Imperial College
London

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

Use of Kernel Methods for Dynamic
Hedging Incomplete Markets

Author: Xiaofu Tang (CID: 01904015)

A thesis submitted for the degree of

MSe in Mathematics and Finance, 2020-2021




Declaration

The work contained in this thesis is my own work unless otherwise stated.




Acknowledgement

I would like to sincerely thank my industrial supervisor Gordon Lee from UBS for giving me this
precious opportunity to do this summer project with him and for his valnable assistance, patience,
inspiration, and guidance. I would also like to express my thanks to my academic supervisor Dr.
Jack Jacquier for his support and suggestions. Great thanks to MSc Mathematics and Finance
and all the lecturers for their dedication and the knowledge I gain through the yvear. Last but
not least, I would like to express my gratitude to my families and friends for their company and
encouragement.




Abstract

Hedging, an indispensable part of risk management, is a strategy that tries to limit risks in financial
assets. Typical hedging techniques involve taking opposite positions in derivatives that correspond
to an existing position. When making predictions of future value movements of financial derivatives,
the model assumption of the underlying asset needs to be imposed, leading to a non-portable and
model-specified hedging strategy. In this paper, by drawing inspiration from Black-Scholes discrete-
time hedging and Q-learning framework, a model-free hedging strategy is proposed and computed
by Dynamically Controlled Kernel Estimation (DCKE), a start-of-the-art framework for pricing
and hedging. The newly proposed hedging strategy is a function of hedging assets value and the
alue of the financial derivatives to be hedged with no constraint of the model assumptions of them.
As a result, it also works in the incomplete market where the underlying asset is not tradable and
the financial derivative needs to be hedged by a partially correlated asset. Moreover, as it does
not constrain the target derivative product, it can be used to hedge not only options but also xVA
in the incomplete market.
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Introduction

This paper aims to propose a model-free methodology based on kernel estimation to dynamically
hedge the incomplete market where the perfect hedging is not possible. In the financial industry,
hedging is an indispensable part of risk management. It is a way of risk management strategy
that aims at reducing the risk of loss caused by contingent future price movement. By holding
the opposite position in the related assets, the potential losses in investment can be offset to some
extent. In the complete and arbitrage-free market, referring to the celebrated Black-Scholes-Merton
model, there exists a unique risk-neutral measure under which options have a unique no-arbitrage
price, and all the risks could be perfectly hedged by continuously trading the underlying asset
and the risk-free bank account in a self-financing way. The unique price is computed by the
discounted payoff under the risk-neutral measure, and there is no risk of mismatch between the
hedging portfolio value and the true option value. The position of the underlying asset could be
determined by the first-order derivative of the option value to the underlying asset value, namely
the delta-hedge.

However, the perfect hedge is not operable in the real world, and there are several reasons for
that.

e The perfect hedge is only possible in the complete market, where all risks are directly linked to
tradable assets, and the real market is far from being complete. In the real world, a hedging
strategy can only be operated at a discrete-time. The removal of the continous-trading
assumption would expose the trader to the risk of hedging error.

e In the incomplete market setting, pricing and hedging an option is no longer a no-arbitrage
problem, instead, it is a trade-off between the expected utility and the extra risks needed
to be taken. The attitude towards risk exerts an impact on the hedging strategy through a
risk-averse parameter A. And hedging strategy does not totally depend on the determination
of option prices. The maximization of expected utility/ the minimization of local variance
replaces the role of the no-arbitrage principle.

e Even if the perfect hedge is attainable, it is not desirable. The reduction in risk provided by
hedging also typically results in a reduction in potential profits. Even if the perfect hedge is
possible, the potential profit would be eliminated as well.

As a result, the perfect hedging is neither attainable nor desirable in the incomplete market.
And this leads to the problem we try to solve: how can we effectively pricing and hedging in the
incomplete market?

Looking closer, the crucial part for the hedger to construct an effective hedging strategy is
making precise estimation about the future value change with the information available at present,
which necessitates the use of conditional expectation. In this paper, we employ the dynamically
controlled kernel estimation (DCKE) to compute the conditional expectation. By using that, the
option pricing and delta hedge can be computed at the same time. In the industry, Least Square
Monte Carlo (LSMC) is commonly used to compute conditional expectation. DCKE outperforms
existing methods in terms of convergence speed and the estimation in delta and "tails”. On top of
traditional kernel estimation, control variates are added to DCKE.

In this paper, we aim to propose an effective and model-free method for pricing and hedging in
the incomplete market. This paper is structured as follows. Chapter 1 starts from the economic
set-ups of the incomplete market and an optimal hedging strategy in terms of variance minimization
is proposed under the Q-learning framework, following by the introduction of two methodologies
that help compute the hedging strategy by giving an estimation of conditional expectation. The
fitting results and features of them are discussed. Chapter 2 applies the outstanding DCKE in the




incomplete market. We first assume the underlying asset follows the Geometric Brownian motion
(GBM) and Ornstein—Uhlenbeck (OU) process, and the results are compared with the closed-form
formula to illustrate that our results are valid without the restriction of model choices. Followed by
justifying the model-free property of the newly proposed hedging strategy, more complex models
are applied. Copulas, a data-driven model which does not have a closed-form hedging solution
is considered, and the corresponding hedging strategy is computed. In Chapter 3, we switch the
focus toward CVA and aim to find a hedging strategy for CVA in the incomplete market. We
employ the default probability approach to evaluate counterparty credit risk and compute the
newly proposed strategy under simple model assumptions, the result of which is then compared
with the benchmark provided by closed-form solutions for specified models.




Chapter 1

Set-ups and Methodologies

We will first set up a simple incomplete market model based on simple options writing on an
underlying asset but hedging with another partially correlated tradable asset. Taking the risk
averse parameter into consideration, a general hedging strategy is derived with the help of Q-
learning framework. And then a commonly used method in the industry, Least Squares Monte
Carlo (LSM), is introduced along with the brief analysis of its fitting results and drawbacks. After
that, dynamically controlled kernel estimation, a brand new methodology that outperforms LSM
in terms of convergence speed and fitting at tails, is discussed.

1.1 Set-ups and Q-equation in the incomplete market

Suppose there is an option writing on a non-tradable underlying asset S, and there exists another
tradable asset I which is partially correlated to the asset S. To hedge the option, a hedge portfolio
composed of a tradable asset H and a risk-free bank account B is set up. At time t, the value of
the hedge portfolio is:

“.1 = .lfg.Hg - B:

, where r; is the position taken in the asset H to hedge the option at time t.

The aim is to match the value of hedge portfolio to the value of option as close as possible. At
maturity, these two values could be set identically. In addition, at maturity, the position in the
option would be closed, as the option would either be exercised or not. And the position in the
asset H should be closed along with the option (i.e. zp = 0}, altering the contingent value of
portfolio into certain wealth. Thus we have the boundary condition at maturity T°

IIy = By = Gr(St) (1.1.1)

, where G7(-) is the payoff function.

Before maturity, the portfolio value 1I; is not measurable, but can be computed backward recur-
sively using the restriction of hedging portfolio being self-financing. From time t to time t + 1,
the bank account would earn the interest at the risk-free interest rate r, changing from B, to
€™ B,. With the position in the asset H unchanged, the value of portfolio I1,4, right before the
next re-balancing is then #, H, , + "' B,. And the portfolio value at time t + 1 right after the
re-balancing is By, + x40 Hyp 1. As the hedging strategy is self-financing, equating these two
alues, we have

At
e B+ Hi = By + 11 Hen

Re-arranging the equation and combine with the terminal condition By, the bank account at time
t can be computed backward recursively:

By=e "By + e Hypy — 2 Hy)  t=T—1,...,0

In order to compute the hedging portfolio value II; at t < T, add x,H; to both sides and get the
following recursive equation for 11;,




=1L = f?_rm[B:H + o e — o + ﬁrm-rz H:]
= e "My — 7 (Hypy — €™ Hy)

= E_IA![”.:+1 — :TTIAH:I _.where A.H{ = HH_]_ — EIA!Hf (112)

A recursive equation of portfolio value II; is gotten as above. Combined with the boundary
condition (1.1.1), the portfolio value could be computed step by step backward.

To find the optimal hedging strategy, we need to think about the purpose of hedging. Imple-
menting a hedging strategy is to reduce the future risks the traders are expose to. The hedging
strategy {x, }7_, that we want is the one minimizes the variance of hedging portfolio value II,. Em-
ploying the recursive relationship of portfolio value, we get the following result. We first compute
the conditional variance of variance

L"ar(l[d,?‘}] = 1":11‘(6_"3![1[!4_1 — :T.'gAHt“f?—g]
= Var(Ily 1| 7)) + 22Var(AH|F,) — 22,Cov(1T, 1, AH,|.F,) (1.1.3)

Computing the first order derivative of {1.1.3), the optimal hedge would be obtained as follows.

x} = arg min Var(IL;|. %)
arg min(Var(1l, | %) + :r;2 Var(AH,|.7;) — 2z,Cov(Ily 1, AH, | F))
Cov(1li 11, AH|F)

=l 4 =T-1,...,0 114
Var(AHZ,) e (1.14)

We first define the fair price of option (; as the expected value of hedging portfolio: € =
E[lL;|.#]. It is worth noting that, in the incomplete market, pricing an option is no longer a
no-arbitrage problem, but a trade-off between the expected return and the extra risk needs to
be taken. As a result, the fair price is not same as the ask price. Extra risk premium needs to
be added on the top of the fair price to compensate for the extra risk taken. With risk averse
parameter A, we can set the risk premium to be the risk averse parameter times the discounted
variance of portfolio value in the future, and then the ask price becomes

T
O = Byl + A e " Var(lly | F) | )

t'=t

The object moves from minimizing the hedging error to minimizing the ask price, a more general
hedging is set up. Notably, this hedge can be used for both speculating and hedging, instead of
only aims at hedging. Finding the minimum ask price C?* is same as finding the maximum of its
negative, Maximizing V; := —C®* then lies in the reinforcement learning area, therefore we state
the problem using the langnage of QQ-learning.

