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1 Introduction

Model risk is the risk associated with bad decisions made based on inadequate models. Since the

financial crisis in 2008, model risk attracts more and more people working in the financial industry

ranging from practitioners to regulators. On the one hand, models can sometime oversimplify

reality. For instance, volatility surfaces can not be captured by a simple Black-Scholes model. On

the other hand, models might be complex with a significant number of parameters. This can lead

to calibration issues such as overfitting.

Motivated by reducing model risk, the aim of this paper is to provide alternative methods to

price and hedge financial derivatives. These methods are called “robust” in the sense that they

are less exposed to model risk.

This paper is divided into three sections: i) Uncertain volatility models, ii) Martingale Opti-

mal transport problems, iii) Model-independent methods for path-dependent options. The first

section describes a robust way to manage volatility without having to assume any deterministic or

stochastic model for the volatility process. The second section focuses on understanding optimal

transport problems and how they are applicable in mathematical finance in a robust sense. The

last section outlines robust methods for some specific path-dependent options: Barrier and Digital

options.

The aim is to provide robust upper and lower bounds which contain the actual price almost

surely and to compare the results obtained for each method.

1.1 Literature review

The theoretical framework behind uncertain volatility models was mainly studied by Avellaneda,

Levy and Parás on [4] and [5]. Their approach is to first explore the general Uncertain Volatility

Model (UVM) before introducing the Lagrangian one (λ-UVM) which incorporates more market

information.

Optimal transport problems are extensively studied in the Mathematics literature. They were

first introduced by Monge [14] and Kantorovich [15] and enhanced recently by Villani [20]. In the

financial Mathematics field, this was mainly completed by Henry-Labordere on [3] and Beiglböck,

Nutz and Touzi [2] for both discrete and continuous time versions. Guo and Oblój paper [24] offers

interesting computational and practical methods for optimal transport problems.

Finally, we will study of robust methods for path-dependent options based on the work of

Brown, Hobson and Rogers [27].

Many other research papers are used and will be cited specifically throughout the report.
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2 Pricing and hedging derivatives using uncertain volatility

models

2.1 Introduction to uncertain volatility models

Volatility is a critical parameter used in pricing and risk-management of financial derivatives. Many

attempts were made to estimate this critical variable. In the Black-Scholes model, for instance, we

assume the asset to have a constant volatility. This hypothesis is contradicted by actual markets

which exhibit stylized facts such as volatility clustering or high persistence. Moreover, the graph

of the implied volatility as a function of the strike price exhibits a ”smile” shape which cannot be

captured by a simple Black-Scholes Model.

Local stochastic volatility models appear to be the solution as they allow a calibration of

the volatility surface using the Puts and Calls prices provided by the market. However, Hagan,

Kumar, Lesniewski and Woodward [8] notice that these models can generate contradictory results

by stating that ”the dynamic behaviour of smiles and skews predicted by local volatility models is

exactly opposite of the behaviour observed in the marketplace”.

Another way to proceed is to assume random volatility models, which allow us to estimate

multiple paths of the volatility. This could per example be done through autoregressive models such

as the ARMA and GARCH ones. However, these methods require a large number of parameters

for the calibration, which can lead to overfitting issues.

The uncertain volatility models offer an interesting way to alternatively manage volatility. They

are used to price and hedge financial derivatives without having to assume any deterministic or

stochastic model for the volatility. Instead, we shall assume that the volatility stands between two

extreme values, σmin and σmax, calibrated using historical analysis. Hence, this decreases model

risk as less calibration parameters are needed. The only assumption made on volatility is that it lies

within a band [σmin, σmax]. However, we are still assuming a model of the form dSt = rdt+σtdWt

for the underlying asset: the discounted stock process is therefore a martingale with respect to the

filtration of Brownian Motions and it has no jumps.

In this chapter, we will outline the mathematical framework of the uncertain volatility models.

We will then focus on how to use options in order to price and hedge other exotic derivatives

by using the same framework. Finally, we will highlight its concrete application in the financial

markets through several numerical implementations.
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2.2 The uncertain volatility model

2.2.1 Assumptions and framework

In this section, we will introduce the statement and the mathematical framework behind the

Uncertain Volatility Model (commonly known as the UVM). First, we will consider a derivative

security on an underlying stock. We suppose that the stock does not pay any dividends and that

it follows a typical stochastic Itô process:

dSt = µtdt+ σtdWt,

where σt and µt are respectively the spot drift and volatility parameters, and Wt is a Brownian

motion. We will only focus on the parameter σt and assume that µt is constant. Under no

arbitrage opportunities, the fundamental theorem of asset pricing implies that under any equivalent

martingale measure: µt = r for every t, where r is the risk-free interest rate. The stock price

dynamics become:

dSt = rdt+ σtdWt. (2.1)

Concerning the future volatility paths, the only assumption made is that they lie between the

values σmin and σmax:

σmin ≤ σt ≤ σmax.

2.2.2 Calibration of the volatility band

On the one hand, a large volatility band [σmin, σmax] may lead to unreasonable option prices to be

of any practical use. It is therefore important to make the band as small as possible to approximate

the price well. On the other hand, an inaccurate calibration of the volatility band [σmin, σmax] may

lead to inadequate prices and thus arbitrage opportunities, which is the reason why the calibration

step is crucial. We then face two avenues: either we suppose that the band is time-dependent and

deterministic, or we assume that both bounds σmin and σmax are constants.

Let us recall the definition of the Black-Scholes implied volatility for call options:

Definition 2.1. Let Cmkt be the market quote price of a call option of maturity T and strike K, r

the risk-free interest rate and S0 the underlying stock price. The implied volatility σimp is defined

as the solution of the equation:

BSCall(S0,K, T, σimp, r) = Cmkt,

where BSCall is the Black-Scholes price formula for Call options.

There is a dependence between the volatility of the stock σt and the above implied volatility.

In fact, one can demonstrate that supposing a band for the stock volatility equates to supposing a
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band for the implied volatility. Let us denote σimp(t, T ) the implied volatility of an option at time

t and maturity T, one simple choice of a band could be such that:

σmin ≤ σimp(t, T ) ≤ σmax.

Hence, if we suppose that the band is constant, a good choice might be that the implied

volatility of most liquidly traded options in the market lie within this band.

Otherwise, if we assume the functions t 7→ σmin(t) and t 7→ σmax(t) to be deterministic and

time-dependent, a good volatility band could imply that for every 0 ≤ t ≤ T :

1

T − t

∫ T

t

σ2
min(u)du ≤ σ2

imp(t, T ) ≤ 1

T − t

∫ T

t

σ2
max(u)du

Simply put, the volatility band can either be deterministic or constant. To calibrate it, one should

proceed with a historical analysis: previous option prices provided by the market are considered

to be inputs and give us an idea on the ”range” of the implied volatilities. These should therefore

lie within the volatility band in such a way that it makes it as narrow as possible. We will later on

illustrate the effect of the volatility band width on derivatives pricing through numerical examples.

