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RL Reinforcement Learning
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A Action space of the Markov decision process
B(X) o-field generated by the borel set X C RY

C™(I x J,R) Set of functions from the product of intervals I x J to R that are i
times continuously differentiable for the first variable and j times continuously

differentiable for the second variable
D Memory set used for experience replay
F®G Product o-field generated by the o-fields F and G
L Loss function (mean squared error)
S State space of the Markov decision process
Vuf(z,w) Gradient of the function f at point (x,w) with respect to the vector w

¢ Probability density function of a normal distribution of mean 0 and standard

deviation 1
T Policy of the Markov decision process
o(X; i € 1) o-field generated by the family of random variables (X;);es

L>*(X) Set of bounded and measurable functions from X to R where X C R is a

borel set

LP(X) Set of measurable functions from X to R with polynomial growth (i.e for
a given function f, there exists K > 0 and m € N such that Vo € X |f(z)| <

K(1+ |z|™)) where X C R is a borel set




Contents

1 Introduction

2 Reinforcement Learning

2.1 Definition of the problem . . . . . . . . .. ... .. ... ... ... .
2.2 The value function and the Q-value function . . . .. ... ... ...
2.2.1 Definitionof Voyand V, . . . . . ... ... .
2.2.2 First Properties . . . . . . . . . .o
2.2.3 Definition of Qr and Q. . . . . . . ... L.
2.2.4 Further properties . . . . .. .. ... ...
2.3  Generalised policy iteration . . . .. . . . ... ... ... .. ... .
2.4  Main algorithms if § and A are finite . . . . . . . .. ... ... ...
2.4.1 Dynamic programming . . . . . . . . ... ...
2.4.2 Monte-Carlo method . . . . . ... ... . ... ...
2.4.3 Temporal-difference learning: SARSA algorithm . . . . . . ..
244 Q-learning . . . . . ... e
2.5 Deep Q-learning . . . . . . . . . ...
2.5.1 Newral networks . . . . . . .. . . ... ...
2.5.2  Principle of the algorithm . . . .. ... ... ... ... ...
3 Mathematical Finance
3.1 The Black-Scholes model . . . . . . . ... ..o
3.1.1 Definition and explicit expression of S . . . . .. ... ...
3.1.2  The Black-Scholes partial differential equation . . . . . . . ..
3.2 The Uncertain volatility model . . . . . . ... ... ... . ..., .
3.2.1 Definition of themodel . . . . . .. ... ... ... ... ...
3.2.2 Avresult onextreme prices . . . ... L
3.2.3  Properties of BSB equation . . . . . ... ...
3.2.4 Discretisation of BSB equation . . . .. . ... ... .. ...

VI

10
11
12
12
13
14
14
17




4 The RL problem for derivative pricing
4.1 Construction of the RL problem . . . . . . . ... ... ... .....
4.1.1 The Markov Decision Process . . . ... ... ... ... ...
4.1.2 Reward function . . . . ... ... oo
4.2 From Reinforcement Learning to UVM Pricing . . . . . .. ... ...
4.2.1 Underlying mumerical scheme . . . ... ... ... ... ...

4.2.2  Local error satisfied by BSB equation . . . . . . .. ... . ..
4.2.3 Properties of the operator ® . . . . . .. ... ... ... ...

4.2.4  Case of uniform approximation of the numerical scheme . . . .

5 Numerical Experiments
5.1 Method of implementation . . . . . . .. . ... ... ... ... ...
5.2 Results and interpretation . . . . .. . ... ... ... .. ...
52.1 PriceofaCalloption . . . ... ... ... ... ........

5.2.2 Price of a simple convex portfolio . . . . . .. ... ... ...

5.2.3 Price of a complex portfolio . . . . ... ... ... ... ...
6 Conclusion
References
A Proofs of results on Bellman equations
B Some theorems on Stochastic control and proof of BSB equation

C Proofs of properties satitisfied by the map &

VII

50

53

55

58




1 Introduction

Derivative pricing is a central issue in financial markets. To fix this issue, numerous
mathematical models have been introduced. One of the most used is the Black-
Scholes model (see [BS73|). This model considers the stock price as a geometric
brownian motion depending on a drift (an average increasing factor) and a volatility
parameter (an noise factor). It is extremely tractable and thus able to give an an-
alytical price for most of derivatives introduced in financial markets. However, the
Black-Scholes model has one relevant drawback: the volatility parameter is generally

both unknown and difficult to estimate accurately.

A way to overcome that problem is to consider all the possible volatility pro-
cesses/scenarios and to assume that all these processes lie between two bounds
Omin and . This vields a new model known as the uncertain volatility model
(see [ALP95]). Even if this model is less tractable than Black-Scholes, there exists
methods to give a price for derivative securities under this model in the best/worst

scenario.

In this thesis, we estimate the highest/lowest possible price under the uncertain
volatility model using a Reinforcement Learning approach. Usually, Reinforcement
Learning consists in helping an agent (e.g a machine, a computer, a robot) interact
correctly to a given environment (e.g a financial market, a video game...). To train
the agent, we teach it how to select the best action by rewarding it. During training,

the goal of the agent is to maximise the expected sum of rewards.

In our case, we use Reinforcement Learning to only estimate this maximal expecta-
tion of sum of rewards. Reinforcement Learning for derivative pricing has already
been used (see for instance |Gra| or [Hall7]) but has never been used to find a price

under the uncertain volatility model.




In this thesis, we present independently a state-of-the-art on Reinforcement Learning
(section 2) and Mathematical Finance (section 3) where we explain the Black-Scholes
and uncertain volatility models. Afterwards, we construct our own Reinforcement
Learning model in order to estimate the extreme UVM prices (section 4). We also
show in this section why the model approximates correctly those prices in theory.

Finally we detail the implementation of that model and the results (section 5).




2 Reinforcement Learning

In this section, we explain how a Reinforcement Learning (RL) problem is formulated
by giving some definitions. Afterwards, we explain how to solve this problem. Most

of this part is based on [SB18| and [MRT18, Chapter 17].

2.1 Definition of the problem

We firstly define a Markov decision process by introducing the mathematical for-

malism.

Definition 2.1. Let d,m € N* fixed. A state space & (resp. an action space A)
is a Borel subset of R? (resp. R™). We call B(S) (resp. B(A)) its Borel o-field.

Let X := (X, )uen be a sequence of & -valued random variables. Let (F,).en be
the canonical filtration generated by X (i.e Vn € N, F, := o(X,, ..., X;,)), and let

A:=(A,)nen be an (F,),en-adapted sequence of A -valued random variables

Definition 2.2. The process (X, A) is said to be a Markov decision process

(MDP) if and only if there exists two functions

CB(S)xSxA = [0,1] o - B(A) xS — [0,1]

(B,z,a) — p(B|z,a) (B, z) — w(B'|z)
such that for every (n, B, B") € N x B(S) x B(A):

]P[An € Bflfn] = W(Blen)

(2.1)
P [Xn-H € Blfn] = p(BIXn~ An.)

In other words, given a state X,,, the action A,, depends (potentially randomly) only
on the current state X, and the next state X, ; depends (potentially randomly)
only on the current state X, and the current action A,,. Note the following sequence

of events we have in a MDP:

Xu — Au — {Xn+1: R{Xna Au))
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Where R is a reward function (see definition 2.5 below). In Reinforcement learning,
given a state X, we have to find the best action A, to optimise a sum of reward

functions.

If § x A is finite or countable, every probability distribution on this space is
characterised by the probabilities of their singletons. This is why for the sake of
simplicity, we denote p(2’|z,a) = p({z'}|z,a) and 7w(a|zr) = w({a}|z) for every

(z,0,2") €S X AXS.

Remark 2.1. We can notice that the functions p and 7 in definition 2.2 do not
depend on time n € N. If a process (S, A) verifies equation (2.1) where 7 or p
depends on n, the process (X, A) defined by X, := (5,,,n) for every n € N is then

an MDP according to definition 2.2 (the state space S is also replaced by &' = S x N)
The choice of A,, with respect to X, is mathematically given by the policy. This
notion is introduced in the two following definitions.
Definition 2.3. Let (X, A) be a MDP. A stochastic policy is the function

B(A) xS — [0,1]

m.
(B',z) — =(B|x)

in definition 2.2.
Definition 2.4. The MDP (X, A) is said to have a deterministic action if and

only if its stochastic policy w(!) is deterministic i.e there exists a measurable func-

tion 7 : & — A such that:

1 ifn(z)e B’
V(B',z) € B(A) x S, n*(B'|z) = fis
0 otherwise

7 is the deterministic policy.

The intuition behind the last definition is as follows: given the current state X,

one chooses the action according to a deterministic function  (and not randomly).
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The action A, is then simply given by the relation A4,, = 7(X,,).

A policy is either stochastic (7(B’'|x) is function of two variables and represents a
probability) or deterministic (7(z) is function of one variable and represents the
action chosen). Throughout the thesis, a policy is a priori assumed to be stochastic

(because it is a more general definition) except if the contrary is explicitly mentioned.

Definition 2.5. Let (X, A) be a MDP. Let v € [0,1]. A reward function R is a
measurable function:

R:SxA—=R

Such that for every policy 7, the sum of the discounted back rewards is integrable,
that is:

Ve e S, E; < 400

+oo
Z |”}"kR(X;“ AL)| ‘X{) =T
k=0

Where E; denotes the expectation under the policy m

The goal of Reinforcement Learning is to maximise the expectation:

:

with respect to the policy 7, the only variable we can modify.

+o0
Ex [Z Y R(X, Ar)

k=0

2.2 The value function and the Q-value function

In this sub-section, we define from an MDP (X, A) the two main functions used in
Reinforcement Learning, namely the value function and Q-value function. We also
derive several theoretical results that will be useful to understand the RL approach.

These results are based on proofs of [MRT18, Chapter 17].

2.2.1 Definition of V. and V.

The value function is the expected sum of rewards we wish to optimise. More

precisely:




2.2 The value function and the Q-value function 6

Definition 2.6. Let (X, A) be an MDP with a policy =, let 4 € [0, 1] be fixed and
let R be a reward function. The value function V, : § — R is defined by the

expression:
+o0

Y A*R(X, Ar)

k=0

Ve(z) == E,

XU = ’TI‘|
Given an initial state Xy = x, we wish to find:

Vi(z) := sup Vi(x)

m policy
An optimal policy (if it exists) is denoted by 7*. We finally give a useful definition

for the rest of the thesis.
Definition 2.7. An MDP (X, A) with discount factor v and reward function R is

said to have a finite horizon if and only if there exists N € N such that:

> R(Xi, Ar)

k=0

Y7 policy,Vz € S, Vi(z) = E;

XU=$]

2.2.2 First Properties
We immediately state a first relevant result (see appendix A for the proof).

Proposition 2.1. Let 7w be a policy. Then for every x € S, the value function has

the following recursive relation:
Vi(z) = E; [R(z, Ap) + Vo (X1)| Xp = 2] (2.2)

If § x A is countable, this relation becomes:
Ve(z) = Z 7(alz) (R(r.-:, a)+ Z p(2' |z, a)V; (:r:')) (2.3)

acA 'eS

These two relations are both known as the Bellman equation.