We now re-write the action value function to find the recursive relationship:

T
Vi = By[-T, =AY Var(lly|Hy = b,z = )| Hy = h, x, = 1]
=t
T
= B[~ — AWar(Il|H; = hyzy =z) =X Y Var(lly|Hy = h',z¢ = 2')|H; = h,z; = 1]
t=t+1

= Ey[-1L — AWar(lle|Hy = hyoe = x) + e A (Vi + Eir [ | Fopl )| He = by = 1]

Replacing equation (1.1.2) back into the derivation and re-arranging the equation, we obtain the
Bellman equation:

L’g = Ef[fi(:fg,ﬂg,ﬂg+]_) - ﬁ_J.At‘/',f+1|.Hg = !L,:Ig = I] . t=1T— 1_. .0 (11:])
, where the one-step reward is defined as

fa[:rg,Hg.Hg+]_) = E_IIQIIEAH; — /\L”(l?"(].[dﬂg = h,_.:l'.‘g = 1")
= e_"m‘r!f}.ﬂ! — )\9_2“&: Eg[].ﬂ[?_'_]_ — 2:1":&&“: T+ ;rf(H!)Q|H! = h._. Iy ==




N where lH[H_]_ = “-!+l — E[l[g+1] and Affg = ﬂHg — E[AH;]

The action value function, also known as the () function, defines the value of taking action r
in state h under a policy w, denoted by @, (h,z). Mathematically, z; = w(hs, t). ; is the action
taken at time t, whereas w(h;,t) is the function mapping the state (H; = h,t =t) to the action x,.

We define the function @, = E[V;|.#] = E[-1I; — )\Z!I::t Var(Ily | #¢)|#] and aim to find
the maximum value of it, setting up a value maximization problem.

The object function @ could be regarded as the expected value of the total reward over any
and all successive steps, starting from the current state, proposed by Halperin (2019)[1].

By decomposing the value function into two parts, namely the immediate reward plus the
discounted future values, the complex optimisation problem would be break into simple, recursive
sub-problems to find optimal solution:

Q: = Eg[fl’g - ymax Q;+1|H: = !I_.:].‘g = :1.‘]
Ty
, with the terminal condition, Rt = —AVar(llr) and Q1 = —1lr — AVar(llr).
Putting it back to the value function ¢,
Qi = Eyfe ™M AH, — Ae MBI — 20, AH, + 27 (H,)?| Fo) + e Q| F) (L.1.6)

Observing the value function (), it can be regarded as a quadratic function of position r;. Com-
puting the first order derivative and setting it to be zero, we can then get the optimal hedging
strategy

= E:l&ﬂtﬂzﬂ s Q,\,_.E.-m &H!L%]
‘ E[(AH,)2| 7]

(1.1.7)

The optimal hedging strategy presented above is a critical result for this paper. Note that during
the derivation, the only condition used is that the hedging strategy is self-financing. As a result,
the hedging strategy proposed can be used to hedging any product with contingent future value,
such as option and CVA, which would be discussed in Chapter 1 and Chapter 2 respectively. To
hedge a product, just set the product value being hedged equal to the expectation of hedging
portfolio value at each time step.

When hedging an option, taking the limit as At — 0, the optimal policy around time ¢ could
be obtained

lim 2t — ac, g —r 1
Aot T OH,  2\e? H,

Note that if 4" = r or the risk averse parameter A — oo, it converges to the local-risk minimization
delta given by equation 1.1.4. Furthermore, when the partial correlation p — 1, underlying asset
and tradable asset being perfect correlated, it converges to the Black-Scholes delta.

Plugging equation 1.1.7 back to equation 1.1.6, a recursive formula for the optimal action-value
function is obtained:

QF = YE[Q}, — YA, + Az 2(AH)?) L for t=0,..., T —1

1.2 Methodologies

In this section, two methodologies of computing conditional expectation are discussed, namely
Least Squares Monte Carlo (LSM) and Dynamically Controlled Kernel Estimation (DCKE). The
regression enables us to estimate the pricing and hedging strategy along with the evolution of
asset price, which provides new information with time passes by. The regression help avoid the
necessity of nested Monte Carlo, leading to higher computational efficiency. LSM is a commonly
used methodology for estimating price and hedging strategy conditional on the current asset price,
the algorithm of which is introduced in the following sections. The analysis of its fitting results
and shortcomings is presented as well. According to Kienitz (2021)[2], DCKE manages to address
the drawbacks of LSM, proves a patent and eflicient methodology. It is a combination of kernel
regression, control variates and gaussian process regression. Each of them would be introduced,
and this section is finished with the algorithm of DCKE.




1.2.1 Least Squares Monte Carlo

The Least Squares Monte Carlo approach, as per Carriere (1996)[3], Longstaff and Schwartz
(2001)[4], is commonly used in the industry to do the pricing and hedging for financial deriva-
tives by working out the conditional expectations. Least Squares Monte Carlo is an approximate
dynamic programming approach used to price and manage options with early and multiple exer-
cise opportunities. The underlying asset price evolves with time, which provides new information,
leading the changes of option price and hedging strategy. LSM provides a convenient and eflicient
way to do the pricing and hedging at intermediate time step, avoiding the repeatedly simulation
at each (i.e. avoiding the use of nested Monte Carlo simulation).

1.2.1.1 Least Squares regression

In the scenario of option pricing, there are two common applications of the regression: function
approximation and variance minimization.

To define the setting for the function approximation, referring to Grau (2008)[5], there are
several assumptions needed:

Assumption 1.2.1. A data set (X,y) is provided, X € R™*y € R".

Assumption 1.2.2. The rows x' € R* are independent and identially distributed realizations of
a random vector with a probability density function p(x), which is non-zero everywhere on the
cube D := [Xyin: Xpmaz |, and zero outside.

Assumption 1.2.3. The provided values of y are noisy observations of f(x'):
yi :f(xi)—ﬁi Jori=1,...,n
. where €' is random error with mean zero (i.e. E[¢'] = 0) and is independent of x'.

Assumption 1.2.4. the function f:R* — R has a representation f(x) = ZT‘:I ajbj(x), x € R*,
where b; € B,j = 1,...,00 are bounded basis functions b;: R* — R of a vector space B C ¢! with
[|b;(%)|]oc = ¢; <00, IX €D [b(x)| >0, for j =1,..., 00.

Let the assumptions above to be satisfied. The local basis approximation f™ of the function f
induced by the set of samples (X, y), X € R™*y € R" with function space B™ spanned by the
vasis function b;, ..., by, € B, is given by

f{u — d{_&bj (x)
i=1
, where f'“ eB"eB andaj eRforj=1,....m.
And the coefficient vector 8™ = A(X,y), a™ = (a},...,a")? with a suitable function A(X,y)

Il /a, an
e AN (€) : | —| ¢ Il <e ¥nZ=Ne

~ 1

i L

We then move to the question of how to find the function A(X,y), which determines the coeflicient
vector 8™ given the noisy observations y € R™ and the basis functions of interest b;(x) € B™,
thus giving the local basis approximation. The result we provide by the following theorem.

Theorem 1.2.5. Let the assumptions stated above be satisfied. The local basis approzimation
f"™() of function f(-) based on a set (X,y) of n noisy observations is given by

m
=S
i=1
., where

a” = A(X.y) = arg min ||B(X)"a" — y||»
o

= (B(X)"B(X))"'B(X)"y (1.2.1)
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, with

bi(x") ... ba(x")

Then lim,, 4 yec Jfw’”(x) = Ely|x|, an unbiased estimator of the observations y given x.

1.2.1.2 Demonstration of LSM on a European call option

Here we explain the algorithm for LSM using a European call option (Algorithm 1). The details
of path generation would be explained later in section 2.1.3:

Algorithm 1: LSM for hedging and pricing a European call option.
Data: strike price K; risk-free interest rate r; number of time steps T'; length of time step
At: mumber of paths n; number of samples u; price evolution sequence Sy, with
each length n for i = 0,...,T; option price sequence V;, with each length n for

i=0,...,T
Result: mesh points of spot price sequence M;,; estimation of option price sequence Vi, :
delta hedge position &, with each length n for i =0,...,7
Set arrays: Vi = (S-!"_l_ —K)tforj=1,...,n; I;;:I; Ty

for at each time step ti fori =T —1,...,0 backward do
draw w samples from S; : M} for j=1,...,u
get a;;, by fitting the regression using exaft. simulation: Z&: ai;‘.b;‘.(Sf‘] E] e"'ml';’;H
put sample into fitted regression model: l’: =3, i b‘(111£’")
Lﬂtf =1D— ?fnrerpomrion(ﬂjfl, l;’tf : Sfl )
sd — —rAty
Lff =€ !L!{+1
A3 aubi(M])
aM],

hedging strategy 1"{ =

Consider a European call option with parameters stated in Table 1.1, we nuse the Least Squares
Monte Carlo with Legrendre basis function to do the pricing and hedging at intermediate time
steps using the algorithm 1. The prices of option given by LSM and Black-Scholes formula at time
t = 0.25 are shown in Figure 1.1, and the delta hedges of which are shown in Figure 1.2.

