
Imperial College London

Department of Mathematics

Distributional Reinforcement Learning

for Optimal Execution

Author: Toby Weston (CID: 01796807)

A thesis submitted for the degree of

MSc in Mathematics and Finance, 2019-2020

Abstract

When trading a financial asset, large orders will often incur higher execution costs as the trader
uses up the available liquidity. To reduce this effect, orders are split and executed over a short
period of time. Theoretical solutions for how to optimally split orders rely on models of market
environments. These fail to take into account market idiosyncrasies and tend to oversimplify a
complex optimisation problem.

Deep Q learning provides a set of methodologies for learning an optimal solution from real ex-
perience. Successful application would allow models of the trading environment to be sidestepped
in favour of direct interaction with the financial markets. Deep Q learning has previously been ap-
plied to the problem of optimal execution and has shown promise, both in simulated environments
and on historical data.

In the last few years many improvements have been suggested for the vanilla deep Q learning
algorithm. Distributional reinforcement learning in particular has shown to outperform value based
deep Q learning on a selection of Atari games. Given the highly stochastic nature of the trading
environment it is reasonable to assume that it would perform well for the problem of optimal
execution.

In the following work we will outline the principles behind distributional reinforcement learning
and show that it can outperform value based deep Q learning for optimal execution. To the best of
our knowledge this is the first time distributional reinforcement learning has been used for optimal
execution.

Acknowledgements

I would like to thank Paul Bilokon for supervising me and providing me with invaluable advice
throughout the thesis. I would additionally like to thank Jörg Osterrieder and the team for giving
me the opportunity to present my work at the 5th European Conference on Artificial Intelligence
in Industry and Finance. Thank you also to David Finkelstein, Andrew Muzikin and Alexander
Panin of DQR for their feedback and suggestions for improvements to the historical trading agents.
Finally, thank you to my girlfriend Kate for putting up with me during the writing of this thesis.

Contents

1 Market Microstructure and Optimal Execution 9
1.1 Limit Order Markets . 9
1.2 Models for Optimal Execution . 10

1.2.1 Optimal Execution Using Market Orders 11

2 Deep Reinforcement Learning 13
2.1 Introduction to Reinforcement Learning . 13

2.1.1 Markov Decision Processes . 13
2.1.2 Optimal Policies . 14
2.1.3 Temporal Difference Learning . 16
2.1.4 Exploration versus Exploitation . 16
2.1.5 Q Learning . 17

2.2 Deep Q Learning . 18
2.2.1 Deep Q Learning Update . 18
2.2.2 Artificial Neural Networks . 19
2.2.3 Planning and Replay Buffers . 20
2.2.4 Target Network . 20
2.2.5 Maximisation Bias and Double Deep Q . 21
2.2.6 N Step Methods . 22
2.2.7 Combining the Improvements to DQN . 24

2.3 Distributional Reinforcement Learning . 25
2.3.1 The Distributional Perspective . 25
2.3.2 Quantile Regression . 27
2.3.3 Why Use Distributional Reinforcement Learning? 30
2.3.4 Efficient Exploration . 30

3 Deep Execution 32
3.1 Difficulties in Applying Reinforcement Learning to Execution 33
3.2 Agent Design . 34

3.2.1 Action Space Using Only Market Orders . 35
3.2.2 Action Space Using Limit and Market Orders 35
3.2.3 Rewards . 35

3.3 Environment Design . 37
3.3.1 Simulated Market Environments . 37
3.3.2 Historical Market Environments . 38

4 Training and Evaluation 40
4.1 Simulated Data . 40

4.1.1 Comparison of Agents . 40
4.1.2 The Quantile Regression Agent . 42

4.2 The Historical Environment . 43
4.2.1 Execution using only Market Orders . 44
4.2.2 Execution using Limit and Market Orders 46

A Technical Proofs 49

B Supplementary Figures 50

2

C Code and Implementation 51

Bibliography 54

3

List of Figures

1.1 A model of the effect of an incoming market order on the limit order book. The
left hand pane shows the limit order book at 12:43:01. A market order of size 3, 000
arrives at 12:43:01.05. Since the volume available at the top of the limit order book
is 2, 000, the order is split between the best ask price, 533, and the second best ask
price 533.5. The effect of the market order on the limit order book can be seen in
the third panel. The mid price has increased from 532.25 to 532.5 and the spread
has widened. 10

2.1 A simple model of a deterministic trading environment with two shares and tempo-
rary impact. State s = 0 is a terminal state. 17

2.2 A representation of the n-step Tree Backup Algorithm for the greedy policy. Solid
lines represent the action which maximises the action value over the set of possible
actions for that state. 22

2.3 An example quantile distribution with N = 4. The blue line shows the CDF of the
random future returns G(s, a) for an arbitrary state action pair (s, a). The dotted
line shows the CDF for the approximating quantile distribution. This approximation
minimises the area between the blue curve and the dotted step function, the 1-
Wasserstein error. 27

2.4 Quantile Huber Loss function with κ = 1 for two different values of τ . This is a
modified version of the asymmetric quantile regression loss which is smooth at 0. . 28

3.1 Full architecture for the Q-network of the QR-DQN agent. Circles represent inputs
and squares outputs. Shown in orange are the action inputs to the network. In red
are the private agent inputs, the inventory, elapsed time and volume of unexecuted
limit orders posted by the agent. In blue, are a selection of k market variables. For
each market variable the current value is provided along with the n previous values.
This set of market variables is preprocessed using a L1 layer convolutional neural
network of U1 units. The output is then flattened, combined with the other inputs
and fed into a L2 layer neural network of U2 units. This produces the final output,
the estimated value of the state and actions for N quantiles. 36

3.2 Example to demonstrate the treatment of cancelled limit orders. The plot shows
the development of the limit order book on a Bitcoin market between 02 : 40 : 19
and 02 : 40 : 20. Each bar shows the volume available at the best ask price,
7795.5. The agent has two limit orders active, at different positions in the queue.
At 02 : 40 : 19 there are 608, 083 units available and at 02 : 40 : 19 there are 508, 855
units. Given the volume of market orders over the one second interval was 62, 684,
the remainder of the difference must be cancelled limit orders. Assumption 1 states
that all cancelled limit orders were at the back of the queue, excluding the limit
orders of the agent. 39

4.1 The smoothed cash received from liquidating the position (left) and optimal action
count (right) over a 25 episode evaluation period plotted against the number of
episodes of training for each agent. The average cash received using a TWAP policy
is shown by the dashed line. For each agent, the bold line shows the mean and the
shaded area shows the range of the minimum and maximum across all instances of
the agent. The number time steps where an action can be selected is 9 as the final
action is always to liquidate any remaining position. 42

4

4.2 The smoothed average rewards and number of optimal actions over each evaluation
period plotted against the number of training episodes for the QR-DQN Agent using
an ε-greedy and efficient exploration behaviour policy. The bold line indicated the
mean and the shaded region the minimum and maximum across all agents. 42

4.3 The learned distribution for the returns associated with the optimal action, TWAP,
as the number of training episodes increase. The theoretical distribution of the
returns is shown by the dashed line. 43

4.4 The smoothed average rewards and number of times each action is chosen over each
evaluation period plotted against the number of training episodes for 5 QR-DQN
Agents compared to TWAP. 45

4.5 A fully trained QR-DQN agent was selected at random and evaluated over 1, 000
episodes on a days worth of evaluation data. The returns are shown in the histogram.
The average return under TWAP (0.99) is shown by the dashed line. The average
return for the agent was 0.9904. 45

4.6 The smoothed average rewards against the number of training episodes for 5 QR-
DQN Agents compared to TWAP. The mean evaluation reward is shown by the
solid green line. The shaded area represents the range in the evaluation rewards. . 46

4.7 A plot of the frequency with which a selection of the most used actions were chosen
at each time step for 1, 000 evaluation episodes in the historical environment. The
numbers in brackets refer to the sizes of the market order (MO) and limit order
(LO) chosen with relative to the TWAP trading rate. 47

B.1 The estimated value of each of the three actions at the beginning of the episode as
the number of training episodes increases. It can be seen from this that the agent
begins to overfit the training data after around 2, 000 training episodes. 50

5

List of Tables

4.1 Parameters for the simulated execution environment used to compare the agents. . 40
4.2 Parameters used for the DDQN and QR-DQN Agents evaluated on the simulated

environment . 41
4.3 Parameters for the neural network architecture, shown in Figure 3.1, for both agents

evaluated in the simulated market environment. 41
4.4 Parameters for the simulated execution environment used to compare the agents. . 44
4.5 Parameters used for the QR-DQN agent evaluated in the historical environment. . 44
4.6 Parameters for the neural network architecture, shown in Figure 3.1, for the QR-

DQN agent evaluated in the historical market environment. 44

6

Introduction

Large orders of a financial asset are commonly split it into smaller components and executed over
a period of time. Selling quickly may result in higher execution costs. Conversely, executing over a
longer period may place the investor at risk of adverse price movements and may be incompatible
with the exogenous factors that led the agent to place the order in the first place. The length of
time used to execute an order will depend on the investor’s tolerance for risk and their reasons
for making the order. It is therefore common to pose the problem of optimal execution as the
execution of a large order over a predefined time window such that execution costs are minimised.
Traditionally this problem has been solved by using a stochastic model of the trading environment
and finding the solution that minimises the execution cost using dynamic programming [1]. This
assumption of a fixed model arguably oversimplifies a highly complex system.

Unlike model based solutions, deep reinforcement learning is model free. Instead it is able
to ‘learn’ from real experience. This experience typically comes from the reinforcement learning
agent’s interactions with its environment. The agent observes the current state of the environment,
selects an action based on this observation and then receives a reward and observes the new state
of the environment. Based on this experience, the agent models the future value of choosing certain
actions given the current state. This model of future rewards is then used to adjust its strategy.

The application of reinforcement learning to optimal execution has been proposed in several
papers [2, 3, 4]. These attempts have generally been limited to tabular reinforcement learning and
dynamic programming. Recent advances in deep reinforcement learning have shown impressive re-
sults in various fields, from the game Go [5] to robotics [6]. Since Deep Q Learning was introduced
in 2013 [7], many papers have been published showing marked improvements to the original algo-
rithm [8]. Some of these advancements have been incorporated into solutions for optimal execution,
in particular Double Deep Q Learning [9, 10].

One modification that has shown particular promise is Distributional Reinforcement Learning
[11, 12, 13]. Rather than approximating the expected value of the future rewards from taking a
particular action in a state, distributional reinforcement learning aims to model the full distribution
of returns. Distributional reinforcement learning has shown to both outperform value-based Deep
Q Learning and also allow for decisions to be made based on the whole distribution rather than
just the expected value. Given the highly stochastic nature of the trading environment, modelling
the distribution of the returns is something that could conceivably improve performance. As far
as we are aware this is the first time distributional reinforcement learning has been applied to the
problem of optimal execution.

In Chapter 1 we will discuss some key topics from Market Microstructure, introducing limit
order markets for the trading of financial assets and the effect of trading on the limit order book.
We will then briefly introduce the traditional optimal execution solutions of Almgren and Chriss
[14] in Section 1.2.

The aim of Chapter 2 is to introduce the reinforcement learning agents we will use to trade.
Section 2.1 will introduce the basic concepts behind reinforcement learning needed to understand
the deep Q learning. We will use Section 2.2 to discuss deep Q learning. We will start out with a
basic version of the DQN algorithm and demonstrate some of the improvements that can be made
to stabilise the algorithm and improve performance. In particular, we will introduce Double Deep Q
Networks [15] and n-step methods [16] as improvements to the original DQN algorithm. The final
part of Chapter 2 will be dedicated to distributional reinforcement learning. This will discuss the
theoretical concepts behind the algorithms and some guarantees of convergence. We then define
the Quantile Regression DQN algorithm which we shall use to showcase the results of distributional
reinforcement learning for optimally executing an order. We will finish by introducing a method
for efficiently exploring the state space using distributional reinforcement learning [17].

7

The focus of Chapter 3 will be the application of these techniques to the field of optimal execu-
tion. There are various difficulties in translating agents from simulated to real world environments
and these are discussed in Section 3.1. We will then explain how the agent is designed and the
restrictions imposed. Finally we will explain the design and rationale behind both a simulated
environment and an environment using historical data.

Chapter 4 will review the performance of these agents, trained on the previously introduced
environments. We will start by using a simulated environment to compare the performance of
QR-DQN to the traditional DQN algorithm and the effectiveness of using the distribution learned
using QR-DQN for efficient exploration of the state space. We will then evaluate the performance
of QR-DQN in a more realistic historical environment.

8

Chapter 1

Market Microstructure and
Optimal Execution

1.1 Limit Order Markets

A large number of financial assets are traded using electronic limit order markets, including the
majority of equities and derivatives [18]. These limit order markets will be the environment that the
trading agents considered in the proceeding chapters will operate in. While a thorough treatment
of limit order markets can be found in [19], we will begin by giving a brief overview of the most
important features.

Limit order markets are venues for the trading of an asset or multiple assets. This asset could
be, for example, a stock, US Dollars or Bitcoin. They allow market participants seeking to buy or
sell the asset to have their orders matched by the exchange. While it can generally be assumed
that all market participants are seeking to make money, we can divide them into three main
groups based their motivation for trading [1]. The first group are fundamental traders. These are
participants who trade based on exogenous factors. For example an Exchange Traded Fund, or
ETF, attempting to replicate an index will need to rebalance their portfolio regularly to accurately
track the index. The second group are informed traders. These are traders who profit based on
information that is not reflected in the current stock price. These traders may depend on non
publicly available information, fundamental analysis, statistical arbitrage or simply trading on
recent news before the market has had time to react. The third group are market makers. These
are generally professional traders who make orders on both sides of the order book and attempt
to profit from the spread.

Limit order markets allow for buy and sell orders of the asset being traded to be placed in two
distinct ways. Limit orders are obligations to buy or sell the asset at a certain price. They are
valid until they are filled, expire, or are cancelled by the trader. If a counterparty executes against
the limit order then the trader who placed it must fulfill the order unconditionally. When placing
a limit order the trader specifies whether the order is buy or sell, the maximum volume of the asset
she is prepared to buy, and the worst price that the she is willing to execute the order at. For a
buy limit order this would be a maximum price and for a sell limit order, a minimum. All limit
orders are collected together to make up the limit order book. The limit order book consists of
a discrete grid of prices and the volume of the asset available at each price. Limit orders may be
placed at any of these discrete price points but not between them.

When we discuss the limit order book it is helpful to introduce a few important terms. The
minimum difference in price permissible between limit orders is referred to as the tick size and the
best price available in the limit order book is referred to as the top of the book. There are various
technical definitions of liquidity however it is sufficient to consider it as the volume of the asset
available to buy or sell in the limit order book. This is alternatively referred to as the depth of the
order book.

The second order type we will consider are market orders. In contrast to limit orders, a trader
placing a market order specifies only a quantity of the asset and the direction of the order, buy or
sell. There is no guaranteed price but the order will be fulfilled immediately, conditional on there
being sufficient liquidity in the limit order book. Market orders are executed against the limit
order book at the best available price. When a market order arrives if the size of the market order

9

is less than the volume available at the top of the book then the entire order is executed at this
price. If the order size is larger than combined size of the limit orders available at the top of the
book then the process is repeated at the next best price until either the market order is fulfilled or
there are no remaining limit orders. This concept is known as walking the order book. The result
of this is the price that the asset is bought or sold at becomes progressively worse as the order size
increases. Figure 1.1 illustrates this process and shows the effect of a large market order on the
limit order book.