If additional conditions hold, the Bellman equation characterises V; as stated below

(see appendix A for the proof).

Proposition 2.2. Suppose that v < 1 and V; is bounded. Then V; is the unique
solution of Bellman equation (2.2) in L*(8) the space of bounded and measurable

functions from S to R.
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2.2.3 Definition of @, and (),

We now define the @-value function. This function is close to the value function but

the action at time 0 Ay is assumed to be known in addition to Xj,. More precisely:

Definition 2.8. Let (X, A) be a MDP with policy =, let v € [0,1] fixed and let
R be a reward function. A Q-value function (), : § x A — R is defined by the
expression:

+oo

> AV R(X, Ar)

k=1

Qx(z,a) := R(z,a) + E,

X0=$,A0=al

Similarly as value function, one can define the optimal Q-value function. Given an
initial state X, = x and an initial action Ay = a the optimal Q-value function is
defined by the expression:

Q.(x,a) := sup @Qr(z,a)

m policy
2.2.4 Further properties

We give here some results on the value function and the Q-value funetion. Most of
these results are not proved in this thesis but the proofs can be found in [MRT18S,
Chapter 17|. The interpretation of these results is presented in the next sub-section.

Let us start with a first remark linking the value function to the Q-value function:
Remark 2.2. Given a fixed policy 7, knowing V is equivalent to knowing (), thanks
to the relations:

Va(z) =Eq[Qz(z, Ao)[Xo = 2]
Qx(r,a) = R(z,a) +vE [VZ(X1)|Xo =2, Ay =4

Y(r,a) € §x A,

Where E is an expectation independent of the policy 7. If § x A is countable, these

relations become:

V() =Y aeam(d]2)Qnx(z,d’)

Y(z,a) € S x A,
Qula,0) = R(z,0) +7 Xyres p(&/ |7, V(&)

(2.4)

The proof of those results is similar to the proof of proposition 2.1,
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We have introduced the Q-value function because of the following result (see [MRT18,

Theorem 17.6] for a proof):

Proposition 2.3. Let (X, A) be a MDP with policy 7. Suppose that either v < 1
and V; is bounded on 8, or (X, A) has a finite horizon. Let 7' be another policy.

We then have:
{V’i‘” S S:]Efr' [(2TF(T7 AU)|XU = J] 2 VW(T)) = (V’I" € S': Vﬂ’(m) 2 VTF(T))

And if the inequality is strict for at least one state on the left-hand-side, then the
inequality on the right-hand-side is also strict for at least one state. 7’ is said to be

better than = if and only if the inequality on the right-hand side is satisfied.

A particular policy is always better than the previous one. This policy is easy to

set if @, is known and A is small.

Definition 2.9. Under conditions of proposition 2.3 and assuming further that A
is finite, the deterministic policy 7" defined by the expression:

7'(x) := argmax Q,(z,a)
acA

is called a greedy policy (if several values are possible, take only one of them).

This policy is better than 7 according to the above proposition.

Thanks to this proposition and this definition, we henceforth have a method to
optimise a policy. Note that the boundedness condition is satisfied if S x A is finite.
We now give a condition on policy optimality (see [MRT18, Theorem 17.7] for a

proof):

Proposition 2.4. Let (X, A) be an MDP with policy 7. Suppose that either v < 1
and V, is bounded on 8, or (X, A) has a finite horizon. Then 7 is optimal if and
only if:

Y(r,a) € S x A, (ﬂ'(a|£) >0 = a € argmax Qr(x, a"))
a'€A

This result shows that if the policy cannot be improved any more (using the greedy
policy method), then this policy is nothing but an optimal policy. We now state a

result when & x A is finite (see [MRT18, Theorem 17.8] for a proof).
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Proposition 2.5. Let (X, A) be a MDP. Suppose that v < 1 and § x A is finite.

Then there exists a deterministic optimal policy 7*.

We finally state two last results regarding the best Q-value function @, (The proofs

can be found in appendix A)

Proposition 2.6. Let v € [0.1[. Suppose that A is finite. Then the function

P LS x A) = L™(8 x A) (L*(S x A) denotes the space of bounded and

measurable functions from § x A to R) defined by the expression

Y(@Q,z,a) € L7 (SxA)xSx A, ¢¥(Q)(z,a) := R(x, a)+'y/ max Q(2', d)p(da'|x, a)
z'es @

Has unique fixed point (). (0 is said to satisfy the Bellman optimality equa-

tion (BOE)

Proposition 2.7. Suppose firstly that v < 1, A is finite. Suppose secondly that
there exists an optimal policy #* such that Q.- = Q. is bounded. Then @, is the
unique element in L (S x A) verifying BOE in proposition 2.6 which can be written

as (E does not depend on any policy):

Qu(0.0) = R(o,0) +1E |1y Q.(Xi,)

Xo = I, AU = G.] (25)

2.3 Generalised policy iteration

In the rest of the section, we assume now that v < 1, for any policy m, V; is bounded
on & (or the MDP has a finite horizon) and A is finite. These assumptions are made
to satisfy the above theoretical results. Most of RL algorithms are based on a general

principle called Generalised policy iteration. It consists of two tasks:

e Policy evaluation: starting from the last policy m updated in policy improve-

ment, the Q-value function @), is estimated for every state and action.

e Policy improvement: We improve 7 by setting its greedy policy: for all x € S,

m(x) + argmax Q. (x,a)
acA
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These two steps are repeated until convergence (i.e an optimal policy has been
found). In the first policy evaluation, the policy is arbitrary. Thanks to proposition
2.3, this general algorithm constantly improves the policy. Proposition 2.4 shows
that if the policy cannot be improved any more, we have found an optimal policy.
This result is remarkable because in this case, we have not only reached a local
maximum but a general maximum (contrary to some usual optimisation algorithms
such as stochastic gradient descent). Finally, according to proposition 2.5, if § is
finite, then the generalised policy iteration algorithm terminates because there is a
finite number of deterministic policies and at least one of them is optimal. All the
algorithms developed below use (sometimes implicitly) this principle to improve the

policy. When S and A are finite, the general algorithm 1 is detailed below.

Algorithm 1 Generalised policy iteration
Require: § x A is finite

Input: a policy «
Output: a deterministic policy
repeat
for all (z,a) € § x A do
evaluate Q,(z,a)
end for
for all z € § do
m(z) + argmax Q.(z,a)
acA
end for

until @), is no longer improved

2.4 Main algorithms if S and A are finite

In this sub-section, we assume that the state and action spaces are finite and not
too large to limit computation complexity. We explain here some algorithms for
the policy evaluation step, that is given a policy , the algorithm should return

the Q-value function @ for each state and action. The policy improvement step is
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always the same for these algorithms (apart from Q-learning) and can be found in

algorithm 1.

Several algorithms are quickly developed below without going into details. The goal
here is to have a general idea of the possible methods to find the best policy. For
further details, see [SB18| where all these algorithms (and some other ones) are

mentioned.

2.4.1 Dynamic programming

Further information on that algorithm can be found in [SB18, Chapter 4] and
[MRT18, parts 17.3.4-17.4.2|. This first main algorithm requires the knowledge of
the transition probabilities p(2'|z, a) for every (z',z,a) € § x S x A. The algorithm
is based on the Bellman equation (2.3) and on the proof of proposition 2.2 that can

be found in appendix A. We remind below the Bellman equation in a vector form:
V, = R+~PV,

Where R and P are defined in equation (A.2). According to remark A.1, these two
elements are respectively finite-dimensional vector and matrix. Note that the sum
of P’s columns is equal to 1 and all its coefficients are non-negative (P is said to be
stochastic). According to proposition 2.2, this equation has a unique solution which
is nothing but V,. The problem here consists in finding V. to deduce @, thanks to

relation (2.4). Two methods then come up and both work:

e One can solve the linear system by inverting the matrix I —yP (I denotes the

identity matrix)

e According to the proof of proposition 2.2 and fixed-point theorem A.1. One
can build the following sequence (V,,)nen by choosing Vj arbitrarily and by
setting the recursive relation V., := W(V,) = R+~PV, (see equation (A.1)

for a definition of ¥). This sequence converges to V, at speed ™.

In practice, the second method known as policy iteration is more efficient.
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2.4.2 Monte-Carlo method

This method is detailed in [SB18, Chapter 5]. Contrary to the previous one, the
Monte-Carlo method neither needs to know explicitly the transition probabilities
p(a'|x,a) nor 4 < 1. This method is based on independent simulations of processes
(X, A). Each process generated is called an episode. Even if the MDP model does
not need to be explicitly known, it must be able to generate easily and quickly

episodes to be efficient.

We present here an off-line method. This means that the Q-value function is up-
dated as soon as the episode is finished. It is possible to build an on-line method for
Monte-Carlo. In this case, the Q-value function is updated as soon as a new state

appear.

The Monte-Carlo method is as follows:

e Choose a time horizon N € N (such that Z?:‘;H Y R(X,, Ay) is small

enough)

e For each (r,a) € § x A, generate independently M episodes (X )@a AG).a)

until time N under policy 7 and starting with Xy = r and Ay = a.

e Set for each (z,a) € S x A,

M
1 i),e,a i).x,a N ), i).x,a
Qulz,a) = HE (R(a:. a) + YRX™, A=Y 4 AN R(XD 4D ))
i=1

According to law of large numbers, (0, approximates correctly Q. if M and N are

large enough.

2.4.3 Temporal-difference learning: SARSA algorithm

The last two algorithms are detailed in [SB18, Chapter 6] (particularly in [SBI18,
part 6.4-6.5]). This algorithm is also mentioned in [MRT18, part 17.5.4]) Monte-

Carlo method can only update a Q-value function for only one state and action per
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episode. This can be seen as a drawback of the method because the frequency of
updates is not high enough. To fix that problem, the temporal-difference learning
was introduced. As well as Monte-Carlo, this method needs to generate easily and
quickly episodes, but episodes do not need to be generated from all states if all states
are sufficiently explored by the episodes.

