τ?≤t} |W 0, J0
]

= E
[
φ(X?

t∧τ?) |W 0, J0
]
.

Therefore, before we evaluate the upper conditional expectation, we apply Itô’s formula to the
stopped process (X?

t∧τ?)t≥0. In particular, we get
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φ(X?
t∧τ?) = φ(X?

0 ) +

∫ t

0

µ∂xφ(X?
s∧τ?)ds+

∫ t

0

σρ∂xφ(X?
s∧τ?)dW 0

s

+

∫ t

0

ρ
√

1− ρ2∂xφ(X?
s∧τ?)dWs −

∫ t

0

α∂xφ(X?
s∧τ?)dL?s

+
1

2

∫ t

0

σ2∂xxφ(X?
s∧τ?)ds+

∫ t

0

∫
R

[φ(X?
s−∧τ? + y)− φ(X?

s−∧τ?)]PJ0(ds, dy),

where PJ(ω, ·, ·) denotes again the jump measure of an arbitrary jump process J . By taking
expectation conditional on W 0 and J0 we obtain that with the identity

ν?t− = P(X?
t ∈ · , t ≤ τ? |W 0, J0)

and using the above result

〈ν?t , φ〉 = 〈ν?0 , φ〉+

∫ t

0

〈ν?s , µ∂xφ〉ds+

∫ t

0

〈ν?s , σρ∂xφ〉dW 0
s +

1

2

∫ t

0

〈ν?s , σ2∂xxφ〉ds

−
∫ t

0

〈ν?s , α∂xφ〉dLs +

∫ t

0

∫
R
〈ν?s− , φ(·+ y)− φ〉PJ0(ds, dy).

Note that we have used the result of Lemma 3.4 for the integrals with respect to the Brownian
motions respectively. For the deterministic integrals, the upper results directly from Fubini’s
theorem. Lastly, the integral with respect to the jump measure PJ0 arises from the fact that
the expectation is conditional on the natural sigma-algebra σ(J0) and therefore the values of the
process are given. By differentiation the results of the proposition follows.

It is intuitive to think of the measure-valued SPDE in Theorem 3.2 in terms of a density process.
The existence and formulation of the density is given in the following lemma. Its proof is inspired
by the steps presented [3, Section 9] followed by an integration-by-parts argument.

Lemma 3.5. Let ν be a limit point as described Theorem 3.2. Then there exists a density process
V in L2(0,∞) and with respect to the Lebesgue measure Leb, which satisfies

Vt(x) =

∫ t

0

1

2
σ2∂xxVs(x)ds−

∫ t

0

µ∂xVs(x)ds−
∫ t

0

ρσ∂xVs(x)dW 0
s

+

∫ t

0

α∂xVs(x)dLs +

∫ t

0

∫
R

[
Vs−(x− y)− Vs−(x)

]
PJ0(ds, dy).

Proof. We have by Proposition 3.3 that the SPDE satisfied by the limit measure is also followed
by the sub-probability of the conditional McKean-Vlasov problem. By the uniqueness of the limit
measure, it follows that they are indeed the same. So for any Borel set A ∈ B(0,∞) and by
denoting the density of Wt by pt, we have

ν?t (A) = P
(
X0 + µt+ σρW 0

t + σ
√

1− ρ2Wt − αLt + J0
t ∈ A , t < τ |W 0, J0

)
≤ P

(
X0 + µt+ σρW 0

t + σ
√

1− ρ2Wt − αLt + J0
t ∈ A |W 0, J0

)
=

∫
A

∫ ∞
0

pσ2(1−ρ2)t

(
x− x0 − µt− σρW 0

t + αLt − J0
t

)
ν?0 (dx0)dx,

where we have used the fact that σ(1 − ρ2)1/2Wt
d
= Wσ(1−ρ2)1/2t. Moreover, we made use of the

independence of X0,W,W
0 and J0 as well as the W 0-measurability of L. It follows that

ν?t (A) ≤ 1√
2πσ2(1− ρ2)t

Leb(A)
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for all A ∈ B(0,∞). Therefore, we see that Leb(A) = 0 ⇒ ν?t (A), which shows that ν? � Leb.
Finally, by the Radon-Nikodym theorem we get the existence of the density process of ν? with
respect to Leb, which we will denote by V .
Now that we have proven the existence of a density, we get for any test function φ ∈ S0 that

〈ν?t , φ〉 =

∫
R
φ(x)Vt(x)dx. (3.25)

Using this identity, we can conclude that

∫ t

0

〈ν?s , µ∂xφ〉ds =

∫ t

0

∫
R
µ∂xφVs(x)dxds

= [µφ(x)Vt(x)]R −
∫ t

0

∫
R
µ∂xVs(x)φ(x)dxds

= −
∫ t

0

∫
R
µ∂xVs(x)φ(x)dxds,

where we have used integration by parts and the fact that the support of the test function φ is
compact in R by the fact that the set

C∞c := {φ ∈ C∞ : supp(φ) is compact}
is dense in S0. In the same manner, we can derive the identities

1

2

∫ t

0

〈ν?s , σ2∂xxφ〉dt = −1

2

∫ t

0

∫
R
σ2∂xxVs(x)φ(x)dxds,

∫ t

0

〈ν?s , σρ∂xφ〉dW 0
s = −

∫ t

0

∫
R
σρ∂xVs(x)φ(x)dxdW 0

s

and ∫ t

0

〈ν?s , α∂xφ〉dLs = −
∫ t

0

∫
R
α∂xVs(x)φ(x)dxdLs.