2.2.3 Derivatives pricing under the UVM Model

It is important to understand that for the Uncertain Volatility Model, the option prices are regarded

as inputs: we then say that the model is exogenous. Unlike Black-Scholes model for instance (which

is an endogenous model), the aim is not to calibrate parameters to price derivative securities

but rather to use all the information in the market (mainly Put and Call option prices) to then

price exotic options or derive accurate hedging strategies. To clarify the concept, let us consider

a derivative security on the underlying stock (St)t≥0. The derivative is supposed to be path-

dependent as the cash-flows occur at different settlement dates: t1 < t2 < t3 < ... < tN . Let

us denote F1(St1), F2(St2), F3(St3), ..., FN (StN ) the payoffs due at the previous settlement dates

and P the set of all equivalent martingale measures in order for the process (St)t≥0 to satisfy the

equation (2.1). It should be noticed that the set P is induced by the volatility process and hence

depends on the volatility band [σmin, σmax].

If our calibration of the volatility band is correct, the price of the derivative V (t, St) at time

t < t1 should lie somewhere between the upper and lower bounds defined as follows:

V +(St, t) = sup
P∈P

EP
[
N∑
i=1

e−r(ti−t)Fi(Sti)

]
, (2.2)

and

V −(St, t) = inf
P∈P

EP
[
N∑
i=1

e−r(ti−t)Fi(Sti)

]
. (2.3)
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Avellaneda, Levy and Parás [4] have shown that the above two functions can be obtained by

solving partial differential equations (PDE’s) with specific boundary conditions. V + satisfies:

∂V +(S,t)
∂t + r

(
S ∂V

+(S,t)
S − V +(S, t)

)
+ 1

2Σ2
+

[
∂2V +(S,t)

∂S2

]
S2 ∂

2V +(S,t)
∂2S2 = 0. (2.4)

where the operator Σ+ is defined as:

Σ+ [X] =

 σmax if X ≥ 0.

σmin if X < 0.

Similarly, V − satisfies the following PDE:

∂V −(S,t)
∂t + r

(
S ∂V

−(S,t)
S − V −(S, t)

)
+ 1

2Σ2
−

[
∂2V −(S,t)

∂S2

]
S2 ∂

2V +(S,t)
∂2S2 = 0. (2.5)

where this time the operator Σ− is as follows:

Σ− [X] =

 σmax if X ≤ 0.

σmin if X > 0.

The above non-linear PDE is called the Black-Scholes-Barenblatt equation and is actually a

generalization of the classical Black-Scholes PDE, which is obtained with the particular case where

σmin = σmax. It should also be noted that to completely determine V + or V −, we need to use

a dynamical programming method which comprises specific boundary conditions based on the

different cash-flow payoffs
(
Fi(Sti)

)
i≤N . For instance, in the simple case where there is only one

settlement date T with a payoff F (T ), V + is completely determined by solving (2.4) with the

boundary condition V +(S, T ) = F (T ). The general case will be illustrated numerically later on

with a trinomial tree example.

2.2.4 Delta-hedging

In this section, we will briefly outline delta-hedging within the UVM framework. If we define V

to be the actual price of the portfolio, we obtain (under an accurate calibration of the volatility

band): V −(St, t) ≤ V (St, t) ≤ V +(St, t) for every t ≥ 0. Hence, under the “worst-case” scenario

of the volatility path (σt)t≥0, the price of the portfolio would be V +. The equation (2.4) gives us

exactly the volatility path (σ∗t )t≥0 if this worst-case scenario was to happen:

σ∗t = Σ+

[
∂2V +(St, t)

∂S2

]
.

If we assume that the volatility follows this path, then we can use a classical delta-hedging strategy

to replicate all future payoffs
(
Fi(Sti)

)
i≤N of the derivative security: we build a portfolio consisting

of long positions on ∆t shares and Bt bonds, and we dynamically rebalance our positions to satisfy:

∆t =
∂V +(St, t)

∂S
,



2.3 The Lagrangian Uncertain Volatility Model 11

and

Bt = V +(St, t)− St
∂V +(St, t)

∂S
.

If we re-use the latter self-financing portfolio in the general case where the volatility is arbitrary

and lies within [σmin, σmax], we will then super-hedge the financial derivative. In fact, if we short

the security and we follow the self-financing trading strategy, we will end up with a positive cash-

flow after delivering all the payoffs. If the volatility path follows exactly the worst-case scenario

(σ∗t )t≥0, it will then mean we will have perfectly replicated the cash-flow payoffs. Therefore, this

is the optimal dynamic hedging strategy that is built using the underlying asset and bonds as

hedging instruments. It is optimal since it inevitably generates non-negative cash-flows regardless

of the volatility path. A similar reasoning can be applied for the lower bound V − to hedge a long

position on the derivative security.

2.2.5 Hedging with options

Generally, options such as Calls and Puts allow high-order Greek sensitivities (Gamma for instance)

through their spot convexity. Thus, we tend to use a portfolio comprising a mix of options as well

as the underlying asset to hedge volatility-risk. Intuitively, this is mainly due to the fact that

volatilities of the portfolio options tend to cancel each other. Such a phenomenon is known as

risk-diversification.

One of the key features of the UVM is that it can capture and quantify this risk diversification.

To fix ideas, let us consider a Bank (sell-side) that wishes to market-make a two derivatives

portfolio. Let us denote Φ and Θ as their respective discounted payoffs. The upper price V + can

be seen as the offer price and V − as the bid price, and V + − V − is therefore the bid-ask spread.

Since we have:

sup
P∈P

EP [Φ + Θ] ≤ sup
P∈P

EP [Φ] + sup
P∈P

EP [Θ] .

That means that the offer price of the combined portfolio is reduced compared to the price of each

portfolio priced separately. On the other hand, we have:

inf
P∈P

EP [Φ + Θ] ≥ inf
P∈P

EP [Φ] + inf
P∈P

EP [Θ] .

Similarly, the bid price of the combined portfolio is higher than the separate portfolio bid price.

Finally, the bid-ask spread is narrowed in the combined portfolio, just as it was expected.

2.3 The Lagrangian Uncertain Volatility Model

Before moving on, let us first summarize the key results we have seen in the Uncertain Volatility

Model. We firstly outlined that no assumption related to the volatility paths is made. Following
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this, we have then formulated the UVM through the upper (2.2) and lower bounds (2.3) and

have seen that those bounds should satisfy the equation (2.1). Finally, we briefly described how

to Delta-hedge and super-replicate a portfolio with the UVM as well as how and why hedging with

options is more interesting since the model captures risk-diversification. We shall now focus on

how to incorporate options market data to the model.

In this section, we will see how to construct efficiently hedging portfolios using option derivatives

in addition to the underlying asset. Following [5], we will introduce the Lagrangian Uncertain

Volatility Model (known as λ-UVM) as formulated by Avellaneda, Parás and Levy before describing

how it is related to the classical Uncertain Volatility Model. Finally, we will explain how to use

this model under the trinomial trees framework.

2.3.1 Formulation of the optimization problem

Let us suppose that we want to hedge a short position on a derivative security at time t. We

denote Φ the discounted payoff of this derivative and, just as before, F1(St1), F2(St2), ..., FN (StN )

its cash-flows at the settlement dates t1 < t2 < ... < tN :

Φ =

N∑
i=1

e−r(ti−t)Fi(Sti).