One of the possible temporal difference learning algorithms is called SARSA (stand-
ing for state-action-reward-state-action). This on-line algorithm is organised as fol-

lows:

e Choose a time horizon N € N (such that Z::CN aTR(X,, Ay,) is small

enough) and initialise @) arbitrarily.

e Generate independently M episodes (X, A) until time N under policy 7 (the

episodes should explore sufficiently all the states).

e For a € [0,1] (the learning rate) and given an episode (X, A), set at each

episode step n,

Q(Xm Au) A Q(Xm Au) +a (R(Xn'- Au) + "('Q(Xuﬂ-. An+l) - Q(Xm An))
(2.6)

According to [SB18, part 6.4] and [MRT18, part 17.5.4], this algorithm converges
almost surely to the optimal policy if we use the generalised policy iteration algo-
rithm and if all states and actions are sufficiently explored (i.e infinitely explored if

M — o).

2.4.4 Q-learning

The algorithm is detailed in [MRT18, part 17.5.3|. This last method is another
version of temporal difference learning but does not evaluate 0,. This algorithm is
generally off-policy, that is it evaluates and improves a policy (here the greedy policy)
different from that used to generate the data. On the contrary, the two previous
algorithms are on-policy: they evaluate and improve the policy that generates the

data. Q-learning converges directly to @, and then does not use explicitly (but only
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implicitly) the generalised policy iteration. This algorithm can also be viewed as
a method to estimate the solution of Bellman optimality equation (2.5). Similarly
as SARSA, the algorithm is exactly the same apart from the update (2.6) which

becomes:

Q(Xn, A,) + Q(X,, Ap) + o (R(X,,,._ A,) + ’]/I(ILIEEE(Q(X,HI, a) — Q(X,, Au)) (2.7)

According to [SB18, part 6.5] and especially [MRT18, part 17.5.3] (there is a com-
plete proof), if all states and actions are sufficiently explored (i.e infinitely explored
if M — o0) and if some usual stochastic conditions hold, this @) converges almost
surely to Q.. Even if this algorithm does not use explicitly generalised policy itera-
tion, it constantly improves implicitly the policy by modifying directly the Q-value

function.

2.5 Deep Q-learning

All the sub-section is based on [Mni+13] and [Sim18]. We explain here the Deep
Q-learning (DQL) algorithm. This algorithm is similar to the Q-learning algorithm
but has one advantage over all the previous algorithms developed: it can manage
infinite (or very large) state sets. Before explaining how the algorithm works, we
give some notions on neural networks, a central mathematical object in deep learning

that is used in the DQL algorithm. Afterwards, we detail the algorithm.

2.5.1 Neural networks

A neural network is a function ¢ mapping an input X and an output Y and de-
pending on weights parameters w := (wy, ..., wg) € RY. We just deal with the simple
version of the neural network called feed-forward neural network. Its general struc-
ture is presented in figure 1. A neural network consists of layers of neurons. The first
layer is the input layer: the number of neurons must match with the dimension of
the input X. Each neuron of that layer returns a component of X. The next layers
are called hidden layers. for each neuron of that layer, its inputs are the outputs of

each neuron of the previous layer (see figure 1.a). Each neuron returns an output
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Input Hidden Output
Layer Layer Layer
I N

Activation Neuron
function Output
Neuron v,

Input

(a) (b)

Figure 1: (a) Neural network scheme and (b) Structure of a neuron coming from a
hidden layer or the output layer. Using the notations in this figure, the neuron i has
n real inputs ;1,...,z;, € R and n weights w; 1, ..., w;, € R for each input plus a
bias b; € R. The output of the neuron is given by y; = f(z;) where f : R — R is an
activation function and z; = b; + E;’;l w; ;5 is the weighted average of the inputs

plus the bias. The figure comes from [Pha-+19|

depending on weights and an activation function (see figure 1.b for further details).
The last layer is called the output layer. This last layer works exactly like the hidden
layers but its output is the exactly the output of the neural network. The mumber

of neurons in the output layer must match with the dimension of the output Y

After choosing the activation functions, the goal is to find the best weights w (the
weights include the biases) so that @ has the best estimation of the target Y given
X. To do so, we have to define a loss function L to evaluate the quality of the
estimation in this sense: the lower the loss function, the better the estimation.
Assuming that Y € R™ lies in an infinite (or very large) set, we do a regression (and

not a classification) of Y with respect to X. In this case, a common loss function is
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the mean squared error defined by:
1« 5
LX,Y;w):= 5 > (Y — Qi(X;w))
i=1

Where Q; and Y; are respectively the i*" component of () and Y.

To make this loss function decrease with respect to the weights w, we use the stochas-
tic gradient descent method. This method consists in selecting randomly (under a
uniform distribution) in the data % instances of X and Y denoted respectively by
(2™, yW), ..., (2, y®)). This set of data is called a (mini) batch of size k. Given
a learning rate o we then update the weights w by the following gradient descent
rule:

ke k m
W 4 w—ao E Vul(29D,y9: w) = wta E (— E (y?) — Qi(z\; ’w)) VuQi(z™; w))
m
i=1

j=1 i=1
To do this step, we need to know V,Q(x%); w), which is equivalent to knowing the
derivatives of the activation functions. This step is done using back-propagation. We
will not explain this method but a theoretical explanation can be found in [Wer82],
one of the first articles linking back-propagation to neural networks. In general,

if the instances of the data are independent and identically distributed, the neural

network is better trained.

As we said before, we need to choose the activation functions such that their deriva-
tives are known. In addition, a neural network consisting of those functions should
be able to approximate any function. A common activation function satisfying these
two constrains (the second condition is satisfied according to [Lu+17]) is the rec-
tified linear unit (ReLU) function. Its expression and its derivative expression are

respectively given by:

x ifz>0 , 1 ifz>0
ReLU(z) = and ReLU'(z) =
0 ifzx<0 0 ifz<0

Hence, we will create a neural network where each neuron of the hidden layers will
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have the ReLU function as an activation function. The output layer will have the

identity (or linear) function as activation function.

2.5.2 Principle of the algorithm

We now go back to the DQL algorithm. It is similar to (Q-learning algorithm but
instead of using a table to store the (Q-values of each state-action couple, the Q-value

is modelled as a neural network.

In our case and according to [Mni+13], the neural network @ is modelled as the
Q-value function. Its input is the state # € S (dimension dim(S)) and its outputs
are for each action a € A the Q-value function Q(z,a;w) (dimension [A]). This
neural network has to estimate the optimal Q-value function Q.. In addition to
generalised policy iteration point of view, this problem can also be seen as solving
Bellman optimality equation (2.5) according to propositions 2.6 and 2.7, . This is
why the right-hand side of this equation (R(X,,, A,) +7 1;16(‘1} Q(X,1,a;w)) can be

viewed as the target Y of the neural network.

The principle of the DQL algorithm is close to Q-learning but has some differences

for the following reasons:

e We generate different episodes of (X, A) (with an off-policy method detailed

helow)

o At each time n of each episode, the Q-value is updated (like Q-learning) by
performing a stochastic gradient descent step (with learning rate o) where
the error is between the estimation QQ(X,, An; w) and the target R(X,, A,) +

7 max Q(Xpy1,a;w) (different from equation (2.7) used by Q-learning)
ac

However, the target a priori depends on the neural network @ itself, which is not
really convenient for learning. To allow the neural network @ to better learn the
target, we use the double Q-learning method developed in [HGS15]. It consists

in "freezing" the target in the following sense: we create a second neural network
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Qterget)  This neural network has exactly the same architecture as Q but has differ-
ent weights. These weights are fixed for 7,,,,, steps and are updated at every 7,,q. step
by setting Q9" +— Q. To define the target value for the neural network properly,
max Q(X,41,a,w) is replaced by Qfarget) (X?,_H, a.r%glj.x Q(X,11,a,w); w") (w' are
the Q(479°)’s weights). In this case, according to [HGS15|, the action selection is
decoupled from action evaluation, which prevents from overestimating the Q-value

function.

In addition, another technique called experience replay is used to improve the learn-
ing. It consists in storing several previous steps (i.e a tuple (X, A, B(A,, X,.), Xyi1))
in a (finite) memory set D and selecting a mini-batch in D at each step to improve

the target estimation by the neural network Q.

Like Q-learning, DQL can be an off-policy algorithm (the underlying policy that is
improved is the greedy policy). But how could we choose the policy to generate
the data? [Mni+13| answers this question by taking an e-greedy policy, that is
a policy that chooses the best action with respect to the neural network () with
probability 1 — ¢ or choose randomly another action with probability . If ¢ is
close to 1, the algorithm explores as many couples (state,action) as possible. In
contrast, if £ is close to 0, the policy is almost a greedy policy and then exploits
the data to improve as much as possible the Q-value function. To manage this
balance exploration-exploitation, one generally chooses e close to 1 at the beginning
of training to generate sufficiently diverse data to make the learning easier, and e
close to 0 at the end of training to find the optimal Q-value function more quickly.
The value of £ can for example decrease exponentially with respect to training step,

vielding a sequence (&, ),en defined by the relation:

)P—vi.ﬁa‘

Ep = (&‘nm.:r — Smin + Emin

Where £,,4; denotes the maximum exploration probability, £,,;, denotes the mini-

mum exploration probability, and As represents the exploration decay coefficient.
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The behaviour of (£,,)nen is showed in algorithm 2.

The DQL algorithm detailed in algorithm 2 has several advantages:

e The use of a neural network instead of a table allows to apply a Reinforcement

Learning algorithm with a large or even infinite state space &

e Since the algorithm is off-policy and an e-greedy policy is used, all possible

states and actions can be explored more easily. Moreover, the distribution of

steps in D is not too "biased": not every element in the data points to the

same direction. In particular, if this direction was wrong, it would prevent

from a convergence to the optimal Q-value function.

e Consecutive steps are correlated and this slows down the learning. The intro-

duction of D breaks this correlation and then reduces the variance, improving

the learning.

e Each step can be used several times and then can improve more weights.