General Features Values

Initial underlying stock price Sy, 100

Strike price K 100
Risk-free rate r 0.01
Volatility for underlying stock o 0.3
Maturity time T 1 year

Time step ¢; [0, 0.25, 0.5, 0.75, 1.0]
Number of path n 10000

Basis function b(x) Legrendre
Polinomial degree k 10

Table 1.1: European call option parameters for LSM

In Figure 1.1, the resulting option value obtained by LSM is compared with the option value
given by Black-Scholes pricing formula. It can be seen that the fitting error increases along with the
increase of underlying asset price, suggesting that LSM gives a better fitting in the "out-of-money”
case than in the "in-the-money” case. And the similar tail deviation can be observed in Figure 1.2,
the large discrepancies lead to the motivation of finding a more eflicient and accurate methodology.
In the next section, a start-of-the-art methodology would be introduced, which manages to fix the

drawbacks of LSM approach.
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1.2.2 Dynamically Controlled Kernel Estimation

Observing the optimal hedging strategy we get in equation (1.1.7), the key to computing the
hedging strategy is to efficiently estimate the conditional expectation. Luckily, the dynamically
controlled kernel estimation is there to help. It outperforms the existing methods such as Least
Squares Monte Carlo in terms of convergence speed and fitting at the "tails”. Dynamically con-
trolled kernel estimation is a methodology developed based on the kernel regression, control variates
and Gaussian Process regression. Each of them would be briefly discussed as follows.

1.2.2.1 Kernel regression

In statistics, the kernel estimation is a non-parametric way to estimate the probability density
function of a random variable. The expectation of some variable ¥ conditional on the random

variable X could be denoted as
E[Y|X] = m(X:Y)

;where m represents the kernel estimator.
Before stating what is the kernel estimation, the notion of local regression needs to be clarified.

The local regression is a combination of moving average and polynomial regression, breaking the
global regression into many polynomial regressions with smaller data set. The idea of it is to
perform a weighted polynomial regression, in other words, to perform a regression around a point

12




of interest using only training data that are “local” to that point, where the weights are determined
by the kernel function of choice.

With given degree p, a polynomial regression is performed against y and (r,z2,...,2"). The
Taylor polynomial of an a-th differentiable function f at point z is

9" flx)

al

T(fizp)(a) =) (a—x)°

la|<p
The coefficients of local regression are computed by minimizing the cost function

N

To(B) =D _(T(f:2:p)(x:) — ye)*wi

i=1

, where the weights w; are usually chosen to be the exponential kernel K(x;) = P:]‘p(—ux—é”i].

One of the commonly-used kernel estimator is Nadaraya-Watson Regression, as per Nadaraya
(1964)[6] and Watson(1964)(7], and that is the case of local regressions with degree p = 0. The
Nadaraya-Watson (NW) estimator m is

L (Kn(x — xi)yi)

= NW . _
Y] = N x)

(1.2.2)

, where K}, is the scaled kernel function with bandwidth parameter h of choice: Kp(x) = h_dh’(ﬁj,
where d is the dimension of x.

Another popular kernel estimators is Locally Linear estimator, which is the case of local regres-
sions with degree p = 1. The locally linear kernel weighted estimator (LL), as per Fan (1992)[8],
is given by

crp, .y Lda(xih) =Sixth)(x —x)yi .
m(xiy) = n o3 h)ée(x: h) — &1 (x; h)2 K (x =) (1.2.3)

. where & (x;h) = 15" (x; —xP K (x—x;) , for j=0,1,2.
The bandwidth of the kernel estimation has a strong impact on the results, the choice of which
is a trade-off between variance and bias. A popular choice of fixed bandwidth parameter for

univariate Gaussian distributed data is Silverman’s rule of thumb, as per Silverman (1987)[9].

1QR 1
@ )k ns (1.2.4)
1.34

h* = 0.9 % min(a,

, where & represents the standard deviation of the samples, IQR is the interquantile (Qo.75 — Qo.05)
range with sample size of n.

For the multivariate case, assuming a normal product kernel and a true normal density with
¥ =14, and the bandwidth parameter hj = Grn” T for the multivariate version.

It is worth noting that the fixed bandwidth may not be ideal as the optimal bandwidth may
differ in different regions of the domain. So we employ the variable kernel instead, which would
help deal with the unreasonable smoothness of the distribution.

The optimal hedging strategy {x;}_, obtained in the equation (1.1.7) is a ratio of two condi-
tional expectations. And then the Nadaraya-Watson estimator and Locally Linear estimator can
be of use to help compute the hedging strategy by giving estimation of conditional expectations.

1.2.2.2 Control variates

When we conduct a regression, the estimation error follows a Normal distribution with zero mean
and a non-zero variance. For Monte Carlo simulation, the expectation of random wvariable Y is
estimated by the sample mean of the realisations yq,...,yy drawn.

1o
fy = E[Y] = ngi
And the error py — fiy approximately follows a Normal distribution N(0, %]
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If we can manage to reduce the variance of error, the quality of estimation would be improved.
The idea of variance reduction is to replace the variable Y with another variable ¥* with same mean
but smaller variance: E[Y*] = E[Y] and Var[Y"*] < Var[Y]. As aresult, the estimator p* = E[Y™]
would convergent to same mean, but the smaller variance would lead to faster convergence speed.

Control variates is a standard technique to reduce variance, and it is fist applied in pricing
financial derivatives by Boyle (1977)[10]. With a control variate Z, the ¥* defined above would be
found as Y* := Y + 3(Z — j1z), where iz is the mean of variable Z. We then check if the variance
is reduced.

E[Y*] = B[Y] + A(EZ) - uz) = EIY] = v
Var(Y*) = Var(Y) + 32Var(Z) + 28Cov(Y, Z)

The coefficient 3* could be computed by minimizing the variance of ¥'*.

Cov(Y, Z)
 Var(Z)
Cov*(Y, Z) Cov?(Y, Z)

Var(Z) ~ Var(Z)
As is shown above, the control variate does help reduce the variance. And it also works in the

case of conditional expectation, with any x, the estimator jiy = E[Y|X = z] could be replaced by
iy = E[Y*|X = z] where

A" =argmin Var(¥Y") =

= Var(Y") = Var(Y) +

=@ )Var(Y) < Var(Y)

Cov(Y, Z|X =x
Y* =Y + 3(Z — pz(z)) , with coeflicient 3% = 7M

Var(Z|X = 1)

Moreover, compare the optimal hedging obtained in equation (1.1.4) and the optimal coeflicient
a*,

C EJAHM 0 + o AR F] E[(AH: — E[AH)) (1 — E[Ii41]) + s AH| F]

DANAEER - E[(AH, — E[AH,))?| 7]
g CouY.ZX =z)  E[(Y —E[V])(Z-E[Z])|X =1
YT Var(ZIX=1x)  E[(Z-FE[Z])P2|X =41]

It can be seen that these two values are tightly related if we choose the underlying tradable
asset H to be the control variate, and the risk averse parameter A — oo, making the second term
of optimal hedging numerator tends to zero.

In addition, the control variate can be extended to multiple controls, which contributes to
improve the estimation with multiple underlying assets. Suppose the mean E[X] is known for
X=(X",....X")7, the regressand ¥ could then be replaced by

Y(-'V(.@) V4 '91(){]' —E[Xl]] N rﬂz(){z _ IE[XZ]) _ Y—,@T[X _ E[X])

, with the coefficients 3 € R*.
Minimizing the variance of Yy, the optimal coefficients are computed by

8" =x3"Exy
, where ¥y with dimensionality z x z and ¥xy with dimensionality z x 1 are the variance matrix
for regressor X and the covariance matrix of X and Y respectively. After replacing ¥ by Yoy, the
prediction variance reduces:
Var(Y) = ot , and Var(Yev) = (1 — R:)od
, with R? being the squared correlation coefficient between X and Y:
Co(X,Y) ., YL, 8 'Sxy

R? = | X
Var(X)Var(Y) ol

Another convenient and popular choice of coefficients 3 is 3 = —b; fori =1,...,z where the b;’s
are the solution to the linear regression, as per Haugh (2010)[11]:

Y=c+bh X 4+ 4 b, X L

It is worth noting that the intercept term ¢ cannot be ignored when computing the least square
solution.
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1.2.2.3 Gaussian process regression

Ganssian progress regression (GPR) is a non-parametric method of regression. It lies in the area of
Bayesian inference and works well in the case of small data set. The supervised machine learning
and Gaussian process regression give the estimation of parameters in different forms. To be specific,
the supervised machine learning learns the exact value of parameters, but the distribution of
parameters would be obtained by performing a Gaussian process regression. Thus the uncertainty
of predictions could be measured, such as by evaluating the 95% confidence interval. In terms of
calculation, consider a linear regression

yi = B + &

. where the error ¢; ~ N(0,0%). Regard the coefficient as a random variable, and assume a prior
distribution for the coefficient /3 ~ N(If]_.rrﬁ],

plylz, B) ~ N(uo})

, with g = fgz.
Employing the Bayes’ theorem we can obtain that

plylz, B)p(5)

. 1. <.
p(Blz,y) = x exp(—=(8 — 3)%4)
plylz) 2
o (Ede) 2 . o
, where 3 = e and A = -+ O'p_]'_. leading to the posterior distribution

p(Blz,y) ~ N(B,A™Y).
Finally, the predictive distribution could be obtained as

A ety
2
o[l

ply* |z, z,y) ~ N{ Jrt?ATh),
Rather than claiming the value function relates to some specific models, a Gaussian process can
represent the objective function obliquely, but rigorously by selecting different prior distributions
and kernel functions, thus removes the restriction of models. And it can be extended to multi-
dimensional case.

For any point x € RY, a Ganssian process is a random process assigning a random variable
f(x) to the point, where the joint distribution of a finite munber of the variables is itsell Gaussian.

p(f1X) = N(f|u.K)

, wheref = (f(xq,....xy)), p = (m(x),...,m(xy)) and the kernel matrix K;; = k(x;,x;).
A popular choice of kernel function k is radial basis kernel function (RBF), which measures the
distance of a pair of points:

(x; —x;) 7 (x: — x;))

k(x;,x;) = rf?m‘p( — :

2[2
. with o7 expresses the vertical variation of the function, and [ is the scaling parameter, controlling
the smoothness of the function. By employing radial kernel function, it makes sense logically that
the points nearby have larger impact of resulting estimation compared to points which are far from
the local point. As the Gaussian Processes are so flexible that the mean function can be assumed
to take zero everywhere.