Furthermore, let us suppose there are M options (mainly Calls or Puts) in the market which we

can use to hedge our position. We denote their payoffs respectively at the maturity dates t′1, ..., t
′
m

by G1(St′1), G2(St′2), ..., GM (St′M ). These options are available in the market at the following prices:

C1, C2, ..., CM . The main aim is to find the number of option contracts to long or short to efficiently

hedge the position. If we denote them by λ1, λ2, ..., λM , we can define the discounted payoff of the

hedging portfolio Ψ:

Ψ =

M∑
j=1

λje
−r(t′j−t)Gj(St′j ).

We can further define the expected discounted residual liability L+ as the maximum payoff loss of

the trading strategy:

L+ = sup
P∈P

EPt [Φ−Ψ] = sup
P∈P

EPt

 N∑
i=1

e−r(ti−t)Fi(Sti)−
M∑
j=1

e−r(t
′
j−t)λjGj(St′j )

 (2.6)

Finally, the total cost of the hedge, defined as V +(t, St, λ1, ..., λM ), is obtained by adding the
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above worst-case liability to the cost of the options:

V +(t, St, λ1, ..., λM ) = L+ +

M∑
i=1

λiCi

= sup
P∈P

EPt [Φ−Ψ]

= sup
P∈P

EPt

 N∑
i=1

e−r(ti−t)Fi(Sti)−
M∑
j=1

e−r(t
′
j−t)λjGj(St′j )

+

M∑
i=1

λiCi

(2.7)

Notice that the first term of this equation is similar to the upper bound (2.2) seen in the UVM

except that now the payoff incorporates the hedging option prices.

The optimal hedging strategy is the one that minimizes the total hedging cost V +(t, St, λ1, ..., λM );

let us call the optimal solution Ṽ +(t, St, λ1, ..., λM ). Thus, we are left with the following optimiza-

tion problem:

Ṽ +(t, St, λ1, ..., λM ) = inf
λ1,...,λM

V +(t, St, λ1, ..., λM ). (2.8)

Ṽ + is therefore the worst-case optimal hedge of a short position of the derivative security. It

can thus be seen as an upper bound of the derivative price which should be strictly less than

Ṽ +. Indeed, there is equality only when the volatility follows the worst-case scenario. Such an

optimization is called the λ-UVM of an upper price. Following [5], if σt lies within the volatility

band, then the infimum in (2.8) is actually attained.

The steps of deriving the lower bound price of the derivative security are analogous to those

for the upper bound. Since we want to hedge a long position on the derivative, the expected

discounted residual L− liability is this time the infimum payoff loss of the trading strategy:

L− = inf
P∈P

EPt [Φ−Ψ] = inf
P∈P

EPt

 N∑
i=1

e−r(ti−t)Fi(Sti)−
M∑
j=1

e−r(t
′
j−t)λjGj(St′j )

 . (2.9)

Similarly, the total cost of the hedging strategy V −(t, St, λ1, ..., λM ) is:

V −(t, St, λ1, ..., λM ) = inf
P∈P

EPt

 N∑
i=1

e−r(ti−t)Fi(Sti)−
M∑
j=1

e−r(t
′
j−t)λjGj(St′j )

+

M∑
i=1

λiCi. (2.10)

Keeping in mind that the optimal solution is the one which maximizes the above total cost, let

us denote it Ṽ −(t, St, λ1, ..., λM ). The optimization problem for the lower bound price therefore

becomes:

Ṽ −(t, St, λ1, ..., λM ) = sup
λ1,...,λM

V −(t, St, λ1, ..., λM ) (2.11)

Generally, we restrict the number of short and long positions to some boundaries. This is mainly

due to liquidity and trading limits constraints. For every i we impose: η−i ≤ λi ≤ η+
i for some

constants η+
i and η−i .
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It is worth noting that the hedging developed above for the upper and lower bound price is static,

i.e we are taking long or short positions at time t and waiting for the payoffs to happen. However,

markets are dynamic and therefore those hedging strategies could be improved by incorporating

dynamic strategies and constantly rebalancing the portfolio. In our study, we will only focus on

static hedging.

Following [4], the more we increase the number of derivatives used for hedging, the more the

upper and lower bound spread (Ṽ +−Ṽ −) is narrowed. This is due to the fact that the market tends

to become more complete when we increase the number of hedging option instruments. Therefore,

it is crucial to work with sufficient Vanilla Calls and Puts data in order to narrow the upper and

lower spread price as much as possible.

In a nutshell, we have just outlined how to efficiently derive upper and lower bound prices of a

derivative security using options as hedging instruments. Those bounds are respectively given by

the optimization problems (2.8) and (2.11). To solve them, we should resolve the UVM problems

given by the expected discounted liabilities, (2.6) and (2.9), and pair them with an optimization

routine.

2.4 Numerical implementation

2.4.1 Trinomial tree framework

In this section, we shall learn how to solve the optimization problems (2.8) (2.11) under some

assumptions of the stock price movements. We assume that after each time step ∆t (that can be

seen as a trading period), the stock price may reach three different values. Formally if we denote

St the stock price at time t, then at time t+∆t, St+∆t might have either one of the following three

values: uSt,mSt or dSt for some constants u,m and d. Graphically:

Figure 1: One period trinomial tree

Let us now consider a trinomial tree model with n trading periods, the time horizon of the tree

is defined by the final time T and the time step ∆t = T
n . For computational time efficiencies, we

impose ud = m2. This condition allows the tree to recombine and therefore avoiding exploding
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the total number of nodes. Let us denote the Sji by the price of the stock where i the ith time step

and j the node price position at this time, with j increases with the price. A three-period trinomial

recombined tree is graphically represented as follows:

Figure 2: Three period trinomial tree

Notice that at the ith time step, there are 2i+1 nodes instead of 3i due to the condition ud = m2.

This will considerably reduce the complexity of the numerical implementation algorithm.

As well as developing the uncertain volatility model, Avellaneda, Levy and Parás [5] described

how to compute the expected discounted residual liabilities (2.6) (2.9) within the trinomial tree

framework. Let us remember that these liabilities are basically the solution of the classical UVM

and are obtained by solving the PDE’s (2.5) and (2.4). The method used is a finite-difference

method.

Let us also notice that, under an accurate choice of u,m and d, the trinomial tree model is

incomplete i.e the set P is not a singleton and contains at least two elements. This is exactly what

allows the σt to take any value within the volatility band [σmin, σmax]. We should incorporate this

degree of freedom within the above model: this is done through the family probability {pu, pm, pd}

at each node and denotes respectively the probability at which the stock price goes up, towards the

center, or down. Intuitively, when the spot volatility is large (say σmax), the stock is more likely to

go up or down and therefore pu and pd weigh more than pm. Similarly, if the spot volatility is low

(say σmin), the middle probability pm would weigh more than the two other extreme probabilities.

For the constant parameters u,m and d, we fix:

u = eσmax

√
∆t+r∆t,

m = er∆t,

d = e−σmax

√
∆t+r∆t

(2.12)
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We then define the pricing probabilities:

pu = p

(
1− σmax

√
∆t

2

)
,

pm = 1− 2p,

pd = p

(
1 +

σmax
√

∆t

2

) (2.13)

where the variable p is such that
σ2
min

2σmax
≤ p ≤ 1

2 to reflect the above remark about fluctuation

probabilities.