Remark 2.3. According to [Sch+16] and [Bri+19|, the Q-learning algorithm can

be improved using prioritised (sequence) experience replay. The idea consists in

selecting more often relevant data stored in experience replay memory (prioritised

experience replay) and updating more data priority coefficients (prioritised sequence

experience replay). Unfortunately, [Sch+16] explains that this method introduced

a bias, which make our method developed in part 4 ineflicient.
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Algorithm 2 Deep Q-learning

Initialise @ with random weights, set 7 < 0, € < €02 and QU9 (., w') +
Q. .,w)
fori=1to M do
Initialise independently Xl(,ﬂ
for n=1to N do
With probability 1 — £, select AD m‘g;n:ilx QX r(f)? a, )
e
Otherwise select another action AS ) randi)mly
Evaluate X,(:i L and RY R( @, Sf’)
Store step (X,(f), AD RO xC

ﬂ_)_l) in D (delete the oldest step if D is full )
Sample a k-sized random minibatch of steps (z1,a1,71,2)), ..., (K, ag, Tk, T},)
from D
A+0Oand 7+ 7+1, ¢ e (e — emin) + Emin
for j =1to k do
Set y; + rj +7 max QU9 (2, of , ')
A+ A+ (y; — Qzy, a5, w))V,Q(25, aj, w)
end for
w +— w+a- A (gradient descent step)
if 7> T4, then
Update the target neural network QU9 (., . w') < Q(., ., w)
740
end if

end for

end for




21

3 Mathematical Finance

In this section, we introduce two continuous financial models. The first one is the
famous Black-Scholes (BS) model. We will use this model for our RL problem be-
cause it is both tractable and (as we will see) closely linked to the second model:
the uncertain volatility model (UVM). This model is like the BS model except that
the volatility process is unknown. We just know that this process is bounded and
the bounds are assumed to be known. The goal of this thesis is to use Reinforce-
ment Learning to approximate the UVM highest and lowest prices (with respect to

volatility processes).

3.1 The Black-Scholes model

In this sub-section, we remind the BS model and two useful results under this model:
an explicit expression of the stock price S and its partial differential equation for
pricing. This very tractable model will allow us to build our RL problem. Let @ be
the risk-neutral /pricing measure.

3.1.1 Definition and explicit expression of 5%

Definition 3.1. Let o, > 0 be a volatility constant and 7, r > 0. Let W be a Q-
brownian motion. The couple (57, B) := (57, B;)o<i<r follows the Black-Scholes

model if and only if B (the risk-free bond) satisfies the differential equation:
dBy, = rB,dt
and S7¢ satisfies the stochastic differential equation
dS]e = S7e(rdt + o.dW,) (3.1)
On the interval [0, T'] where Sy > 0 is deterministic.

The BS model is very tractable because of the following result (the existence can be

proved using [t6’s formula).
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Theorem 3.1. With notations in the above definition 3.1 and given the constants
Sy, 0., 1 > 0, there exists a unique solution (57, B) to the BS model. The solutions
are given by:

Bt = BU(?”

Yt e [0,7], -
an =Sneo,1a1—g-l-(:——2ﬁ)t

Remark 3.1. Let 0 < ¢’ <t < T. S/ can be expressed in terms of S;° and an

independent quantity. More precisely:

(4]

goe Sanca..(wg—l-i",;}-r- (r—-gﬂ)(:—f’)
A

3.1.2 The Black-Scholes partial differential equation

We now state the following theorem giving a link between the price of an option and

a partial differential equation.

Theorem 3.2. Let Cps(t,S7) = e "T=UEQ [F(S7)|S7°] be the BS price at time
t € [0,7] of an European derivative whose payoff is given by F(S7°) (this payoff
is assumed to be integrable under the risk-neutral/pricing measure Q). If Cpg €
C2([0, T[xR%, R) then Cgg satisfies the BS partial differential equation on [0, T[x R :

s, ( $9Cs *Cps

052

=0 (3.2)

C 0352
at a5~ "BS) T3

With terminal condition:

Cps(T, S) = F(S)

3.2 The Uncertain volatility model
3.2.1 Definition of the model

We consider here a much more general model than the Black-Scholes model. This
uncertain volatility model is here viewed as a stochastic control problem where the
control is on volatility. For further details on stochastic control theory, see appendix
B. Let @ be the pricing/risk-neutral measure. We now define what the UVM is and

we comment on this definition afterwards.
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Definition 3.2. Let T > 0, 0 < oyin < mae and let W be a Q-brownian motion.

Define the following sets:
o The filtration (F;)o<i<r is given by F; := o(Ws, s < t) for every t € [0, 7]

e The set of possible volatility processes is Vol := U, according to equation
(B.1) in definition B.2 for U = [0.in, Omas)- More precisely, Vol = {o :=
(01 )o<t<T progressively measurable : ¥Vt € [0, T, Opmin < 0 < Omart Where the
progressive measurability is between the filtration (B([0,t]) & Fi)o<t<r and

the borel o-field B([omin: Ormaz))

Given ¢ € Vol a bounded stochastic process, the couple (57, B) = (57, B)o<t<r
follows the uncertain volatility model (UVM) if and only if B (the risk-free

bond) satisfies the differential equation:
dBy = rBydt
Where r > 0 and satisfies the following stochastic differential equation:
dSy = S7 (rdt + o dWy) (3.3)
On the interval [0, T'] where Sy > 0 is deterministic.

Regarding B, exactly like the BS model for bonds, the differential equation can be

solved immediately and yields:
vt € [0,T), By = Bye™

Regarding S, this model is a particular case of the stochastic control equation (B.2)

we develop in appendix B:

U = [Umm-: Uma;r.]
b(t,S,u) = rS where r > 0
s(t, S,u) = uS

The boundedness condition for o ensure the existence and the uniqueness of S given

a deterministic initial condition Sy > 0 according to Theorem B.1. In addition, the
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BS model is a particular case of UVM where 0. = 0min = Omae 18 constant and

deterministic. Hence theorem 3.1 is also proved.

The interval [6,m, Omas] can be interpreted as a confidence interval on volatility
(95% or 99% for example). Furthermore, all the BS implied volatilities quoted in
the market must be within this interval to avoid arbitrage opportunities, this gives

another interpretation to the couple (oin, Cmaz)-

Contrary to the BS model, the UVM is not very tractable because there is no explicit
solution for the stochastic differential equation (3.3) satisfied by S7. However, if we
know how to price under this model, we get a much better price than the BS price.
This is due to the fact that the BS volatility is necessary to be known in order to
find a price of an option but this volatility parameter is unknown in practice. On

the other hand, the UVM price requires only bounds on volatility.

The goal of this thesis is to approximate the price of a derivative whose payoftf is
given by F(S7) in the best (or worst) case by using Reinforcement Learning that is,
to approximate:
C*(t,8) := sup EC [e"'(T_")F{Sr}’.NSf = 5'1
acVol (34)
or C(t,9):= inf}i EQ [e"T-DF(54)]S7 = 5]

aeVe

Where EU is the expectation under the pricing/risk-neutral measure Q

3.2.2 A result on extreme prices

We now give a useful result that can be found in [ALP95, equations (7),(8) and (9)]
on the two extreme prices C* and C~ defined above in equation (3.4). A proof of

this result can be found in appendix B

Theorem 3.3. If the payoff function F' verifies the quadratic growth condition:

3K > 0,¥S e R%, |F(S)| < K(1+ S?)
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and if the functions C* and C'~ defined in equation (3.4) belong to C*#([0, T[xR% , R),
then they satisfy the Black-Scholes-Barenbatt (BSB) equation:

aC* act L\ 1 [, (9CE\\® ,0%CE .-
W‘f"f"(SW—C )+§(E (BS? )) ) 952 =10 (3.‘))

On [0, T[xR?, where

Trnax lf T 2 0 Tinin ]-f T 2 0
Vo e R, X (2) = and X7 (z) := (3.6)
Tmin ifx<0 Tmax ife<0

and with terminal condition:
C*(T,S) = F(5)

Note that C* denotes either C* or C~, but if we deal with C*, we necessarily refer
to £ in equation (3.5) and conversely, if we deal with C~, we necessarily refer to

¥ in this same equation.

This result is extremely close to the famous BS partial differential equation. The
only difference lies in the function ¥ which varies with respect to the sign of the
gamma (i.e. the second derivative of C* with respect to S) in the BSB equation.
Note that the BS partial differential equation (theorem 3.2) is proved because it is
a particular case of the above result. Thanks to these remarks, we can interpret the

problem as follows (a more precise scheme is given part 3.2.4):

e To find the highest (or the lowest) price of the derivative, we firstly compute

the gamma (or at least its sign).

e Then, knowing the gamma sign on a small interval, we choose either o,,;, or

Omax according to the equation (3.6).

e In this case, the stock price follows the BS model on this small interval where
the constant volatility is the volatility we chose in the previous step.

The most useful part of that result is the binary behaviour of the volatility parameter

o to determine the extreme prices. We will use that corollary to construct our RL

problem in section 4. We will also use this result to explain why our RL problem

finds asymptotically the extreme prices.
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3.2.3 Properties of BSB equation

We now state two interesting properties on BSB equation (3.5) with boundary con-

dition C*(S,T) = F(S). These two results come from |[LLX19].

The first result shows that the BSB equation has a unique "weak" solution called a
viscosity solution. We give here a definition of that concept that can also be found

in [LLX19, Definition 2.1].

Definition 3.3. Let X be a topological space. A function v : X — R is said
to be upper (resp. lower) semi-continuous if and only if for every a € R,

{z € X :u(z) = a} (resp. {z € X :u(z) < a}) is a closed set.

Definition 3.4. A viscosity sub-solution (resp. sup-solution) of (3.5) with
boundary condition C*(S,T) = F(S) on |0, 7[xR is an upper (resp. lower) semi-
continuous function » :J0,T[xR — R such that, for all (¢,z) €]0,T[xR, ¢ €
C(]0, T[xR) such that u(t, z) = ¢(t, z) and u < & (resp. u > ¢) on |0, T[xR\(¢, z),

we have:

afp 0@ " 1 -+ 02¢ . 2 GZQ
— 47 — — —|— — — —_— > "esp. <
ot ! (535 Q) 2 (E (35’2 o a52 — 0 (resp 0)

A viscosity solution of this equation is both a sup-solution and a sub-solution

We can then state the first result (see [LLX19, Theorem 2.2):

Theorem 3.4. If there exists K > 0 and m € N (both depending on F') such that:
V81,52 € R, |F(S1) — F(S2)] < K(1+ [S1]™ + [S2[™)[S1 — Sa|

Then BSB equation (3.5) with boundary condition C*(S,T) = F(S) has a unique

viscosity solution on ]0, T[xRY.

The second result states that if the payoff function F' is either convex or concave
(this is the case if for example the option is a Call option or a Put option), then
the BSB solution is also a BS solution. More precisely (see [LLX19, Proposition 2.4,

equation (2.2)] for a proof)
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Proposition 3.1. Let C* be the (viscosity) solution of BSB equation (3.5) with
boundary condition C*(S,T) = F(S) (F satisfies the condition of Theorem 3.4).

We then have:

Feonvex <<= CT=Cfe* and O =05

F concave <<= Ct=09%" and O =%
BS BS

Where CF is the solution of the BS partial differential equation (3.2) and o, > 0

is the volatility parameter.