This covers all continuous parts of the limit SPDE of the measure ν. Lastly, we need to incorporate
the discontinuous part arising from the jump process J0. We get that

∫ t

0

∫
R
〈ν?s− , φ(·+ y)− φ(·)〉PJ0(ds, dy) =

∫ t

0

∫
R

∫
R

[φ(x+ y)− φ(x)]Vs−(x)dxPJ0(ds, dy)

=

∫ t

0

∫
R

∫
R
Vs−(x− y)φ(x)dsPJ0(ds, dy)

−
∫ t

0

∫
R

∫
R
Vs−(x)φ(x)dxPJ0(ds, dy),

where the shift in the density is possible due to the fact that V ∈ L2(0,∞). Therefore, it finally
follows by the limit SPDE (3.15) that

∫
R
Vt(x)φ(x)dx =

∫
R

[
1

2

∫ t

0

σ2∂xxVs(x)ds−
∫ t

0

µ∂xVs(x)ds

−
∫ t

0

σρ∂xVt(x)dW 0
s −

∫ t

0

α∂xVt(x)dLs

+

∫ t

0

∫
R

[
Vs−(x− y)− Vs−(x)

]
PJ0(ds, dy)

]
φ(x)dx.

Since the upper result holds for all test functions, the statement of the proposition follows by the
fundamental lemma of calculus of variations.
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3.6 Financial Contagion Illustrated

By construction of the model, the health of the banking system decisively depends on the impact
of the common noise W 0, the market wide shocks J0 and the non-linear negative effect of the
contagion process L. This setup captures mathematically what was observed during the credit
crunch in 2007-2009. Namely that the portfolios of many financial institutions are facing a big
amount of systemic risk beside the idiosyncratic risks. For a detailed study we refer to [11]. To
give a more heuristic understanding of how the three main processes of the model above drive the
system, we illustrate the spatial and terminal evolution of the density function (t, x) 7→ Vt(x) stated
in Lemma 3.5. We fix one market scenario by considering one specific simulation of the processes
W 0 and J0. Moreover, we assume an arbitrary initial health state of the system described by V0.
Plots of those three processes are displayed in the Appendix. One can observe that at the start
of the time period, the system consists of two parts, where the better doing one is of a bigger
size. The following figures consist of two plots. The left one illustrates how the healthiness of the
system behaves over time in form of a heat plot. The right graphic displays the regarding loss
process L. Lastly, note that for both the time window and the healthiness we consider the values
to lie in the interval [0, 1]. The vertical axis of the heat plot presents how far each particle is away
from a possible default. The closer the value is to 1.0, the better is the company doing in terms
of how unlikely its the default is in the near future. By definition of the loss process at time t,
it states the proportion of firms in the system which have defaulted by time t, while we assume
equal weights for each company. It is natural to expect this process to be monotonically increasing
since no new firms enter the system and once they default, they drop out of it. For the first Figure
3.1 we consider that the distances-to-default only depend on the common diffusion process W 0

and that there are no system-wide shocks. In addition, we do not assume any contagious effects
within the system, i.e. the default of one company has no negative impacts on the well-being of
the remaining ones. In this case, the limiting McKean-Vlasov problem can be written as

Xt = X0 + µt+ σW 0
t . (3.26)

As the system starts running, a few firms of the unhealthy part default due to the slightly negative
trend of the underlying W 0 in the beginning. After a short recovery, the number of defaults steadily
increases until the end of the period. The most important observation is that the healthier part
is not affected by the increasing number of defaults. As a consequence, all of the those banks
”survived” the period, which keeps the total number of defaults low.
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Figure 3.1: The left plot shows a heat plot of the density process (t, x) 7→ Vt(x) for a fixed
realisation of the common noise W 0. We used the parameters α = 0, ρ = 0.4, σ = 0.2 and µ = 0.
The impact kernel k is a triangle on [0, 0.015] with height 2/0.015. The right plot displays the
evolution of the loss process t 7→ Lt.

In Figure 3.2 we include the contagion term in the system. Therefore, now the default of a
company adds a temporary non-linear negative drift to the rest of the system. The regarding
limiting McKean-Vlasov problem can be written as

Xt = X0 + µdt+ σW 0
t − αLt , Lt = P(τ ≤ t |W 0), (3.27)
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where τ = inf{t > 0 : Xt ≤ 0}. One can easily observe that the first defaults, occurring around t =
0.3, have a negative impact on the remaining companies. Finally, with the unhealthy part ”dying
out” around t = 0.5, the system experiences a steep negative pull down, which is materialised over
a short period after the triggering defaults. This lets the initial healthier part end up close to
default. The loss process indicates that more than half of the system has defaulted at the end of
the time period. The phenomenon taking place between t = 0.4 and t = 0.6 is often referred to as
default clustering in existing literature.
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Figure 3.2: The left plot shows a heat plot of the density process (t, x) 7→ Vt(x) for a fixed
realisation of the common noise W 0. We used the parameters α = 1.5, ρ = 0.4, σ = 0.2 and µ = 0.
The impact kernel k is a triangle on [0, 0.015] with height 2/0.015. The right plot displays the
evolution of the loss process t 7→ Lt.

In the next scenario, displayed in Figure 3.3, we again consider a world without financial contagion,
but where the system experiences some negative shocks now and then. As already stated they can
be interpreted as system-wide crises. In this case, the limiting McKean-Vlasov problem is given
by

Xt = X0 + µdt+ σW 0
t + J0

t (3.28)

In contrast to the prior scenario, where the negative effects of the contagion materialises gradually,
the jumps occur in form of discontinuous shifts of the particles in the system. The plot displays
that there are two major shocks within the time period, while the third jump of J0 is of negligible
magnitude. The loss process indicates that in comparison to the pure diffusion case, the jumps
lead to higher losses within in the system.
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Figure 3.3: The left plot shows a heat plot of the density process (t, x) 7→ Vt(x), for a fixed
realisation of the common noise W 0 and jump process J0. We used the parameters α = 0, ρ = 0.4,
σ = 0.2, µ = 0, λ = 0.75 and ν = −0.05 with Gaussian jump heights. The impact kernel k is a
triangle on [0, 0.015] with height 2/0.015. The right plot displays the evolution of the loss process
t 7→ Lt.
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Lastly, for Figure 3.4 we also add contagion to the jump-diffusion case. So that the regarding
McKean-Vlasov problem can be stated as