2.4.2 Numerical implementation for UVM algorithm

Under the notations (2.12), (2.13), we can easily solve the optimization problems (2.8) and (2.11)

of the upper and lower price bounds. Firstly, we need to determine the expected lower and upper

liabilities L+ and L− by solving the classical uncertain volatility model (2.6) and (2.11). Here,

it should be noted that L+ and L− are functions of λ1, ..., λM . Then, we need to minimize(
L+(λ1, ..., λM ) +

∑M
i=1 λiCi

)
and maximize

(
L−(λ1, ..., λM ) +

∑M
i=1 λiCi

)
with respect to the

variables λ1, ..., λM . This can easily be done with classic minimization methods such as the Gra-

dient descent or Powell’s method. To that end, we will be using the library scipy.optimize from

Python to proceed with this step.

Let us therefore focus on the first step. To simplify notations, we will write:

L+ = sup
P∈P

EPt

 N ′∑
i=1

e−r(ti−t)F̃i(Sti , λ1, ..., λM )

 , (2.14)

and

L− = inf
P∈P

EPt

 N ′∑
i=1

e−r(ti−t)F̃i(Sti , λ1, ..., λM )

 , (2.15)

where N ′ = max(N,M) and, for every i, F̃i is such that:

N ′∑
i=1

e−r(ti−t)F̃i(Sti , λ1, ..., λM ) =

N∑
i=1

e−r(ti−t)Fi(Sti)−
M∑
j=1

e−r(tj−t)λjGj(St′j ). (2.16)

In the first section, we have seen that L+ and L− are typically UVM and can be solved using the

partial differential equations (2.4) and (2.5). In [9], Parás have developed an algorithm to solve

these PDE’s within the trinomial tree framework. He also proved the convergence of the solution

when the time step ∆t tend to 0 (i.e when the number of time periods n of the trinomial tree tends

towards infinity).
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The algorithm works with a dynamic programming method. We start from the end of the tree

and go backward by computing the supremum/infimum of the expected liability i.e to compute

the value of L+ or L− of each node at time t we use the nodes at time t + 1. We eventually

reach the first node of the tree (at time 0) which corresponds to the current price of the derivative

instrument.

Let us denote W+,j
i the value of L+ of the node in the ith time step positioned in jth, where j

is increasing with the price (the notations are similar to those in the Figure 2). W−,ji is similarly

the value of L− of the node at the (i,j) position. Given n (the number of time steps), T (the

final tree time) and {u,m, d} (given by the equations (2.12)), we simulate a n period recombined

trinomial tree. Following this, we go over each time step corresponding to the settlement dates

t1, t2, ..., tN ′ of (2.14) and (2.15) and we substitute each node Sjti with its corresponding payoff

F̃ jti = F̃i(S
j
ti , λ1, ..., λM ). At the other times steps we set F̃ jk = 0. The tree (F̃ ji ){i,j} that we obtain

will be used to compute the expected liabilities L+ and L− while using the algorithm below. For

the upper bound L+:

W+,j
i = F̃ ji + e−r∆t

(
W+,j
i+1 + p1L

j
i+1

)
(2.17)

where

Lji+1 =

(
1− σmax

√
∆t

2

)
V j+1
i+1 +

(
1 +

σmax
√

∆t

2

)
V j−1
i+1 − 2V ji , (2.18)

and p1 satisfies:

p1 =

 1/2 if Lji+1 ≥ 0

σ2
min/2σ

2
max else..

(2.19)

For the lower bound L−, we have similar results except for (2.19):

W−,ji = F̃ ji + e−r∆t
(
W−,ji+1 + p2L

j
i+1

)
, (2.20)

where

Lji+1 =

(
1− σmax

√
∆t

2

)
V j+1
i+1 +

(
1 +

σmax
√

∆t

2

)
V j−1
i+1 − 2V ji ,

and p2 satisfies this time:

p2 =

 1/2 if Lji+1 < 0

σ2
min/2σ

2
max else..

(2.21)

All of the process can be summarized in a three step algorithm.

In the first step, the aim is to construct the last step of the payoff tree (W j
i )i,j . We first build

the trinomial stock tree and, depending on the values of the last settlement dates of the hedging
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instruments and the derivative to hedge, we compute the node values at the last time step. We

use the following notations:

• t1, ..., tN and t′1, ..., t
′
M are respectively the settlement dates of the hedging option instruments

and the derivative to hedge.

• n’ is the size of the trinomial tree (which is an input of the user).

• The payoff function F and G are the same of (2.16).

• The function contruct trinomial tree() construct the stock trinomial tree described above.

W j
i returns the value of the node at the position (i,j).

The pseudo-code of the algorithm for the first step is as follows:

Algorithm 1 Building the last step of the payoff trinomial tree

m←M

n← N

W = construct trinomial tree()

if t′m > tn then

for j in 1: 2n’+1 do

W j
n = −λmGm(W j

n)

m← m− 1

end for

else if t′m = tn then

for j in 1: 2n’+1 do

W j
n = Fn(W j

n)− λmGm(W j
n)

m← m− 1

n← n− 1

end for

else

for j in 1: 2n’+1 do

W j
n = Fn(W j

n)

n← n− 1

end for

end if

In the second step, we will build the whole payoff tree using the equations (2.17), (2.18), (2.19), (2.20)

and (2.21). The basic principle of building the tree is, when iterating over all the time steps, to

verify whether the payoff of either the hedging instrument or the derivative to hedge occurs. We

can this step with the following pseudo-code:
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Algorithm 2 Building the whole payoff trinomial tree

∆t = T
n′

for i in n’-1: 1 do

for j in 1: 2i +1 do

Given W j
i+1,W

j+1
i+1 and W j+2

i+1 we set Lji+1 according to equation (2.18).

Set p following (2.19) for the upper bound and (2.21) for the lower bound.

if i∆t ≤ t′m or i∆t ≤ tn then

if t′m = tn then

W j
i = e−r∆t

(
W j+1
i+1 + pLji+1

)
+ Fn(W j

i )− λmGm(W j
i )

After updating all the node (i.e when j = 2i+ 1) do:

m← m− 1

n← n− 1

else if i∆t ≤ t′m then

W j
i = e−r∆t

(
W j+1
i+1 + pLji+1

)
− λmGm(W j

i )

After updating all the node (i.e when j = 2i+ 1) do:

m← m− 1

else

W j
i = e−r∆t

(
W j+1
i+1 + pLji+1

)
+ Fn(W j

i )

After updating all the node (i.e when j = 2i+ 1) do:

n← n− 1

end if

else

W j
i = e−r∆t

(
W j+1
i+1 + pLji+1

)
end if

end for

end for

Let us highlight that the inequalities i∆t ≤ t′m and i∆t ≤ tn should rather be equalities.

However, when dividing the maximum maturity T into n’ small time steps ∆t we can encounter

the following issue: for n in {1, ..., N} there could exist a k ∈ N such that k∆t < tn < (k + 1)∆t.

In other words, the time steps of the tree could was not able to match perfectly the settlement

dates of the derivatives. That is why the above inequalities are used: we force the payoff of a

derivative to occur slightly before its true settlement. Also, we can highlight here the importance

of the condition ud = m2, which is leading to a recombining trinomial tree and to a quadratic

complexity O(n′2) instead of an exponential one.