Even if the result has not been proved for C~ in [LLX19] it suffices to consider
D := —C~ and to see that for any + € R, ¥"(—z) = £ (x). This quantity
verifies the same BSB equation as Ct with terminal condition —F. This yields
immediately the expected result. This useful result will help us test if our UVM
price programming returns the expected price because BS prices of common options
with convex or concave payoffs (e.g a Call option, a Put option) are well-known

analytically.

3.2.4 Discretisation of BSB equation

According to the article [ALP95|, the BSB equation (3.5) can be solved using a

(recombining) trinomial tree. We present here this method.

Let N € N*, At := J,{'— (it can be viewed as a trading period) and let p := (p,)o<n<n-1

o]
20-””{ T

2
be a sequence of probability parameters lying in [”—*— %] . We also set:

U:= eomasVArAt g probability Py(q) := ¢ (1 — Dt 'QE)

M= 4t and probability Puy(g) = 1-2¢
q (1 +2 2\/5)

D:= e omeVBlrAt  and probability  Pp(q) :

2
Where g € [;;*;A %} is a probability parameter. We can notice that UD = M? to

ensure that the we have a recombining tree. The stock price 5 := (S, )o<n<n is then
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a Markov process driven by the following discrete dynamics:

US,  with probability  Py(p,)

Vn € [0,N —1],Sps1 :=< MS, with probability Py (p,)

DS, with probability  Pp(p,)
Given Sy > 0 fixed, we can immediately show that the possible values of S at time
n € [0, N] are:

S?(,?) = Sy oJomazV/Bltnrat

Where —n < j < n (note the difference in notations between the random variable
S, and the possible value S5 ). We can then set the (discrete) extreme prices (with

respect to the probability parameter sequence p):
CP* 1= e W-mratapE [F(Sy)IS, = 59
p
CP™ 1= e (N-mratinfE [F(sy)]S, = S|
Where 0 <n < N and —n < j < n. They verify the terminal condition:
Vj € [-N,N],c{* = F(sY)
And the recursive relations (n < N — 1 here):

C‘J(J.j).-{- — E_T&t sup ()PU (p?l)Cfl+1 + Pﬂf(3371)01,,+1 + PD (pu)cn_pl )

Pn

G =S (P y(Pn) O™ + Pu(pa)CEN + Po (pn)Cfffl”f)
A quick calculus yields for oyt
+ -+ . +
O+ _ g—ri CA + lL?(fll if Ly >0
n CT(H)—I + 202 Lw(fj—r if Lfﬂ_r <0
Similarly we have for C¥)

O grat ) Ciii + lLEflr if LI <0
01(34)—1 + Qaz Lffl] if L‘ff-g—l >0

where }_3ﬂ+1 : F(f_;rll)i 2(171+1 —1—(1“_ (C(J_ b C,;:rll)i). According

T

to [ALP95], this last quantity can be intcrpreted as a discretisation of the second
derivative operator times the stock price times the volatility parameter g,,4.. In
[Par95] it is showed that the mumerical scheme we built converges to the solution of

the BSB equation (3.5).
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4 The RL problem for derivative pricing

In this section we transform a derivative pricing problem into a RL problem. Our
goal consists in approximating the extreme UVM prices using Reinforcement Learn-

ing. To do so, we consider a piece-wise BS process as an MDP.

4.1 Construction of the RL problem
4.1.1 The Markov Decision Process

First of all, we introduce the problem with some notations. Let N € N* be the
discrete time horizon. Throughout this part, we consider an European derivative
with maturity 7 > 0 and payoff F(S7) where Sy is the the stock price at time 7'
and F' : R} — R is a measurable function such that F(S7) is integrable. Given a

initial time ¢, > 0, we also introduce the following notations:

nrt T
T=T-— i().l, ;Vﬂ S N; b =1 + ?; At = ? = iu-i—l — i,

In our problem, we have to find the extreme prices under the UVM with respect
to volatility (these prices are defined in equation (3.4)). This is why at first sight,
the MDP should be the stock price process with a control on volatility, However,
according to theorem 3.3, volatility may depend on time. This is why as remark 2.1
suggests, the MDP is the couple (stock price, time). To define this MDP properly,
we have to define the action and the state spaces § and A. Since this process is the

couple (stock price, time), we define naturally according to remark 2.1
— *
S§: =R} xN

Regarding A, we know from theorem 3.3 that the UVM extreme prices are only
determined by the volatility bounds o,,;, and o,,.,. Hence, the action space admits

exactly two elements i.e

A= {Um:'m O'mar.}
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Let us now define the MDP. Let W be a brownian motion under the pricing/risk-

neutral measure . We introduce the notation (for n € N):

AW, =W, ., — W,

tnyl

Knowing that a brownian motion has independant and starionnary increments, the
sequence (AW, ),en is a sequence of independent and identically distributed random
variables. We build the stock-price process (S,0) := (S,, 0, )nen by the recursive
relation:

r ”2
o AWL+ 1'——.2”- At

Yn €N, S, = Se (4.1)

Assuming that Sy is known and for any n € N, ¢, depends (potentially randomly)
on time n and current state S,. As we said before, according to BSB equation
(3.5) volatility may depend on time. This last assumption for ¢ is then necessary to
assure the convergence of the optimal discounted sum of rewards to the UVM price.
Equation (4.1) shows that S,.; depends on S, ¢, and a quantity independent of
So, -, Sp—1. Hence, (S, ) is almost a MDP in the sense of remark 2.1 (it depends

on time). According to this remark, the process (X, o) defined by the expression:
VneN, X, = (5S,,n)

is a MDP. Note here that we have implicitly assumed here that X starts at time £,

which is not compulsory. We can start at another time if we wish.

Thanks to remark 3.1 and equation (4.1), it can be seen that for n € N, S is
constructed similarly as a BS model between times ¢, and ¢,,;. This means that
S follows a piece-wise BS model. That is, for each n € N, S is modelled with a

constant volatility o, € A on each time interval [ty,, tp41].

4.1.2 Reward function

The definition of reward function is based on [Bue-+19] and |Gra|. To define a reward

function, we need to define 7. In Mathematical Finance, this last quantity can be

—rt

seen as a discount factor. Then we can set v :=e . We assume that the interest
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rate r is strictly positive (which is true most of the time in Finance). Thus v < 1.
Furthermore, the discounted sum of rewards has to be equal to the expectation of

the discounted payoff under pricing/risk-neutral measure:

+oa
E2 |+ R(Xx, 04)| Xo,n = 0| = EZ [e7" F(Sy)|So]
k=0

Where 7 is a policy. We then define the reward function by the expression:

0 ifn # N
F(s) ifn=N

V= (s,n) € §Vo. € A, R(z,0.) =

Note that if n > N, the problem is not interesting any more since every reward is
null (the derivative vanished). Thus, the MDP (X, ¢) has a finite time horizon in
the sense of definition 2.7. This setting is useful to simulate (X, ¢): we will start sys-

tematically at time (0 with an arbitrary S; and we will end each simulation at time N.

Regarding the theoretical results (in part 2.2) that can be applied to this RL model,
it can be seen that v < 1 and (X, ¢) has a finite horizon. Thus, principles of gen-
eralised policy iteration (propositions 2.3 and 2.4) hold. Unfortunately there is no
proof that there exists an optimal policy (S is infinite), and unless F' is bounded
(this is the case for a Put option or a Digital/Binary option), the value function is
not, necessarily bounded. The Bellman equations are then not necessarily satisfied.
Nevertheless, we assume that an optimal policy exists. Moreover, even if the value
function is not bounded, it is "almost bounded" if F' is continuous (this is the case
for a Call option) because in practice, the Sy considered lies in a line segment and the
(discounted back) expectation of such a payoff is generally continuous with respect to

Sy, and thus bounded. Hence we can admit that the Bellman equations are satisfied.

We can also notice that we use here a learning algorithm to estimate the price of the
derivative. However, the main goal of Reinforcement Learning is to allow an agent
(e.g a robot, a machine, a computer) to interact with a well-defined environment

(e.g a financial market or a video game, see [Sim18| for examples of such video
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games), which is not what we do here. Our goal here is to estimate the highest price
or in other words the highest expectation of a sum of rewards. This is exactly what

a learning algorithm is supposed to do and this is why we use this method here.

4.2 From Reinforcement Learning to UVM Pricing

The goal of the RL model we described above is to approximate the UVM highest
price C*. In this sub-section we explain why if At is sufficiently small, this RL
model approximates the BSB equation. This explanation is not perfectly rigorous
(the issues will be mentioned) but aims at linking our model to the BSB equation,
and thus to the UVM highest price. In particular we explain why the volatility
choice is closely linked to the gamma, that is the second derivative of the price with
respect to the stock price. Note that a similar result can be obtained for the UVM
lowest price C~ using a symmetric argument like in theorem 3.3 and proposition

3.1.

4.2.1 Underlying numerical scheme

First of all, we built a mathematical operator and we show that the best possible
value function defined above in part 4.1 verifies a numerical scheme linked to this
operator. The different results are proved in appendix C. To do so, set the space of

functions:
LPYRY) = {V : R% — R measurable : 3(K,m) € R}, x N,Vs > 0,|V(s)| < K(1+s™)}

Where Pol stands for "Polynomial growth" here. Note that L*(R%) C Lrs (R%).

Define the operator ® : L"/(R?) — LT (IR* ) by the expression:

+0oo -
Y(V,s) € LPHRY) x RY, ®(V)(s) := max / e A G(2)V (e?e‘r &tu:+(r-—7&t)) dx

g€A J_

Where ¢ denotes the probability density function of the normal distribution with

mean 0 and standard deviation 1.

Proposition 4.1. The operator ® is well-defined.
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We now state two results that will be useful for the remaining of the sub-section. In

the first one, we show that we can apply the operator to the highest UVM price:

Proposition 4.2. If F € L™(R*) and the UVM price C* satisfies BSB equation
(3.5), then for any t € [0, 7], the highest UVM price at time ¢ C*(-,t) also belongs
to LFo(RY).

The second result is nothing but the numerical scheme satisfied by the best possible

value function introduced in part 4.1:

Proposition 4.3. Assume that F' € L™ (R?) and there exists an optimal policy 7
for the RL model built in part 4.1. Then the associated value functions (V;,)o<n<n

defined by the expressions:
¥z = (s,n) € R: x [0, N], Vp(s) := e "TW-AMEL [F(Sy)|X,, = 7] (4.2)
is a sequence of L"*(R*) that verifies the following numerical scheme:
V =F
Vo =®(Von)
In practice, building explicitly such a numerical scheme can be very expensive in
computation time (it can be exponential in N). The only way to reduce dramatically

the computation time is to use a recombining tree that approximates the integrals,

exactly like the numerical method developed in part 3.2.4.