There are many other order types beyond limit and market orders and their availability varies
across exchanges. More information on these and their impact on the market can be found in both
[1] and [19]. For the sake of simplicity we will restrict our attention to limit and market orders.

531 532 533 534
0

2

4

6

8

10

12 mid
volume

(a) 12:43:01.00

531 532 533 534
0

2

4

6

8

10

12 volume
market order

(b) 12:43:01.05

531 532 533 534
0

2

4

6

8

10

12 mid
volume

(c) 12:43:01.05

Figure 1.1: A model of the effect of an incoming market order on the limit order book. The
left hand pane shows the limit order book at 12:43:01. A market order of size 3, 000 arrives at
12:43:01.05. Since the volume available at the top of the limit order book is 2, 000, the order is
split between the best ask price, 533, and the second best ask price 533.5. The effect of the market
order on the limit order book can be seen in the third panel. The mid price has increased from
532.25 to 532.5 and the spread has widened.

The bid price, is the price of the best available buy limit order, and the ask price, is the price
of the best available sell limit order. From these two prices we can derive the mid price,

mid =
bid+ ask

2
.

This represents one approximation of the current value of the asset, priced by the market. The
difference between the bid and ask prices is called the bid ask spread or simply the spread when
there is sufficient context.

The limit order book consists of a queue of many unexecuted limit orders. While the rules for
priority in the queue vary between exchanges, the majority operate using price and time priority
[18] and we will restrict our attention to these. Price priority means that limit orders with a better
price are executed first. If there are multiple limit orders at the same price then the limit order
placed first will be the first to be executed. This is sometimes referred to as “first in first out”.

1.2 Models for Optimal Execution

For the remainder of this work we will be considering the predicament of a fundamental trader who
wishes to enter into, or exit a large position. The trader wishes to minimise the cost of execution.
To avoid unnecessary repetition we will only consider a trader wishing to exit a position. The
problem of optimal acquisition is symmetric and any concepts for optimal liquidation can be
applied to acquisitions with only minor adjustments.

When trading on limit order markets the trader must decide between placing limit orders and
market orders. The first will often result in a better price, the second guarantees immediate
execution and reduces the risk of adverse price moves prior to execution. This tradeoff between
speed and price is a recurring theme in optimal execution. What is considered optimal often
depends on the individual requirements of the final investor. If, for instance, the agent is liquidating

10

a position in reaction to a piece of news, they may prefer to execute quickly before the market
reacts.

1.2.1 Optimal Execution Using Market Orders

When considering a theoretical environment for optimal execution we will restrict ourselves to
execution using only market orders. When placing market orders traders face an execution cost
which increases with the size of the order. As noted previously this is due to the concept of walking
the order book and can be seen in Figure 1.1. In this example the best ask price is 533 however
the average price for the market order is 533.17.

When splitting a large order, the original large market order is referred to as the parent, split
into a number of child orders. A solution for the optimal way in which to split large orders was
first discussed by [14]. Since then, the same concepts have been expanded upon and discussed
extensively. In the following section we shall loosely follow [1], citing explicit results where appro-
priate.

In order to evaluate an agent we must be able to compare the performance to a benchmark.
The benchmark price is commonly taken to be the mid price when the order was first submitted
[1]. The cost of execution or slippage can therefore be measured as the difference between the
actual cash received from liquidating the position and the cash value at the benchmark price.

Child orders must be executed fast enough so as to minimise the risk of adverse price moves
but slow enough so as to minimise slippage. We therefore frame the problem as taking place within
a defined time window. We require that the entire position be liquidated by a given time T and
seek the optimal trading rate vt for all t ∈ [0, T] so as to minimise the execution cost.

To determine the optimal rate of trading we can model the trading environment and derive
the rate of trading that minimises the execution cost for this model. To do so we introduce the
following stochastic processes,

• v = (vt)0≤t≤T , the rate at which the agent trades.

• Qv = (Qvt)0≤t≤T , the agents remaining inventory.

• Sv = (Svt)0≤t≤T the mid price process of the asset.

• Ŝv = (Ŝvt)0≤t≤T the execution price of the asset, the price the agent receives for selling at
time t.

• Xv = (Xv
t)0≤t≤T , the agent’s cash process.

We aim to exit a position of size R by time T . Given we are considering the liquidation of a
position, the inventory process can be written as

dQvt = −vtdt Qv0 = q.

Market impact is commonly modelled as being made up of a temporary and permanent impact.
We model the temporary trading impact using a function f : R+ → R+. We will assume this to be
a linear function of the rate of trading such that f(v) = kv, where k is a constant. Various studies
[20, 21] have shown that the temporary market impact is perhaps more accurately modelled as a
concave function, f(v) = k

√
v being one suggestion. As discussed in [1, page 89] however, a linear

temporary market impact function appears to be a good approximation and one which simplifies
the derivation of the optimal trading speed.

We model the permanent market impact as a function g : R+ → R+. This is also taken to be
a linear function of the rate of trading so that g(v) = bv.

Using the permanent market impact function we assume that the dynamics of the midprice are
given by,

dSvt = −g(vt)dt+ σdWt, Sv0 = S, (1.2.1)

where (Wt)0≤t≤T is a standard Brownian motion and σ represents the volatility of the stock. Using
the temporary market impact f , we can model the execution price of the stock as

Ŝvt = Svt − (1/2∆ + f(vt)), (1.2.2)

11

where ∆ is the bid ask spread. Using the simplifying assumption that ∆ = 0 and substituting in
our linear temporary impact function we obtain,

Ŝvt = Svt − kvt.

As the speed of trading increases the temporary impact means that the execution price becomes
worse, simulating the effect of the market order walking the book.

Under these assumptions we can write out the execution cost of liquidating the position as,

ECv = RS0 − E

[∫ T

0

Ŝvt vtdt

]
= RS0 − E

[∫ T

0

(St − kvt)vtdt

]
.

We wish to find the rate of trading v so as to minimise the execution cost. By using the Hamiton
Jacobi Bellman, or HJB, equation, we can minimise the execution cost subject to the constraint
that the entire position has been sold by time T . This derivation is carried out in full in [1, page
140]. From this we find that the optimal trading speed is in fact constant, and given by,

v∗t =
R

T
.

This strategy is known as Time Weighted Average Price or TWAP. In practice, given we do not
trade continuously this strategy consists of splitting the parent order into equally sized child orders
and submitting these at equally spaced intervals across the trading window [0, T]. The frequency
with which these child orders are submitted will depend on the asset being traded. We will refer
to this as the trading frequency.

While this strategy is optimal for the simulated market we cannot guarantee that this model
of the market is an accurate representation. The unrealistic nature of Black-Scholes dynamics
for an asset’s price, given in Equation (1.2.1), is well documented [22] and the linear market
impact model is a simplistic assumption. Some of these flaws could be solved by the use of a
more sophisticated model. However, this may not be tractable and would likely still be a crude
approximation. Additionally, this model considers only execution using market orders. A superior
solution could be found by using a mix of market and limit orders. Simulating the limit order book
however, adds an additional layer of complexity.

For these reasons we will consider alternative approaches to liquidating a position in an optimal
way. While suboptimal in real trading conditions, TWAP provides a useful benchmark with which
to compare other strategies.

12

Chapter 2

Deep Reinforcement Learning

In Section 1.2 we used a theoretical model of the market to find the optimal trading rate for
the agent given certain observable variables. In contrast to this, reinforcement learning provides
a set of methods with the aim of learning this optimal solution through real interactions with
the environment. This avoids the previously discussed issues surrounding unrealistic models of
financial markets. Recent publications have shown it to be a powerful tool for finding locally
optimal strategies, AlphaZero [5] being a prime example.

2.1 Introduction to Reinforcement Learning

In the following section we shall provide a brief introduction to tabular reinforcement learning.
For this we shall follow [16] closely, citing specific results where applicable.

2.1.1 Markov Decision Processes

Markov decision processes represent an idealised structure for the environment in which we pose
the reinforcement learning problem. They allow us to define concepts in a mathematically rigorous
way and derive the convergence results found in later sections. Consider an agent which is able
to interact with its environment via a finite set of admissible actions A. This interaction happens
at a series of discrete time steps which we index using t ∈ N. In general there is no requirement
for t to be finite. However, for optimal execution we will continue assuming that the agent must
liquidate the full position in a defined time window [0, T]. This is known as an episodic problem.
The process terminates either at time T or when the agent has no remaining position in the asset.

At each time step t, the agent observes the state of the environment St ∈ S and, based on this
observation, chooses an action At ∈ A(St) ⊂ A. The set A(S) represents the actions available at
state S, however we will often drop the state argument for simplicity and assume that the set of
admissible actions is not state dependent. Based on the action chosen, the agent then receives a
reward Rt+1 ∈ R ⊂ R, and transitions to state St+1 ∈ S. Here, R and S denote the set of possible
rewards and states respectively.

When an action At is chosen by the agent, the state transitioned to, and accompanying reward,
are defined by a probability distribution which completely characterises the dynamics of the process.
We can therefore define the dynamics of the process as a four argument function,

p(s′, r|s, a) = P[St+1 = s′, Rt+1 = r|St = s,At = a]. (2.1.1)

We will assume that the state process {St}t is Markov: the current state represents all available
information about the environment, independent of past events. Formally for any st+1 ∈ S and
r ∈ R,

P[St+1 = st+1, Rt+1 = r|St = st, At = at] =

P[St+1 = st+1, Rt+1 = r|St = st, At = at, ..., S0 = s0, A0 = a0],

for all t ∈ N. A Markov Decision Process or MDP is the name given to the tuple (S,A,R, p). In
some reinforcement learning literature a discount factor γ is included in this tuple. In the following
sections we will be modelling all reinforcement learning problems as MDPs. In this section, while

13

discussing tabular reinforcement learning we will additionally assume that the state and action
spaces are of finite cardinality. In this case the MDP is known as a finite MDP.

2.1.2 Optimal Policies

Reinforcement learning aims to provide a mapping from the states S to the set of actions A(S)
that is in some way optimal. This mapping is referred to as the strategy, or policy, π that the
agent follows. An agent following policy π in state s chooses action a with probability π(a|s).
Alternatively, for deterministic policies it is common to write π(s) to denote the action chosen in
state s under a policy π. We now define two important functions. Given an agent currently in
state s, the value function vπ : S → R is the expected total discounted reward over the remainder
of the episode if policy π is followed. Formally,

vπ(s) = Eπ

[
T∑
k=1

γk−1Rt+k|St = s

]
, (2.1.2)

where γ is the discount factor. In a similar way, we define qπ(s, a) to be the expected future
discounted reward if an agent in state s chooses action a, and policy π is followed for the remainder
of the episode. We can write this as

qπ(s, a) = Eπ

[
T∑
k=1

γk−1Rt+k|St = s,At = a

]
. (2.1.3)

This is known as the action value function for policy π. Since the problems we are considering are
episodic, the discount factor is unnecessary and we set γ = 1. We will continue to include it for
completeness.

By manipulating Equation (2.1.3) and defining Gt =
∑T
k=t+1 γ

k−1Rk, the future discounted
returns, we can derive the following recursive relationship,

qπ(s, a) = Eπ [Gt|St = s,At = a]

= Eπ [Rt+1 + γGt+1|St = s,At = a]

=
∑
s′∈S

∑
r∈R

p(s′, r|s, a) [r + γEπ [Gt+1|St+1 = s′]]

=
∑

s′∈S,r∈R

p(s′, r|s, a)
[
r + γ

∑
a′∈A

π(a′|s′)qπ(s′, a′)
]
, (2.1.4)

for all s ∈ S and a ∈ A where p(s′, r|s, a) defines the dynamics of the MDP, given in Equation
(2.1.1). The equality given by Equation (2.1.4) is known as the Bellman Equation for qπ(s, a). By
a similar derivation we can obtain the Bellman Equation for vπ(s),

vπ(s) =
∑
a∈A

π(a|s)
∑

s′∈S,r∈R

p(s′, r|s, a)
[
r + γvπ(s′)

]
. (2.1.5)

To find an optimal policy we must be able to compare policies. We assert that π ≥ π′ if and only
if vπ(s) ≥ vπ′(s) for all s ∈ S. Moreover, π > π′ if vπ(s) ≥ vπ′(s) for all s ∈ S and vπ(s) > vπ′(s)
for at least one s ∈ S. Using this means of comparing policies we can define the optimal policy
π∗ such that π∗ ≥ π, for any admissible policy π. The optimal policy is guaranteed to exist but is
not necessarily unique. [16, page 62]. We can similarly define the optimal value and action value
functions as

v∗(s) = max
π

vπ(s), q∗(s, a) = max
π

qπ(s, a),

for all s ∈ S and a ∈ A. By using these definitions with the Bellman Equation from Equation
(2.1.4) we obtain,

q∗(s, a) = E
[
Rt+1 + γ max

a′∈A
q∗(St+1, a

′)
∣∣St = s,At = a

]
=

∑
s′∈S,r∈R

p(s′, r|s, a)
[
r + γ max

a′∈A
q∗(s

′, a′)
]
. (2.1.6)

14

This relationship is known as the Bellman Optimality Equation for the action value function.
Finding π∗ requires two distinct processes. In order to compare to policies we are required to

know or estimate the value functions or action value functions of both policies. Policy evaluation
consists of estimating the value function vπ, or alternatively qπ, for a given policy π. By using
the Bellman Equation defined in Equation (2.1.5) we can compute vπ iteratively using the update
rule,

vk+1(s) =
∑
a∈A

π(a|s)
∑

s′∈S,r∈R

p(s′, r|s, a)
[
r + γvk(s′)

]
, (2.1.7)

with v0 chosen arbitrarily. For episodic problems, vπ exists and is unique, and the sequence
{vi}i=0,..,k is guaranteed to converge to vπ as k → ∞ [16, page 74]. In a similar way we can
estimate the action value function qπ for a given state s and action a,

qk+1(s, a) =
∑

s′∈S,r∈R

p(s′, r|s, a)
[
r + γ

∑
a′∈A

π(a′|s′)qk(s′, a′)
]
. (2.1.8)

The second process is policy improvement. At each step the agent has the choice of whether to
continue using the current policy or switch to a new policy. We introduce the following theorem
from [23, page 47],

Theorem 2.1.1 (Policy Improvement Theorem). Let π and π′ be policies such that, for all s ∈ S,

qπ(s, π′(s)) ≥ vπ(s),

then policy π′ ≥ π.

A sketch of this proof for deterministic policies is given in [16, page 78]. We now introduce a
special deterministic policy known as the greedy policy π′. Consider an agent following an arbitrary
policy π. We can construct the greedy policy by choosing the action a ∈ A which maximises the
action value function qπ(s, a) for the current state s ∈ S. Explicitly,

π′(s) = arg max
a∈A

qπ(s, a)

= arg max
a∈A

∑
s′∈S,r∈R

p(s′, r|s, a)
[
r + γvπ(s′)

] (2.1.9)

where the second line follows from Equation (2.1.4). By definition the greedy policy satisfies the
conditions of Theorem 2.1.1. The greedy policy π′ is therefore at least as good as the original
policy π. This process of changing the original policy to be greedy with respect to the action value
function is known as policy improvement. It can be easily shown that at each state s ∈ S, policy
improvement results in strictly better policy unless the policy is already optimal for that state [16,
page 79]. While the greedy policy presented here is deterministic, the results equally apply to any
policy which assigns zero probability to any non-maximal action.

To find the optimal policy we require both policy evaluation and policy improvement. The
definition of the greedy policy given in Equation (2.1.9) assumes that the action value function qπ
is known. In general we only have an approximation of the action value function. Policy iteration
describes the alternating process of policy evaluation, and policy improvement. Policy evaluation
improves the approximation of the action value function and policy improvement improves the
policy π,

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ ...