All the variables used in both steps are either inputs from the user or can be deduced from

these inputs, except for {λ1, ..., λM} which are more of changing parameters and should solve the



2.4 Numerical implementation 20

optimization problem (2.11) and (2.8). This is where the ultimate optimization step occurs. If we

combine the first and second steps, we can extract the value of the payoff at the initial time W 0
0 as

a function of {λ1, ..., λM}. We then use a maximization or minimization routine such as gradient

descent. For simplicity reasons, we will not detail the optimization step. Recall that {C1, ..., CM}

are the prices of the hedging instruments (options) observed in the market. The algorithm of this

last step can now be summarized as follows:

Algorithm 3 Optimization

Get W 0
0 (λ1, ..., λM ) using the first two steps.

Set the optimization method

Set limits of long and short positions: for every i in {1, ...,M} impose η−i ≤ λi ≤ η
+
i .

minimize or maximize
(
W 0

0 (λ1, ..., λM ) +
∑M
j=1 λjCj

)

2.4.3 Application of the UVM: Call options

In this section, we shall explore the numerical implementations of the classical uncertain volatility

model in a simple case where the instrument to price/hedge becomes a call option. Let us be

reminded that for this model, the only hedging instrument used is the underlying stock. When

studying the λ-UVM later on, we will use options as hedging instruments and compare the results

of both methods.

We will be using the example of Amazone Call options. The data call prices are taken as quoted

in dollars by the NASDAQ Market June 6th, 2019. The spot price of Amazone stock (AMZN) is

S0 = 1746.81. Let us first and foremost consider the Call options expiring on July 19th , 2019

(i.e in T=43 days). We consider Call prices for a Strike price K ranging from 1515 to 2100. The

implied volatility as a function of the Strike price as quoted in the market is represented in figure

3.
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Figure 3: Implied volatility of Call Amazone Options.

A good choice of σmin and σmax would be such that the implied volatility would be contained

within such volatility band. Thus, we have chosen σmin = 0.23 and σmax = 0.4. Concerning the

risk-free interest rate, we use the OIS dollar rate: r = 0.023. After solving the equations (2.2)

and (2.3) using the numerical algorithm, we obtain the following graph for upper and lower prices:

Figure 4: Prices of the UVM upper/lower prices compared to the true market price

To illustrate the effect of the volatility band width, we can plot the same graph, but with two

different volatility bands. Let us denote the volatility band 1 by [σmin , σmax] = [0.23, 0.4] (as

before) and the volatility band 2 by: [σmin , σmax] = [0.1, 0.5]. Figure 5 shows the importance of

the volatility band calibration:
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Figure 5: Prices of the UVM upper/lower prices with different calibrated parameters. For band 1,

[σmin, σmax] = [0.23, 0.4]. For band 2, [σmin, σmax] = [0.1, 0.5].

On the one hand, even using a narrow volatility band, the spread between the upper and lower

price remains quite high (relatively to actual market bid-ask spreads). Moreover, this spread is

bigger for around the money options which lacks coherency with market observations: around the

money options are liquidly traded in the market, and both these high supply and demand should

narrow the bid-ask spread, which is not the case here.

On the other hand, as seen in the PDE’s (2.4) and (2.5), the implied volatilities of the upper

and lower prices are respectively functions of the sign of ∂2V +(S,t)
∂S2 and ∂2V −(S,t)

∂S2 . In this simple

case where V + and V − involves one call option (to hedge) and given the fact that the gamma of a

call option is known to be positive, it follows that V + and V − are convex functions with respect to

the spot price. Using the definition of the operator Σ+ and Σ−, the implied volatility of the upper

bound price and the lower bound price are respectively σmax and σmin. Therefore, the upper and

lower bounds of the UVM are Black-Scholes prices obtained using the extreme volatilities σmin

and σmax. This is numerically confirmed in Figure 6, where we plot the implied volatility of the

market prices as well as the ones of the upper and lower bound prices of Figure 5.
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Figure 6: Implied volatilities of the market prices and the upper/lower bound prices

2.4.4 Application of the Lagrangian UVM: Call options

So far, we have numerically implemented the UVM and have witnessed some limitations of this

model such as the wide spread between the upper and lower bound for at-the money options as

well as the constant-in-time implied volatility. We shall now implement the λ-UVM and verify

whether these issues are tackled.

For now let us exclusively use one hedging instrument: an option that expires also in T=43 days

with a strike price K=1745, which is the closest strike to the spot price (almost an at the money

option). Using notation in (2.16), the only settlement date for both the derivative to hedge and

the hedging instrument is T = t1 = t′1, the hedging payoff function G1 is equal to (ST −KATM )+

where KATM = 1745.

After numerically solving the problems (2.14) and (2.15), we obtain the results featuring in

Figure 7.
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Figure 7: Prices of the λ-UVM upper/lower prices using one hedging instrument

This time, the upper-lower bounds spread has been dramatically reduced, especially for around

the money Call option, which is more in line with our expectations.

Let us now focus entirely on the upper bound and study its implied volatility (the same work

can be done for the lower bound). The portfolio is slightly more complex than it was before since

we allow the combination of short and long option positions by introducing the Call as a hedging

instrument. This time, upper prices are not obtained simply by using the extreme volatilities σmin

and σmax; it is rather the PDE (2.4) which captures the volatility path that yields the smallest

no-arbitrage upper price. This is confirmed in Figure 8 which plots the implied volatility of both

the upper prices and the market prices as a function of the strike K.

Figure 8: Implied volatilities of market and upper bound prices in the λ-UVM framework
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2.4.5 Lagrangian UVM with multiple hedging instruments

As claimed in 2.2.5, the model can quantify risk-diversification. This has been confirmed in the

numerical applications above: when we add long or short positions of Call options in the portfolio,

we are able to capture a time-dependent implied volatility. We have also noticed that through this

risk-diversification, the more hedging instruments we add, the narrower the spread between the

upper and lower bound becomes because the volatilities of each instrument in the portfolio tend

to cancel each other. Let us illustrate this with a numerical example.

In addition to the hedging Call option used above, we shall now use two other 43-days Call

options as hedging instruments. The strikes of these hedging instruments are 1515 and 2100. Their

market quotes are featured in Figure 9.

Figure 9: Amazone Vanilla Call options as quoted in the Market the 6th July 2019

After running the numerical algorithm, we can plot the upper bound as before and compare it

to market prices:

Figure 10: λ-UVM upper and lower bounds using three hedging instruments

We can plot the upper and lower bound spread and see whether incorporating new hedging

instruments narrows the spread or not. This is confirmed by Figure 11 as we notice that the spread

normalized by the spot price (upper−lowerS0
) has decreased when we use two additional hedging

instruments.
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Figure 11: Spread with 3 hedging instruments compared to 1 hedging instrument

2.4.6 Volatility term structures

In this section, we will describe how to induce market information using Call option prices. Instead

of pricing derivatives with different Strike prices, we will now fix the Strike price and see how the

pricing behaves when changing the maturity T. Mainly, we choose at the money options (K = S0)

as they are liquidly traded in the market. Usually, these kind of options are often quoted with

their implied volatility. The graph of the implied volatility as a function of the maturity T for

at the money options is called the ATM term structure of implied volatility; let us see how the

λ-UVM enables its construction.

We shall consider six at-the money options with different maturities as hedging instruments,

market quotes are summarized in Figure 12.