Xt = X0 + µdt+ σW 0
t + J0

t − αLt , Lt = P(τ ≤ t |W 0, J0). (3.29)

One can observe that the defaults triggered by the first jump lead to a huge default cascade that
entirely ”kills” the unhealthy part of the system and puts the remaining one in a fairly bad position.
Then, with the second jump occurring also the latter one dies out. This illustrates how a large
contagion parameter paired with big negative jumps can cause the end of the whole system. As
displayed by the loss process, shortly after half of the time period all firms have dropped out of
the system.
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Figure 3.4: The left plot shows a heat plot of the density process (t, x) 7→ Vt(x), for a fixed
realisation of the common noise W 0 and jump process J0. We used the parameters α = 1.5,
ρ = 0.4, σ = 0.2, µ = 0, λ = 0.75 and ν = −0.05 with Gaussian jump heights. The impact kernel
k is a triangle on [0, 0.015] with height 2/0.015. The right plot displays the evolution of the loss
process t 7→ Lt.

3.7 A Possible Model Extension: Idiosyncratic Jumps

The model described in the last sections only considers a common jump process capturing bigger
system-wide shocks for the firms. An extensional approach could be to also include idiosyncratic
jumps, which only have effects on single institutions or groups of institution. Inspired by [28], we
introduce a way of incorporating such events. Let I := {1, ..., N} be the index set of the initial
banks in the system. Moreover, let P(I) denote the respective power set containing all subsets of I
with |P(I)| = 2N . In the following, an element of the power set is denoted by π. For convenience,
we define Π(I) := P(I) \ {∅, I}. Using this notation we introduce a new jump process by

J it :=
1

2N−1 − 1

∑
π∈Π(I)

1{i∈π}J
π
t , (3.30)

where the processes Jπ are independent compound Poisson processes of the form

Jπt =

Nπt∑
k=1

ψπk . (3.31)

In the latter expression, Nπ is a Poisson process with intensity parameter λi. Moreover, we assume
that the jump heights ψπk , π ∈ Π(I) , k = 1, 2, ..., , are i.i.d. following some distribution function
$. Then it follows immediately that

E
[
J it
]

=
1

2N−1 − 1

∑
π∈Π(I)

1{i∈π}E [Jπt ] =
1

2N−1 − 1

∑
π∈Π(I)

1{i∈π}λ
iE[ψ

{N}
1 ]t = λiE[ψ

{N}
1 ]t. (3.32)
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From now on, we use the notation νi := E[ψ
{N}
1 ]. By adding those idiosyncratic jumps to a particle

i we get the dynamics

dXi
t =

(
r − λν − λiνi

)
dt+ σρdW 0

t + σ
√

1− ρ2dW i
t − αdLt + dJ0

t + dJ it . (3.33)

Although we do not provide detailed results about the limiting behaviour as in the previous sections,
one can give a certain intuition about how things behave after passing to the limit. The first thing
to note is that, by a law of large number argument, we can expect that

J it =
1

2N−1 − 1

∑
π∈Π(I)

1{i∈π}J
π
t

N→+∞−−−−−→ E
[
J
{N}
t

]
= λiνit.

This shows that in case of an immensely increasing population of the banking system, the effect of
the idiosyncratic jumps become similar to a drift. The same observation can be made by noting
that J i is a sum of independent compound Poisson processes and hence its intensity is given by
the sum of the latter. Therefore, the intensity of the idiosyncratic jump process equals∑

π∈Π(I)

1{i∈π}λ
i.

At the same time, the jumps of the process are scaled by the factor
(
2N−1 − 1

)−1
. This fact makes

clear that a big population let the intensity of the processes also tend to infinity, while the size
of the jumps are getting smaller and smaller. Hence, the are many jumps of small size, which
can create the character of a drift. This result is in line with the intuition arising from the law
of large number argument. Lastly, we see that the drift term the process J i completely vanishes
out by its compensator term. Therefore, the effect of the idiosyncratic jumps averages out in
case the amount of banks gets big enough. One should note that this behaviour is similar to the
idiosyncratic diffusion parts which also vanishes in the limit is proved in Proposition 3.1.
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Chapter 4

Model Calibration

In this last chapter, we present how the model described in the last section can be used to reproduce
quantities observed in the market and so in particular, study if the contagion feature actually adds
any contribution. To do so we want to calibrate the model to market spreads of the iTraxx Europe
Series index on the 31st December 2016. We use [1, Section 6.3] as the main source for comparing
our results. Since they only considered a jump-diffusion without a contagion mechanism, it is
interesting to see what effect this new feature brings in. Before we state the main calibration
problem, we give an explanation on how to find the density of the initial distances-to-default
needed to simulate the system of particles. Moreover, we introduce a simple method to estimate
the correlation within the market using real market equity data.

4.1 Finding the Initial Distribution of the Distances-To-
Default

As already stated in the introduction of this chapter, it is sufficient to find the density V0 of the
initial distances-to-default, denoted by Xi

0, i = 1, ...N . Recall from earlier, that by definition it
holds

Xi
0 = log(Ai0)− log(Di

0), (4.1)

where Ai0 denotes the asset value and Di
0 the amount of debt held by company i at the regarding

reference date, which in our case is 31st December 2016. To find those quantities we rely on the
regarding balance sheet data provided by Yahoo Finance. Note that for this calibration exercise,
we are interested in the companies listed in the iTraxx Europe Series and in theory N equals the
population size of this index. In our case, we have N = 58, which is lower than the actual number.
This difference arises from missing data points in the named data source. Using the financial
statements, we can compute the vector X0 = (X1

0 , ..., X
52
0 ). To estimate the unknown density V0

of those samples we use a kernel density estimation (KDE). The actual estimator function is hence
defined by

V̂0,h(x) :=
1

hN

N∑
i=1

K

(
x−Xi

0

h

)
, (4.2)

where K denotes the respective kernel function and h > 0 is a smoothing parameter called band-
width. For the estimation we choose a Gaussian kernel, i.e.