E represents the process of policy evaluation and I that of policy improvement [16, page 80]. When
carrying out policy evaluation at each step one could iterate as per Equation (2.1.7) until the action
value function had suitably converged. The potentially computationally intensive nature of this
step however may make this an impractical proposal. An alternative to this is to cut the policy
evaluation step short after a small number of iterations. An extreme form of this is known as value
iteration, where we use just one iteration per policy evaluation step. This allows us to simplify the
policy iteration process to,

vk+1(s) = max
a∈A

E[Rt+1 + γvk(St+1)|St = s,At = a]

= max
a∈A

∑
s′∈S,r∈R

p(s′, r|s, a)
[
r + γvk(s′)

]
,

(2.1.10)

15

for all s ∈ S, where v0 is chosen arbitrarily. This sequence can be shown to converge in the limit
to v∗(s) for all s ∈ S for episodic problems [16, page 83].

2.1.3 Temporal Difference Learning

The update rule given by Equation (2.1.10) requires that each update is applied to every state
s ∈ S. A sweep of the state space may very well be computationally demanding and impractical
to carry out at every step. In addition, in a trading environment we do not know the underlying
dynamics of the MDP and an update of the form given in Equation (2.1.10) is therefore impossible.
Instead we seek to learn them from interactions with the environment.

Temporal Difference, or TD, methods update an estimate Q of qπ by using experience sampled
when following the policy π. It should be noted that Q is still dependent on the policy followed
however the subscript π is not included to maintain consistency with the literature1. A one step
or TD(0) update can be written as,

Q(St, At)←− Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.1.11)

where α is a parameter controlling the learning rate [16, pages 120-129]. For now we ignore the
concept of n step or TD(λ) updates which we shall return to in Section 2.2.6. By comparing
this update rule to Equation (2.1.8), we note that they are conceptually similar but with a few
important differences. The TD(0) update rule, does not require explicit knowledge of the dynamics
of the MDP, p(s′, r|s, a). Rather, the update is based on unbiased samples St+1 and Rt+1 of the
possible rewards and next states. Further, unlike Equation (2.1.8), the TD(0) update only moves
the estimate for Q towards the target Rt+1 +γQ(St+1, At+1) rather than setting them to be equal.
The rate at which Q is improved is controlled by the parameter α. While the policy π does not
directly appear in the TD(0) update rule, it is present implicitly given that St+1 and Rt+1 were
sampled under policy π given state St.

As was the case in the previous section, the estimate Rt+1 + γQ(St+1, At+1) with which we
update the value function, is a bootstrapped estimate. It relies on an approximation of the action
value function at the next state Q(St+1, At+1). under mild stochastic convergence conditions on
the step size parameter α and for a fixed policy π, the action value function Q(St, At) updated
using the TD(0) update rule has been shown to converge to the true function in the limit with
probability 1 [16, page 124-126].

2.1.4 Exploration versus Exploitation

When attempting to apply the process of Temporal Difference Learning to policy improvement we
immediately face a problem that is more succinctly explained by means of an example.

Consider an agent operating in a simple stock market environment with inventory s. With
a slight abuse of notation we use the state to denote the number of shares remaining. At the
beginning of the episode the agent has two shares, S0 = 2 and the episode terminates at the
smallest t such that St = 0. At each step t the agent can sell a quantity At ∈ A(St) shares where
A(St) = {a ∈ {0, 1, 2} : a ≤ St}. The reward Rt the agent receives for a sale at time t is a
deterministic function of At given by Rt =

√
At. A diagrammatic representation of the problem

is given in Figure 2.1. This model is a simplistic representation of optimal execution in a market
with temporary impact; the cash received decreases with the rate of trading.

We initialise the action value function as 0 for all states and actions and consider an agent
following the greedy strategy defined in Equation (2.1.9), breaking any ties at random. One
possible trajectory that the agent could take for the first episode is,

S0 = 2, A0 = 2, S1 = 0, R1 =
√

2

We now update the value function for using the TD(0) update given in Equation (2.1.11), using
α = 0.5, for both states visited. The updated estimates are,

Q(s, a) =

{√
2/2 for s = 2, a = 2

0 otherwise,

1Implicit in the lack of subscript is the assumption that we are attempting to approximate an optimal policy,
rather than an arbitrary policy π. While there may be many optimal policies, all of them will have identical action
value functions.

16

05/06/2020, 12:33Untitled Diagram

Page 1 of 1https://www.diagrameditor.com/webapp/?splash=0&ui=atlas&tr=0&gh=0&gl=0&gapi=0&od=0&db=0&lang=en

s = 2 s = 1

s = 0

! = 1! = 2‾√

! = 1

! = 0 ! = 0

Figure 2.1: A simple model of a deterministic trading environment with two shares and temporary
impact. State s = 0 is a terminal state.

If, as above, the agent chooses to sell both shares at t = 0 in the first episode then the next episode
and all future episodes will follow the same trajectory as the first. In other words the value policy
has converged to a suboptimal policy. The optimal action A1 = 1 will never be chosen and its
value therefore is not learned.

This simple example introduces the problem of exploration versus exploitation. The update rule
defined in Equation (2.1.10) is guaranteed to converge because the iterative updates are applied
to all s ∈ S. Temporal difference learning only samples actions taken by the current policy and
some states may never be visited.

The solution to this problem is to use a more exploratory strategy. Some of the most popular
are epsilon greedy strategies. For a given episode i and time step t, given a small εi ∈ (0, 1),
choose a uniformly random action from A with probability εi, otherwise choose a greedy action.
If multiple actions have the same action value function then there may be several optimal actions.
In this case the greedy action is chosen at random from the set of optimal actions. Formally, we
can write epsilon greedy policies as,

πε(a|St = s) =

{
(1− ε)/|A∗(St)|+ ε/|A(St)| if a ∈ A∗,
ε/|A(St)| otherwise,

where we define A∗(St) = {a ∈ A(St) : q(St, a) = arg maxa′∈A q(St, a
′)}, the set of optimal actions.

One choice of εi would be a constant over all episodes, εi = ε, for some constant ε ∈ (0, 1). It is
more common however to choose εi to be a decreasing function of i so that the exploratory affect
decreases as the number of training episodes increases. This reflects the decreasing uncertainty in
the action values as the agent is trained. Hence forth all ε-greedy strategies considered will use a
decreasing epsilon. At each step, epsilon is multiplied by a constant εd ∈ (0, 1) until it reaches a
minimum value εm ∈ (0, 1).

Alongside ε-greedy strategies, there are also a class of strategies where exploration is prioritised
for states with a more uncertain value. These include Upper Confidence Bound, or UCB policies for
single state problems [16, page 35] which unfortunately do not generalise to multistate problems.
We will discuss other options for this in Section 2.3.4.

2.1.5 Q Learning

When introducing TD learning we made the assumption that the policy being learned and the
policy that the samples were generated from were one and the same. This is referred to as on
policy learning. Off policy learning instead involves using two policies, a target policy and a
behaviour policy. The agent interacts with the environment following the behaviour policy. The
experience generated from these interactions is used to update the target policy and, optionally,
the behaviour policy. On policy learning is in fact a special case of off policy learning where the
behaviour and target policies coincide.

Off policy learning allows for the use of a more exploratory policy as the behaviour policy, for
example an ε-greedy policy, and a deterministic, often greedy, strategy as the target. Q-learning

17

is an off policy learning algorithm originally introduced by [23]. Q-learning uses a greedy target
policy and an exploratory behaviour policy. The TD(0) update rule from Equation (2.1.11) is
replaced by,

Q(St, At)←− Q(St, At) + α[Rt+1 + γmax
a∈A

Q(St+1, a)−Q(St, At)], (2.1.12)

where there is no assumption that the optimal policy is followed when choosing At. Under some
mild conditions it can be shown that Q(s, a) → q∗(s, a) for all s ∈ S and a ∈ A as the number of
samples tends to infinity [23, page 227], assuming a finite MDP.

2.2 Deep Q Learning

Country to our assumptions so far, the cardinality of the state space |S| for a trading environment
may well not be finite. So far we have described tabular methods for reinforcement learning. At
each step, an estimate of either the action value function qπ(s, a) or value function vπ(s) is updated
for state s ∈ S and action a ∈ A independent of all other states and actions. While powerful for
small state spaces, this approach becomes impractical as the sizes of the state and action spaces
grow. The action value function must be updated for every individual combination of state and
action without any generalisation.

An alternative is to use function approximation to estimate the action value function qπ. Tradi-
tionally, linear function approximators have been popular for this purpose [24] however the range of
true value functions that they can approximate is limited. Alternatively, neural networks provide
a highly flexible class of functions that we may use to approximate qπ.

2.2.1 Deep Q Learning Update

One of the earliest successes using a form of deep learning as a non linear function approximator for
q was TD-Gammon, a reinforcement learning solution to Backgammon which achieved superhuman
performance when trained entirely through self play [25].

Recent developments have led to the Deep Q Network, or DQN, algorithm introduced in [7].
Let Q represent a neural network, referred to as a Q-network, with weights θ. We recall the concept
of policy evaluation, introduced in Section 2.1.2. For deep Q learning this process involves training
the Q-network over a number of iterations, indexed using i. Since the weights θ will change as
the network is trained we refer to the weights at iteration i as θi. At each iteration we train the
network by minimising the loss function,

Li(θi) := Es,a∼ρ(·)
[
(yi −Q(s, a; θi))

2
]
, (2.2.1)

where the target yi for the update at iteration i is given by

yi = Es′∼ε[r + γmax
a′

Q(s′, a′; θi−1)|s, a]. (2.2.2)

The notation Li makes it explicit that this loss function changes with each iteration. The notation
ρ is used to denote that experience is generated under the behaviour policy, and ε denotes the
environment.

When minimising the loss function given in Equation (2.2.1), rather than compute the expec-
tations directly, we may use samples generated under the behaviour policy, and minimise using
stochastic gradient decent. We can define an experience to be a tuple of the form (st, at, st+1, rt+1),
where st ∈ S and at ∈ A(st) denote the state at time t and the action taken at time t respec-
tively. The variables rt+1 ∈ R and st+1 ∈ S denote the reward received and state transitioned to
respectively, as a result of taking action at from st.

When training the Q-network, at the ith iteration, given an experience (s, a, s′, r) we minimise,

(r + γ max
a′∈A(s)

Q(s′, a′; θi−1)−Q(s, a; θi))
2 (2.2.3)

with respect to θi. This update rule directly follows from the Q learning update defined in
Equation (2.1.12) with the important difference that we have not limited ourselves to one iteration
per timestep. As with tabular Q-learning, Deep Q Learning is off policy since the observations can
be generated from a behaviour policy ρ, different from the greedy target policy.

18

2.2.2 Artificial Neural Networks

DQN aims to approximate the action value function q : S×A → R with a neural network. Artificial
neural networks allow for flexible function approximation in high dimensions. Since the state may
be a high dimensional object and the action value a non trivial function, neural networks are well
suited to the problem. A comprehensive introduction can be found in [26]. The aim of this section
is rather to introduce concepts directly related to reinforcement learning.

We will be using Feedforward Neural Networks for the Q-network. Feedforward neural networks
are essentially alternate compositions of affine functions and non linear activation functions. Neural
networks consist of an input, a number of hidden layers and an output. Each layer is made up
of a number of units or nodes. We can define the neural network with r layers with the ith layer
having di units as being a function of the form

f = σr ◦ Lr ◦ ... ◦ σ1 ◦ L1,

where Li : Rdi−1 → Rdi for all i = 1, ..., r is a function of the form,

Li(x) := W ix+ bi, x ∈ Rdi−1 , (2.2.4)

parameterised by a weights matrix W i = [W i
j,k]j=1,...,di,k=1,...,di−1

∈ Rdi×di−1 and bias vector

bi = (bi1, ..., b
i
di

) ∈ Rdi [27, Definition 2.1]. If I,O ∈ N denote the dimension of the input and

output respectively then we define d0 = I and dr = O. In this definition σi represents the ith

activation function. The models we shall consider will all have the same number of units in each
layer and will use ReLU activation functions. ReLU stands for Rectified Linear Unit and is defined
as,

ReLU(x) =

{
x if x ≥ 0

0 otherwise ,

for any x ∈ R.
The layer defined in Equation (2.2.4) is known as a fully connected layer. For time series inputs,

or any input where the adjacency of the input is important, we may wish to make this structure
more visible to the network. One way of achieving this is by using convolutional layers. A one
dimensional convolutional layer with d inputs is a function Ck : Rd → Rd−l−l′ given by

Ck(x)i :=

l∑
j=−l′

kjxi+j , i = l′ + 1, ..., d− l,

where l, l′ ∈ N are parameters such that l+ l′+ 1 < d, and k = (k−l′ , ..., kl) is the kernal [27]. The
kernal is typically a learnable set of weights k1, ..., kl.

In supervised learning, neural networks are generally trained using stochastic gradient decent,
outlined in [26, pages 82, 150]. For a given observation, this adjusts the weights and biases of
the network by a small amount in the direction that maximises the reduction in the error for that
observation. This relies on the availability of labelled training data, examples of network inputs
along with the expected output.

In the case of DQN we are using the network to approximate the action value function, the true
value of which will generally be unknown. Instead, the loss function given in Equation (2.2.1) uses
a bootstrapped estimate of the action value function Es′∼ε[r + γmaxa′ Q(s′, a′; θi−1)|s, a] as the
target. This is sometimes termed semi-gradient decent [16, page 202]. This use of a bootstrapped
estimate of the value function speeds up training and allows for the agent to learn throughout
the episode. It does however come at the cost of increased instability and the potential for the
action value estimate to diverge. In the following sections we will discuss ways in which to stabilise
training and reduce the possibility of divergence.

We can often reduce the training time and improve the performance by standardising the inputs
and targets for the neural network. While there is technically no necessity for the inputs to be
standardised, doing so makes it less likely that the network converges to a local minimum [28].
Additionally it means that inputs with differing scales are treated equally. We can see this by
considering a trading agent with two inputs, the time elapsed, in hours, and the remaining number
of shares of a 10, 000 share position. If the agent were to liquidate the position over the period
of an hour, the elapsed time would range over the interval [0, 1] but the remaining position would
be in the interval [0, 10000]. The network would therefore be more sensitive to changes in the
remaining position than the elapsed time.

19

2.2.3 Planning and Replay Buffers

Reinforcement Learning algorithms can be classified as either model free or model based methods
[16, page 159]. In this work we have considered only model free methods however it is instructive
to provide a brief overview of the alternatives as justification of various design choices we will make
for our learning agents.

Model based methods rely on a parametric model of their environment. This model is used for
planning. Planning, in this context, refers to the process of using simulated experience generated
by the agent’s model of the environment, rather than real experience from interactions with the
environment. A planning agent can either use real experience to improve its model of the envi-
ronment, known as indirect reinforcement learning, or directly improve the value function in the
manner discussed in previous sections.

One argument in favour of indirect methods is that they make more efficient use of the avail-
able experience. DYNA-Q is a planning agent which supplements real experience with simulated
experience, generated using a model of the environment. In some circumstances this agent has
been shown to significantly outperform a model free agent [16, Example 8.1].

An alternative to the use of parametric models for planning is by using experience replay [29].
When the agent interacts with the environment, the experience, is recorded. At regular intervals
during training, the agent “remembers” a selection of past experiences and uses these to train the
Q-network.