Figure 12: Hedging Call options as quoted in the Market the 6th July 2019

The main goal is to use the prices of these ATM hedging instruments to interpolate implied

volatilities of ATM options with other Maturities. We will only consider the upper bound case as

the lower bound case is similar.
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For instance, let us price an ATM option that expiring in 100 days. Intuitively, we can claim that

hedging options expiring close to this date (i.e the 43-days and 134-days options) will predominantly

be involved in the hedging strategy. Indeed, the optimization algorithm yields an optimal price

value of 129.25 with optimal values

(λ1, λ2, λ3, λ4, λ5, λ6) = (0, 0.017, 0.259, 0.560, 0.058, 0)

as shown in Figure 13.

Figure 13: Optimal solutions of pricing an ATM Call option that expires in 100 days

Notice also that it is the hedging option with the next closest maturity (i.e 134-days Call option)

which carries the largest hedge part and offers most protection again volatility risk. This is because

the other hedging Calls do not offer as much protection as the 134-days Call against volatility risk.

We can plot the ATM implied volatility term structure for a range of maturities. Let us per

example choose the following expiry dates: 20, 80, 200, 300, 450, 620 and 730 days. The results

summarized in Figure 14 are in line with stylized market observations.
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Figure 14: ATM implied volatility term-structure

2.5 Conclusion

In this chapter, we saw an alternative way to manage volatility with uncertain volatility models.

Being exogenous, the models incorporate market information (such as Vanilla prices) and calibrate

a volatility band. This reduces considerably market risk compared to other statistical or stochastic

methods that require more parameters.

We then outlined the importance of using options as volatility hedging instruments, and we

saw how the model is able to capture this effect through risk-diversification.

Finally, we tested how the model behaves through concrete numerical applications and saw how

to derive important market information such as optimal bid-ask spreads and ATM term structures.
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3 Martingale optimal transport problems

3.1 Introduction and context of Optimal transport problems

Optimal Transport problem was first introduced by the French mathematician Monge in 1781 in

Mémoire sur la Théorie des Déblais et des Remblais [14]. His theory derived from a military

transportation problem: he wanted to know how to fill holes with a given pile of sand in the most

economic way. In 1940, the Russian mathematician Kantorovic introduced a relaxation of Monge’s

problem and developed the well-known Monge-Kantorovich optimal transport problem [15]. More

recently, Beiglböck, Henry-Labordère and Penkner [16] formulated a link between these optimal

transport problems and financial pricing methods.

A market is said to be complete when every future payoff can be replicated using self-financing

strategies. The price of the derivative should equate the replication cost under no-arbitrage oppor-

tunities. Under market completeness, there exists a unique martingale measure equivalent to the

real probability measure. The price of the derivative can be obtained by taking the expectation

of the discounted payoff under this equivalent martingale measure. However, when the market

is incomplete, there are more than one equivalent martingale measure and the discounted payoff

under any of these measures provides a fair price for the derivative.

Let us denote P as the set of all equivalent martingale measure and F (XT ) as the discounted

contingent claim. Hobson [18] suggested that an upper and lower bounds (respectively V + and

V −) of the derivative price are naturally obtained as follows:

V + = sup
P∈P

EP [F (XT )] (3.1)

and

V − = inf
P∈P

EP [F (XT )] (3.2)

However, these bounds may lead to unreasonable prices to be of any practical use. Similarly

to what we have seen in the previous chapter, the main idea is therefore to use information in

the market (more specifically liquid Vanilla options) to create tighter bounds. Therefore, to price

a specific contingent claim, one should use an equivalent martingale measure consistent with the

prices of Calls and Puts in the market. This formulation adds a new constraint to the classic

optimal transport theory and is called the Martingale Optimal Transport (MOT) problem.

In this Chapter, we will first introduce the classical mathematical theory behind optimal trans-

port problem. Then, we will study the special case of the Martingale optimal transport problem

and monitor its application in financial markets through numerical implementations.



3.2 Optimal Transport Problem 30

3.2 Optimal Transport Problem

3.2.1 Monge-Kantorovich Problem

Let us first offer a general description of Optimal transport problems before highlighting their link

with mathematical finance.

Going back to the above military example, we can mathematically model the pile of sand and

the holes position respectively by polish sets X and Y associated to their Borel sets B(X ) and

B(Y). We then define two probability measures µ and ν on the product set X x Y.

The transport map T connecting both measures is defined as follows: T : X → Y such that for

every B in B(Y), ν(B) = µ(x ∈ X , T (x) ∈ A). Let us here note T the set of such transport maps

(Remark: this set could be empty) and, finally, define the cost function c : X × Y → R.

Intuitively, the measures µ and ν measure respectively the amount of sand and the dimensions of

the hole. c(x,y) measures the cost of moving the sand from the point x to y. If we assume the

latter to be negative, Monge’s problem can be formulated as follows:

Definition 3.1 (Monge optimal transport problem).

Pmonge = sup
T∈T

∫
x∈X

c(x, T (x))µ(dx)

Notice that the transport map T establishes a bijection between the Borel sets B(X ) and B(Y).

In other words, a pile of sand in the position x has only one specific destination y. If we allow

multiple destinations for the specific pile of sand in x, we obtain a relaxation of Monge’s Problem

commonly known as Monge-Kantorovich Problem.

Formally, Let us denote P(µ, ν) as the set of all probability measures defined on B(X ,Y), where

µ and ν are respectively the first and second marginal laws. For every P ∈ P(µ, ν), A ∈ B(X ) and

B ∈ B(X ), we have µ(A) = P(A × Y) and ν(B) = P(X × B). Monge-Kantorovich formulation is

as follows:

Definition 3.2 (Monge-Kantorovich optimal transport problem).

PM−K = sup
γ∈P(µ,ν)

∫
X×Y

c(x, y)γ(dx, dy)

= sup
γ∈P(µ,ν)

Eγ [c(X,Y )]

(3.3)

The probabilistic interpretation of Monge-Kantorovich optimal transport problem is that given

the cost c and the marginals µ and ν, the aim is the find the best (in the expectation sense)

correlation structure.

3.2.2 Duality results

Let us call the above Monge-Kantorovich optimal transport problem the Primal problem. A

famous result in optimal transport theory is that this Primal can be dualized. The Dual Monge-
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Kantorovich problem is defined as follows:

Definition 3.3 (Dual: Monge-Kantorovich optimal transport problem).

DM−K = inf
(λ0,λ1)∈P∗(µ,ν)

{
Eµ [λ0(X)] + Eν [λ1(Y )]

}
(3.4)

where P∗(µ, ν) is the set of all function (λ0, λ1) ∈
(
L1(µ)× L1(ν)

)
such that for every (x, y) ∈ R2

+:

λ0(x) + λ1(y) ≥ c(x, y)

We can show that the infimum in (3.3) is actually attained if we ensure that the functions in

P∗(µ, ν) are bounded and continuous.

Let us assume that the function c : R2
+ → [−∞,∞) is continuous and that there is a constant

K such that for every x ≥ 0 and y ≥ 0:

c+(x, y) ≤ K(1 + x+ y) (3.5)

where c+ is the positive part of c. Villani [20] have shown that under the assumption (3.5), there is

no duality gap (i.e PM−K = DM−K), which leads to the strong duality theorem commonly known

as Kantorovich duality:

Theorem 3.4 (Kantorovich duality).

sup
γ∈P(µ,ν)

Eγ [c(X,Y )] = inf
(λ0,λ1)∈P∗(µ,ν)

{
Eµ [λ0(X)] + Eν [λ1(Y )]

}
By the fundamental theorem of asset pricing, the price is obtained by taking the expectation of

the discounted payoff under any equivalent martingale measure. However, in the context of optimal

transport we consider all the probability measures with given marginals. It is therefore important

to add a martingale constraint that is consistent with market data, leading to the Martingale

Optimal transport (MOT) problem.