4.2.2 Local error satisfied by BSB equation

After finding the numerical scheme satisfied by the best value function of our RL
model, we show here that the highest UVM price C* (also known as the unique
solution of the BSB equation (3.5) with volatility function £+) satisfies the numerical

scheme locally with an error of o(At). Let s € RY and z € R be fixed. We introduce
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the following notations:

C’-:_ = C+(‘ f'ﬂ.)
act . 2+ (. ¢.)
n € IIU N]L at ‘1
@_ — act (_ t )
s s y¥*n
ot . atet
S =57 ()

We first assume that C* is smooth enough to satisfy BSB equation and to have the

right to perform a Taylor expansion. Hence, it follows that if At is small enough,

(sc m”('__)m) 4 (s + (sox)VAL + ( - -

T rs — ?s + %Sﬂ:
o2
—rAtCY,, (s—l—(snr)v t+ q——e—}-—s r )Az‘—l—o(Af)) + o( At)

“n+1

At—0

Ccr

T

i G0+ (5202520 ) VA
8(‘: 02 dcn : 82(—1:
#(r (25200 - QAQ+Q(8“mu—@+ﬁ¥dft

We then multiply the expression by ¢(x) and we integrate against the variable x
(z is then no longer fixed). We assume here that this integration does not change

the o(At). We use the linearity of multiplication and integration and the following

+oo +oo
dlx)dr =1, /

==}

results:

xp(x)dr = 0 and ] 2*¢(z)dr = 1

The Taylor expansion thus becomes:

/ (.")(I)(f—?'ﬁfc?,t}_l ( At1+( -

G(%%ém L 0+2(¥”“m)m+dm)

Afterwards, we apply the maximum with respect to volatility and we assume here

+o0 2

Z_
2

)8V gp =
) dr = Cri(8)+

oo

Ca

that the o(At) is small enough so that this maximum is determined only by the

terms of order 0 and 1. It turns out that:

BCED6) o, o)+ (7 (55220 - am(0+¥§tﬁajﬁwg)
amo Crn(8) + (5’ ( X ””( )—C:H(s)) 3 (E* (523,’?1 (s))) e

o(At)

2) At + O(At))

)) At + o(At)

At + o(At)

2
d n+1

Os?

(s)) At
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We also perform a second Taylor expansion with respect of time:

_}.
Ctals) = C(e) = =, 81 ()t + o)

Ar—0
Plugging this relation into the first expansion, we finally get:

act oC!
®(CE)0) - i) =, 0&“(5)”(57“()— falo)) )

02 i+ 2 i+
+ (é (E"' (d—;ﬁ”(s))) s 29 C““ ) At + o(At) (43)

et o(At) according to BSB equation (3.5
At—

Hence, we have showed that the BSB solution satisfies the numerical scheme locally
with an error of o(At).
4.2.3 Properties of the operator &

Before looking at the case where the above approximation is uniform, we state two

properties of the operator ®. these properties are proved in appendix C.
Proposition 4.4. For any n € N*, " = ®o... o ® (n times) is sub-additive that is:
YU,V € LPHRY), @"(U + V) < o™ (U) + (V)

Proposition 4.5. For any n € N*, " = ®o...0 ® (n times) verifies the inequality:

YV € L2(R3), [|[2"(V) oo < € ™|V ]|

4.2.4 Case of uniform approximation of the numerical scheme

We show here that if the local approximation derived in equation (4.3) is uniform,

The RL model approximates correctly the UVM highest price. More precisely:

Theorem 4.1. Let C* be the upper solution of the BSB equation (3.5) on the
interval [0, 7] with terminal condition C*(.,T) = F. We first assume that C* is the

UVM highest price and F' € LF?(R%). Furthermore, assume that the local error
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proved in equation (4.3) is henceforth uniform i.e there exists a function  : R} —
R, such that
lim e(At) =0

At—0

And if At is small enough:
Wn € [0, N — 1], [|®(Cprii) — Cyllee < e(AD)AE
Then there exists K > 0 such that [|Vj — C (-, t0)||c < Ke(At)

In this case, the RL price approximates uniformly the highest UVM price, which
shows in theory why this our RL model is relevant. The proof below is close to the

proof in [Par95, pages 49-50).
Proof. Firstly, denote
vn e [0,N —1],¢t = ®(Ct,) — CiF € L*(RY)

By induction, using proposition 4.4, we have the following inequality:

Vo = "(Viy) = @V(CY) = 8V H(Cxy +cxy)

<Nt )+‘I’N Hewoy)

A Cft 2+C\r 2)+‘1’(Ch 1)

_g) +®(cy_y) + Pleny_y)
N-1 N—1

SCF+Y ¥ (ch) =CH(to,.) + Y_ 2"(c))

n=(0 n=0

<oV 2(C

(

(CR

“(

(Cy

For the opposite bound of the inequality, we use a similar reasoning:
C*(t0,.) = Of = (CH) — f = B(®(CF) — ¢f) — ¢

< ®YCH) + lLI)(—CJ“) —cf

o (¢ +Z‘I’“ " VD+Z<1>““

n=I0
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Using now proposition 4.5, we then get:
N-1
Vo — C*(to, Moo < ||D_ ®"(Ech)
n=0 oo
N-1
<) e (£6) o
n=0
N-1
< Z C_THALHC:”:‘)C
n=0
N—1
<e(At)ALY e
n=0
_ e(At)AH1 —eT)
o 1 — e-rat
Since the function At — %5 is bounded on ]0,7] and At lies in this set, the
proof is complete. O
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5 Numerical Experiments

We implemented the model developed in the previous section. In this section, we

present the method and the results of this implementation

5.1 Method of implementation

First of all, all the RL code was implemented in Python. Most of the code is based
on [Sim18|. We only implemented the deep Q-learning (DQL) algorithm 2 because
this is the only algorithm mentioned in this thesis capable of managing infinite state
sets. We also implemented in C+-+ the BSB scheme defined in part 3.2.4 to compare

our results with this method.

We firstly coded the MDP (and the reward function) defined in part 4.1. The
associated hyper-parameters are mentioned in table 1. We used the Keras library
to build the neural network defined in parts 2.5.1 and 2.5.2. The hyper-parameters
of the neural network as well as the memory size and the frequency of target neural

network updates are presented in table 2.

One of the biggest problem we encountered is time complexity. This is due to the
fact that the neural network weights w are initialised randomly and give at the
beginning a very poor and inconsistent estimation of the price. For example the
estimated price of an option can be negative whereas it is always strictly positive, or
the estimation has not the same order of magnitude (10* instead of 10 for instance)
as the price. Thus, the neural network needs to be trained for hours in algorithm 2
or in other words has a very long transitional regime before estimating a price that

has the same order of magnitude as the true price.

To limit time complexity, we pre-trained the neural network on key states. When
the portfolio consists of only one derivative with final payoff F'(S7), the idea is to

estimate the (deterministic) function I with the neural network by simulating m
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Notation Hyper-parameter type Value Defined in part
M Total number of episodes 400 242
N Total number of steps 100 2.4.2

per episode/Time horizon
T Volatility upper bound of UVM 0.02 3.2.1
Omin Volatility lower bound of UVM 0.08 3.2.1
r Interest rate 0.03 321
to Initial time 0 4.1.1
So Stock price at time tg 100 4.1.1
Emag Maximum exploration probability 1 2.5.2
Emin Minimum exploration probability 0.01 2.5.2
Ae Exploration decay coefficient % =2-1074 2.5.2

Table 1: Hyper-parameters used to simulate the MDP X

instances of Sy = Sy (say SJ(\P, vy SJ(\?,")) and setting (Sg), N) as an input of the net-
work and (F(S‘Ei)), F(Sf{:))) as an output of the network. In our case, the functions
are smooth enough to use a small number of instances distributed regularly over a
99% confidence interval for Sy. In this case, the network should have a very good
or even a perfect estimation of the Q-value function at final time N (because the
Q-value function at times n > N is null), which makes the convergence of the DQL

algorithm much faster.

If we have a portfolio of derivatives with two different maturities 7y < T whose
payoffs are respectively given by G(St,) and F(Sr), we use a similar method so
that the neural network takes into account both F' and G. Let Ny € [0, N — 1] be
the first integer such that NyAt + ¢y > Ty (this can be interpreted as the discrete
maturity of the derivative with payoff G(Sg,)). To learn G in addition to F (at
time N), the neural network learns the following deterministic function at time Ny:

G(Sn,) + F(Sn,). It is assumed here that F(Sy,) has the same order of magnitude




5.2 Results and interpretation 40

Notation | Hyper-parameter type Value Defined in part
o Learning rate 1-1074 2.5.1
k Batch size 64 251
Number of neurons 50 2.5.1

in the hidden layer

[D] Maximum memory size | 220 = 1,048,576 252
Tenam Number of steps between 2N =200 2.5.2
two updates of Q‘er9¢t)
Pre-training epoch 20,000 5.1
m Number of instances 50 5.1

simulated for pre-training

Table 2: Hyper-parameters for the neural network, experience replay and double

Q-learning

as the price of the associated derivative at time Ny. Indeed, contrary to a portfolio
consisting of one derivative, the last estimation of the Q-value is not the true Q-value
but should have the same order of magnitude. It suffices to run the DQL algorithm
2 to have more accurate estimation of the QQ-value at this time. A similar method

can be used for several derivatives.

Note that pre-training can be applied in a lot of RL problems where the reward
is often null and the key states (i.e states where the agent get a crucial reward to
estimate the Q-value function) are easy to simulate. This method can be applied
even if the reward function depends on the current state and action (5,,, A,,) plus a

random quantity independent of the previous states and actions.

5.2 Results and interpretation

In this part, we compute the UVM highest price of three different portfolios using the

BS prices (if all components of the portfolio are either convex or concave), the DQL
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algorithm 2 and the descretisation of BSB equation defined in part 3.2.4. For the
last two methods, the total number of steps is N = 100. The DQL estimation is the
highest output of the neural network representing the Q-value function. If the BS
prices cannot be used to compute the portfolio price, we will use the discretisation
of BSB equation to estimate this price with N = 5000. This price will be assumed

to be the true price.