To be precise, at each time step t the agent adds the tuple defining the interaction: the state,
action, next state and reward (st, at, st+1, rt+1), to a replay buffer D. It then selects, uniformly
at random, a number of past experiences and trains the network on these experiences. We term
the size of the sample the batch size B, a hyperparameter which must be specified when designing
the agent. This process is in many senses similar to the use of planning and aims to solve the
same fundamental issues. Rather than simulating experiences using a model based on previous
interactions, we instead simply reuse these previous interactions. Experience replay has been shown
to outperform DYNA style planning on the Atari Learning Environment and is in general a more
stable solution [30].

Experience replay has the dual benefit of making more efficient use of real experiences and
decorrelating the experiences used to train the agent. Each batch of training experiences is a
random sample from all previous interactions and not necessarily sequential. If the agent were to
be trained only using experience generated at the current time step this would influence the action
chosen at the following time step. This would result in the samples used to train the network being
correlated, possibly leading to damaging feedback loops. In some cases this has been shown to
lead to divergence [31]. This decorrelating effect is a particularly important feature of experience
replay.

To reduce memory requirements and prioritise more relevant recent experiences for training we
specify a maximum number of experiences for the replay buffer. When the replay buffer is full,
experiences can be removed either at random or based on time priority, with less recent experiences
being removed first. The use of experience replay has been shown to improve both absolute
performance and efficiency, assuming that the environment does not change rapidly [24, 29].

2.2.4 Target Network

One cause of instability when training Q-networks is that the target used to train the network
depends on the current network parameters. An update that increases Q(st, at) also often increases
Q(st+1, a) for all a ∈ A and since Q(st+1, a) is present in the target when updating Q(st, a), there
is potential for feedback loops or divergence [24].

A solution to this problem is to introduce a separate network which is used to calculate the
target. Specifically, we use a separate target network, to estimate the value of the next state, and
update the weights of the target network to be equal to the Q-network periodically, rather than at
every iteration. Given an experience (s, a, s′, r), we can modify the target used in Equation (2.2.3)
to be,

r + γ max
a′∈A(s)

Q(s′, a′; θ−), (2.2.5)

where θ− denotes the target network. In practise the target network is a duplicate of the Q-
network, with weights updated to match the current Q-network every C steps. Explicitly, at step

20

t = iC for all i ∈ Z, we set

θ− := θi.

For the agents in simulated environment that this technique was conceived for, this lag C was
large at 10, 000 steps [24]. With limited training data the target lag must be much smaller. A
value of 14 was chosen in previous implementations for optimal execution [9] and when evaluating
agent performance in Chapter 4, a lag of 50 will be used. For this reason we introduce a small
modification to the original implementation. Rather than updating the target network weights to
be the same as the current Q-network weights, we instead update them to the network weights C
steps in the past. At step t = iC for all i ∈ Z, we set

θ− := θi−C .

This ensures that there is always a delay of at least C steps between the current Q-network and
the target network. We could of course update the target network at every step to be a copy of
the Q-network C steps prior. This would maintain a constant lag at an additional computational
cost. Additionally it would require a copy of the Q-network for the previous C steps to be stored
resulting in greater use of memory. By only updating the network every C steps we are only
required to store one copy of the Q-network weights and the computational cost remains almost
the same as the original implementation.

2.2.5 Maximisation Bias and Double Deep Q

In stochastic environments the use of Q learning can often result in overestimation of the ac-
tion value function. This is due to maximisation bias when updating the estimate of the greedy
policy. From Equation (2.1.12) we have that the target for an update to Q(St, At) is Rt+1 +
γmaxa∈AQ(St+1, a). Taking the expectation we have

E[Rt+1 + γmax
a∈A

Q(St+1, a)] = E[Rt+1] + γE[max
a∈A

Q(St+1, a)]

> E[Rt+1] + γmax
a∈A

E[Q(St+1, a)],

the last step following by Jensen’s inequality given that the maximum is a strictly convex function.
It is therefore apparent that the expectation of the target used in the standard Q learning update
is larger than the expectation of the true action value.

That this has the potential to lead to sub-optimal strategies can be illustrated by the following
example. Consider a problem with three possible actions. The first action leads to a reward
R1 = 1/2, the second and third each result in a normally distributed reward R2 and R3, both with
mean 0 and variance 1. The expected reward E[Ri] = 0 for i ∈ {1, 2}, however,

E
[

max
i∈{1,2}

Ri

]
=

1√
2
>

1

2
= E[R1],

using [32] for the moments of the sum of two normally distributed variables. After a single sample
it could therefore be expected that an agent would choose a sub-optimal action.

Double Q Learning, introduced in [33], provides a solution to this problem in the tabular setting.
We write θ and θ′ to denote two sets of parameters for the neural network used to approximate
the action values Q. We alternate between updating the two sets of parameters θ and θ′. We then
rewrite the Q learning update from Equation (2.1.12) as,

Q(St, At)←− Q(St, At) + α

[
Rt+1 + γQ(St+1, arg max

a∈A
Q(St+1, a; θt); θ

′
t)−Q(St, At)

]
,

By maximising over a set of independent estimates for the action values we avoid maximisation
bias. The affect of the maximisation bias for DQN can in fact be quantified and we can give a
lower bound in the case where all action values are equal [15, Theorem 1],

Theorem 2.2.1. Consider a state s in which all the true optimal action values are equal at
Q∗(s, a) = V∗(s) for some V∗(s). Let Qt be arbitrary value estimates that are on the whole unbiased

21

in the sense that
∑
a(Qt(s, a)−V∗(s)) = 0 but that not all are correct, such that 1/m

∑
a(Qt(s, a)−

V∗(s))
2 = C for some C > 0, where m ≥ 2 is the number of actions in s. Under these conditions,

max
a

Qt(s, a) ≥ V∗(s) +

√
C

m− 1
.

This lower bound is tight. Under the same conditions the lower bound on the absolute error of the
Double Q learning estimate is 0.

From the theorem the linear dependence of the magnitude of the bias on the standard deviation
of the sample is clear. In trading environments where the signal to noise ratio is low the importance
of Double Q Learning becomes apparent.

Double Deep Q Learning, or DDQN, was introduced in [15] and provides analogous results for
Deep Q Learning. Rather than use a separate network we instead use the target network introduced
in Section 2.2.4. The target of the update given by Equation 2.2.5 for iteration i therefore becomes

r + γQ(s′, arg max
a∈A

Q(s′, a; θi); θ
−), (2.2.6)

for a given experience (s, a, s′, r) where θ− are the weights for the target network. Crucially,
the target network is still used to estimate the value of the next action however this action is
chosen by maximising over the current Q-network. By using the target network rather than the
separate network from Double Q Learning, the additional computation and memory requirements
are minimised.

2.2.6 N Step Methods

The TD(0) update rule shown in Equation (2.1.11) uses only the state and reward at t + 1 when
updating Q(St, At). Future rewards received beyond this point are estimated using the action
value function at St+1. Since training experiences are sampled out of sequence from the experience
replay buffer we can extend this update to incorporate the states visited and rewards received at
steps beyond t + 1. This is of course provided these interactions have already happened. In the
extreme this involves using all rewards received up until the termination of the episode. Methods
which update the target using the whole episode are known as Monte Carlo methods. In practise
Monte Carlo methods do not perform as well as Temporal Difference learning [16, page 128].

Rather than using the whole episode as with Monte Carlo methods, we can instead look ahead
for a small number of steps. These methods are known as n-step methods or alternatively Eligibility
Traces. For this work we will focus on n-step methods which were found to improve performance
of DQN agents in nearly all the Atari games available in the Atari Learning Environment [8, 34]. 09/06/2020, 11:46Untitled Diagram.drawio

Page 1 of 4https://www.diagrameditor.com/webapp/?ui=atlas&tr=0&gh=0&gl=0&gapi=0&od=0&db=0&lang=en

s = 2 s = 1

s = 0

! = 1! = 2‾√

! = 1

! = 0 ! = 0

"#+1 "#+2
$#+1

,"# $#

$#+2!#+2

%(, &)max
&∈()

"#+2

!#+1

Figure 2.2: A representation of the n-step Tree Backup Algorithm for the greedy policy. Solid
lines represent the action which maximises the action value over the set of possible actions for that
state.

In practise there are several ways to implement n-step updates. Here we discuss the n-Step
Tree Backup Algorithm [16, page 152]. Figure 2.2 shows a diagrammatic representation of the
algorithm for the special case of Q learning. When updating state Q(St, At), if the action taken
at t + 1, At+1 is the same as the one which would be chosen given the current network weights,
maxa∈A(S)Q(St+1, a), then the prediction of future value given by maxa∈A(S)Q(St+1, a) in Equa-
tion (2.1.12) can be replaced with the actual reward observed and the process repeated with the

22

next state until t+n. We can write the update rule for a single update to Q(St, At) as an algorithm,

Algorithm 1: n-step Tree Backup Update for Q Learning

Result: Returns the target for a deep Q update G
For a Sequence St, At, Rt+1, St+1, At+1, ...
Set k = 1
Set G = Rt+1

while At+k = arg maxa∈A(St+k)
Q(St+k, a) and k ≤ n do

if St+k is terminal then
return G

end
Set G = G+Rt+k+1

end
Set G = G+ maxa∈A(St+k)Q(St+k, a)
return G

This process depends of course on the requisite future experiences being present in the replay
buffer. For this reason we choose to use time priority when removing experiences from the replay
buffer and only train using experiences which are at least n steps removed from the agent’s current
time step.

23

2.2.7 Combining the Improvements to DQN

The combination of function approximation of the value function, bootstrapping and off policy
learning can in some circumstances lead to instability, and has for this reason been termed the
deadly triad by Sutton and Barto [16, page 264]. Many improvements have been proposed to
stabilise and enhance the basic DQN algorithm. Each of the concepts introduced in the preceding
sections: target networks, experience replay, DDQN and n-step methods, have been shown to go
some way towards increasing the stability of the DQN algorithm [31]. While other adjustments to
DQN have been shown to improve performance, for example those implemented by the Rainbow
Algorithm [8], these improvements in particular have been hypothesised to provide the greatest
improvement to stability [31]. Additionally, they are the features of Rainbow which would seem to
be most beneficial for the trading environment.

By combining these improvements to vanilla DQN we obtain the following algorithm, stated in
full for clarity. The performance of this algorithm in the trading environment will be evaluated in
Section 3.3.1.

Algorithm 2: Full algorithm for Double Deep Q Learning with n-step tree back up, target
network and experience replay.

Initialise θ
Set θ̂, θ− = θ
for episode = 1,...,M do

Initialise s0
Set θ̂, θ− = θ
for t=0,...,T do

Select action at from behaviour policy distribution πρ(a|st)
Execute action at and observe reward rt+1 and new state st+1

Add experience (st, at, rt+1, st+1) to the replay buffer D
if Replay buffer is full then

Remove least recent experience buffer
end
Sample a minibatch of experiences {(stj , atj , rtj+1, stj+1)}j=1,...,B uniformly at
random from D

for j = 1, ..., B do
n-step tree backup
Set k = 1
Set Gj = rtj+1

while atj+k = arg maxa∈A(stj+k)
Q(stj+k, a; θ) and k ≤ n and stj+k is not

terminal do
Set Gj = Gj + rtj+k+1

end
if stj+k is not terminal then

Set a∗ = arg maxa∈A(stj+k)
Q(stj+k, a; θ−)

Set Gj = Gj +Q(stj+k, a
∗; θ−)

end

end
Perform minibatch gradient update with respect to weights θ using loss
(Gj −Q(stj , atj ; θ))

2.
Set st = st+1

Set t = t+ 1
if episode is divisible by C then

Set θ− = θ̂ and
Set θ̂ = θ

end

end

end

24

2.3 Distributional Reinforcement Learning

So far the goal in this chapter has been to predict the value function of a state or state action pair.
This is equivalent to estimating the expected value to the agent of a particular state, or an action
taken in that state. From this perspective the Bellman Equation given in Equation (2.1.4) could
be equivalently written as

Q(s, a) = E[R(s, a)] + γE[Q(S′, A′)]

= E

[
T∑
t=0

γtR(st, at)

]
=: E[G(s, a)],

(2.3.1)

where s and a are respectively the current state and action, and S′ and A′ denote the random next
state and action. The reward R is also random and conditioned on the current state and action.
For the remainder of the section we will in general use the convention that capital letters denote
random variables.

In the following section we will outline an alternative, more general approach and consider the
distribution, rather than the expected value, of the return for a particular state action pair. Recent
works [11, 8, 12, 13] have shown impressive performance gains using a collection of methods falling
under the umbrella of Distributional Reinforcement Learning. We will cover a few of the theoretical
results underpinning distributional reinforcement learning and discuss the advantages of estimating
the full distribution. Finally we will discuss an implementation using quantile regression and it’s
advantages over standard DQN.

2.3.1 The Distributional Perspective

In order to understand some of the theoretical results underpinning the use of distributional rein-
forcement learning we begin by revisiting the Bellman Equation for expected values in the context
of Fixed Point Theory. We note the following definition, [35, Definition 2.1],

Definition 2.3.1. Let (X, d) be a metric space and let f : X → X be a mapping.

1. A point x ∈ X is called a fixed point of f if x = f(x).

2. f is called a contraction if there exists a fixed constant h < 1 such that,

d(f(x), f(y)) ≤ hd(x, y), for all x, y ∈ X.

Using these definitions we state the following theorem by Banach,

Theorem 2.3.2 (Banach Contraction Principle). Let (X, d) be a metric space, then each contrac-
tion map f : X → X has a unique fixed point.

Proof of this theorem is omitted as it is not directly related to distributional reinforcement
learning but is given in [35, page 35]. Banach’s contraction principle gives us a powerful tool
for proving whether repeated application of an operator leads to convergence. This allows us, in
principle, to obtain a some theoretical guarantees as to the convergence of an update rule. It is
important to note that Banach’s contraction principle is not if and only if. Convergence is still
possible even if the operator is not a contraction.

When considering the Bellman equation for expected values, given in Equation (2.3.1), we can
define the Bellman operator T π to be

T πQ(s, a) := E[R(s, a)] + γEP,πQ(s′, a′). (2.3.2)

The mapping T π is a contraction mapping [11, page 2] and by Theorem 2.3.2 has a unique fixed
point Qπ, the action value function under policy π. By repeated application of T , Q converges to
Qπ, as observed in Section 2.1.2.

We recall from Section 2.1.2 the random future returns after time t,

G(st, at) =

T∑
k=t

γk−tR(sk, ak),

25

where st and at denoting the current state and action have been added to emphasise the dependence
of the future returns on both2. While not explicitly stated before, it should be clear that these
future returns are random, and following [11], we now consider the full distribution of G3. We can
generalise the Bellman Equation given in Equation (2.3.1) to the following recursive relationship
for the distribution,

G(s, a)
D
= R(s, a) + γG(S′, A′),

where D denotes equality in distribution. For an agent in state s taking action a, let Gπ(s, a) be
the random future returns under policy π. The reward function R ∈ R is now viewed as a random
variable. We define the transition operator Pπ : R → R as

PπG(s, a)
D
:= G(S′, A′),

where S′ ∼ p(·|s, a) and A′ ∼ π(·|S′),. The distribution p(·|s, a) is simply the dynamics of the
MDP which we defined in Equation (2.1.1) when introducing MDPs. Analogous to the policy
evaluation operator for the expected action value, defined in Equation (2.3.2), we can define the
distributional Bellman operator T π to be,

T πG(s, a)
D
:= R(s, a) + γPπG(s, a) (2.3.3)

The distribution T πG(s, a) comprises of three sources of randomness. The random reward, the
randomness of the transition operator Pπ and the randomness in the value of the next state.