3.3 Martingale optimal transport

3.3.1 Implied marginal distribution by the market

Before formulating the MOT problem, let us first see how to induce marginal distribution from

the market.

Breeden and Litzenberger [22] showed that the marginal distribution of an underlying ST in a

specific time T can be induced from the market data using T-Vanilla Calls and Puts prices. Let

us fix the maturity T and let the risk-free interest rate r to be equal to zero. Assume also that

Call options are known for all strikes K ≥ 0 and that their prices are obtained using an equivalent

martingale measure Q:

C(K,T ) = EQ [(ST −K)+
]
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Then the marginal distribution of ST implied by the market is obtained as follows:

Q(ST > dK) =
∂C(K,T )

∂K
(3.6)

and

Q(ST ∈ dK) =
∂2C(K,T )

∂K2
(3.7)

This primordial result allows us to incorporate market information within the context of optimal

transport. Basically, the main idea is that an optimal upper bound is obtained by using the Monge-

Kantorovich problem (3.2) but restraining the set P(µ, ν) to a set of measures where the marginals

satisfy the martingale constraint and are implied by the market following the equation (3.7).

3.3.2 Formulation of the two-period discrete time MOT

Before introducing the problem formally, let us first clarify some notations. Instead of working

with the two Borel sets B(X ) and B(Y), we shall work with a fixed probability space (Ω,F ,P)

which is more accurate in a financial context. We shall consider the underlying asset modelled by

the stochastic process (St)t∈I . Touzi, Beiglböck and Nutz [2] have formulated the problem in the

case where I is an interval. We will mainly study the discrete time version in which I is a discrete

time model.

We mainly focus on a two-period discrete time i.e we want to price a contingent claim c(st0 , st1)

depending on the price of an underlying asset at two different dates t0 < t1 (the index time I is equal

to {t0, t1}) . We denote µ0 and µ1 the probabilities measures implied by the market satisfying (3.7)

with respectively T = t0 and T = t1. Recall that P(µ0, µ1) is the set of all probability measures

with marginals µ0 and µ1 defined on (Ω,F), we then defineM(µ0, µ1) to be the set of all possible

martingale measure Q satisfying the marginal constraints imposed by the market:

M(µ0, µ1) =

{
γ ∈ P(µ0, µ1) : Eγ [St1 |Ft0 ] = St0

}
(3.8)

We will see later on a necessary and sufficient condition to ensure that M(µ0, µ1) is not empty.

Finally, the two-period discrete time Martingale Optimal transport problem is given by:

Definition 3.5 (Two-period Martingale Optimal Transport problem).

PMOT = sup
γ∈M(µ0,µ1)

Eγ [c(St1 , St2)] (3.9)

Essentially, we have said that the upper bound price (3.1) obtained by taking the supremum

over all martingale measures is too large to be of any use. However, if we impose marginals of these

martingale consistent with Vanilla prices, we could be able to lower this upper bound since we are

incorporating new market information. We have also seen how the problem is closely related to

the Monge-Kantorovich optimal transport problem and let us thus study similar duality results.
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3.3.3 Formulation of the multi-period discrete time MOT

Suppose now we want to price a path-dependent option which contingent claim c(St1 , St2 , ..., Stn)

is a function of the underlying asset price at the dates t1, ..., tn where t1 < t2 < ... < tn. Assume

that for every i ∈ {1, ..., n}, µi are the implied distributions by the market obtained with Vanilla

options that expires at ti and denote P(µ0, ..., µn) the set of all probability measures with given

marginals µ1, ..., µn. A natural extension of the above two-period MOT is to consider the following

upper price:

Pn−MOT = sup
γ∈M(µ0,...,µn)

Eγ [c(St0 , St1 , ..., Stn)] (3.10)

Where

M(µ0, ..., µn) =

{
γ ∈ P(µ0, ..., µn) : Eγ [Sti |Fti ] = Sti−1

, i = 1, ..., n

}
Let us now see under which condition the generalized set M(µ0, ..., µn) is non-empty. Given

two probability measures µ and ν defined on a particular probability space and with finite first

order moment, we state that µ is smaller than ν in the convex order if and only if for every convex

function φ we have Eµ[(φ(X)] ≤ Eν [φ(Y )] and we denote µ ≤cx ν. Strassen’s Theorem [21] gives

a necessary condition on the existence of a martingale with specific marginal distributions:

Theorem 3.6 (Strassen’s Theorem). Let (µk)0≤k≤n be a family of probability measures on a

probability space. There exists a martingale (Sk)0≤k≤n with marginal distributions (µk)0≤k≤n if

and only if each for every k ∈ {1, ..., n}, µk has a finite first order moment and µi ≤cx µk for all

i ≤ k .

Therefore the set M(µ0, ..., µn) is non-empty if all the probability measures implied by the

market are increasing in the convex order as stated in the above theorem. Specifically for the

two-period case, M(µ0, µ1) is non-empty if and only if µ0 ≤cx µ1.

3.3.4 Duality result for two-period discrete time MOT

The Martingale optimal transport problem is relatively similar to the Monge-Kantorovich optimal

transport problem with an additional martingale constraint. At this point, we can ask whether

similar duality properties can be derived. Beiglböck, Henry-Labordère and F. Penkner [16] have

established a dual version similar to the Monge-Kantorovich one. Let us first consider the two-

period problem. Denote B the set of all continuous and bounded functions on R+. The Dual of

the MOT problem is defined as follows:

Definition 3.7 (Dual: MOT dual formulation).

DMOT = inf
(λ0,λ1)∈M∗(µ0,µ1),H∈B

{
Eµ0 [λ0(St0)] + Eµ1 [λ1(St1)]

}
(3.11)
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where M∗(µ0, µ1) is the set of all function (λ0, λ1) ∈
(
L1(µ0)× L1(µ1)

)
such that for every

(st0 , st1) ∈ R2
+:

λ0(st0) + λ1(st1) +H(st0)(st1 − st0) ≥ c(st0 , st1) (3.12)

The main difference with the Monge-Kantorovich dual is the appearance of the bounded func-

tion x 7→ H(x). Following [16], we can derive the MOT duality theorem:

Theorem 3.8 (MOT duality theorem). Assume have (3.5) holds and suppose that µ0 is smaller

than µ1 in the convex order (µ0 ≤cx µ1), then there is no duality gap i.e:

PMOT = DMOT (3.13)

The MOT dual can have an intuitive financial interpretation via a semi-static replicating argu-

ment. Let us first recall the fact that a European option depending on an underlying asset S with

payoff λ(ST ) at time T can be statically replicated using bonds, the underlying asset and a strip

of T-Vanilla Puts and Calls. Indeed, if we assume that the function λ is twice differentiable, we

can prove the following:

λ(ST ) = λ(S0) + λ′(S0)(ST − S0) +

∫ S0

0

λ′′(K)(K − ST )+dK +

∫ ∞
S0

λ′′(K)(ST −K)+dK

Therefore, we can give the following financial interpretation to the MOT dual formulation:

• Eµ0 [λ0(St0)]+Eµ1 [λ1(St1)] can be interpreted as the price of a replication strategy consisting

of: a strip of t0 and t1 Vanillas, the underlying asset and bonds.