K(t) =
1√
2π

exp

{
− t

2

2

}
.

It remains to find a robust value for the bandwidth h. Following Silverman’s rule [29], we take

h =

(
4σ̂5

3N

) 1
5

≈ 1.06σ̂N−
1
5 , (4.3)
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where σ̂ is the empirical standard deviation of the samples X1
0 , ..., X

52
0 . In our case, we end up with

the choice h = 0.7976. The resulting density estimate and the underlying histogram is displayed
in the following figure.
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Estimate of the initial density V0

Figure 4.1: Plot of the kernel density estimate of the initial density function x 7→ V0(x) of the
distances-to-default samples X0

i , i = 1, ..., 52 using a Gaussian kernel with bandwidth parameter
h = 0.3753.

4.2 Estimating the Correlation in the Market

To find an accurate value for the correlation parameter ρ we do not want to rely on the calibration
to the market spreads. Rather, we want it to be estimated by the empirical correlation observed in
the market within one year before the effective date 31st December 2016. Recall that in our model
ρ is an indicator for how much the distance-to-default is driven by moves in the overall market,
which is represented by the Brownian motion W 0. For our analysis we take the S&P500 index as
a proxy for the market. Then we are able to compute the empirical correlation between the moves
in S&P500 and each company i in the iTraxx index over the year 2016. The latter is denoted by
ρ̂i. Lastly, we simply take the arithmetic average to get an estimate for the correlation parameter
by

ρ =
1

N

N∑
i=1

ρ̂i. (4.4)

In our case, this short analysis results in the observation that

ρ ≈ ρ̂ = 0.1937. (4.5)

Note that this method has also the advantage of reducing the number of parameters in the following
calibration problem by one.

4.3 SPDE and Loss Simulation

To simulate the evolution of the density Vt(x) over time we introduce both a space grid

0 = x0, ..., xj = x0 + j∆x, ..., xJ = x0 + J∆x = 9,

where we choose ∆x = (xJ − x0)/J = 9/200 and a time grid

0 = t0, ..., xi = x0 + i∆t, ..., tI = t0 + I∆t = 10.
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where ∆t = (tI−t0)/T = 100. Using those notations, we define the approximation V mj = V (tm, xj).
Then for a given realisation of market factors we can approximate the loss process at time tk,
k = 1, ..., I, by

Ltk = 1−
∫ xmax

0

V (tk, x)dx = 1−∆x

J∑
j=1

V kj . (4.6)

Recall from Section 1.5. that the spread of a CDO index is mainly driven by the risk-neutral expec-
tation of the outstanding notional process Ñt. By choosing the notional as described, this process
indicates how many companies have not defaulted by time t. Hence, using the approximation of
the loss process above, we have at any time tk, k = 1, ..., I, that Ñtk = 1−Ltk . The corresponding
expectation is estimated using a simple Monte Carlo estimation, i.e.

E
[
Ñtk

]
≈ 1

NSim

NSim∑
i=1

Ñtk(φi) =
1

NSim

NSim∑
i=1

(1− Ltk(φi)), (4.7)

where φi denotes the i-th sample of the triple (W 0
tk
,W 1

tk
, ...,W 52

tk
, J0
tk

) and NSim the number of
simulations for the Monte Carlo routine.

4.4 Calibration Problem

In the next two sections, we use our model to estimate the remaining parameters by calibrating
it to real market data of a CDO index. As shown in the subsequent result part we fit both the
diffusion and the jump-diffusion model with and without contagion. However, we do not include
the contagion parameter in the calibration problem below.

Problem 4.1. Given market spreads at time t = 0 of a CDO index, denoted by CI0(Ti), for
maturities Ti, i = 1, ...,M , we solve the minimisation problem

min
θ

∑M
i=1

(
CI0(Ti)− CIθ,X0

0 (Ti)
)2

s.t. σ > 0, λ ≥ 0, µY ≤ 0, σY ≥ 0,

(4.8)

where CIθ,X0

0 (Ti) denotes the spreads computed under the model based on the parameters θ =
(σ, λ, µY , σY ) and the vector of initial distances-to-default X0.

In case we only want to fit the diffusion model, the jump parameters are chosen to zero. Hence,
the problem reduces to calibrate the volatility parameter σ.

4.5 Calibration Results

As already written, we fit the model to the market spreads of the iTraxx Europe Series at the
31st December 2016. For the data set we can observe that the index spreads increase with longer
maturity. This is to be expected since in a longer time period more companies in the index may
default. To compare the calibration results to the market data we use two ways to measure the
errors of the model. In particular, the fit is evaluated by ARPE (Average Relative Percentage
Error)

ARPE =
1

M

M∑
i=1

|yi − yθi |
yi

(4.9)

and the RMSE (Root Mean Square Error)

RMSE =

√√√√ 1

M

M∑
i=1

(
yi − yθi

)2
, (4.10)