Given a number of pairs of realisations (X, y), the multi-dimensional posterior distribution can
help give predictions of new inputs X*:

p(f7IX", X, y) = N(f*|p™, 27)

with the joint of known observation and predictions follows a multivariate Gaunssian distribution:

(1) (& X))

, with KY = E(X,X) + rr;fI_. K" = kX, X") and K" = k(X" X"). And the parameters of
predictive posterior distribution could be computed as

uw _ K*TK\’,I_Ly . and Ew _ Ku« _ KtTKr,a—lel
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1.2.2.4 Dynamically Controlled Kernel Estimation

Combining the kernel regression, control variate and (Gaussian process regression, we get the dy-
namically controlled kernel estimation, proposed by Lee (2020)[12]. The algorithm is stated as
follows.

e Perform a local regression to get the estimation of conditional expectation j; = E[Y|X = x;].
e Compute control variate using local regression z; = E[Z|X = x;] and coefficient 3*.
e Perform a Gaussian process regression of z; against y; =y + 8% (% — pz(x;)).

The newly proposed DCKE algorithm is proved to outperform the traditional LSM particularly in
the estimation of deltas and the ‘tails’ in examples of the Black-Scholes and the Heston model, and
also provides more precise intermediate-value predictions than both Grau’s and Potters’ methods.
Here we demonstrate how this method could be applied in the case of hedging and pricing a
European call option in the following section.
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Chapter 2

Vanilla Option Hedging in the
Incomplete Market

Following the economic set-ups and methodology introduction in Chapter 1, several simple models
for asset price evolution are considered. We now hedge the incomplete markets in some simple
cases with the algorithm stated in previous sections. Here we focus on the incompleteness in terms
of the partial correlation between the underlying asset and the tradable asset. The known closed-
form formula provide the benchmark for the optimal hedging strategy computed by our algorithm,
thus help validate that the newly proposed optimal hedging strategy is model-free. As a result, the
ralid hedging strategy for more complex models without closed-form result could be computed.

2.1 Black-Scholes-Merton model

2.1.1 GBM process and pathwise derivative

Referring to the celebrated Black-Scholes-Merton model, [13] under the physical measure P, the
ralue evolution process of the underlying asset could be modeled as

dS; = pSedt + 0 SedW, (2.1.1)

(u-da? - o1
— 8§, = Spett 7o)t W (2.1.2)

, where u depicts the drift and ¢ measures the volatility. And W; is a Wiener process.

And we assume the stochastic differential equation (SDE) for the tradable asset H is

dH; = p' Hydt + o' HydW,

= H, = Hyel# 277+ W, (2.1.3)

. where dWdW/ = pdt, depicting the partial correlation between S; and H; with p € (—1,1).
The partial correlation would expose the hedger to the risk of hedging error.

Black-Scholes Call option delta could be represented as a pathwise derivative of the option value
with respect to the tradable asset price. Under Geometrie Brownian motion, as the option value Y,
is differentiable with respect to the asset price H:,, the valid interchange between expectation and
derivative empowers the computation of the kernelised pathwise derivative estimation as follows.

Plugging dW; = pdt/dWy back to (2.1.1), the SDE of underlying asset S; can be represented
as
dS; = pS,dt + oS, pdt /dWy (2.1.4)

When the drifts of S and H being equal, the derivative could be computed as
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dS;  pSidt + oSy pdt [dW]
dH,  pHudt + o HydW!
 pSdtdW + oS, pdt
T pHedtdW! + o Hy(dW])?
poSedt -~ pa S

= = 2.1.5
o'Hy(dW})? ~ o'H, (2.15)
, which enables us to compute the pathwise derivative:
dc, : et | 1[{1(;{‘ ds], ds} |
dH, — TdH,  ds]_ds] dH]
) g} po’S'j
— Efe—rltr—ti)y Sty P
[P {8l =K} Sf‘ G’Hf, ]
" Sy
= Efe"tr—t01 idadad (2.1.6)

{521-1- =K} G’H'j‘ ]
, where G!’ 1= g r{tr—ti) (Sf_l_ —K)7 represents the discounted payoff. Applying pathwise derivative,
we get the delta at each meshed point &k for £ =1,2,...,u of underlying at time step ¢;:

) P S
{5‘;’T>K} OJH{‘

i =ty (M, Hy,, Sppe 001 ) (2.1.7)

, with kernel estimation m;, defined in the equation (1.2.2).

2.1.2 Analytical optimal policy

Referring to Basak and Chabakauri (2011)[14], the closed-form formulae for hedging an untrad-
able stock with a partial correlated stock is derived. And the linear PDE was derived as per
Windcliff(2006)[15]. Here we mimic the algorithms to derive the one for hedging a European call
option using a partially correlated asset, and employ it as a benchmark for the newly proposed
optimal hedging strategy.

Proposition 2.1.1 (Optimal hedge under BSM model). Suppose there is a European call option
writing on an untradable underlying asset S with the strike price K. Setting up a hedging portfolio
Il with a partial correlated asset H and risk-free bank account B, when the price evolution follows
Black-Schales-Merton model, the optimal hedging strategy {z Y, is give by

o P9 S OE[e TGSy
= 35, (2.1.8)

. where the payoff function G(St) = (Sp — K)T.

Proof. Suppose we take a position of shorting one unit of European call option and the fair value
is denoted by V;. Thus the hedging error is Y; := 11, — V.

Y=xH+B-V

Assume B =V — zH at time t, the change of hedging error over the time period [t,t + dt] could
be derived as follows.

. 262
dY = —[V 4+ pSV' + GTV"]df — o SV'dW +r(V — z H)dt + z(p'Hdt + o' HdW')

. 25*2
=—[V+uSV' + ”Tv” —r(V —zH) — zp' H|dt — oSV'dW + zo' HdW'

AV e av o 92V
s where V = S5 V' = 22 and V" = S

The variance of dY is

Var(dY) = E[(—eSV'dW + za' HdW")?] = [2?0™ H? + 0*S*V"™ — 205V "z’ Hp|dt
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Employing the strategy of variance-minimization, the optimal hedging could be found as

* B r pa S! o
I, =& Var(dY) = ——V 219
Ty argmin Var( ) o 1, ( )

Conduct Monte Carlo simulation, Vp = Ep[(S7 — K)t], and then the partial derivative V' =

AE e " TG —K)T) e e . . . .
55— substituting it back to the equation (2.1.9), the result is derived as required.

|

From proposition 3.2.1, we expect the optimal hedging policy converges to the Black-Scholes
delta hedge when p = 1 and volatilities for two assets are the same, which simplify our case back
to the complete market where there exist no arbitrage opportunity. Furthermore, the analytical
optimal hedging strategy also agrees with the expectation of pathwise derivative proposed by
equation (2.1.5) under GBM, where the payoll function is differentiable with respect to the asset
price.

It is worth noting that the optimal hedge proposed by equation (1.1.7) converges to closed-form
optimal hedge given by equation (3.2.3) when the time lag At — 0 and the risk averse parameter
A — 0o, derived as follows.

The fair price of option was defined as the expectation of hedging portfolio value at time t:

C; = E[IL|.%)

By Tower property, the optimal hedge could be expressed as follows when risk averse parameter
A — oo,

i N . E:[&H:(:':H + QA‘_.E.-AQAH:L?“:]
im zj = lim - e
A=+ oo A—r oo b![(AH!)Jljﬂ!]
E[AH,Cyiq| T
E[(AH|.#]
~ Cov(AH,, Cya| F)

2.1.10
Var(AH, [ Z,) ( )
Applying first-order Taylor expansion,
- . aCy,
Crpn =Cy, f{.)H!‘&Hz,fO(&t() (2.1.11)

Plugging equation (2.1.11) and equation (2.1.5), which depicts the derivative of underlying asset
price S, with respect to the tradable asset price H, under Black-Scholes-Merton model, back into
equation (2.1.10), we get

dCy, 98, V= F'“TS_:Vr

o
Ty = = =

lim —
Mt —0 f)Hg‘ (')Hg‘ a’ H;

(2.1.12)

, which agrees with the optimal hedge given by proposition (3.2.1), meaning the newly proposed
optimal hedge converges to continuous-time closed-form optimal hedge when time step tends to
ZETO.

2.1.3 Path generation
Following GBM, the underlying asset price evolution process could be derived by solving the
stochastic differential equation (SDE) as follows,

2

dS; = pSedt + 0 S;dWy = S = Spexp((p — %)r + W)

G_J'Q
dH, = p'Hydt + o' HydW] = H, = Hyexp((p' — T)f +a'Wi)
Here we generate samples at several discrete time steps £;,7 = 1,..., 7 with n samples at each time
step S7 for j =1,...,n.
2

s = S’:j, exp((p — %J(fi-ﬂ —ti) + o\t — £ Z5) (2.1.13)

tit1
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2

Hj :Hg",mrp((u.’—%mﬂ—r,J—a’ fi1 — 1 Z)) (2.1.14)

tita

, where (j,) are drawn from a Multi-Normal distribution N(p, ) with p = (g) and ¥ =

(; T) The asset price trajectories Sy and H,, can be generated by the equations (2.1.13) and

(2.1.14) respectively from time 0 through time T starting at the current price Sy, and Hy, with
parameters correlation, drifts and volatilities given.