We now require the following definition [11, page 3],

Definition 2.3.3 (Wasserstein Metric). Let F,G : R → [0, 1] be two cumulative distributions.
The p-Wasserstein metric can be defined as,

dp(F,G) := inf
(U,V)

||U − V ||p,

where the infimum is taken over all pairs of random variables (U, V) with marginal cumulative
distributions F and G respectively. If p <∞ this can be written as,

dp(F,G) =

(∫ 1

0

|F−1(u)−G−1(u)|pdu
)1/p

.

The Wasserstein Metric is a metric over value distributions [11, Lemma 2]. We can use this to
define the maximal Wasserstein metric.

Definition 2.3.4 (Maximal Wasserstein Metric). For two value distributions G1, G2 ∈ R, if dp
denotes the p-Wasserstein metric then we can define the maximal Wasserstein metric to be

d̄p(G1, G2) := sup
s,a

dp(G1(s, a), G2(s, a)).

We are now in a position to state the main result of this Section [11, Lemma 3], which is proved
in Appendix A.

Lemma 2.3.5. Let d̄p denote the Maximal p-Wasserstein metric and T π be the distributional
Bellman operator defined previously. Then, T π : Z → Z is a contraction in d̄p

By Theorem 2.3.2 we therefore have that T π has a unique fixed point. From the definition
of T π it can be seen that the fixed point is Gπ. If, by repeated application of T π, we obtain a
sequence {Gk}, then assuming all moments are bounded we have that Gk → Gπ in d̄p as k → ∞
for all 1 ≤ p ≤ ∞.

2The fact that we have specified the time step t in this definition may at first seem problematic given we wish to
define G for an arbitrary state and action. It is important to note however that the time step will always be part
of the state therefore for a given state the time step is uniquely defined.

3We should note that some notation differs from [11] and [12] in order to maintain consistency with the notation
used in Chapter 2, taken from [16]. In particular we denote the random future returns using G rather than Z and
the state by S or s rather than X or x.

26

2.3.2 Quantile Regression

Distributional RL was originally implemented using an algorithm referred to as C51. While out-
performing DQN this algorithm has various flaws. One particular problem was the fact that a fixed
support had to be defined for the reward distribution to be projected onto. This causes particular
problems in a trading environment where the rewards depend significantly on the state.

Instead of defining a fixed support and projecting the distribution onto it, an alternative im-
plementation fixes a selection probabilities and models their location. This technique, referred
to as Quantile Regression DQN, or QR-DQN was introduced later [12] and showed a substantial
performance improvement. For the curious reader, an implementation of C51 has been provided
in the included code but for the sake of brevity it will not be formally evaluated.

Quantile Regression is a method for estimating conditional quantile functions [36]. The τ th

quantile of a random variable X with cumulative distribution function F can be defined as

inf{x : F (x) ≥ τ}. (2.3.4)

Quantile regression aims to model the τ th quantile of a quantity conditional on a set of covariates.
Consider a set of N quantiles {qi}i=1,...,N of the value distribution, G. Each quantile qi is

defined by cumulative probability τi for i = 1, ..., N , as in the Equation (2.3.4). These cumulative
probabilities are uniformly distributed across (0, 1), so that τi = i/(N + 1) for i = 1, .., N . We
model each quantile qi using a model4 ψi : S ×A → R. We use ψ to denote the full set of quantile
approximation functions, ψ = {ψi}1≤i≤N . This collection of quantiles can be used to approximately
model the distribution of G. This approximation is referred to as a quantile distribution and is
defined as

Gψ(s, a) :=
1

N

N∑
i=1

δψi(s,a), (2.3.5)

where δz denotes a Dirac delta function at z ∈ R. This translates to approximating the cumulative
distribution for G by a step function as shown in Figure 2.3, adapted from [12].

Space of Returns
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Reward CDF
Approximating Quantile CDF

Figure 2.3: An example quantile distribution with N = 4. The blue line shows the CDF of the
random future returns G(s, a) for an arbitrary state action pair (s, a). The dotted line shows the
CDF for the approximating quantile distribution. This approximation minimises the area between
the blue curve and the dotted step function, the 1-Wasserstein error.

We now seek to find a projection ΠW1
G : R → RQ, mapping a value distribution onto the

space of quantile distributions so that,

ΠW1
G := arg min

Gθ∈RQ
W1(G,Gθ), (2.3.6)

4These are denoted using ψi rather than θi as in [12, 13] to avoid confusion with the Q-network weights.

27

where W1 denotes the 1-Wasserstein metric from Definition 2.3.4. This is the mapping shown in
Figure 2.3.

We can achieve this by minimising the quantile regression loss individually for each quantile
approximation function ψi [12, Lemma 2]. This loss can be defined as follows,

Definition 2.3.6 (Quantile Regression Loss). Let G be a distribution variable Given a quantile
τ ∈ [0, 1], we can define the quantile regression loss for τ to be

LτQR(θ) := EĜ∼G[ρτ (Ĝ− θ)],

where the quantile loss function ρτ is given by,

ρτ (u) = u(τ − 1{u < 0}),

for all u ∈ R.

The quantile regression loss function is not smooth at 0. We therefore use the Quantile Huber
Loss, shown in Figure 2.4. This is simply a modification of the quantile regression loss to be an
asymmetric squared loss in a small region around 0, and the standard quantile regression loss
outside of this region.

Definition 2.3.7 (Quantile Huber Loss). Let κ ∈ R+, given a quantile τ ∈ [0, 1]. We can define
the quantile Huber Loss to be,

ρκτ (u) := |τ − 1{u < 0}|Lκ(u)

κ
,

where Lκ(u) is the Huber loss function,

Lκ(u) :=


1

2
u2, if |u| ≤ κ,

κ(|u| − 1

2
κ), otherwise,

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Qu
an

til
e

Hu
be

r L
os

s

= 0.5
= 0.1

Figure 2.4: Quantile Huber Loss function with κ = 1 for two different values of τ . This is a
modified version of the asymmetric quantile regression loss which is smooth at 0.

Using these concepts we are then able to show that the distributional Bellman operator is a
contraction in the ∞-Wasserstein metric [12, Proposition 2].

28

Proposition 2.3.8. Let ΠW1
be the quantile projection defined in Equation (2.3.6) and G1, G2 ∈ R

two value distributions for an MDP with countable state and action spaces. If d̄p denotes the
maximal p-Wasserstein metric then,

d̄∞(ΠW1
T πG1,ΠW1

T πG2) ≤ γd̄∞(G1, G2),

where T π is the Bellman operator from Equation (2.3.3).

The proof of this proposition is quite involved and can be found in [12, pages 10-11]. By
Proposition 2.3.8 we have that ΠW1

T π is a contraction. Therefore, by Theorem 2.3.2 we have that
the operator ΠW1T π has a unique fixed point Gπ. If {Gk} is a sequence of distributions generated
by repeated application of this operator, we have that Gk → Gπ as k →∞ in d̄∞. Since d̄∞ ≥ d̄p
for all p ∈ [1,∞] we have that Gk → Gπ as k →∞ in d̄p for all p ∈ [0,∞].

For each of the quantile functions ψi for i = 1, ..., N , we can train a Q-network to approximate
it by performing gradient decent on a slight modification of Equation (2.2.3) from value based
Deep Q Learning. Explicitly, we replace the value based loss function given in Equation (2.2.1)
with the Quantile Huber Loss, from Definition 2.3.7, where the quantile τ varies between the
quantile functions {ψi}1≤i≤N . Given an experience (s, a, s′, r), for each quantile function ψi at
policy evaluation iteration j we perform gradient decent on

ρκτi(r + γmax
a′

Q(s′, a′; θj−1)−Q(s, a; θj)),

where ρκτi is the Quantile Huber Loss from Definition 2.3.7 and τi is the quantile for the ith quantile
function ψi. We can of course continue to use the adaptions to DQN introduced in Section 2.2.
Including both target networks and Double Deep Q, we would instead perform gradient decent on,

ρκτi(r + γQ(s′, arg max
a∈A

Q(s′, a; θj); θ
−)−Q(s, a; θj)),

for each quantile function ψi, analogous to the single update for the expected value in Equation
(2.2.5) for DQN. When implementing this in practise κ was set to 1 as suggested [12].

In practise, rather than use N Q-networks, we use a single network to approximate all of the
quantiles. We can then either treat the quantile as an input to the network, or have a network with
N outputs, one for each quantile [12]. We will discuss the exact network architecture further in
Section 3. N is treated as an additional parameter and it’s value will be listed when evaluating. An
alternative implementation to this is to allow the Q-network to approximate the quantile function
in a continuous way, referred to as an Implicit Quantile Network [13], however this will not be
discussed further here.

We can define the set of optimal value distributions to be the value distributions of all optimal
policies {Gπ∗ : π ∈ Π∗}, where Π∗ denotes the set of optimal policies. While QR-DQN is used to
model the full distribution of the future returns, the optimal policy still relates to the maximum
expected return. The expected value for the quantile distribution defined in Equation (2.3.5) is
simply,

E[Gψ(s, a)] =
1

N

N∑
i=1

ψi(s, a), (2.3.7)

assuming, as in the original definition, that the quantiles are uniformly distributed. The basic
algorithm for QR-DQN, omitting the improvements discussed for DQN for simplicity, is therefore,

Algorithm 3: Base algorithm for QR-DQN.

At each training period, given mini batch {(sj , aj , rj , s′j)}j=1,..,B :

for j = 1, ..., B do

Set Q(sj , aj) := 1/N
∑N
i=1 ψi(sj , aj)

Set a∗ := arg maxa′∈A(s′j)
Q(s′j , a

′)

for i=1,..,N do

Set T ψi =

{
rj if s′j is terminal,

rj + γψi(s
′
j , a
∗) otherwise

Perform gradient decent on ρκτi (T ψi − ψi(sj , aj))
end

end

29

2.3.3 Why Use Distributional Reinforcement Learning?

There are several factors motivating distributional approximation rather than value approximation.
The use of distributional reinforcement learning has been shown to result in impressive performance
gains over equivalent value based reinforcement learning algorithms [12, 11, 13]. In fact, the
Rainbow algorithm, designed to showcase improvements to the vanilla DQN algorithm showed
distributional reinforcement learning to be one of the modifications that resulted in the greatest
performance increases5 [8].

The reason for distributional reinforcement learning’s superior performance is still not well
understood. In the tabular setting, or when using a linear function approximator, distributional
reinforcement learning has been shown to perform identically to value based reinforcement learn-
ing [37]. It has therefore been hypothesised that modelling the distribution leads to improved
performance when coupled with deep neural networks. In particular, it has been proposed that
semi gradient updates to the distribution of returns results in a different expected value than if an
equivalent update were applied to the expected value directly [37].

The performance improvements shown by distributional reinforcement learning have generally
been demonstrated using the ALE [34]. Given most of the Atari games have few, if any, random
elements, in a trading environment it is conceivable that many of these benefits could be amplified.
Returns from trading are always stochastic in contrast to the predominantly deterministic outcomes
of the Atari games.

Alongside the potential for an improved policy there are inherent advantages of estimating
the distribution. Implicit in many reinforcement learning solutions to optimal execution is the
assumption that the agent wishes to maximise their expected return. A risk averse trader may
have a preference for a policy with lower variance in the returns, even at the cost of a lower
expected return. Distributional reinforcement learning raises the prospect of an agent that could
make decisions based on the approximate distribution of the returns, for example deviating from
a baseline policy only if the return will be higher with some large probability.

Even if this information is not used to modify the trading strategy directly, it could still allow
the traders to make informed decisions when using reinforcement learning solutions for optimal
execution. When liquidating a position, the distribution of the expected returns could be inferred
from historical results however this is backwards looking. A distributional reinforcement learn-
ing agent could in theory give forward looking insight into the approximate distribution of the
returns based on the current state of the market. This would allow for decisions at a macro level
surrounding whether to liquidate now or wait, or even whether to use an alternative strategy.

Finally, although distributional reinforcement learning aims to model the intrinsic uncertainty
in the environment, a by product of this is that we capture some measure of parametric uncertainty.
Given the distribution of the returns for a certain action, we can assign a degree of certainty to its
value. This information can be used to explore the state space more efficiently and is the topic of
the next section.

2.3.4 Efficient Exploration

When using Q-learning we require a behaviour policy that is sufficiently exploratory. This was
discussed in Section 2.1.4 and we introduced the ε-greedy strategy. One criticism of ε-greedy
strategies is the fact that they explore at random. With probability ε, an action is selected
uniformly at random, regardless of how frequently it has been chosen prior to this, or its estimated
value.

Distributional reinforcement learning allows for the approximate distribution to be used to
make a more informed choice when choosing an exploratory action. In short, rather than choosing
a random action with probability ε, actions are chosen based on their estimated value and variance.
This technique is similar to Upper Confidence Bound strategies for stationary tabular problems,
however it was recently introduced in the distributional reinforcement learning setting [38].

When discussing distributional reinforcement learning we make the distinction between para-
metric and intrinsic uncertainty. Intrinsic uncertainty refers to the randomness in the underlying
environment. In a trading environment, however many parameters we include in our model, there
will always be stochasticity in the evolution of the price of the underlying asset. Conversely,
parametric uncertainty refers to the uncertainty due to the uncertainty in the parameters of the
model.

5In this case the C51 algorithm [11] was used however the performance of C51 was later surpassed by QR-DQN[12]

30

Distributional reinforcement learning aims to model the intrinsic uncertainty of the MDP [11].
This occurs in the limit, as the number of training episodes on independent samples tends to
infinity. For a finite number of training episodes, the model also captures parametric uncertainty.
While it is difficult to differentiate between the intrinsic and parametric uncertainty for a model, the
parametric uncertainty decreases over time as the model converges to the true reward distribution.

From quantile regression theory, the parametric uncertainty decays at a rate,

ct = c

√
log t

t
,

where c is a constant factor [38]. We wish to prioritise actions with greater estimated value and

those with greater parametric uncertainty. For a given state s ∈ S, let µ̂s,a and σ̂2
s,a denote the

mean and variance of the expected returns if action a ∈ A(s) is selected. We can obtain both these
estimates using the quantile distribution introduced in Equation (2.3.5). The mean µ̂s,a, is given
in Equation (2.3.7), and analogously the variance can be estimated as,

σ̂2
s,a =

1

N − 1

N∑
i=1

(ψi(s, a)− µ̂s,a)2,

where ψi(s, a) denotes the ith quantile function for action a and state s. We introduce the following
deterministic exploratory policy [38],

πE(s) := arg max
a′∈A(s)

(µ̂s,a′ + ctσ̂s,a′)

for any state s ∈ S and action a ∈ A. As the parametric uncertainty decreases, so does the
exploration bonus given by ctσ̂s,a. Using this exploratory policy as the behaviour policy for QR-
DQN has been shown to dramatically increase the speed at which the agent learns [38].

31

Chapter 3

Deep Execution

The discussion surrounding the potential for reinforcement learning in optimal execution is not
a new one. Early studies showed promise with the use of Dynamic Programming and Tabular
Q Learning [2, 3] to acquire or liquidate large positions in an asset using either limit orders or
market orders. Alongside pure reinforcement learning solutions, the use of reinforcement learning
to enhance the theoretical models of Almgren-Chriss, discussed in Section 1.2 have also been
proposed [4]. Recently, deep reinforcement learning has been applied to the optimal execution
problem [9, 10]. These studies have demonstrated some success for agents executing using only
market orders on both simulated and historical data. In the following chapter we will attempt to
apply the deep reinforcement learning agents discussed in Chapter 2 to the problem of optimal
execution for an agent using a combination of market and limit orders.

The trading environment is modelled as an MDP. While it is unlikely that the environment we
will construct is truly Markovian we treat it as approximately one. To quote Nevmyvaka et al.
‘we will essentially be treating a partially observable environment as if it were fully observable to
us’ [3].