5.2.1 Price of a Call option

The first portfolio we price consists of only a Call option. Its payoff is given by
F(S) := max(S — K,0) where K > 0 is the strike. We chose one unit of Call option
with maturity 77 = 1 and strike X' = 95 Here are the results we obtained after

running the DQL algorithm 2:

True price | DQL estimation | DQL time | BSB tree | BSB tree time
estimation

8.428 9.138 25min 25s 8.424 0.041 s

Table 3: Estimations of a Call option price with maturity 7 = 1 and strike 95. The
DQL estimation represents the estimation of the DQL algorithm while the BSB tree
estimation represents the estimation of the price using the method in part 3.2.4 (the

times represent the running time of each algorithm)

Note that according to proposition 3.1, the true price can be calculated using the
BS prices (with volatility parameter ¢,,,,) here because a Call option has a convex
payofl function. We also present in figures 2 and 3 the prediction of the price by
DQL algorithm with respect to the number of episodes and the learning error defined
as the absolute value of difference between the true price and the estimated price.
Finally, we show in figure 4 the payoff/price predictions of the DQL algorithm just
after pre-training (figure 4a) and after running the DQL algorithm (figures 4b and

4c)
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Price estimation with respect to time
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Figure 2: Price estimation using either o,,;, (blue curve) or ¢4, (red curve) as a
first volatility action. It can be seen that the price starts from approximately 100 to
collapse to roughly 15 from first episode to episode 210 (transitional regime). The

estimation then gets more steady but still decreases gradually (permanent regime)

Before comparing the results presented in table 3, we focus only our interpretation
on the DQL result and the graphs. First of all, the DQL algorithm starts from
a value (100) that has not the same order of magnitude as the true price (10).
Nevertheless, the neural network predicts almost perfectly the payoff in 30 seconds
just after pre-training (see figure 4a) and this speeds up the transitional regime
that takes around 200 episodes instead of 2500 without pre-training. Thus, the
DQL prediction gets close to the true price in a reasonable time. Besides, as figure
3 shows, the prediction is relatively close to the true price (the learning error is
around 0.7) without converging to the true price. This over-cstimation can be due
to the predictions in figures 4b and 4c. In particular, the estimation of the payoff at
maturity N changes and becomes a straight line with a small slope after performing

the DQL algorithm (whereas the payoff is still the target at final time N).

From a RL point of view, this result remains good because firstly, the estimation
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Figure 3: Learning error with respect to the number of episodes during permanent
regime. From episode 280 to 400 this error slightly decreases (with a small noise) to

reach roughly 0.75

is close to the true price whereas there is no mathematical proof that the DQL
algorithm converges to the best expected sum of rewards. Secondly,the execution
time is relatively short knowing that this algorithm is very recent and the execution

time is generally much longer.

The algorithm also estimates correctly the policy because it predicts most of the
time the right action ... In figure 2, the estimation using o, as a first action
between times n = 0 and n = 1 (red curve) is just above the estimation using a,,;,
as a first action (blue curve). Moreover, the two curves are extremely close because
the difference between the two values should be linked in theory by the two values
OmaeAt = 8- 107* and 0,,;, At = 2- 107, Since these values are very close, the two
estimations are also very close. Note that to better estimate the price, we could
perform a Monte-Carlo method knowing the policy to derive the expectation. How-

ever, this method takes an additional amount of time and has not been performed.
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(c) Price estimation at time 0.5 after DQL algorithm. The
red (resp. blue) curve represents the true (resp. estimated)

price

Figure 4: DQL estimations of payoffs and price after performing a pre-training or

the DQL algorithm
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Unfortunately, comparing these results to the BSB numerical scheme, it can be easily
seen that this scheme is much better than the DQL algorithm in terms of accuracy
and speed: this method developed in part 3.2.4 is approximately 30,000 times as
fast as the DQL algorithm to get the same (or even a better) accuracy. Note further
that this accuracy can be significantly improved by increasing N (say N = 5000) in

a reasonable execution time (1Is to 5s).

5.2.2 Price of a simple convex portfolio

In the remaining of this section, we give results on two other portfolios but we only
add very few comments. The second portfolio we price consists of the same Call
option (maturity T = 1, strike K = 95) as the previous portfolio plus a Put option
(whose payoff is given by F(.S) := max(0, K — S)) with maturity 7" = 0.5 and strike
K =105. Since the two functions are convex (this is why the portfolio is then said
to be "convex"), the UVM highest price is also the BS price with volatility 4.

The results are presented below and in figure 5:

True price | DQL estimation | DQL time | BSB tree | BSB tree time

estimation

12.839 12.105 27min 14s 11.775 0.054s

Table 4: Estimations of a price of a convex portfolio consisting of one Put option
price with maturity 7" = 0.5 and strike 105 and one Call option price with maturity

T =1 and strike 95.

In addition to the comments we made previously, the DQL algorithm reaches the
permanent regime after 20 minutes and has relatively large oscillations around the
price (see figure 5), which here shows a frequent drawback of the algorithm. Never-
theless, our DQL algorithm works correctly because it returns a good approximation
of the price. This shows that intermediate rewards are taken into account by the

algorithm.
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Figure 5: Estimation of the convex portfolio price in permanent regime (with respect
to the number of episodes). From episode 200 onwards, the error (blue curve in (b))
is less than 2 (bold horizontal line in (b)). However, the estimation may fluctuate
without converging to the true price. Note that the best action chosen at time 0 is

very often o,,., (red curve in (a))

5.2.3 Price of a complex portfolio

We now price a more complex portfolio consisting of a combination of Put and Call

options at different maturities that can be either sold (non-negative payoff/quantity=-+1)

Option type | Strike K | Maturity 77 | Quantity New option type
Call 95 3 1 Bull Call spread
Call 115 3 -1
Put 93 2 1 Bear Put-Call spread
Call 110 2 -1
Put 95 1 1 Strangle
Call 107 1 1
Call 105 0.5 -1 Call
Put 103 0.25 1 Put

Table 5: Composition of the complex portfolio. The new option type is the name of

the option if the combination of Call and Put options are joined together
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or bought (negative payoff /quantity—-1). This allows us to test if a non-convex (and
non-concave) portfolio can be priced by the DQL algorithm. The composition of

the portfolio is detailed in table 5 and the results are showed in table 6 below:

True price (BSB tree | Time to find DQL DQL BSB tree | BSB tree
accurate estimation) | the true price | estimation time estimation time
20.874 5.063 s 23.517 22min 12s 20.818 0.062s

Table 6: Price estimations of the complex portfolio. The true price was computed
using the a BSB tree scheme with N = 5000. For the two other estimations, N is

still equal to 100,

These results show exactly the same behaviour as explained above. The only thing
we can add here is the ability of the DQL algorithm to adapt its Q-value estimations
despite the potential change of optimal volatility parameter ¢ € A even if this

adaptation raises a little larger error.
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6 Conclusion

In this thesis we used a Reinforcement Learning approach to find the highest price of
a portfolio of (European) derivatives under the uncertain volatility model. To do so,
we modelled the Markov decision process as a piece-wise Black-Scholes model where
the action is the volatility parameter (between o, and opa.). We explained why
the best possible volatility choice (to maximise the discounted expectation of the
payoff under pricing/risk-neutral measure) yields a price close to the Black-Scholes-
Barenblatt equation, a partial differential equation satisfied by the UVM highest

price.

In order to manage an infinite state space, we used the deep Q-learning algorithm.
This learning algorithm approximated correctly different portfolios of derivatives
with a non-negligible but relatively small error within 20 to 25 minutes. Know-
ing that this algorithm is very recent, does not necessarily converge to the optimal
value, and takes generally hours for training, it is very efficient from a Reinforcement

learning point of view and gives promising results.

However, we also tested a numerical scheme/recombining tree introduced in [ALP95],
that remains much better than the Reinforcement learning approach. Indeed, this
method is roughly 30,000 times as fast as the deep Q-learning algorithm (less than
0.1s) to return a similar or even a better result. Moreover, using this method, the
highest price under the uncertain volatility model is also very well approximated
within 1 to 5 seconds. It then turns out that this method is much more appropriate

for uncertain volatility pricing.

As a potential future work, one can think about hedging an option with a set of
vanilla options (i.e reducing the extreme prices or the risk of an option using vanilla
options) under either the Reinforcement Learning model we introduced in this thesis

or the recombining tree (this scheme also gives implicitly the volatility choice). To
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do so, exactly like [Bue+19]|, one can implement a second Reinforcement Learning
model where the MDP has exactly the same state process as above but the action
is here the quantity of vanilla options. Similarly as above the reward is the payoff

of the option (times the quantity) if maturity is reached.

The only difference between approach in [Bue+19] and our approach lies in volatil-
ity. In [Bue+19] volatility is simulated from a well-known model (e.g Black-Scholes,
Heston), whereas in our approach, volatility is determined by either our Reinforce-
ment Learning model above or the recombining tree given the quantities for each
vanilla option. To generalise the optimal volatility policy for every possible quan-
tity, one can use for example a neural network where the inputs are the quantities
and the state and the output is the optimal volatility or a probability of being the
optimal volatility for each volatility parameter o,,;, and 0,,,.. Once this task has

been done, hedging can be implemented like [Bue+19].
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A Proofs of results on Bellman equations

In this appendix, we prove propositions 2.1, 2.2, 2.6 and 2.7. To do so, we remind

two useful theorems of functional analysis below:

Theorem A.l. (Banach’s fized point theorem) Let (X, d) be a complete metric
space and let v € [0, 1[. If ¢ : X — X is a y-contracting mapping (i.e for any z,y €
X,d(d(x),0(y)) < ~d(x,y)) then there exists a unique x,, such that #(z.) = Too.
Furthermore, the sequence (z, ),y defined by the recursive relation z,.; = ¢(z,)

with an arbitrary o € X converges to 2 and also verifies d(z,2z,) = O(%").
n—+o0

Theorem A.2. Let & be aset. Thespace L>(S) := {V : & — R measurable and bounded}

with uniform norm || - ||« is a complete metric space.

Proof of proposition 2.1. This proof does not use the above results. A simple

calculus yields the above result (2.2). Let x € S, we have:

+oce
Vo) = B | 3 /*R(Xk, Ag)| Xo = a:]
L k=0
+oo
= ]Eﬂ. R(Xn, An) -+ ¥ Z ’}"k_lR{X;_., Ak) Xn = ‘1,"|
k=1
i +oo
=E, |R(z, Ag) + 7Ex Z'}rkR(Xk.,.l, Ak.}.1)|Xll ‘Xo = 'r] by linearity and tower property
I k=0

=E. [R(z, Ag) + 7V (X1)| Xo = 2]

Since the distribution of (X, A) does not depend on time n, the expression
E. [ ,:; 'y"'R(XkH,AkHNXI] is another definition of the value function, which

shows the last equality. O
Proof of proposition 2.2. Set for every V' € L>(&) the functional map:
¥(V):= R+~P(V) (A1)

Where for every = € S:

R(z) = [, R(z,a)n(da|z)

(A.2)
P(V)(z V(zp(da'|z, a)m(da|z)

) = f(u..:::')EAXS
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Any point in L*(S8) satisfies Bellman equation (2.2) if and only if it is a fixed point
of I. This the case for V. according to proposition 2.1 and because V. is bounded
and measurable (it is defined from a conditional expectation). We show here that 1
is y-contracting to apply fixed-point theorem A.1 and thus show the expected result.
We firstly notice that P is a linear mapping verifying:
V(V,z) € L*(S) x S, |P(V)(z)| < / IV|oep(da’|z, a)m(dalz) < [|V]|
(a,2")€AXS

Hence, it turns out that for any U,V € L*(S8)

I ¥(U) = ¥(V)loo APU = V)lloo AU = V|

Which concludes the proof. O

Remark A.1. If § x A is finite, then the boundedness condition is satisfied and
functions R and P are respectively finite-dimensional vectors and finite-dimensional
matrix. This proof and fixed point theorem will help us define a method to find V

later.