2.1.4 Practical experiment

As stated before, when the drift of asset value evolution equals the risk-free rate and the risk averse
parameter being large enough, the optimal hedge converges to the Black-Scholes delta hedge. Here
we set the drift equals the risk-free rate, and focus on the impact of risk averse parameter A
and correlation p. Considering a European call option with parameter settings in Table 2.1, we
employ the DCKE to compute the conditional expectations, thus giving the hedging strategy at
an intermediate time step with algorithm 2 stated. In real world, we should never expect the
volatilities of two asset to be identical, and the correlation would not be identical for different
pairs of assets. Thus, we expect the optimal hedging strategy, computed by the model-free method
we aim to propose, to perfectly converge to the closed-form delta hedge for discrete Black-Scholes
model without the constraint of correlation p and volatilities o and o'.

General Features Values
Initial underlying stock price S, 100
Initial tradable stock price Hy, 100
Strike price K 100
Risk-free rate r 0.01
Drift for underlying stock p 0.01
Drift for tradable stock p’ 0.01

Volatility for underlying stock o [0.2, 0.25, 0.3]
Volatility for tradable stock o' (0.4, 0.35, 0.3

Correlation p [0.5, 0.7, 0.9]
Risk averse A 107
Maturity time 17 1 year
Time step t; [0, 0.9, 1.0]
Number of path n 1000000

Table 2.1: European call option parameters for DCKE

Here we use the meshed points among 1% and 99% percentiles of the tradable asset at the
intermediate time step, and employ the discounted payoff approach to compute the pricing and
hedging strategy. The bandwidth at each meshed point are scaled by a ratio of the maximal kernel
size to the local kernel size under the fixed kernel, with a constant specifies the maximum value
capping the bandwidth from below, the value of which relates to the number of simulated paths,
and help control the smoothness at the tails.

As the underlying asset price Sy and the tradable asset price H; both exert influence on the
hedging strategy, it is reasonable to perform a two-dimensional kernel regression in the case of hedg-
ing a European option using partial correlated asset, the process of which are stated in algorithm
2.

Implementing the algorithm 2, the results with partial correlation p = 0.9 and risk averse
parameter A = 1 are shown in the figures 2.1. As is shown in the figures, the optimal hedge
we derived from minimizing the variance perfectly converge to the kernelised pathwise derivative,
also the analytical optimal hedging strategy for GBM process. Under high underlying asset price
along with low tradable asset price, the deviation of two deltas becomes noticeable, suggesting the
algorithm suffers from the edge noise.

We aim to propose a model-ree methodology, in other words, we expect these two deltas
converges without the constraint of underlying model and parameters. To be specific, the kernelised
pathwise delta and variance minimizing optimal hedging strategy should also converge under any
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Algorithm 2: 2-Dim DCKE of hedging and pricing a European call option.

Data: strike price K'; risk-free interest rate r; number of time steps T'; length of time step
At: mumber of paths n: number of meshed samples u; price evolution sequence
(P, = (8y,. Hy,)) with each length n for i = 0,..., T price evolution sequence
(Pf = (S{. H{)) with each length n* for i = 0,....T; partial correlation p;
hyperparameter input for bandwidth adjustment of price hy,; hyperparameter input
for bandwidth adjustment of delta h,; risk averse parameter A; cap of variable
kernel ratio C
Result: mesh points of spot price sequence M,, = (M;, g, My, g ): coefficient for control
variates d for pricing and dd for hedging; Ophon fair price sequence (r!{‘f'r\irJ;
kernel estimation of delta x; ; optimal hedge position w,, derived by variance
minimisation with each length n for ¢« = 0,...,7T

Set arrays: ("]'(f‘“' =(8, - K)"; ) lask) C'f_;_{f“i"] + AL”ar(C',{_i‘\i"J] for j=1,...
i ask) | .
CI) 9 gy s
M!“ 'ﬁmploa between 5% - 95% percentiles of generated spot prices

M+ samples between 5% - 95% percentiles of generated spot prices
¥ = cov( Py, Py,) with LLT =¥~

L'=ILn~ d+4
LL =L'xh,
=L"x* !Ld
. ¥ TQR(S,
h=0.9min(\/Var(S:, ). M)
for time steps from i1 =T —1 to i =0 backward do
for each mesh point k=1,...,u do
I" =y o (P —\J*JL*?
1€
1r‘l atio — mln( ;((k ] C‘)
variable kernel h,.{“ = hKE, .
C':“ifl‘"’] =y, (MF, S C':‘ ifl\"’]) (kernel estimator m defined in equation 1.2.2)
AH:‘H =my,,,, [111'!‘ .St ?AH:,H]
. 8 AME S0 Ty it (MEL ST DNAHE | i, (ME S GAHE )
Hp =

Wy, (ML S, (AHL,_ -t (MF.S AHE_ )%

ot (ME S, (Tt (ME S, M WAHE | v, (ME S, GAHE | )+ f=AH,)
t

k 4 tir1 PEY
i, (M) -?, AHE | i, (M S AHE )07
Y ot —ts ) PoSiy
#F = viny (M, H,,. S e st o ryorms)
. . Lol diay e [
i By (ME S5, {Wyjfi v, (MELS :‘W%JJ‘AH.H v, (ME S GAHE )
Ba = » "
Hd =

Wi (M1 S (AL — Wy (M, S0 ATE )P)
C';‘”"“"J = e "MGPR(RBF. M}, C{™ — 3,(H,,,, — eﬂﬂu!hm)
it = GPR(RBF, M} .31, — fa(lt.,, — e“lhu! )
| & = GPR(RBF, M}, &, — Ba(Hi, — €' My, i)

Compute the optimal hyperparameter by minimising validation error
!x;_.h[j = arg ming,, h,~00.01,5) [|lZf, — || via hyperopt

Repeat the process above with hyperparameter h}, and h}.

Result: ("f\"’], ay gy

correlation p and with different volatilities o and ¢, which are the two cases we present in figure
2.2 and 2.4 respectively.

First keeping the risk averse parameter A to be large and fixed, the optimal pricing and hedging
results are shown in figure 2.2. As is shown in the figures, the hedging strategy is sensitive to
the correlation p. With the increase of correlation, the holding position of tradable asset in the
hedging portfolio increases. The quality of hedging improves when the correlation between two
assets increases, and converges to the perfect hedge when p — 1. And there exists a deviation at the
right tail in the Q-Q plot (right). To explore the error, we present the deviation in 3-dimensional
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figures (figure 2.3). It can be seen that the deviation is large on the edge.

Turning to the locally linear (LL) estimator may help address the edge noise. As per Hardle(1990)[16]
and Fan (1992)(8], both estimators are consistent, and the bias is shown in Table 2.2. It can be
seen from the table, with the same variance, the bias of locally linear estimator is smaller than
that of Nadaraya-Watson estimator. The additional bias term of NW estimator contributes to the
edge noise because the denominator tends to disappear at the boundary.

Estimator Nadaraya-Watson Locally Linear
Bias || h3(0.5m)/(z) + 22 122k (2)dz | 12(0.5m)(x) [ 2%hka(2)dz
- 6 . B Ry
Variance ;:.'E—]i)hfhi(r)dz ﬁx—ﬁl)hfk}i(r)dz

Table 2.2: bias and variance of NW and LL estimators up to {(h?)

Then also keeping the correlation fixed, the pricing and hedging are computed with different
volatilities for underlying asset S and tradable asset H, shown in figure 2.4. The holding position
of tradable asset in the hedging portfolio increases with the increase of underlying asset volatility,
and decrease with the rise of tradable asset volatility, which agrees with the closed-form formula

for optimal hedging proposed by proposition 3.2.1.
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Figure 2.1: Result with risk averse parameter A = 107 and partial correlation p = 0.9

22




2.2 Ornstein—Uhlenbeck process

Ornstein-Uhlenbeck (OU) process, named after Leonard Ornstein and George Eugene Uhlenbeck
(1930)[17], is a commonly-used stochastic process with application financial mathematics, proposed
by Leonard Ornstein and George Eugene Uhlenbeck, which manages to depict the trend that the
asset price has a tendency of the walk to move back towards a central location. When the asset
price is further away from the center, the attraction becomes greater.

2.2.1 OU process and pathwise derivative

Referring to the OU process, at time t, the spot price of underlying asset S follows the following
stochastic differential equation,

dSe = O (s — Sp)dt + aod Wy (2.2.1)

., where #, is mean reversion speed, p, is the mean reversion level, and o, represents the volatility of
price evolution. It is worth noting that, the main drawback of of OU process is §; may take negative
values, but for a wide range of relevant parameter values, the probability of getting negative is
very small. Similarly, the price evolution of tradable asset H follows

dH, = 8, (p;, — Hy)dt + o, dW/

. with dWydW, = pdt, depicting the partial correlation between two asset prices. The derivative
of S¢ with respect to H; could be computed using the same derivation for GBM:

45 _ pos

= 222
dH; oh ( )
Take integral to the both sides of equation 2.2.1:
t ’
S, = Spe Pt + pe(l — ety 4 rr,,f e talt==) gy,
il
Then employing the [to’s isometry, the closed form formula could be derived as follows.

St = Soe ™t 4 p(1— e )+ Tty (2.2.3)

26,
, and similar result could be computed for tradable asset H:

Th

H; = Hye " + p(1 — e %) +
t 0 p{ ) 20,

—@tyrst
e W

From equation 2.2.3, the recursive relationship of asset price could be expressed as follows.
S!u = Stu—l Ll gs(ru'.s - S!l—l)&f T g.s”’”’.ﬁ!

, with At = t; — f;_1 being the time step. Thus the derivative of Sy with respect to S; could be
derived out.