The problem of optimal execution is episodic. The agent must exit a position in an asset in
a defined time window. The number of time steps is therefore finite and t ∈ [0, T], where T is
the terminal time as in Section 1.2. Given the problem is episodic we set the discount factor
γ = 1. This differs from the approach taken in some other implementations [9, 10]. The states
that the agent encounters represent all observable information available to the agent. There is a
natural divide here between private and public variables. Private to the agent are the remaining
position, elapsed time and, if using limit orders, the currently unexecuted limit orders that the
agent has placed. Public variables are relevant observable information from the market, or wider
environment. This could include the stock price, historical stock prices and order book data but
need not be limited to market data. There is potential to include external factors such as the price
of correlated assets or breaking news that the agent may wish to condition on when choosing an
action.

The action space has the potential to cover a range of possible order sizes, types and directions.
If using limit orders then it could also include the cancelling of any unexecuted limit orders.
Most of these actions are essentially continuous; the number of shares, or an amount of currency
are technically discrete but the units are sufficiently small that we can treat them as continuous
quantities. Reinforcement learning algorithms for continuous action spaces are available [39], in
particular Proximal Policy Optimisation algorithms [40] have been shown to perform well for the
problem of optimal execution [10]. DQN and QR-DQN require discrete action spaces and we choose
a finite set of actions representing different numbers of units of the asset to sell at each time step.

We wish to structure the agent in such a way that it is distinct from its environment to as
great an extent as possible. This enables the same agent to be used across multiple environments
and means that the agent could be transitioned to a real world trading environment with minimal
modification. We will therefore discuss the design of the environments and agents separately.

32

3.1 Difficulties in Applying Reinforcement Learning to Ex-
ecution

WHile reinforcement learning algorithms have achieved a superhuman level of performance on a
number games [24, 25, 5], there are several difficulties in generalising these techniques to real world
environments. A fundamental list of problems is discussed in [41]. Of these we will discuss a few
key challenges that relate to the field of optimal execution in particular. Many of these issues have
not been satisfactorily solved, however where relevant to the trading environment we will suggest
specific solutions.

The results discussed in the Atari papers have been achieved using simulated environments.
The availability of data is limited only by the training time and computational power available.
The strong performance achieved in the Arcade Learning Environment is the result of training on
tens to hundreds of millions of frames. Since agents could act every three or four frames this results
in the number of agent interactions with the environment being in the order of tens of millions.
This is many orders of magnitude larger than the volume of available training data for an optimal
execution algorithm. The setup used in [9] looked at three, hour long, trading periods per day for
a year. Even if each hour were treated identically, this would be equivalent to just 750 episodes
available for training and a maximum of 7500 agent interactions with the environment.

The lack of a simulated environment raises a second issue. Optimal execution assumes relatively
large orders. Any reinforcement learning agent trained without a model would rely on interactions
with the real market. This would be a costly experiment given the volume of data required to
train an agent to a satisfactory standard.

Financial markets are not directly comparable with games where reinforcement learning has
achieved success. The Atari games are primarily deterministic, stationary problems, although they
do involve a small stochastic element [11]. Financial markets on the other hand are stochastic and
generally regarded to be highly non stationary [42].

As with most machine learning solutions, reinforcement learning algorithms do not make it
easy to infer the rationale behind their decisions. This raises problems from an accountability
perspective and makes them difficult to audit. This can be a particular problem when they perform
in an unexpected manner. Reinforcement learning models are only as good as the data they
have been trained on and a sudden regime change or unpredictable event may result in adverse
performance.

Finally, changes to the trading rate must be made in close to real time. In the simulated
trading environments discussed in this chapter there is no restriction on the time required to make
decisions. This is not true in a real trading environment where any lag between the arrival of
information and output of a decision can be costly.

We will address some of these problems in turn. Firstly the reinforcement learning agents
for the Atari environments obtain scores which are, on average, multiple times better than those
achieved by human experts. For the following, our aim is more modest: to beat a benchmark
strategy TWAP. This has been shown in some scenarios to be achievable even with limited market
data [9]. Further, it has been shown that if training data is constrained, greater data efficiency
is possible when when training DQN agents by tweaking the agent parameters [30]. Specifically,
this can be achieved by increasing both the batch size B, and the number of steps n to look ahead
when replaying experiences from the replay buffer. We can also make more efficient use of the data
by simplifying the inputs. While the Atari papers used raw images as the model input, we will
instead use preprocessed features. This is carried out with the aim of reducing the time taken to
train models to an acceptable standard.

We can partially resolve the second issue by using historical data, modified to simulate the effect
of the agents actions on the market. While this is an imperfect solution, many of the theoretical
execution models used in trading, TWAP and VWAP for example, have been derived based on
theoretical model for market impact.

This is not the only solution. One important advantage of off policy algorithms is that they can
be trained using trajectories generated under a different policy. In theory they could be trained
using trajectories generated by different agents. This is known as offline learning. If this could
be achieved then the experience of human traders or production algorithms could be leveraged
to speed up the learning process. This approach would minimise or completely avoid the use of
a simulated environment and allow the agent to learn the true market impact of it’s actions. In
practise there are several ways of achieving this aim, one promising solution is Deep-Q learning

33

from Demonstrations [43].

In contrast to many real world applications for reinforcement learning algorithms, it is relatively
easy to impose safety restrictions for trading. The action spaces we will consider will be heavily
restricted, and we will consider only a small subset of the possible actions an agent could feasibly
choose. Both the limit order and market order sizes will be restricted to a maximum and minimum.

Finally we note that any reinforcement learning solution must be low latency. This is not a
problem limited to reinforcement learning models. The latency in algorithmic trading models is a
problem regardless of the model and may mean that the results achieved in simulated environments
are not entirely realistic [44]. This latency is not something we will attempt to model but should
be borne in mind when evaluating the results in Chapter 4.

3.2 Agent Design

As in the theoretical setting we denote the length of the trading period as T . Practically, in a real
trading environment, we cannot trade continuously. Instead we choose to trade every ∆t seconds,
where ∆t depends on the asset being traded.

We will consider two possible state spaces, S. The first will have a state consisting of the
current inventory, Q, of the agent and the elapsed time, t. The second will additionally include the
values of various market variables at the current time step and n previous time steps. As noted
in Section 2.2.2, it is important that the neural net inputs are appropriately standardised. Both
the inventory and time elapsed are mapped to be between −1 and 1. The current and historical
market data inputs will be standardised by the subtracting the mean and dividing by the standard
deviation of a small sample taken at random from the full set of training data.

In Section 2 we assumed that the value of each action was taken to be an independent output
of the Q-network. This approach is well suited to the discrete action space of the Atari Learning
Environment [34]. An alternative approach [9] is instead to use both the state and action as an
input to the network. Both approaches were trialled. While both were found to produce similar
results, the latter approach is more attractive. By treating the actions as an input we are able
to reduce the dimensionality of the output when considering an agent using both limit orders and
market orders. Since the actions are now inputs to the neural network they were scaled to be in
the range [−1, 1] with the actions representing the smallest and largest market orders taking the
values of −1 and 1 respectively.

While we will evaluate the performance of several types of agent for comparison purposes, we
will predominantly be using the QR-DQN Agent discussed in Section 2.3.2. The full architecture for
the Q-network used for this agent is shown in Figure 3.1. The market data inputs for the previous
n time steps are first preprocessed using L1 convolutional layers of U1 nodes. This network is
included with the aim of extracting some sort of signal allowing the agent to modify its speed of
trading to reflect the current state of the market.

This preprocessed input is then fed into the main network consisting of L2 fully connected
layers of U2 nodes along with the ‘private’ components of the state, the remaining position and
elapsed time, and the action representing the size of the next market order. The outputs are the
predictions for the N quantiles of the returns distribution given the current state and action.

The treatment of the outputs of network used to preprocess the market data inputs is an
important consideration. In particular, how should the preprocessed market data be combined
with the actions and private state inputs? One option would be simply to concatenate these
inputs with the outputs of the convolutional net. This was found to lead to poor performance.
In order to force interaction, the output of the convolutional net was instead multiplied with the
remaining inputs using the element-wise Hadamard product. This method was inspired by a similar
solution used in the design of Implicit Quantile Networks1 [13].

When training the network we use the Adam [45] optimiser. This has been shown to perform
well when training both DQN and QR-DQN Agents [8, 12]. All parameters for Adam are set to
their defaults apart from the learning rate ν which we will specify when evaluating the agents in
Chapter 4.

1Implicit Quantile Networks are an alternative to QR-DQN for distributional reinforcement learning [13]. They
are not used in this work

34

3.2.1 Action Space Using Only Market Orders

We will initially discuss an agent which may only trade using market orders. Following [9, 10]
we choose a discrete, relatively small action space A. We restrict the agent to exclusively selling
the asset and allow it to choose between a small number of lots of the asset. Each lot consists of
multiple units of the asset, where the lot size depends on the size of the position, R, to liquidate.
At each time step t = i∆t, for some integer i ∈ [0, bT/∆tc], the agent chooses the number of lots
to sell via a market order. We note that this differs from the implementation discussed in [9]. The
agent decides on the size of the order at each step rather than setting a constant trading rate for
the next n time steps. In other words the trading frequency and decision frequency are one and
the same.

3.2.2 Action Space Using Limit and Market Orders

For the agent using both limit and market orders we expand the action space. As we will continue
to only consider an agent exiting a position we will only allow the agent to make sell market orders
or ask side limit orders. To simplify the agent we will considerably restrict the action space as
follows:

1. Limit orders may only be placed at the best ask price.

2. Limit orders are capped at 4× TWAP trade size

3. Limit orders may not be cancelled voluntarily by the agent

4. If best ask price moves to be more competitive than the agent’s limit orders then all of the
agent’s limit orders are involuntarily cancelled.

With the exception of Restriction 2, each of these limitations has been chosen to simplify the
agent design but it is feasible that the agent would perform better if some of these were relaxed.
We limit the action space to a small number of combinations of limit order and market order sizes.
The exact choice will be discussed in Section 4.

3.2.3 Rewards

The reward structure for a reinforcement learning agent is an important feature; if poorly defined
it can lead to an agent taking unintended shortcuts. When defining the reward structure we must
do so in a way which makes it easy for the agent to learn the optimal solution. Care must be
taken to do so in an unbiased way, specifically by avoiding using a structure which incorporates
unrealistic prior knowledge of the environment. In Section 4.1 we will test whether a reinforcement
learning agent converges to the optimal solution, TWAP, in a simulated market. A facetious choice
of reward might be,

rt = 1{at = a∗},

where a∗ denotes the action corresponding to TWAP. There is no doubt that the agent would
quickly converge to the correct strategy but we would gain no confidence about the convergence
to an optimal strategy when it differs from TWAP. More subtly, a reward standardised using
the returns under TWAP would be equally flawed as it assumes knowledge of the market impact
functions that we would not have in a real trading environment.

For the problem of optimal liquidation, we wish to maximise the cash received from liquidating
a position over a defined time window. A natural reward might therefore be the cash received from
a market order or alternatively the execution cost of the order, as a negative number.

Since the stock price is a stochastic process these rewards will vary at random, regardless of
the agent’s actions. One implementation of an execution cost reward structure would be to define
the reward at time t as

rt+1 = ct+1 − atSt,

where ct+1
2 is the cash received as a result of a market order of volume at

3 being placed when

2Recall that it is standard practise to use the subscript t+ 1 for the reward received due to an action at time t.
The same logic has been applied to the cash received for a market order at time t.

3We use a to denote the volume of the market order as a describes the action taken.

35

10/08/2020, 16:51Arch

Page 1 of 1https://www.diagrameditor.com/webapp/?splash=0&ui=atlas&tr=0&gh=0&gl=0&gapi=0&od=0&db=0&lang=en

!"# $"# %# # Active
LOs

...
! (1)

#−&+1

!(1)
#

! (2)
#−&+1

!(2)
#

! (')
#−&+1

!(')
#

... ...

...

...

Fully Connected Layer (U2 Units)

()1
()2

(
)*−1

()*
#...

Convolutional Layer (U1 Units)

... L2 Layers

Fully Connected Layer (U2 Units)

Convolutional Layer (U1 Units)

... L1 Layers

Figure 3.1: Full architecture for the Q-network of the QR-DQN agent. Circles represent inputs
and squares outputs. Shown in orange are the action inputs to the network. In red are the private
agent inputs, the inventory, elapsed time and volume of unexecuted limit orders posted by the
agent. In blue, are a selection of k market variables. For each market variable the current value is
provided along with the n previous values. This set of market variables is preprocessed using a L1

layer convolutional neural network of U1 units. The output is then flattened, combined with the
other inputs and fed into a L2 layer neural network of U2 units. This produces the final output,
the estimated value of the state and actions for N quantiles.

36

the mid price of the stock was St. This approach would go some way to mitigating the affect of
random fluctuations in the price of the underlying asset.

This approach is flawed. Consider an agent chooses a sequence of actions that make other
market participants aware that it is attempting to sell a large position. The stock price would drop
and later market orders would be filled at a worse price as a result. The reward, however, would
be similar to that received if the agent had traded more discretely due to it being standardised by
the current mid price.

We instead choose to define the reward as,

rt+1 = ct+1 − atS0,

calculating the execution cost using the mid price at the beginning of the episode.
A second consideration is the treatment of any remaining position at the end of the trading

period. We wish the agent to fully exit the position by time T . There are several approaches to
achieving this goal. One was would be to modify the reward structure so as to heavily penalise
an agent for any remaining position in the asset at t = T . This approach could be advantageous
if the end of the period T is not a hard deadline. The agent would then learn to continue trading
beyond T , but only if penalty for trading past T was fully compensated by the additional return.

An alternative choice, taken here, is to place a market order to sell any remaining position at
the final time step. This is irrespective of the action chosen by the agent. This approach is similar
to that taken in other papers [9, 10].

When introducing Artificial Neural Networks in Section 2.2.2, we stated that their performance
is improved when the target for the network is standardised. This presents a few problems as
we need a realistic estimate for the average reward the agent can achieve and the variance in
the rewards over the episode. As previously discussed we need to infer appropriate quantities
systematically by analysing the data rather than using our knowledge of the parameters used
in the simulated environment. We can do this by initially training an agent with little reward
scaling. The mean and standard deviation of the rewards for the trained agent can then used to
approximate the mean rewards for a general agent.

3.3 Environment Design

3.3.1 Simulated Market Environments

The first environment we shall consider is a simulated environment, similar to the Almgren Chriss
environment introduced in Section 1.2. The advantage of a simulated environment is twofold.
When training an agent in real time or using historical data, the number of episodes we can use for
training is limited by the availability of data. When using simulated data the number of training
episodes is limited only by the computational power and training time available. Secondly, we can
evaluate how the agent performs in a controllable environment. In the cases where we can derive an
optimal solution we can see how quickly, if ever, the agent converges to this solution. Low signal
to noise ratios are a persistent problem in trading. By varying the volatility of the underlying
asset, the agent’s performance can be evaluated in relation to varying noise. This allows for the
development of a robust solution before training the agent on real market data.

For the simulated environment we generate a midprice path by assuming the asset price follows
a simple geometric Brownian motion, as shown in Equation (1.2.1). The solution to this SDE is
well known and the derivation can be found in textbooks [46]. At each time step we can sample
the stock midprice as

St := St−1 exp

{(
g

(
Vt
∆t

)
− 1

2
σ2

)
∆t+ σ

√
∆tZt

}
,

where the permanent market impact g(v) = bv, for some parameter b and Zt ∼ N(0, 1) is sampled
from a standard normal distribution. Let us assume that at time t a market sell order of size Vt is
received. We assume that Vt is always small enough that there is sufficient liquidity and the cash
Ct received from the sell order is calculated as,

Ct :=

(
St − f

(
Vt
∆t

))
Vt, (3.3.1)

37

where f(·) is a function modelling the temporary market impact. This is identical to Section 1.2
but adjusted for discrete rather than continuous time. We will take f(·) to be f(x) = kx, for some
parameter k.