where y is the vector of the observed spreads, yθ the vector of the spreads implied by the model
and M the number of spreads computed. The following table displays the parameters calibrated
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to the market spreads for both the diffusion and jump-diffusion case. For the simulation of the
SPDE we assumed the magnitude of the jumps arising form the process J0 to be normally dis-
tributed. Therefore, the jump component adds three additional parameters in comparison to the
pure diffusion case.
As a first analysis, we compare the parameters presented in Table 4.1 to the results stated in
[1] for the 22nd February 2007, which are given in the Appendix. For the diffusion we observe a
slightly higher value for σ, which indicates that the market was considered to be more volatile.
On the other side, the correlation parameter is lower. However, at this point one should bare in
mind that the ρ presented in this thesis is estimated using historical data instead of including it
in the calibration problem stated in the previous section. This also has the consequence that the
same value is considered for the jump-diffusion. Similarly to what is shown in [1], the volatility
parameter is smaller for the latter model specification. This is natural to expect, since the jumps
add an additional downside potential for the system, so that this must not be captured by the
Brownian motion alone. Therefore, the latter can be considered less volatile. Moreover, we observe
a jump intensity of λ = 0.1, which indicates that a market crash is expected more or less every 10
years. In comparison, in Table A.1 the parameter lies only at λ = 0.04. So at out reference date
the spreads imply that crises are expected more often than 9 years before. Additionally, in case a
jump occurs then our results indicate that on average a company’s asset value falls 15%, which is
8 percentage points more than found in 2007. Lastly, we get that the magnitude of the jumps is
more volatile than in [1]. In conclusion, the analysis of the model parameters demonstrates that in
general, the market is expected to be more unstable in 2016 than in 2007 before the credit crisis.
This is also indicated by the higher spreads after the crisis and the fact that the differences of
the prices between the maturities is bigger. For example in 2007, the gap between the 5Y index
spread and 7Y spread was 9 basis points while in 2016 it was 22 basis points. Therefore, defaults
are assumed to happen more often.

Parameters Diffusion Jump-Diffusion
σ 0.24 0.21
ρ 0.19 0.19
λ - 0.1
µY - -0.15
σY - 0.05

Table 4.1: Table of the estimated parameters for the 31st December 2016 for the diffusion and
jump-diffusion model.

In Table 4.2 the spreads from the market are displayed along with the ones implied by the two
model specifications. Note that the results presented do not include any contagion yet. Being in
line with [1], we note that compared to the pure diffusion model both error measures are lower for
the jump-diffusion. In particular, we see that the latter is more able to fit the short 3Y and long
10Y maturity.

Maturities Market (bps) Diffusion (bps) Jump-Diffusion (bps)
3Y 43 57 53
5Y 72 76 75
7Y 94 87 88
10Y 110 93 100

Table 4.2: Table of the spreads resulting from the diffusion and jump-diffusion model without any
contagious behaviour in the system (α = 0). We assume that r = 0.01 and R = 0.4.

As one objective of this thesis is to study which contribution is made by the contagion mechanism,
we also present model spreads for different values for the parameter α in Table 4.3 and 4.4. The
regarding error measures demonstrate how the additional feature leads to better fits of the market
spreads. In particular, for the diffusion both errors are the lowest for α = 0.5 compared to the
other values displayed. For the jump-diffusion this is the case for α = 0.2. One should also note
that the interplay between the jumps and contagious behavior yields that for the latter model
type a slight change in the values for α can cause a big difference. On the other side, we have
to choose more varying values for the diffusion to observe a discernible effect. It is important
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to mention that for now the choices of the contagion parameter are arbitrary and only have the
purpose to substantiate the idea of [4] that adding a contagious character to the structural model
brings additional benefits. Indeed, the results can be interpreted in a way that especially for the
post-crisis world it might be of importance to include this feature. It remains a goal for further
research to study in more detail how a suitable value for α can be extracted from market quantities.

Maturities Market (bps) α = 0.3 (bps) α = 0.5 (bps) α = 0.7 (bps)
3Y 43 57 57 60
5Y 72 78 78 82
7Y 94 89 91 96
10Y 110 98 101 106

Table 4.3: Table of the spreads resulting from the diffusion model for different contagion parameter
values α. We assume that r = 0.01 and R = 0.4.

Maturities Market (bps) α = 0.15 (bps) α = 0.2 (bps) α = 0.25 (bps)
3Y 43 53 50 55
5Y 72 75 75 79
7Y 94 89 89 94
10Y 110 101 103 109

Table 4.4: Table of the spreads resulting from the jump-diffusion model for different contagion
parameter values α. We assume that r = 0.01 and R = 0.4.

Diffusion
α = 0 α = 0.3 α = 0.5 α = 0.7

RMSE 11.7260 10.0125 8.9722 10.1119
ARPE 0.1525 0.1428 0.1307 0.1480

Jump - Diffusion
α = 0 α = 0.15 α = 0.2 α = 0.25

RMSE 7.8262 7.3314 5.8737 6.9642
ARPE 0.1072 0.1023 0.0835 0.0963

Table 4.5: Table of the error measures for the fit of the 31st December 2016.

4.6 Further Research Ideas for Numerical Analyses

We use this section to present two ideas for further research besides doing more analysis on the
contagion parameter α mentioned above. While we have already introduced a possible model
extension by idiosyncratic jumps, we now focus on numerical implementations.

4.6.1 Calibration to CDO Tranches

Taking up on the analysis presented before, a natural next step would be to not only calibrate to
index spreads. In particular, one could study the impact of the contagion mechanism by considering
also the tranches of a CDO index. As stated in [1], the resulting calibration problem for this analysis
is given by

Problem 4.2. Given market spreads at time t = 0 of a CDO index, CI0(Ti) and CDO tranches,
Cj0(Ti), for maturities Ti, i = 1, ...,M and tranches j = 1, .., G, we solve the minimisation problem

min
θ

∑M
i=1

∑G
j=1

(
Cj0(Ti)− Cj,θ,X0

0 (Ti)
)2

+
∑M
i=1

(
CI0(Ti)− CIθ,X0

0 (Ti)
)2

s.t. σ > 0, λ ≥ 0, µY ≤ 0, σY ≥ 0,

(4.11)

where CIθ,X0

0 (Ti) and Cj,θ,X0

0 (Ti) denote the spreads computed under the model based on the pa-
rameters θ = (σ, λ, µY , σY ) and the vector of initial distances-to-default X0.
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Moreover, performing the analysis for more reference dates would increase the robustness of the
results and could give a more meaningful conclusion on the contribution of the contagion. Due to
a lack of market data during the Corona-crisis it was not possible to carry out the upper ideas.