S, 08, , a8, 9 a8,
95, — 05, U+ asy A+ OB~ (1-6.Al) o
a5S;,
=g = (1= 040
aSt  dSr 95t OSu1 N
=95, ~ 05705, s, — (1A
, with the mumber of time step n = % When the time step At — 0, the number of time step

n — 0o, leading the derivative to

('}ST —g.w{T—!J
a5, °

(2.2.4)
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Putting equation 2.2.2 and equation 2.2.4 together, the pathwise derivative of a European call
option value 'y with respect to the tradable asset H; could be computed,

dCy _ dE[e " (T=1)(Sy — K)*] . E[de"'{T—fJ[ST — 1{)+]

d.Hg ng ng

d(St — K)" dSr dS;
a5, d5, di,

_ E[P_{"+9"=J{T_!J1{.f;y >K}&] (2.2.5)
Th

= E[e(T

, which agrees with the time homogeneous property of OU process and can provide benchmark for
the hedging strategy proposed by equation 1.1.7.

2.2.2 Analytical optimal strategy

Using the same algorithm as for proposition 3.2.1, we derive the closed-form optimal hedging
strategy for OU process as follow.

Proposition 2.2.1 (Optimal hedge under OU process). Suppose there is a European call option
writing on an untradable underlying asset S with the strike price K. Setting up a hedging portfolio
Il with a partial correlated asset H and risk-free bank account B, when the asset price evolution
follows an OU process, the optimal hedging strategy {z}}]_, is give by

o PTs L e T=1G(S7))
Tt Th ?}S;

(2.2.6)

. where the payoff function G(St) = (S — K)*.

Proof. As stated before, we set up a hedging portfolio with value II; composed by a tradable
asset Hy and risk-free bank account By, to hedge one-unit short position of a European call option
written on the underlying asset S;, the fair value of which at time t is denoted by V;

Thus the hedging error Y; :=1I; — V; = xH; + B; — V;. Applying Ito’s lemma,

dY = —[V + V(s — S) + %af]df — o VIdWe + (0 (i — Hy)dt + opdW,) +7(V — 2 H )dt
=V + V(. —8) + %af — (V= 2H) + (0, (s, — H)|dt — o V' dW, + zop,dW]
The variance of hedging error
Var(dY) = E[(—o V'dW, + z0;,dW})%) = E[(c2V"? + 2?0} — 2z0.0, V' )di]

It can be seen that the the variance of hedging error is a quadratic function of the holding position
in the hedging portfolio. Compute the first derivative and set it to be zero,
OVar(dY .
% =20}z — 2.0,V =0 (2.2.7)
o

Under the variance minimization criterion, the optimal hedging strategy is given by

P75 V'
Oh

zy = argmin Var(Y;) = (2.2.8)

]

Similar to the finding under BSM model, the newly proposed hedging strategy given by equation
(1.1.7) converges to the closed-form optimal hedging strategy stated by proposition (2.2.1) under
OU process. Again plugging equation (2.1.11) and equation (2.2.2) back to the newly proposed
optimal hedging strategy in the case A — oo and time lag At; — 0,

N aC,  pos_,

.Altl,nj;[l Tt = aH;, oy v (2.2.9)
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, showing the convergence of optimal hedging strategy under OU process when A — oo and time
lag At; — 0.

Moreover, the newly proposed optimal hedging only converges to the analytical optimal hedging
strategy stated above when the risk averse parameter A — co. When A does not tend to infinity,
the hedging proves to be more expensive. Employing the variance minimization criteria to find the
optimal hedging, the target function we want to minimize is:

Var(IL,|.7,)
Taking the investors’ attitude toward risk into consideration, the target function we want to min-

imize is instead
T ‘
B[+ A e "W ar (I, | F)| 7 (2.2.10)
=t
Decomposing the target into sub-minimizing problem at each time step. The optimal hedging
strategy is found by

r; = argmin E[IT; + AVar(IL,)|.7 (2.2.11)

Mimic the derivation of proposition 2.2.1, the optimal hedging strategy with risk averse parameter
is then

*

g 1
gy = P2V m Pl — H) 4]

Oh

(2.2.12)

Compare the optimal hedging strategy with and without risk averse parameter under QU processed:

pa VA

. L (6, (py. —H ) +rH|
e with A z} = R

Th

e without A: %V*

When A does not tends to infinity, the price is no longer a risk-free price, but a trade-off between
the expected return and the extra risks need to be taken. It can be seen that when the investors
are willing to have higher expectation of portfolio value at the cost of taking extra risk, the holding
position of tradable asset in the hedging portfolio becomes higher.

2.2.3 Path generation

To generate sample paths, here we employ the Euler Scheme, a simple and robust scheme of
generating samples out of a stochastic differential equation (SDE) or ordinary differential equation
(ODE). Given a stochastic differential equation, Euler-Maruyama method (also known as Euler
Scheme) is a method for the approximate numerical solution. By partitioning the interval [0, T]
into N equal subintervals, it provide the approximation to the true solution random variable by a
Markov chain. The method is explained in the case of OU process as follows.

We apply the Euler Scheme to generate paths using the discretized equation to the SDE of
Ornstein-Uhlenbeck process :

Sg‘ = Sg‘_l + 9,,(#.,, — Sg‘_l )ﬂf + a:Was

Hy = H , + 0 (pn — Hy, )AL+ 0, Wi,
The sample generating process is stated as follows:

e Decide a number of n to get grid points: 0 =] <ty < -+ < t,_1 <, = t7, and time step

At=t41— 4
e Drawing (n — 1) x m pairs of independent samples (Z;-"_.Zf‘) for i = 1,....n from a Multi-
Normal distribution N ((g) \ (; T)) where m represents the mumber of paths, and

then reshape the list of samples into a matrix with dimensional (n — 1) x m.
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e Fori=1,...,nand j=1,..., m, compute

Sl =81 | +0.(n— S At +oVALZE

H! =H]  +60,(un — H]_ At +aVALZ! |

ti-1

And matrix of underlying and tradable asset price evolution could then be obtained.

2.2.4 Practical experiment

Here we keep the same parameters as in Table 2.1 and add extra parameters for OU process as
stated in Table 2.3.

General Features Values
Strike price K 105
Mean reversion speed f, and 6y, [0.1, 0.1
Mean reversion level pg and py, [150, 150]
Correlation p [0.3, 0.5, 0.7]

Table 2.3: European call option extra parameters for OU process

As stated before, we expect our algorithm performs well under arbitrary correlation p and also
in the case with difference between volatilities between o and o, Figure 2.5 shows the resulting
optimal hedging strategy (left) and the Q-Q plots of closed-form benchmark, proposed by equa-
tion 2.2.3, against the optimal hedging strategy given by equation 1.1.7 under different correlation
between underlying asset and tradable asset p € {0.3,0.5.0.7}. According to the results shown,
the holding position of tradable asset in the hedging portfolio would rise along with the increase
of correlation between two assets. And two deltas match perfectly under each level of correlation,
suggesting that our algorithm works well under OU process.

We manage to illustrate that the newly proposed optimal hedging strategy works in the cases
of GBM and OU process mathematically and practically, suggesting that the optimal hedging
proposed by equation (1.1.7) is model-free. We then can apply more complex models in following
sections, which have no closed-form formula to provide benchmarks.

2.3 Copulas

A copula of d-dimension is a joint cumulative distribution function on the uni hypercube [0, 1]
with uniform marginal distributions. It provides a method of building multivariate distributions
by separately choosing the marginal distributions and the dependence structure.

Here we use the copula to learn the dependence structure of historical daily return of the pair
of assets, namely underlying asset and tradable asset, and then use the fitted model to generate
synthetic predictions of future daily returns, thus obtain a matrix of asset price evolution as before.

e I'it copulas with historical daily return of Apple and S&P500 from 01,/01/2000 to today.

e Using fitted model to generate predicted daily returns with number of (n —1) x N, where n
represents the time steps in total, whereas N is the mumber of paths.

e Set initial stock price Py = [AAPLy, SP500y] be the close price of Apple and S&P500 today,
and P, = P, % (1 +returns), fori=1,...,n.

By doing the steps stated above, the matrix of asset price evolution is then obtained. Inputting
the price matrix and implementing algorithm 2, the optimal hedging strategy is presented in figure
2.6, where a similar shape as before is observed.
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Chapter 3

CVA Hedging in the Incomplete
Market

Credit Valuation Adjustment (CVA) is a change to the market value of derivative instruments to
account for counterparty credit risk. It represents the discount to the standard derivative value
that a buyer would offer after taking into account the possibility of a counterparty’s default. CVA
is the most widely known of the valuation adjustments, collectively known as xVA. Putting it
another way, it can be seen as a price that an investor would pay to hedge the counterparty credit
risk of a derivative instrument. It gives the expectation of future loss caused by the defanlt of
counterparty, discounted to the current time under risk-neutral measure. We are interested in
hedging CVA in the incomplete market. This chapter aims to find a model-free hedging strategy
for a CVA, written on one underlying asset but is hedged with another partially correlated asset.
Followed by introducing CVA and its hedging, the model-free hedging strategy is derived. Adding
model assumptions for underlying asset price evolution and default intensity, the newly proposed
hedging strategy is compared with analytical optimal hedging under each scenario to validate the
model-free property of newly proposed hedging strategy.

3.1 Credit Valuation Adjustment and CVA Hedging

When an entity enters an OTC contract with a counterparty, the fact that the counterparty may
defanlt before the final settlement of contract exposes the entity to the counterparty default risk.
As such, the counterparty might not respect its payment obligations.

Definition 3.1.1. (Counterparty credit risk) Referring to Basel I1[18], the counterparty credit
risk is defined as the risk that the counterparty to a transaction could default before the final
settlement of the transaction’s cash flows. An economic loss would oceur if the transactions or
portfolio of transactions with the counterparty has a positive economic value at the time of default.