Proof of proposition 2.6. This result is a consequence of fixed point theorem A.1
because 1 is y-contracting and L>(8 x A) is complete according to theorem A.2
(replace S by S x A). Let (Q1,Q2,7,a) € L®(S x A)?2 x S x A. Let a*(z) denote
the action maximising ()1 knowing . We then have:

V(Q1)(x, a) — ¥(Q2)(x,a) <7 / (Qu(z, a”(2")) — Q2(2', a”(2")))p(d2’|z, a),

Ja'eS
<y [ 101 = Qulla(d'lz. ) = 71Q1 = Qall
This inequality shows that 1 is y-contracting, and then proves the result. O
Proof of proposition 2.7. Using equations in remark 2.2, we have:
V(z,a) € § x A, Q«(z,a) = R(z,a) + VEx [Qu(X1, A1)| X0 = 2, Ag = 4

*

is optimal, A; € argmax @.(X,d’)
a'eA
almost surely. This yields the expected result. |

But according to proposition 2.4 and since 7
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B Some theorems on Stochastic control and proof
of BSB equation

We state below some theoretical results on stochastic control in the dimension 1
case. A more general version of these results can be found in [Toul0, Chapter 2,
pages 22-42| with all the proofs. No proof of those results will be developed in this
appendix. Afterwards, we use this theory to show that the UVM extreme prices

satisfy the BSB equation (theorem 3.3).

Definition B.1. A control set is a borel set U C R

Let T € [0, +o0o[ and let W be a brownian motion. Set for every ¢t € (0,T], F; =

o(Wy,u < t) to get the natural filtration (F})o<i<r
Definition B.2. The set of possible control processes is defined by:

progressively measurable

Uy = (U)0(<TI[0._T]XS?—)UI .
e E [foj ufrft} < 400

(B.1)

Where the progressive measurability is with respect the filtration (B([0,t]) @ F¢ )iy

and the borel o-field B(U)

Given a control process v € Uy, we consider the controlled stochastic differential
equation:

dSY = b(t, SY, v)dt + <(t, SY, v)dW, (B.2)

Where b: [0,7] x Rx U = Rand ¢:[0,7] x R x U — R are two functions.

Theorem B.1. If there exists K > 0 such that for every (¢, (x,y),u) € [0,T] x R? x
U,
[b(t, 2, u) — b(t,y,u)| + |s(t,z,u) — (b, y,u)| < K|z —1yl
[b(t, z,u)| + |s(t, z,u)| < K(1+ |@|+ |u|)
Then given a constant initial condition Sf, = x € R at time #o € [0, T[, the stochastic
differential equation (B.2) has a unique solution denoted by S™** on the interval

[to, T}
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This theorem allows us to define the value function in the stochastic control context.

Definition B.3. Let ¢g,r : [0,T[xR x U — R be two continuous functions such
that r is bounded and let f : R — R be a function verifying the quadratic growth

condition:
3K > 0,9(t,2,u) € [0, T[XR x U, |g(t, 2, )| + | f(@)] < K'(1+ [u] + %)

A value function C : [0,7] x R — R is the function defined by the expression (for

every (t,z) € [0,T] x R):

.
C(t,z) = sup E [ / BY(t, s)g(s, 8”, vy)ds + B(t,T) f(S%)
t

vely

S = .I‘j|

T
= supE [ / B(t, 5)g(s, S vy)ds + 8”(t, T) f(S;z““‘-")}

reldy

where 8%(t,s) = e~ J: "0.S5we)d0 i the first equality and (¢, s) = e~ Ji 7055 we)do

in the second equality
Definition B.4. Define the map H:

[0,T] xR* - R
: —r(t, x, u)a + b(t, x, u)d
(t,z,a,0,7) — sup 1
e \ 3 (st 2,0y + gt 0, 0)
We now state the main result of this appendix to show that the UVM extreme prices

satisfy the BSB equation.

Theorem B.2. Suppose firstly that the functions b and ¢ satisfy the conditions in
theorem B.1 and secondly the functions r, f and g satisfy the conditions in definition

B.3 and C € CY2([0, T[xR,R). Suppose further that H is continuous and:

52
V(t,z) € [0, T[xR, H (t,x,C(t,;r)._é;—S(t, z), ig(tx)) > —00

Then C satisfies the Hamilton-Jacobi-Bellman equation on [0, T[xR:

ac oc o |
Tt + H (6.2,00,2), G (6.2), Gz (00)) =0 (B.3)
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A more general version of theorem B.1 with a proof can be found in [Toul0, Theorem
2.1, page 28]. Regarding theorem B.1, its more general version (with a proof) can

be found in [ToulO, Theorem 2.6, page 38|

Proof of theorem 3.3. First of all, the terminal condition immediately holds if we
look at time T'. Regarding the BSB equation (3.5) for C'F, it is a particular case of

the HJB equation (B.3) where r > 0 is a constant and:

U = [Fmin, Omaz]
b(t,S,u) = rS
< <(t,S,u) = Su
g(t, 5 u) = 0
f(8) = F(S)

We then get:

H(t,S,0,a,v) = —r0+rSa + %Sz sup  (u?7)

Tmin SUSTmar

1
= —rf+rSa+ 3 (SH(7)" 5>y
All the constraints in Theorem B.2 are checked (H is continuous) apart from the
smoothness of C*. This last hypothesis is assumed in the theorem statement. We
can then use the Theorem B.2 to show that:

oC+ ac+ 1 (. [(PCH\\® ,0%Ct
5 —rV*t +rS 35 +§(L+( 557 )) 52 555 =0

We also obtain the expected result for C~ by applying the above result with D :=
—C"~ instead of C*. The only change is f(S) = —F(S). Once the BSB equation
is derived for D, it suffices to replace D by = —C~ and to notice that for every

r € R, ET(—xz) =3 (z) to derive the BSB equation for C'~. O
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C Proofs of properties satitisfied by the map ®

In this last appendix, we show propositions 4.1,4.2, 4.3, 4.4 and 4.5 that are helpful
to understand the operator ¢ as well as the link between our RL problem and the

BSB equation.

Proof of proposition 4.1. The operator @ is well defined if and only if for any
V e LRy ), ®(V) exists and belongs to LP/(R? ). Let V be such a function and

let o € A. By definition, there exists K > 0 and m € N such that:
Vs e R, |V(s)| € K(1+4 ™)

and for s € RY,

[ oo ()

<[

(_ cv/_1.+(‘—°7);ﬁ) dx

7 ( (,,\/—”( —%)M)m)dm
(s

.(T)an Atz+ m(: —"’2—2]£de)

| /\

I/\

]

The last integral is finite because ¢ is a O{e_’T) as ¥ — +oo. Knowing that A is
finite, the proof is complete. O
Proof of proposition 4.2. As reminder, C" is defined by the expression

Vt,s € [0,T] x R, C*(s,t) = 5;51531 EQ [F(S7)|S; = 8]
Since F' € LP?(R?), it follows that for any UVM process S with initial condition s

at time ¢:

|EQ[F(Sr)|S; = s]| < K (1+EQ[SP|S, = 3])

Since the new payoff function on the right-hand-side of the inequality s — s™
is convex, the supremum on Vol is a BS model with volatility ¢,,4, according to
proposition 3.1. In this case, ST follows a log-normal distribution exatly like the

proof of proposition 4.1. The proof is thus complete. O
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Proof of proposition 4.3. We prove this result by a backward induction. By
definition, Vy = F. Let n € [0, N — 1]. According to proposition 2.4, the optimal
policy 7* verifies for any state x = (s,n) € S the condition Vo € A, 7*(c|z) >

0 = ¢ € argmax Q,-(z,0). Furthermore, remark 2.2 shows that for o. € A:

e
Qn+(z,0) = VE? [Vie (X1)| Xo = (5,n),00 = 0] = 7E? [Voi1(X1)| X0 = (s,n),00 = 0]
Because the reward is null. Applying again remark 2.2 yields:

L{”(Fj) = -E-‘lgﬁ (2‘41' (-1:7 Gr(:) = '}]EQ [MH—I(XI)'XU = (37 n): adg = UC] = q)(\:/u-{—l)

Because the above expectation considers a log-normal random variable driven by a

BS process. It follows immediately from proposition 4.1 that V,, € LP (R%) O

Proof of proposition 4.4. We prove this result by induction. For the case n =1,

Let 0 € A. The operator

2

O,V - / e MG (2)V ( x ¢ ﬂm(""ﬂ) dz
Jr
is linear, non-decreasing (i.e if U < V for U,V € LY (R?), then @,(U) < ®,(V))

and ¢ = max ®,. Hence, for any U,V € L"(R%)
ae

P (U+V)=2,(U) + P, (V) <2(U) + P(V)

Taking the maximum with respect to o on the left-hand-side of the inequality shows

the sub-additivity of ®. If in addition U < V, then

8,(U) < By(V) < &(V)
Likewise, the maximum with respect to o on the left-hand-side of the inequality
shows that ® is non-decreasing.
Let n € N* such that ®" is both sub-additive and non-decreasing. First, if U,V €
LPe(R%) and U < V then:

(V) = "(B(U) < B(&(V)) = (V)
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Which shows that ®"*! is non-decreasing as well. If now U,V € LY (R?), then

QU+ V) <®(U)+ @(V) and since " is non-decreasing then:
(I)IH-I(U-}- V) S (I)n(q)(U) 4 @(1‘/)) S (I)“_H(U) 4 (I)“-H(V)
Which completes the proof. O

Proof of proposition 4.5. Let 0 € Aand V' € L>(RR%), using the same notations

as the last proof, we have:
00Vl < [ G@IIVilade = [Vl
JR

Taking the maximum in A (a finite set), we obtain the expected result for n = 1
since the right-hand-side of the inequality does not depend on o. The end of the
proof is an induction. Let n such that the expected result is satisfied. It turns out

that:

||(I)nll(v)||oo = ||(I)(q)n(v))”x < e—v‘ﬁt”q)ﬂ(v)”m S fj_?‘(vr.-l-l):ﬁt”v”m
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