3.3.2 Historical Market Environments

We are able to create a more realistic environment using historical data. While we can obtain
historical price paths and order book data, we still need to model the affect of the agents actions
on the market. This is achieved by using the temporary market impact function f(·) from the
previous section. For simplicity we choose not to incorporate permanent market impact. For
market orders the implementation is relatively straightforward. The cash received for a market
order is given in Equation (3.3.1), where St is the stock price obtained from historical data.

Modelling the limit order book introduces an additional layer of complexity. We seek to build
a realistic model of the limit order book using historical data, modelling the affect of the agent’s
actions on the market. As with market orders, certain assumptions must be made about the
responses of market participants to the actions of our agent and the affect of market variables
which are not observable in historical data. When building an environment to train and evaluate
an agent we wish to minimise the affect of any assumptions on the performance of the agent, erring
towards conservative assumptions where possible.

To simplify the environment we consider only the top of book. As with market orders we
allow limit orders to be placed every ∆t seconds. To simulate the limit order book we require the
following market variables for each time t = i∆t, where i ∈ [0, T/∆t]4:

• Best bid price Bt

• Best bid size yBt

• Best ask price At

• Best ask size yAt

• Total volume buy market orders filled during the previous time interval ∆t at price x, Mt(x)

While it may seem unintuitive to use Mt to denote the market orders for the previous time
interval, all the variables above are measurable at time t. At time t, the market orders for the
following time interval are not measurable. The first four limit order book variables are updated
at the last tick of the previous time interval. The final variable, the volume of market orders, can
be calculated as the sum of the volume of all market orders filled between t−∆t and t.

In order to model the limit order book environment using historical data we make the following
assumptions:

1. Limit orders are only cancelled at the back of the queue, ie. a last in first out or LIFO policy.

2. Limit orders are processed instantaneously.

3. Limit orders placed by the agent are small enough to have no effect on the actions of other
market participants.

4. If the best bid and ask prices cross and only the agent offers the best ask price then the full
volume of the agent’s limit orders at this price are filled.

We discuss each of these assumptions in turn. One property of limit order books is that we are
not able to directly observe the individual participant orders. Only the total volume available at
each price is observable. We are therefore unable to accurately calculate the new position of the
agent’s limit order in the queue after it has been placed. Instead we can calculate the net volume
of ask side limit orders which have been placed or cancelled over the previous second as

yAt −Mt(At)− yAt−1,

assuming that At = At−1. Assumption 1 states that any cancelled limit orders are those at the
back of the queue thereby minimising the affect on the position of the position of the agent’s limit

38

Figure 3.2: Example to demonstrate the treatment of cancelled limit orders. The plot shows the
development of the limit order book on a Bitcoin market between 02 : 40 : 19 and 02 : 40 : 20.
Each bar shows the volume available at the best ask price, 7795.5. The agent has two limit orders
active, at different positions in the queue. At 02 : 40 : 19 there are 608, 083 units available and
at 02 : 40 : 19 there are 508, 855 units. Given the volume of market orders over the one second
interval was 62, 684, the remainder of the difference must be cancelled limit orders. Assumption 1
states that all cancelled limit orders were at the back of the queue, excluding the limit orders of
the agent.

orders. If the faster execution of the agent’s limit orders is beneficial then this is a conservative
assumption.

Assumptions 2 and 3 are more straightforward. When trading the agent will inevitably face
a small delay between the observation of the market state and the marketplace receiving the
agent’s limit order or market order instruction. To simplify the environment we ignore this delay.
Additionally we do not attempt to model the effect that the agent’s trading has on the decisions
of other market participants. By restricting the maximum size of limit orders which can be posted
we aim to minimise this effect.

The final assumption states that if the bid and ask prices cross then all the agents limit orders
at that price are filled. We do not judge this to be an unrealistic assumption and it serves to keep
the environment from deviating too greatly from the historical data.

4For each of these variables, the subscript is commonly used in the literature to refer to the depth of the limit
order book. Since we are considering only the top of book we have used it here to denote the time.

39

Chapter 4

Training and Evaluation

In the following chapter we will evaluate the agents and environments introduced in Chapter 3. In
each case, performance will be evaluated regularly during training, and plotted.

4.1 Simulated Data

In Section 3.3.1 we outlined a simulated environment in which we could train and test reinforcement
learning agents for optimal execution. In this environment the optimal solution for minimising
execution costs is TWAP, and we can measure the success of an agent by whether it converges to
this strategy. For this environment we consider an agent trading 10 times over the course of an
hour. While this is perhaps an unrealistically low trading rate, it is effectively equivalent to the
agent choosing a trading rate 10 times over the course of an hour and has been chosen to mirror
the setup of similar studies for comparison purposes [10, 9].

4.1.1 Comparison of Agents

The values used for the parameters discussed in Section 3.3.1 are given in Table 4.1. For this first
study the parameters have been chosen to mirror the agent comparison of [10, Environment 1].
The size of position has been set to 1 for simplicity and the market impact parameters adjusted
to reflect this. The units do not matter in this case since we consider only an unspecified large
position.

Parameter Description Env 1
k Temporary Market Impact 0.0186
b Permanent Market Impact 0
T Period Length 10
R Initial Position 1
σ Stock Volatility (daily) 0.0083
S0 Initial Price 1

Table 4.1: Parameters for the simulated execution environment used to compare the agents.

The action space for each agent consists of 11 actions. Given at this stage we are not specifying
a precise quantity of the asset to liquidate, we instead refer to the actions as a choice of what
proportion of the original position to liquidate. Unlike other implementations [9], the action space
is independent of the state. The action space is a uniform partition of the interval [0.05, 0.15].
Since T = 10, liquidating 0.1 at each time step corresponds to TWAP. The action space therefore
ranges from 0.5 to 1.5 times the TWAP trading speed.

Two agents were tested using Environment 1. A DDQN Agent, introduced in Section 2.2 and
a QR-DQN Agent from Section 2.3. The DDQN Agent uses an ε-greedy behaviour policy and the
QR-DQN Agent the efficient exploration policy detailed in Section 2.3.4.

The parameters used for each agent are shown in Table 4.2. The number of quantities N ,
the learning rate ν and the batch size, B, were chosen to be identical to those used for the
original QR-DQN Agent [12]. Agent performance for the QR-DQN Agent was in fact particularly

40

sensitive to the choice of learning rate for the Adam optimiser ν however this value resulted in
good performance. Due to the smaller training period, the target lag was changed from the original
implementation of DQN [7]. A sweep was conducted over a small range of values and C = 50
resulted in the best performance. While much smaller than the value used when evaluating agents
in the ALE [24, 7], this is significantly larger than the value of 14 chosen by Ning et al. when
training RL agents using historical data [9]. Similarly a sweep was conducted for the tree horizon,
the epsilon decay and the exploratory coefficient c for the behaviour policy described in Section
2.3.4.

Parameter Description DDQN QR-DQN
εd Epsilon decay 0.9992 N/A
εm Epsilon minimum 0.02 N/A
c Exploratory Coefficient for πE N/A 150
C Target Lag 50 50
B Batch Size 32 32

Buffer Size 3000 3000
n Tree Horizon 4 4
ν Adam Learning Rate 0.00005 0.00005
N Number of Quantiles N/A 200

Reward Scaling Mean 0.98 0.98
Reward Scaling Standard Deviation 0.01 0.01

Table 4.2: Parameters used for the DDQN and QR-DQN Agents evaluated on the simulated
environment

The Q-network architecture for each agent is summarised in Table 4.3. A sweep was conducted
to find the optimum number of layers and units per layer. No architecture resulted in dramatic
performance improvements.

Parameter Description Value
S State Space [t,Q]
L1 Number of Convolutional Layers 0
L2 Number of Fully Connected Layers 3
U2 Number of Fully Connected Units 27

Table 4.3: Parameters for the neural network architecture, shown in Figure 3.1, for both agents
evaluated in the simulated market environment.

Fifteen instances of each agent were trained over 200, 000 episodes, resulting in close to 2 million
interactions with the environment for each agent. Every 500 episodes, training was paused and a
greedy version of the agent was evaluated on 25 episodes. While 25 episodes per evaluation period
may seem low, it is important to note that for this environment the state space consists of only
the time elapsed and the agent’s remaining position. The mapping between states and actions is
therefore deterministic, and the actions taken will be identical between episodes assuming that no
training has taken place. The average cash received and the count of optimal actions per episode
from liquidating the position over the evaluation period for each agent was logged and the results
shown in Figure 4.1.

The performance of the DDQN agent is similar to the results obtained by previous studies of
simulated environments [10]. The average reward increases consistently but does not converge to
TWAP in the time frame considered. While the average reward appears to still be increasing slowly
at the end of the training period, it is uncertain whether it would ever converge fully and in a real
world environment with limited training data, the volume required to do so may be impractically
large. In addition the algorithm exhibits plummeting behaviour, noted in previous studies [47].
This refers to the large and abrupt degradation in performance at certain points during training.

The returns received for actions close to TWAP become difficult to distinguish from the returns
under TWAP due to the stochasticity in the rewards. It is therefore easier to see convergence
by looking at the average number of times the optimal action was chosen over the evaluation
period. The DDQN agent shows only small performance improvements after around 20, 000 training
episodes. It then chooses the optimal action around 6 times throughout the episode. We can see

41

Figure 4.1: The smoothed cash received from liquidating the position (left) and optimal action
count (right) over a 25 episode evaluation period plotted against the number of episodes of training
for each agent. The average cash received using a TWAP policy is shown by the dashed line. For
each agent, the bold line shows the mean and the shaded area shows the range of the minimum
and maximum across all instances of the agent. The number time steps where an action can be
selected is 9 as the final action is always to liquidate any remaining position.

from the yellow shaded area however, that the range in the number of times the optimal action
was chosen per episode varies from 0 to 9 throughout the entire training period.

The QR-DQN Agent performs significantly better, learning faster and earning a higher average
reward than DDQN in every evaluation period. All instances of the QR-DQN agent had converged
to TWAP by episode 150, 000.

4.1.2 The Quantile Regression Agent

From this point forward we will consider only the QR-DQN Agent. In the previous section we
chose to use the exploratory policy from Section 2.3.4 as the behaviour policy for the QR-DQN
agent. To justify this choice, Figure 4.2 shows the first 100, 000 training episodes for 30 QR-DQN
Agents, 15 using an ε-greedy behaviour policy, the remainder the efficient exploration behaviour
policy. The agents are in all other respects identical and use the same parameters given in Table
4.2. It can be seen that while the performance of the two agents is similar for the initial episodes,
the QR-DQN agent using the efficient exploration behaviour policy begins to outperform by 20, 000
training episodes. As with the previous comparison it is easier to see this by looking at the count
of optimal actions rather than the volatile average rewards.

Figure 4.2: The smoothed average rewards and number of optimal actions over each evaluation
period plotted against the number of training episodes for the QR-DQN Agent using an ε-greedy
and efficient exploration behaviour policy. The bold line indicated the mean and the shaded region
the minimum and maximum across all agents.

This result is not unexpected. With no prior training, both behaviour policies will be choosing
actions largely at random. As the agent begins to learn the action value function however, the
efficient exploration policy will choose actions based on how likely they are to be optimal rather

42

than the purely random exploration of the ε-greedy strategy.
While the QR-DQN agent learns the optimal policy within a reasonable number of training

episodes, it is instructive to examine how well the learned quantile distribution approximates the
value distribution. Figure 4.3 shows the approximate density function of the returns during the
episode, learned by the agent. The initial distribution is very much dependent on the scaling
applied to the returns before being processed by the network. The distribution is centred around
0.98, the value used to standardise the returns. The use of a simulated environment enables us
to plot the true probability density function for the returns under TWAP. It can be seen that
the approximation improves rapidly with training and by 2, 000 episodes it is already close to the
true density function. Interestingly, even by 200, 000 training episodes the density function does
not perfectly match the true density function for the returns and appears to underestimate the
variance. The cause of this is not immediately clear.

0.974 0.976 0.978 0.980 0.982 0.984 0.986
Returns

0

100

200

300

400

De
ns

ity

True PDF
Learned PDF

(a) 0 training episodes

0.974 0.976 0.978 0.980 0.982 0.984 0.986
Returns

0

100

200

300

400

De
ns

ity

True PDF
Learned PDF

(b) 2, 000 training episodes

0.974 0.976 0.978 0.980 0.982 0.984 0.986
Returns

0

100

200

300

400

500

De
ns

ity

True PDF
Learned PDF

(c) 200, 000 training episodes

Figure 4.3: The learned distribution for the returns associated with the optimal action, TWAP, as
the number of training episodes increase. The theoretical distribution of the returns is shown by
the dashed line.

4.2 The Historical Environment

We now evaluate the QR-DQN agent using the efficient exploration policy from Section 2.3.4 in
the historical market environment introduced in Section 3.3.2. The historical data we will be using
a month of level 2 Bitcoin data starting from the 19th of March 2019. As a volatile asset, Bitcoin
represents a challenging problem for the reinforcement learning agent.

Before training or testing the agent, some minor preprocessing was conducted on the data set.
Weekends and holidays were stripped out. Three columns were added: market order imbalance,
defined as

buy orders− sell orders

max(buy orders, sell orders)
,

order imbalance, defined as
bid size− ask size

max(bid size, ask size)
,

where bid size and ask size represent the size of the bid and ask limit orders at the top of the book,
and the spread

ask− bid.

The market data inputs to the Q-network, shown as the blue circles in Figure 3.1, were taken to be
the order imbalance, market order imbalance, mid price and spread. This state space was chosen
so as to reduce complexity and show that the agent can perform well even without large numbers
of inputs. It could reasonably be expected that an agent would perform better with a larger state
space. It would be an straightforward extension, for example, to include the bid and ask sizes, and
more levels of order book data.

Table 4.2 shows the parameters used for the historical environment. Due to the limited data,
we considered only a very small trading window of 200 seconds. Since the trading frequency was
set to every 2 seconds this meant that T = 100. With a larger training data set it is reasonable

43

to assume that the length of the episode could be increased. The temporary impact was chosen
to be 100 basis points, smaller than the simulated environment but still relatively large compared
to observed values [20]. For this environment we consider the liquidation of a large order and
set the initial position to 10, 000 satoshi units of Bitcoin. The actions will again correspond to
the liquidation of different proportions of the original position. Since we now consider a specific
number of units we divide the rewards by the initial position so that they are comparable with the
simulated environment. We scale the temporary market impact coefficient for the same reason.

Parameter Description Historical Env
k Temporary Market Impact 0.01
b Permanent Market Impact 0
T Period Length 100
R Initial Position 10,000

Table 4.4: Parameters for the simulated execution environment used to compare the agents.

In order to fairly evaluate the agents the data set was partitioned into a training and testing
set. The final two days of the month were used to test the agent. Each episode was started from
a time uniformly selected from within the training and testing data sets, depending on whether
the agent was being trained or evaluated. This approach meant that the same data could be used
to train the agent multiple times making more efficient use of the data. The disadvantage of this
approach, of course, is that the Q-network may start to overfit the training data if training is not
cut short.