Pricing of counterparty credit risk leads to the notion of Credit Valuation Adjustment (CVA).
According to the party concerned, it can be divided into two categories: unilateral CVA and
bilateral CVA, which assumes only counterparty can default and considers the bilateral nature of
counterparty credit risk respectively. In this chapter, we focus on unilateral CVA and assumes one
side of transaction parties is defaultable whereas the other is default-free. There are two ways of
aluating risk: the default time approach (DTA) and the default probability approach (DPA). The
DTA valuates the default time explicitly. It is an intuitive way but the lack ol complete information
about the entity’s default time makes this approach unlikely to implement. DPA focuses on the
probability distribution of default time instead of the default time itself, and sometimes leads
to simple closed-form solutions. Dividing the time period into very small time intervals, we can
assume that the counterparty could only default at the end of each small period.

Mathematically, under default probability approach, CVA is formulated as

T
CVA, = (1 - I{er.')lli[/ D(t, s) Vit (ds)) (3.1.1)
t

, where Rec is the client recovery rate, D(0,t;) represents the discount factor from time #; back to
0. V;" :=max(0,V;) and d-(dt) denotes the probability of default time T € (¢, ¢ + dt).
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Denote the default intensity by ~:. For the counterparty to default in the time interval (¢, #+df),
it has to first survive the period (0, ) with probability e~ 7242 and then defanlt in (t,t+dt) with
probability yedi. Thus 6, (df) = e~ Jo %5y,dt, as a result of which,

T .
CVA, = (1 — Rpr)li[/ D(t,s) Ve I8 mduy g (3.1.2)
t
, with boundary condition
VA7 = lim CVA, — 0 (3.1.3)
s

As CVA measures the future default risk, it shrinks to 0 at maturity along with the close-out of

the underlying financial derivative.
Note that when the underlying derivative is a European call option, the discounted option value
D(t, t:)ViT = e "B (BT T8y =V, for f € (8,T) (3.1.4)

Plugging equation (3.1.4) back to equation (3.1.2) and switching to the discrete scenario, for
intermediate time step £t =0,..., T, CVA is formulated as

N
CVA; = (1 - Rec) Y D(t.t;)Vi,e Bis 18y Ay
i=t+1

N
=(1-Re)Vi Y e Zis by, A (3.1.5)
i=t41

Re-structure equation (3.1.5) and the recursive relationship of CVA could be derived as follows.

N
CVAr = (1— Rec) 3 Dt t:)Vie” DI 580, A
i=t+1
N _

=(1-Rec)V; Y e TS Tubty, A

i=i41

N . .
= (1— Rec)Ate "™V [y + e 78 Y em Dt ity )
i=t+2

= (1 — Rec)Viy At + e UHIAIQVA, (3.1.6)

And we can compute the value of CVA backward from CVA = 0.

CVA is a credit hybrid option on the contingent exposure of a derivative contract or a portfolio
of derivative contracts. Like other options products, CVA can be hedged via dynamic hedging
by delta hedging with the underlying derivative (and/or option on the underlying derivative) and
credit default swap (CDS).

Assume there is a CVA for a European call option writing on an underlying asset S;, but is
hedged with another partially correlated asset H; and risk-free bank account B;. Setting up the
hedging portfolio:

].[1 = .13!H! T B!
, where x; represents the holding position of asset H; in the hedging portfolio at time ¢.

At time T, the holding position zr should be zero as we want to alter the contingent value
of portfolio into certain wealth at maturity, eliminating the risk. Thus the boundary condition is
then

Br=Ily =CVAr =10
As stated in section 1.1, the optimal hedging strategy proposed by equation (1.1.7):
" EJAHIL )+ ﬁ&ﬂd,?}]
Ty = - e
E[(AH:)?|. %]

still stands with a little adjustment, namely calibrating the expectation of hedging strategy to the
value of CVA at each time step t; € (tg,...,t1)

CVA; = E[I1;|#] ,with boundary condition 1ly =0
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3.2 CVA Hedging with Black-Scholes-Merton Assets and
OU Default Intensity

In this section, we add model assumptions to CVA setting, and compare the closed-form optimal
hedging strategy with the newly proposed hedging strategy to verifies the robustness of the latter.
Assume the financial derivative to which we want to do the credit valuation adjust is a European
call option written on a stock S, and is hedged with a partial correlated stock H;. And the default
intensity of counterparty is +;. Suppose asset price diffusion obeys Black-Scholes-Merton model
and the default intensity follows an OU process under risk-nentral measure:

dS; = rSudt + 0 5,dW;
dH; = rHydt + o' H,d WY
dye = 0 (py — e )dt + o, dWY (3.2.1)

, with dWdW/ = pdt to depict the partial correlation between underlying asset and hedging asset.

To find the hedging strategy, the sensitivities of CVA with respect to its risk factor (e.g. stock
price diffusion and the volatile of default intensity) need to be computed. Suppose the underlying
derivative is a European call option whose price is denoted by V;. The terminal value is given by
the payoff function of European call option: Vy = (S — K)7. Adding the model assumptions
into equation (3.1.5), assume default intensity +; is independent of underlying option value V; and
CVA, is differentiable with respect to Hy, then the pathwise delta of CVA; with respect to tradable
asset H; is

| JEICVA] _ 15[8 C\’A!]
OH, OH,
= E[Ii(l — Rec)V, i e IS Aty Af]
OH, i=t+1
) o sty v, as,
= E[(1 — Rec) i=!Z+1 €™ Tt “‘Lmﬁﬁ
N i de Ty 985 98
= E[(1 - Rec) (_;19 s "A‘-rx-—tﬂfTT as?ﬁ
N
=E[(1- Rec) Y e =5 A“n-Lﬂfﬁ"{T_‘Jl{.?w->Kr%] (3.2.2)
i=t+1

Crépey managed to compute CVA using Gaussian process regression (2019)[19], and we aim to
achieve the same goal and take a step further, hedging the CVA, with DCKE.

3.2.1 Path Generation

We first assume the underlying asset price follows the celebrated Black-Scholes-Merton model and
the defanlt intensity obeys an OU process. To compute the value of CVA, the sample paths of
stock price evolution, option value and default intensity are required and needed to be combined.
The algorithm of path generation is declared in algorithm 3.

3.2.2 Analytical Optimal Strategy

In this section, we aim to find the optimal hedging strategy under Black-Scholes model assumption,
and use it to provide benchmark for newly proposed hedging strategy.

Proposition 3.2.1 (Optimal hedge for CVA when asset price follows BSM model). Suppose there
1s @ CVA of a European call option writing on an untradable underlying asset S with the strike
price K. Assume the defoult intensity is independent of underlying option value. Setting up a
hedging poritfolio 11 with @ partial correlated asset H and risk-free bank account B, when the price
evolution follows Black-Scholes-Merton model, the optimal hedging strategy {z} }1_, is give by

po S; 9Ef[e " TIG(Sr)|

N
* - pmimt LAY
z} = (1 — Rec) E e Ll Al AE o, s,

i=t41

(3.2.3)
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Algorithm 3: Monte Carlo sample paths generation for CVA.

Data: underlying option strike price K risk-free interest rate r; number of time steps 7%
length of time step At; initial stock price (£, = (Sy,, Hy,)); volatilities for two
asset o, op; partial correlation between underlying asset and tradable asset p;
initial default intensity ~y; mean reverting speed #; mean reverting level j,
volatility of default density o.; number of paths n;

Output: Stock price sequence P, = (S, , H, ) for i =10...., T with each length n; option

value Vi, fori=0,..., T with each length n; default intensity =, for

i =0,....,7 — 1 with each length n: value of credit valuation adjustment CVA,,
for i =0,...,T with each length n

set vector initial stock price Pif. = (S'jl.Ht"i“] for j =1,.... .
set vector initial default density 4, = v, for for j =1,...,n.
for time steps fromi=1toi =T do

ol
Draw random numbers Zé’-"i) from a Multi-Normal distribution N (p, ) with

u= (g) andE:(:9 T) forg=1,....m

Underlying stock price 9; = Sf‘_le;l.‘p((r — %E)Af +osVALZY) for j=1,...,n;
2 .
Tradable stock price H "'| = Hf‘_lﬁ;l'p((r — %*—)Af +opVAtZY) for j=1,...,n;
| PL=(S H)forj=1,...n

for time steps fromi=1toi=T—1do

Draw random numbers Z7 from Gaussian distribution N(0,1) for j=1,...,m;
| 7 =Y 0 (=70 )AL+ o, VALZ

Set option value at maturity L!”I = (S, —K)tfor j=1,...,n.

Set CVA at maturity CVA, =0for j=1,...,n

for time steps fromi=T — 1 to i =0 backward do

Option value V) = e"mlﬁﬂ forj=1,...,m

| CVA! = (1— Rec)V, 7, At + e UH A COVA, | for j=1,... 0.

Result: ‘_,r',‘i‘ fori=0,....,7—1land j=1,...,m;

PV CVA] fori=0,....Tandj=1,....n

. where the payoff function G(St) = (Sp — K)T.

N

Proof. Define f(v;,1) := (1 — Ree) > .2, €

ment becomes CVA; = f(7y:, £)Vi.
Suppose we take a position of shorting one unit of CVA for a European call option whose fair
value is denoted by Vi. Thus the hedging error is Y; := II; — CVA;.

—nst Bty At then the credit valuation adjust-

Y=aH+B-CVA

Assume B = CVA —zH at time t, the change of hedging error over the time period [t, +d#t] could
be derived as follows.