4.6.2 An Approach to Close-To-Market Estimations

The second idea for a further numerical analysis is mainly based on the form of a financial balance
sheet and could be used to reduce the number of parameters to calibrate by estimating σ using
market quantities. Following our initial introduction, consider that the firm i’s, i = 1, .., N , asset
value is described by the process (Ait)t≥0, the value of all emitted shares by (Sit)t≥0 and the amount
of debt by (Di

t)t≥0. Then by assuming that the market capitalisation moves similar to the book
value, the balance sheet at time t is of the form

Balance Sheet

Assets Equity

Debt

𝐴! 𝑆!

𝐷!

Figure 4.2: Picture of an arbitrary finacial balance sheet.

Considering an ideal Black-Scholes world, we assume that the asset process of company i satisfies
the dynamics

dAit
Ait

= rdt+ σiA(t)d(ρW 0
t +

√
1− ρ2W i

t ) (4.12)

and similar for the debt process

dDi
t

Di
t

= rdt, (4.13)

where r denotes the risk-free rate, σiA the volatility of the assets and W 0,W i are two independent
standard Brownian motions. Note that in theory it must hold

Ait = Sit +Di
t. (4.14)

Then in principle it follows that

dSit = d(Ait −Di
t) = r(Ait −Di

t)dt+ σiA(t)Aitd(ρW 0
t +

√
1− ρ2W i

t )

= rSitdt+ σiA(t)(Sit +Di
t)dWt

with Wt := ρW 0
t +

√
1− ρ2W i

t . On the other side, since we assume a Black-Scholes setting, we
have

dSit = rSitdt+ σimpS (t)StdW̃t,

were σimpS (t) is the implied volatility at time t arising from some at-the-money Call and Put options

in the market and W̃ is another standard Brownian motion. Then heuristically, we have in law
that σimpS (t)Sit ∼ σiA(t)(Sit +Di

t), which finally gives a proxy for the volatility of the assets at time
t by

σiA(t) ∼ σimpS (t)
Sit

Sit +Di
t

.
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Estimating the correlation as described in Section 4.2, all parameters of the diffusion model are
already estimated by observed market quantities. Based on those parameters, we can initialise the
system at any time 0 and can price credit derivatives in the near future. To evaluate the goodness
of those predictions one can again use the measures introduced above.

On top of this rather simple setting, we can assume that from time to time some deteriorations
in the asset value triggered by market imperfections and interdependence occur. In particular,
we extend the model by exogenous Levy jumps and contagious behaviour. However, keeping the
assumption that the jumps arise from a compounded Poisson process we get four new free variables,
whose estimation using market data is far from trivial.
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Conclusion

In this thesis, we introduce an extension of the multi-name model proposed in [2]. In particular, we
include a jump-diffusion similar to [1] and an endogenous contagion mechanism like presented in
[4]. We derive some of the theoretical properties of the model from a SPDE point of view and study
its ability to fit prices for credit derivatives, while we are mainly interested in the contribution of
the contagion feature.

We first introduce a finite particle system, where each particle Xi
t , i = 1, ..., N , represents the

distance-to-default of a firm i at time t. Then by taking the limit in the population size of the
system, we observe that the limiting empirical measure satisfies a SPDE on the positive half-line
with absorbing origin. In addition, if we suppose that the distances-to-default of the companies in
the finite system are given by a jump-diffusion with a positive feedback effect arising from defaults,
it turns out that in the limit this leads to a conditional McKean-Vlasov problem. Moreover, the
law of this problem indeed satisfies the same SPDE as the limiting empirical measure. Using this
results, we are able to find an explicit expression for the density function of the large basket system.

Since we consider an idiosyncratic Brownian motion for each particle, it is natural to also think
about including idiosyncratic jumps. However, one can heuristically argue that in the limit they
turn into a drift term, which cancels out with the compensator arising from the risk neutral setting.
Therefore, they do not have any effect in the large population case.

Finally, we want to study how the model can fit market spreads of a CDO index. We start by
estimating the initial state of the density function using balance sheet statements of the regarding
index companies. Moreover, we exclude the correlation parameter from the least-square-type
calibration problem, but estimating it using the empirical correlation observed in the market. We
observe that the parameters, resulting from the optimisation problem, indicate a more unstable
market compared to results from a pre-crisis analysis. Moreover, the error measures show that the
jump-diffusion better fits the prices than the diffusion. At this point it is important to mention
that this thesis does not aim to derive efficient numerical methods for the pricing and calibration
exercise. Therefore, due to huge numerical costs, the number of simulations for the Monte Carlo
routines are kept fairly low compared to [1]. This could be one reason for the errors of the fits to
be not smaller.

The main observation from the numerical implementation is that the parameter α adds a noteable
contribution to the model in terms of leading to a better fit. This gives rise to the hypothesis that
contagion is a estimable feature and it is worthy of analysing its impact in more detail as part of
future research. Moreover, one could try to find a robust way of estimating the parameter from
market observables.
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Appendix A

A.1 Weak Derivatives and Sobolev Spaces

As proposed in [4], one can also consider the more general case that the impact kernel k lies in
the Sobolev space W1,1

0 (R+). In the following, we recall the definition of weak derivatives and
the derived Sobolev spaces. Thereby we focus only on the definitions on R. The explanations are
highly inspired by [30]. We start by considering the space given by

C∞c (U) := {φ : U → R | φ ∈ C∞(U), supp(φ) ⊆ U compact}, (A.1)

for an open subset U ⊆ R and C∞(U) denoting the set of all smooth functions mapping from
U into R. The upper set of function is often referred to as the space of so-called test functions.
In case, one assumes another function f ∈ C1(U) and takes a arbitrary φ ∈ C∞c (U), we get by
integration by parts∫

U

f(x)φ′(x)dx = [f(x)φ(x)]x∈U −
∫
U

f ′(x)φ(x)dx = −
∫
U

f ′(x)φ(x)dx,

where the second equality follows from the fact that φ has a compact support lying in the open
set U . Following this intuition we can define the weak derivative of a function f ∈ L1(U).