Parameter Description QR-DQN
c Exploratory Coefficient for πE 200
C Target Lag 50
B Batch Size 64

Buffer Size 6000
n Tree Horizon 100
ν Adam Learning Rate 0.00005
N Number of Quantiles 200

Reward Scaling Mean 0.99
Reward Scaling Standard Deviation 0.005

Table 4.5: Parameters used for the QR-DQN agent evaluated in the historical environment.

Table 4.5 shows the parameters used for the QR-DQN agent. The tree horizon was increased
from the agent in the previous section to account for the longer episode length and to make the
most of the limited dataset, as suggested by [30]. The buffer size and batch size were also increased
for the same reason. Since the temporary impact is smaller than for the simulated environment,
the reward scaling was adjusted to accommodate this.

Parameter Description Value
S State Space [t,Q]
L1 Number of Convolutional Layers 3
U1 Number of Convolutional Units 10
L2 Number of Fully Connected Layers 3
U2 Number of Fully Connected Units 27

Table 4.6: Parameters for the neural network architecture, shown in Figure 3.1, for the QR-DQN
agent evaluated in the historical market environment.

4.2.1 Execution using only Market Orders

We start by evaluating an agent only permitted to place market orders. While this is not a
limitation that would realistically be applied for an optimal execution solution, it does enable
us to compare the agents’ performance to the TWAP benchmark. If exceeded, this shows that

44

the agent can learn to exploit market idiosyncrasies to achieve a better price when liquidating a
position in an asset.

Throughout the episode, market orders were placed every 2 seconds. At each trading oppor-
tunity the agent could choose the size of the market order. The action space was restricted to
just three actions close to TWAP corresponding to 99%, 100% and 101% of TWAP. With a larger
action space the agent could potentially yield superior returns however restricting the action space
meant that learning could be sped up, an important consideration due to the limited data.

5 QR-DQN Agents were trained over 10, 000 episodes resulting in approximately 1 million
interactions with the environment for each agent. As with the simulated environment, every 500
training episodes, the agent was evaluated for 400 episodes. Figure 4.4 shows the smoothed, average
evaluation rewards over each evaluation period, against the number of training episodes. It can
be seen that the average reward exceeds the TWAP benchmark after only 1, 000 episodes however
the agent does not appear to improve further. By the end of the training period the agent has
reduced the execution cost of exiting the position by 1%. While only a modest improvement, it is
likely that the agent would perform better with a larger set of training data. This can be seen by
looking at the action values shown in Figure B.1. From this it can be seen that the agent quickly
begins to overestimate the value of state action pairs due to overfitting of the training data.

Figure 4.4: The smoothed average rewards and number of times each action is chosen over each
evaluation period plotted against the number of training episodes for 5 QR-DQN Agents compared
to TWAP.

The action counts provide an interesting overview of the policy learned by the agent. Through-
out the training period it can be seen that the counts for the large and small market orders
dominate.

Figure 4.5: A fully trained QR-DQN agent was selected at random and evaluated over 1, 000
episodes on a days worth of evaluation data. The returns are shown in the histogram. The average
return under TWAP (0.99) is shown by the dashed line. The average return for the agent was
0.9904.

The collection of fully trained agent were evaluated on previously unseen day of data. Each
agent was run for 10, 000 episodes, each starting at a random point throughout the day. The
evaluation rewards were recorded and compared to TWAP. An example of the returns for one of

45

these agents is shown in Figure 4.5. All 5 agents showed a statistically significant reduction in the
cost of execution when compared to TWAP with 95% confidence.

4.2.2 Execution using Limit and Market Orders

We now evaluate a QR-DQN agent permitted to make both limit and market orders in the same
historical environment. The action space was chosen to be a limited number of combinations of
market orders and limit orders of different sizes. Specifically, the order size for market and limit
orders could be selected independently from the set {0%, 100%, 200%, 300%, 400%}, where each
action represents a percentage of the TWAP order size.

We use the same environment as the market order only agent, with the slight modification of
a 5 second trading frequency. This results in fewer episodes in the training dataset. Training was
therefore curtailed after only 5, 000 episodes to minimise overfitting. Five QR-DQN agents using
the parameters given in Table 4.5 were trained. The smoothed, average evaluation rewards are
shown in Figure 4.6.

Figure 4.6: The smoothed average rewards against the number of training episodes for 5 QR-DQN
Agents compared to TWAP. The mean evaluation reward is shown by the solid green line. The
shaded area represents the range in the evaluation rewards.

Due to the wider range of actions, the cash received over each evaluation period starts from a
much lower base compared to the market order agent. Given the actions available to the market
order only agent were restricted to being close to TWAP this is not unexpected. After 2, 000
training episodes it can be seen that the agent begins to outperform TWAP, reducing execution
costs by around 50% at its peak. It should be noted that benchmarking this algorithm against
TWAP is not an entirely fair comparison given TWAP relies only on market orders. After 4, 000
training episodes the performance quickly starts to drop off, perhaps due to overfitting of the
limited training data. As with the market order agent, it could be expected that performance
would improve further with more training data.

In order to get an idea of the agents strategy, an agent was selected at random from the set of
fully trained agents. This agent was evaluated over 1, 000 episodes on a previously unseen day of
evaluation data. The number of times each action was chosen for each time step in the episode was
plotted in Figure 4.7. It can be seen from this that the agent appears to place large limit orders at
the beginning of the episode, utilising market orders to a greater extent as the episode progresses.
The agent appears not to use the full length of the execution window. This is likely due to the
limited set of actions available to it. With more granular control over the order size performance
could likely be improved.

46

Figure 4.7: A plot of the frequency with which a selection of the most used actions were chosen
at each time step for 1, 000 evaluation episodes in the historical environment. The numbers in
brackets refer to the sizes of the market order (MO) and limit order (LO) chosen with relative to
the TWAP trading rate.

47

Conclusion

Recent years have seen impressive progress in reinforcement learning. Some of these developments
have been discussed in this thesis. The results shown in Chapter 4 demonstrate that reinforcement
learning has potential as a tool for optimal execution. In particular QR-DQN can be seen to
be a promising alternative to DQN. By considering the distribution, the agent learns the optimal
strategy faster and performs better in a simulated environment. Being off policy, it has the potential
to learn from previously generated price trajectories. If it could be shown that an agent can reach
an acceptable standard using offline learning then this would be a significant step in reducing the
barriers to real world use.

The results in a historical environment show that reinforcement learning agents are able to
learn market idiosyncrasies and adjust the rate of trading to take advantage of these throughout
the execution period. While the improvements are modest, the training data set consisted of just
a months worth of data and it could be expected that with a larger training dataset, performance
improvements could be more substantial.

The potential to use both limit and market orders was also demonstrated. This scenario is
more realistic in the real world. Reinforcement learning is a highly flexible tool and this shows
that the agent can be adapted to use complex action spaces with more than one order type.

While we have showed that there is scope for the use of reinforcement learning in optimal
execution, there are many avenues left open for future work. The state and action spaces chosen
for the experiments discussed were small. The inclusion of more features and experimentation on
different asset classes could show to what extent the agents can be refined for specific markets.
The emerging discussion surrounding offline learning also shows great promise for the training of
optimal execution agents using real data. This would be a particularly interesting direction to take
in future work.

Many of the difficulties in applying reinforcement learning to optimal execution are not limited
to the trading environment. Work on the application of reinforcement learning to other fields is
likely to be transferable to finance. Given the ever growing volume of work on the subject, the
production use of reinforcement learning for financial applications seems a very real prospect.

48

Appendix A

Technical Proofs

Lemma 2.3.5. Let d̄p denote the Maximal p-Wasserstein metric and T π be the distributional
Bellman operator defined previously. Then, T π : Z → Z is a contraction in d̄p

Proof. Let G1, G2 ∈ R and consider the Wasserstien metric dp from Definition 2.3.4.

dp(T πG1(s, a), T πG2(s, a)) =dp(R(s, a) + γPπG1(s, a), R(s, a) + γPπG2(s, a))

≤γdp(PπG1(s, a), PπG2(s, a))

by properties of dp. Using the definition of Pπ we have,

γdp(P
πG1(s, a), PπG2(s, a)) ≤ γ sup

s′,a′
dp(G1(s′, a′), G2(s′, a′))

This is the maximal Wasserstien metric and so we therefore have,

d̄p(T πG1, T πG2) := sup
s,a

dp(T πG1(s, a), T πG2(s, a))

≤ γ sup
s′,a′

dp(G1(s′, a′), G2(s′, a′))

≤ sup
s′,a′

dp(G1(s′, a′), G2(s′, a′))

= d̄p(G1, G2)

49

Appendix B

Supplementary Figures

Figure B.1: The estimated value of each of the three actions at the beginning of the episode as the
number of training episodes increases. It can be seen from this that the agent begins to overfit the
training data after around 2, 000 training episodes.

50

Appendix C

Code and Implementation

All reinforcement learning algorithms were implemented from scratch using Tensorflow [48]. Per-
formance was monitored using Wandb [49]. The full code base can be found at github.com/
Geofffff/ThesisCode.

51

github.com/Geofffff/ThesisCode
github.com/Geofffff/ThesisCode

Bibliography

[1] Jose Penalva Alvo Cartea, Sebastian Jaimungal. Algorithmic and High Frequency Trading.
Cambridge University Press, 2015.

[2] Gerald Tesauro and Jonathan L. Bredin. Strategic sequential bidding in auctions using
dynamic programming. In Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems: Part 2, AAMAS ’02, page 591–598, New York,
NY, USA, 2002. Association for Computing Machinery.

[3] Yuriy Nevmyvaka, Yi Feng, and Michael Kearns. Reinforcement learning for optimized trade
execution. volume 2006, pages 673–680, 01 2006.

[4] Dieter Hendricks and Diane Wilcox. A reinforcement learning extension to the Almgren-Chriss
model for optimal trade execution. IEEE/IAFE Conference on Computational Intelligence for
Financial Engineering, Proceedings (CIFEr), 03 2014.

[5] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lil-
licrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis.
Mastering the game of go without human knowledge. Nature, 550:354–, October 2017.

[6] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
Int. J. Rob. Res., 32(11):1238–1274, September 2013.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

[8] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. ArXiv, abs/1710.02298, 2018.

[9] Brian Ning, Franco Ling, and Sebastian Jaimungal. Double deep Q-learning for optimal
execution. 12 2018.

[10] Kevin Daberius, Elvin Granat, and Patrik Karlsson. Deep execution — value and policy based
reinforcement learning for trading and beating market benchmarks. SSRN Electronic Journal,
01 2019.

[11] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 449–458. JMLR.org, 2017.

[12] Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional rein-
forcement learning with quantile regression. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[13] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. arXiv preprint arXiv:1806.06923, 2018.

[14] Robert Almgren and Neil Chriss. Optimal execution of portfolio transactions. Journal of
Risk, pages 5–39, 2000.

52

[15] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
Q-learning. 09 2015.

[16] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A
Bradford Book, Cambridge, MA, USA, 2018.

[17] Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient explo-
ration through bayesian deep Q-networks. 02 2018.

[18] Christine Parlour and Duane Seppi. Limit order markets: A survey. Handbook of Financial
Intermediation and Banking, 12 2008.

[19] Thierry Foucault, Marco Pagano, and Ailsa Roell. Market Liquidity: Theory, Evidence, and
Policy. Oxford University Press, 2013.

[20] Robert Almgren, Chee Thum, Emmanuel Hauptmann, and Hong Li. Direct estimation of
equity market impact. RISK, 18, 04 2005.

[21] Emilio Said, Ahmed Bel Hadj Ayed, Alexandre Husson, and Frédéric Abergel. Market impact:
A systematic study of limit orders. Market Microstructure and Liquidity, 3(03n04):1850008,
2017.

[22] Dean Teneng. Limitations of the Black–Scholes model. International Research Journal of
Finance and Economics, pages 99–102, 01 2011.

[23] Christopher Watkins. Phd thesis, learning from delayed rewards. 01 1989.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, February 2015.

[25] Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM, 38(3):58–68,
March 1995.

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[27] Mikko Pakkanen. Lecture notes in deep learning, December 2019.

[28] Warren S Sarley. comp.ai.neural-nets FAQ, part 2 of 7: Learning, Oct 2002.

[29] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Mach. Learn., 8(3–4):293–321, May 1992.

[30] Hado Van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in
reinforcement learning? 06 2019.

[31] Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,
2018.

[32] S. Nadarajah and S. Kotz. Exact distribution of the max/min of two gaussian random vari-
ables. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 16(2):210–212,
2008.

[33] Hado V. Hasselt. Double Q-learning. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23,
pages 2613–2621. Curran Associates, Inc., 2010.

[34] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. J. Artif. Int. Res., 47(1):253–279,
May 2013.

53

http://www.deeplearningbook.org

[35] Saleh Almezel, Qamrul Hasan Ansari, and Mohamed Amine Khamsi. Topics in Fixed Point
Theory. Springer, Cham, 2014.

[36] Roger Koenker. Quantile Regression. Econometric Society Monographs. Cambridge University
Press, 2005.

[37] Clare Lyle, Marc G Bellemare, and Pablo Samuel Castro. A comparative analysis of expected
and distributional reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 4504–4511, 2019.

[38] Borislav Mavrin, Shangtong Zhang, Hengshuai Yao, Linglong Kong, Kaiwen Wu, and Yao-
liang Yu. Distributional reinforcement learning for efficient exploration. arXiv preprint
arXiv:1905.06125, 2019.

[39] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In Yoshua Bengio and Yann LeCun, editors, ICLR, 2016.

[40] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[41] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world rein-
forcement learning. arXiv preprint arXiv:1904.12901, 2019.

[42] Thilo A Schmitt, Desislava Chetalova, Rudi Schäfer, and Thomas Guhr. Non-stationarity
in financial time series: Generic features and tail behavior. EPL (Europhysics Letters),
103(5):58003, 2013.

[43] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan
Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, et al. Deep Q-learning from
demonstrations. arXiv preprint arXiv:1704.03732, 2017.

[44] Irene Aldridge. High-Frequency Trading. John Wiley & Sons, Ltd, 2010.

[45] PD Kingma and J Ba. Adam: A method for stochastic optimization, arxiv (2014). arXiv
preprint arXiv:1412.6980, 106, 2015.

[46] John C. Hull. Options, futures, and other derivatives. Pearson Prentice Hall, Upper Saddle
River, NJ [u.a.], 6 edition, 2006.

[47] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

[48] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[49] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software available from
wandb.com.

54

	Market Microstructure and Optimal Execution
	Limit Order Markets
	Models for Optimal Execution
	Optimal Execution Using Market Orders

	Deep Reinforcement Learning
	Introduction to Reinforcement Learning
	Markov Decision Processes
	Optimal Policies
	Temporal Difference Learning
	Exploration versus Exploitation
	Q Learning

	Deep Q Learning
	Deep Q Learning Update
	Artificial Neural Networks
	Planning and Replay Buffers
	Target Network
	Maximisation Bias and Double Deep Q
	N Step Methods
	Combining the Improvements to DQN

	Distributional Reinforcement Learning
	The Distributional Perspective
	Quantile Regression
	Why Use Distributional Reinforcement Learning?
	Efficient Exploration

	Deep Execution
	Difficulties in Applying Reinforcement Learning to Execution
	Agent Design
	Action Space Using Only Market Orders
	Action Space Using Limit and Market Orders
	Rewards

	Environment Design
	Simulated Market Environments
	Historical Market Environments

	Training and Evaluation
	Simulated Data
	Comparison of Agents
	The Quantile Regression Agent

	The Historical Environment
	Execution using only Market Orders
	Execution using Limit and Market Orders

	Technical Proofs
	Supplementary Figures
	Code and Implementation
	Bibliography