2¢g2
dY = —[f(y. )V + pSV') + %v”f(-,t,f)?]dr — a8V flye, AW + r(V — z H)dt + x(p' Hdt + o' HAW')
O'Zn 2

= —[f(3e, )V + pSV") + 2 V7 (4, t)2 = r(V — zH) — ap'H|dt — oSV (e, £)dW + zo" HdW'

o AV g _ AV s 8*V
s where V = S5 V' = 2% and V" = 47

Referring to [to isometry, the variance of dY is

Var(dY) = E[(—a SV f(~, )dW + zo’ HdW')?]
= [2%0"H? + a? SV f;,1)? — 205V 20 Hpf (s, 1)]dt
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Observing the variance of hedging error derived above, it can be seen as a quadratic function
of z;. Employing the strategy of variance-minimization, the optimal hedging could be found as

S
xf = argmin Var(dY) = f(y,, t)22 2Ly’ (3.2.4)
) o' H;

Conduct Monte Carlo simulation, Vp = Eq[(ST — h’)"’], and then the partial derivative V' =

IE* [e— T =) (G — FCY ) P r i K i i

(1‘()—‘\1 substituting V' and f(v¢,t) back to the equation (3.2.4), the result is derived
%, 2

as required. -

3.2.3 Practical Experiment

Following the parameters in Table 3.1, same as investigating the hedging for a European call
option, a 2-dimensional DCKE is implemented to find the hedging strategy for CVA at each
intermediate time step as stated in algorithm 4. Both the newly proposed hedging strategy and
analytical optimal hedging strategy under model assumptions specified before are computed and
then compared. The two hedging results at intermediate time step £ = 0.4 are shown in figure 3.1
(panel (a) and (b) respectively), where similar shapes are observed. To get a better understanding
of the performance, the QQ-Q) plot of newly proposed hedging against the analytical optimal hedging
is presented in 3.1 panel (c), showing a good consistence of two hedging strategies. In figure 3.2,
Q-Q plots of two strategies at all intermediate time steps are shown, by observing which, it is
reasonable for us to conclude that the algorithm works well during the whole process.

General Features Values
Initial stock price (Sy,, Hy,) (100,100)
Strike price K 100
Risk-free rate r 0.01
Volatilities for stocks (o,0") (0.3,0.3)
Correlation p 0.7
Risk averse A 107
Initial default intensity 0.05
Mean reverting speed for default intensity 6., 1
Mean reverting level for defanlt intensity g, 0.05
Volatility for default intensity o, 0.01
Maturity time T° 1 year
Time step t; [0, 0.2, 0.4, 0.6, 0.8, 1.0]
Number of path n 20000

Table 3.1: CVA parameters for DCKE
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Figure 3.1: Results of CVA hedging at time ¢ = 0.4 using DCKE




Algorithm 4: 2-Dim DCKE of hedging CVA.

Data: underlying option strike price K7 risk-free interest rate r; number of time steps 77
length of time step Af; number of paths n; number of meshed samples u; price
evolution sequence (£, = (Sy,, H, J) with each length n for ¢ = 0,..., 77 price
evolution sequence (F = (S}, H/")) with each length n* for ¢ = 0,..., 7" partial
correlation p; hyperpﬁmmcter mput for bandwidth adjustment of price /i,
hyperparameter input for bandwidth adjustment of delta hg: risk averse parameter
A; cap of variable kernel ratio C; default intensity +

Output: mesh points of spot price sequence My, = (My, 5, My, 1): coefficient for control

variates “}’ for pricing and “id for hedging; ophon value sequence Vy ; CVA
sequence (‘VA;‘ : kernel estimation of delta =} ; optimal hedge position x,
derived by variance minimisation with each length n for i =0,...,7T

Set arrays: V7 = (S';._i. —K)*: CVA';T =0 fz.’ CQIA':.? Ty, &,

My, - samples between 5% - 95% percentiles of generated spot prices

M+ samples between 5% - 95% percentiles of generated spot prices

¥ = cov(P,, P,) with LLT =x7!

L = Ln 7=
L =L"xh,
L= L' % hg

h = 0.9min(\/Var(S:,.). m‘—J

for time steps from i1 =T — 1 to i =0 backward do

for each m??h point k =1,...,u do
L _[ ;_1 e Z:‘-:ﬂP*z_‘MkJL;,z
hnl,m - mln(;(_k ()

variable kernel !I,,(“ = hh. : tio

C\Ag‘+1 = mn,..\w(ﬂlt‘,S; CVA;, ., ) (kernel estimator m defined in equation 1.2.2)

-k
— Ak

AH!\+1 - mhnpw(‘u& d S! AH!|+1)
ll-!|+1 = cVA!‘+1
f§ o ﬁ"-’?unw{‘““rzk‘-541:{HZ|+1_ﬁ"-'?mu‘ﬂ‘rk gi .+1”‘AH2 +1 ﬁ"hmu.(ﬂfk 5: AH: _HJJJ
He vy (ME LS GIAHE | =iy (MBS, GAHE | 0)7)
k= Phnew ME St 5Ty s — e (MY 825 “a‘“JJ{AHﬁH*mm..M” Sy GAHE )4 = AH)
Tt T ri‘lhl,,.w{-"lfgf 25, :{H:"+l_m.h“,.w{j“r:"-sz AH§+1JJ )

" N N e P —t R — pr S
it = (1 — Rec)(fipr — i) 3 imeq Vi1 Dizimlbp—t)emrltr—ty TEC

(s}, =K} a'H,,
i = mp(My, He,, StizfF)

3 — Cov( )" AH,, |F.))
Bd = —VorAE EmT

Var(AH:, [ #1)

CVA;, = e "SGPR(RBF, M} ,CVA,, — B,(H, _, — ¢"8'M, g))

&t = GPR(RBF, M it — Ba(Hipyy — P’A!Jf;‘__y]]

# = GPR(RBF, M} &, — Ba(Hy , — €™ My, i)

Vt, — e—r{!,.'_l—!,JV!H-l

| CVA; = (1 — Req) Vi, y, (tigr — ;) + e Ul =tI0VA,

Compute the optimal hyperparameter by minimising validation error
h,;_.h,r‘} = argming,, j,~(0.01,5) ||;1"?;“ — f;f|| via hyperopt

Repeat the prormh above with hyperparameter h} and hY.

Result: (‘\A! oy
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Figure 3.2: Q-Q plots of kernel delta against optimal hedge for CVA at intermediate time steps




Conclusion

In this paper, by drawing inspiration from Q-learning and Black-Scholes discrete-time hedging, we
propose a model-free way of finding the optimal hedging strategy in a general incomplete market
where a hedger aims at reducing the risk of a non-tradable asset on a contingent claim. When
deriving the newly proposed hedging strategy, we employ the criterion of variance minimization
and refer to the framework of QQ-learning, breaking the complex optimization problem into simple,
recursive sub-problems to find the optimal solution. The only condition used during the derivation
is that the hedging portfolio is self-financing, no assumption of assets’ price evolution or the
assumption of target financial derivatives’ value evolution entered into the derivation. As a result,
the optimal hedging strategy derived can be applied to any scenario without the coustraint of
underlying model assumptions and can be applied to hedge various financial derivatives, such as
options and CVA.

The newly proposed hedging strategy is a ratio of two conditional expectations. Two method-
ologies are then introduced to compute the conditional expectation: Least Squares Monte Carlo
(LSM) and Dynamically Controlled Kernel Estimation (DCKE). LSM is the standard method for
computing conditional expectations in the industry currently. After comparing the pricing and
hedging strategy of a European call option with the closed-form result provided by Black-Scholes
pricing and delta-hedge, it can be seen that the large fitting error appears with a high underlying
asset price. LSM gives a better fitting in the "out-of-money” case than in the "in-the-money” case.
Also, the derivation around tails can be observed. To overcome these drawbacks, we turned to
DCKE, a brand-new algorithm for conditional expectation computation, which outperforms the
existing methods in terms of convergence speed and the fitting at "tails”. It is a combination of
kernel regression, control variates, and Gaussian process regression.

With DCKE, we computed the newly proposed hedging strategy and then compared it with
the model-specified analytical optimal hedging strategies for simple models. For DCKE, we can
choose the degree of kernel regression. When the degree p = 0, the kernel estimator is also known
as Nadaraya-Watson (NW) regression. It gives a good fit but deviates around tails to some extent.
And the fitting is further improved when the degree of kernel estimation increases. When the
degree p = 1, it is known as the Locally Linear (LL) regression. Both of these two estimators are
biased. Compared with NW regression, it provides smaller bias under the same level of variance
of fitting errors, helping improve the fitting further. We then stick to the choice of Locally Linear
regression. The model-free property is verified in the case of the Black-Scholes-Merton model
and Ornstein—Uhlenbeck process respectively. The consistency of them suggests our algorithm is
generic, and it works under varions models. What makes this algorithm valuable is that it can
be applied to more complex models and other non-parametric models, whose closed-form formula
for optimal hedging is hard to compute analytically or does not exist. Suppose there is an option
written on Apple stock price and is hedged with S&P500. We choose Copulas to depict the
dependence and correlation of two datasets. We calibrate the Copulas using the historical daily
returns of S&P500 and Apple and then use it to generate future predictions. The hedging strategy
is computed and a similar shape of the hedging strategy is observed.

We then switch the research towards CVA and focus on unilateral CVA. It is a change to
the market value of derivative instruments to account for counterpart credit risk. There are two
measures to evaluate risks: the default time approach (DTA) and the default probability (intensity)
approach (DPA). Due to the lack of information on enterprises’ default time, the DTA is unlikely
to be implemented. We employ the default probability approach to evaluate risk. Imposing simple
model assumptions: the assets price diffusion follows a Geometric Brownian motion whereas the
defanlt intensity obeys an OU process, the analytical optimal hedging strategy is computed. And
the newly proposed hedging strategy is also computed with DCKE. These two strategies agree
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with each other at each intermediate time step. The accordance of them again illustrates that the
newly proposed hedging strategy not only can be used to hedge options, but also CVA. Combining
the hedging for risk-free option and CVA, the credit value adjusted option can therefore be hedged.
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