Definition A.1 (Weak Derivative). Consider, for 1 ≤ p ≤ ∞, a function f ∈ Lp(U), where U ⊆ R
is an open set. Then we call g ∈ Lp(U) a weak derivative of order k ∈ N0 of f if and only if it
holds ∫

U

f(x)φ(k)(x)dx = (−1)k
∫
U

g(x)φ(x)dx (A.2)

for all test functions φ ∈ C∞c (U), where φ(k) denotes the k-th derivative of φ.

We often write g = f (k), although the derivative is meant in the weak sense. Based on the idea
of weak derivatives, we can now introduce the so called Sobolev spaces. It contains all functions
f ∈ Lp(U) so that f itself and its weak derivative up to a certain order k ∈ N0, if it exists, have a
finite Lp norm. This yields the following more rigorous defintion.

Definition A.2 (Sobolev Space). For any 1 ≤ p ≤ ∞, we define for an open U ⊆ R and k ∈ N0

the Sobolev space

Wk,p(U) :=
{
f ∈ Lp(U) | For all i ≤ k, f (i) exists in the weak sense and f (i) ∈ LP (U)

}
.

One can equip the space Wk,p(U) with a natural norm defined by

‖f‖Wk,p(U) :=


(∑k

i=0

∫
U
|f (i)(x)|pdx

) 1
p

, if p ∈ [1,∞),

maxi=0,...,k‖f (i)‖∞ , if p =∞.
(A.3)

Using this norm, we state the last result of this section regarding Sobolev spaces. Firstly, we

introduce the space Wk,p
0 := C∞c

‖·‖Wk,p(U) . Therefore, Wk,p
0 is the closure of C∞c (U) with respect

to the norm ‖·‖Wk,p(U). One can even show that the latter space is dense inWk,p(U). In particular,

for an arbitrary f ∈ Wk,p
0 (U), there exists a sequence (fn)n∈N ⊆ C∞c (U), such that limn→∞‖fn −

f‖Wk,p(U) = 0. The spaceWk,p
0 is a special case of spaces defined by a linear operator called trace.

The latter can be characterised by the following theorem, which we state without proof.
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Theorem A.3 (Trace Theorem). Let 1 ≤ p < ∞ and U ⊆ R be open and bounded. Assume that
∂U is C1. Then there exists a bounded linear operator T :W1,p(U)→ Lp(∂U) such that

1. Tf = f |∂U if f ∈ W1,p(U) ∩ C(U),

2. ‖Tf‖Lp(∂U) ≤ C‖f‖W1,p(U) with C(p, U) > 0 constant.

In the notation of the theorem, we call Tf the trace of f . The name gets clear by the first point of
the theorem. It describes the behavior of the function f on the boundary ∂U , which makes sense,
since we demand f ∈ C(U). Using the notation of traces, we can characterise the space W1,p

0 (U)
introduced above. Indeed, it holds

f ∈ W1,p
0 (U)⇐⇒ Tf = 0. (A.4)

One can easily show that the first implication is true. For this, take an arbitrary f ∈ W1,p
0 (U).

Then we know by the definition of the space, that there exists a sequence (fm)m∈N ⊆ C∞c (U) such
that fm → f with respect to ‖·‖W1,p as m tends to infinity. Clearly, we have Tfm = 0, since
fm ∈ C∞c (U) with U open and so fm|∂U = 0. Lastly, by the trace theorem we know that T is a
linear bounded operator and hence continuous. Therefore, fm → f in W1,p(U) implies Tfm → Tf
in Lp(∂U). By this, the desired implication follows.

A.2 Supplementary Plots and Tables

We use this section to display three plots of the processes used for the illustration presented in
Section 3.6. In Figure A.1, we see the realisation of the underlying common diffusion process
W 0 and the respective common Poisson process J0. Lastly, we include a plot of the initial density
considered for the illustrations. One can easily observe the two parts within the system represented
by the peaks in the function.

Figure A.1: The plot shows the realisation of the common Brownian motion and Poisson process
over the time horizon [0, 1] with drift parameter µ = 0, volatility σ = 0.08 and intensity λ = 0.75.

Figure A.2: The plot shows the initial density of the particles V0, which is assumed to be given by
V0(x) = 1

2x(2− x) exp(−50(x− 0.3)2) + 1
2 exp(−100(x− 1.2)2).
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A.3 Calibration Results for Comparison

The following table, we display the parameters estimates as presented in [1]. As explained in
Section 4.5, we use them for a comparison with our results to deduce how the market stability is
seen differently from a post-crisis point of view.

Parameters Diffusion Jump-Diffusion
σ 0.18 0.16
ρ 0.22 0.11
λ - 0.04
µY - -0.07
σY - 0.01

Table A.1: Table of the estimated parameters for the 22nd February 2007 as presented in [1].

A.4 Code

In this section, we present the core parts of the code used simulate the SPDE of the limiting
measure ν and to calibrate the model to market data.

1 ### IMPORT PACKAGES ###
2
3 import numpy as np
4 import scipy
5 import pandas as pd
6 from scipy.interpolate import interp1d as interp
7 from scipy.integrate import quadrature as quad
8 from scipy.optimize import least_squares
9 from sklearn.neighbors import KernelDensity

1 ### DEFINE CLASS FOR PARAMETERS OF THE SPDE ###
2
3 class Parameters:
4 def __init__(self, time_steps, space_steps, total_time, upper_space_limit,
5 sigma, rho, gauss_steps, lamb, mu_jump, sigma_jump, alpha):
6 self.time_steps = time_steps
7 self.space_steps = space_steps
8 self.total_time = total_time
9 self.upper_space_limit = upper_space_limit

10 self.sigma = sigma
11 self.rho = rho
12 self.gauss_steps = gauss_steps
13 self.lamb = lamb
14 self.mu_jump = mu_jump
15 self.sigma_jump = sigma_jump
16 self.time_delta = self.total_time / self.time_steps
17 self.space_delta = self.upper_space_limit / self.space_steps
18 self.alpha = alpha

1 ### DEFINE CLASS TO RUN SIMULATION OF SPDE ###
2
3 class SPDE:
4 def __init__(self, V0, parameters):
5 BM = generate_BM(parameters.total_time, parameters.time_steps)
6 shifts = [parameters.rho * parameters.sigma * (BM[i+1] - BM[i])
7 for i in range(parameters.time_steps)]
8 jumps = generate_Poisson(parameters.total_time, parameters.time_steps,
9 parameters.lamb)

10 self.para = parameters
11 self.jumps = jumps
12 self.space_grid = np.array([i * self.para.space_delta
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13 for i in range(self.para.space_steps + 1)])
14 self.time_grid = np.array([i * self.para.time_delta
15 for i in range(self.para.time_steps + 1)])
16 self.data = [np.array([V0(x) for x in self.space_grid]) /
17 quad(V0,0.0,self.para.upper_space_limit)[0]]
18 self.loss = [0.0]
19 self.shifts = shifts
20 self.jumps = jumps
21
22 def simulate(self):
23 for i in range(self.para.time_steps):
24 f = self.data[i]
25 kernel_dis = np.zeros_like(self.time_grid)
26 kernel_dis[1] = 2.0 / self.para.time_delta
27 kernel = interp(self.time_grid, kernel_dis, bounds_error = False,
28 fill_value = 0.0)
29 no_losses = len(self.loss)
30 extended_losses = np.zeros_like(self.time_grid)
31 extended_losses[:no_losses] = self.loss
32 L = interp(self.time_grid, extended_losses, bounds_error = False,
33 fill_value = 0.0)
34 d_L = L(self.time_grid[i]) - L(self.time_grid[i - 1])
35 cont = self.para.alpha * d_L
36 f_next = push_forward(f, self.space_grid, self.para.time_delta,
37 self.shifts[i], self.para.sigma, self.para.rho,
38 self.para.mu_jump, self.para.sigma_jump, self.jumps, i, cont)
39 self.data.append(f_next)
40 self.loss.append(1.0 - integrate.trapz(f_next, self.space_grid))

1 ### DEFINE HELPING FUNCTIONS FOR SPDE SIMULATION ###
2
3 def push_forward(fvals, grid, dt, shift, sigma, rho, mu_jump, sigma_jump,
4 jumps, i, cont) :
5 f = interp(grid, fvals, bounds_error=False, fill_value=0.0)
6 x0 = np.linspace(-5, 5, 400)
7 gauss = GAUSS_CONST * np.exp( -0.5 * x0 * x0 )
8 height = np.random.normal(mu_jump, sigma_jump)
9 SHIFT = shift + sigma * np.sqrt(1 - rho ** 2) * np.sqrt(dt) * x0 +

10 height * jumps[i] - cont
11 shifted_f = f(grid[:,None] - SHIFT)
12 f_conv = integrate.trapz(shifted_f * gauss, x0, axis = 1)
13 return f_conv
14
15 def generate_BM(time_horizon, no_steps):
16 dt = time_horizon / no_steps
17 discrete_BM = np.random.normal(0.0, np.sqrt(dt), no_steps + 1)
18 discrete_BM[0] = 0.0
19 discrete_BM = np.cumsum(discrete_BM)
20 return discrete_BM
21
22 def generate_Poisson(time_horizon, no_steps, lamb):
23 dt = time_horizon / no_steps
24 pois = np.random.poisson(lamb * dt, no_steps)
25 return pois

1 ### DEFINE PRICING FUNCTION FOR CDO INDEX ###
2
3 def CDO_index_price(V0, parameters, r, Rec, freq, mat, NSim):
4 spreads = []
5 payment_delta = 1.0 / freq
6 payment_dates = [i * payment_delta for i in range(1, freq * max(mat) + 1)]
7 bank_acc = np.exp([p * r for p in payment_dates])
8 averaging = np.zeros(parameters.time_steps)
9 for i in range(NSim):
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10 LM = LinearModel(V0, parameters)
11 LM.simulate()
12 L = LM.loss
13 Z = [1 - l for l in L]
14 averaging += Z[1:]
15 averaging /= NSim
16 MC_loss = averaging[int((parameters.time_steps / parameters.total_time)
17 // freq) - 1 :: int((parameters.time_steps / parameters.total_time)
18 // freq)]
19 for T in mat:
20 temp = MC_loss[ : freq * T]
21 temp2 = np.abs(np.diff(temp))
22 btemp = bank_acc[1 : freq * T]
23 fee_leg = payment_delta * np.sum(temp[1:] / btemp)
24 prot_leg = np.sum(temp2 / btemp)
25 spreads.append( (1.0 - Rec) * prot_leg / fee_leg * 10 ** 4 )
26 return spreads

1 ### DEFINE CLASS FOR CALIBRATION PROBLEM ###
2
3 class Calibration_Index:
4 def __init__(self, prices, r, Rec, mat, freq, NSim, V0):
5 self.prices = prices
6 self.r = r
7 self.Rec = Rec
8 self.mat = mat
9 self.freq = freq

10 self.NSim = NSim
11 self.bounds = ...
12 self.V0 = V0
13
14 def value_function(self, theta):
15 sigma, lamb, mu_jump, sigma_jump =
16 theta[0], theta[1], theta[2], theta[3]
17 parameters = Parameters(TIME_STEPS, SPACE_STEPS, TOTAL_TIME,
18 UPPER_SPACE_LIMIT, sigma, RHO, 20, lamb,
19 mu_jump, sigma_jump, ALPHA)
20 model_prices = CDO_index_price(V0, parameters, self.r, self.Rec,
21 self.freq, self.mat, self.NSim)
22 return np.sum((np.array(model_prices) - np.array(self.prices))**2)
23
24 def calibrate(self):
25 self.calibration_result = optimize.minimize(self.value_function,
26 x0 = np.array(...), method = ’powell’, bounds = self.bounds)
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