• λ0(st0) + λ1(st1) is the payoff of the replicating strategy at the settlement dates t0 and t1.

• H(st0)(st1 − st0) is the P&L of the strategy between t0 and t1. Indeed, since the replication

is semi-static, we are allowed to rebalance the replication portfolio at t0. We could also add

the P&L between the initial time and t0, but this term is already incorporated in λ0(st0).

• c(st0 , st1) is the payoff of the contingent claim to price.

It follows that the DMOT is the minimum replicating price of a portfolio that super-hedges the

contingent claim c(st0 , st1).

3.3.5 Generalization of the duality result

We can naturally generalize the above duality result in the case where the contingent claim

c(st0 , ..., stn) depends on the underlying asset at different dates. Let us define the MOT dual

formulation for this multi-period version:
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Definition 3.9 (MOT dual formulation in the multi-period case). Let (Hi)0≤i≤n be a sequence

of continuous and bounded function defined on Ri+1
+ , we have:

Dn−MOT = inf
(λ0,...,λn)∈M∗(µ0,...,µn),(Hi(·))0≤i≤n

{
n∑
i=0

Eµi [λi(Sti)]

}
(3.14)

where M∗(µ0, ..., µn) is the set of all functions (λ0, ...., λn) ∈
(
L1(µ0)× ...× L1(µn)

)
so that for

every sti ≥ 0:
n∑
i=0

λi(sti) +

n−1∑
i=1

H(st0 , ..., sti)(sti+1−sti ) ≥ c(st0 , ..., stn)

The financial interpretation of the multi-period dual is the same as the two-period case. Notice

that Hi representing the rebalancing of the semi-static portfolio at ti is naturally a function of all

previous asset prices up until the date ti. As before, the replicating portfolio consists of ti-Vanillas

for every i ∈ {0, ..., n}, the underlying asset, as well as cash.

3.4 Numerical implementation

The questions now arising are the following: how to solve and find the optimal solutions for both the

primal and dual of MOT problems? Which one is easier to solve? Are there numerical techniques

that we can implement?

P. Henry-Labordère and N. Touzi [23] have shown that for particular payoffs c, the MOT could

be solved analytically using stochastic control or Shorokhod embedding techniques. However, for

general payoffs numerical and computational techniques are needed. G.Guo and J. Oblój [24]

have introduced several computational methods to solve MOT problems for both the discrete and

continuous time versions. In this chapter, we will mainly focus on discrete time numerical methods

and we will see how MOT problems can be estimated using Linear programming methods.

For simplicity, we will only focus on pricing contingent claims depending on the underlying

asset at two different dates i.e we will only study the two-period discrete time MOT. Furthermore,

we assume that the assumption (3.5) remains for the rest of the chapter.

3.4.1 Solving numerically the MOT primal

Let us study the Primal case first, to solve this problem we firstly need the implied probability

measures µ0 and µ1 from the quoted prices of Vanillas for all strikes K. However in practice,

not all strikes are traded in the market. We therefore need to interpolate the available Vanillas

values in the market to obtain the prices for the entire spectrum of strikes. This step is called the

interpolation step and will not be discussed in detail.

If we assume that µ0 and µ1 are increasing in the convex order, then following the MOT duality

theorem, there is no duality gap. Therefore, there are mainly two ways to proceed: we can either

find the optimal value of the Primal MOT or the the Dual MOT, and both results should be equal.
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Assuming that we are working for prices in the real line R+, Monge-Kantorovich optimal value

is obtained minimizing:

∫
R2

+

c(x, y)P(dx, dy) (3.15)

where P is a probability measure with given marginals µ0 and µ1, i.e for every E in the real

positive Borel set B+(R) we have:

P [E × R+] = µ0(E) (3.16)

and

P [R+ × E] = µ1(E) (3.17)

The additional martingale constraint which leads to the Martingale optimal transport is re-

flected by the following equation:

∫
R+

yPy(dy) = x, x ∈ R+ (3.18)

where Py is the restriction of P to the second marginal distribution.

Let us discretize the value of the underlying asset at t0 and t1. We assume that this asset

can take n values x1, ..., xn at time t0 and m values y1, ..., ym at time t1. We therefore generate a

two-dimensional grid n×m corresponding to the possible underlying price at two different times.

Similarly, we would like to discretize µ0 and µ1 into respectively n and m values to obtain

(µi0)1≤i≤n and (µj1)1≤j≤m. However, the discretization of the implied probability measures without

loosing certain properties is not as easy as it appears. In fact, as Baker [1] pointed out, there are

many methods to approximate a probability measure by a discrete measure (commonly known as

quantizing the measure), but most of them fail to preserve the increasing convex order which is

important in our case for no duality gap. Baker further explained how the so-called U-quantization

succeeds to preserve the convexity increasing order. We shall therefore use the latter method to

quantize the implied probability measure µ0 and µ1.

Finally discretizing the equations (3.15), (3.16), (3.17) and (3.18) as well as the implied prob-

ability measures lead to the following linear program for solving the Primal problem:

max
(pi,j)1≤i≤n,1≤j≤m

n∑
i=1

m∑
j=1

pi,jc(xi, xj) (3.19)

subject to:
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m∑
j=1

pi,j = µi0, i = 1, ..., n

n∑
i=1

pi,j = µj1, j = 1, ...,m

m∑
j=1

pi,jyj = µi0xi, i = 1, ..., n

This linear program can easily be solved numerically using the Simplex algorithm. Finally, we

summarize the numerical steps of the algorithm as follows:

Step 1: Interpolate the available t0-Vanilla and t1-Vanilla options to obtain the prices for all strikes

Step 2: Using (3.7), deduce the implied measure distributions µ0 and µ1.

Step 3: Discretize the underlying asset at t0 and t1 with respectively n and m values.

Step 4: Using U-quantization, approximate µ0 and µ1 by discrete measures that can take respec-

tively n and m values.

Step 5: Solve the Linear Program (3.19).

3.4.2 Solving numerically the MOT dual

As we will see in this section, Solving the MOT Dual (3.11) is slightly easier than solving the

MOT primal. Indeed, no interpolation and quantization steps are needed. In [3], Henry-Labordère

proposed to solve the MOT Dual using also linear programming.

The main idea is to approximate (see section 4.3.4) Eµ0 [λ0(St0)] + Eµ1 [λ1(St1)] by a weighted

sum of prices of Calls available in the market, cash and the underlying stock (Recall that the

risk-free interest rate r equals zero):

Eµ0 [λ0(St0)] + Eµ1 [λ1(St1)] ≈ αS0 + β +
N∑
l=1

ωl0C(t0,K
l
0) +

M∑
k=1

ωk1C(t1,K
k
1 ),

where C(t0,K) and C(t1,K) are the market values of a call of maturities respectively t0 and t1

and strike K.

As before, we then proceed to a discretization of the underlying price at t0 with n possible values

(xi)1≤i≤n and at t1 with m possible values (yj)1≤j≤m. The constraint (3.12) can be discretized as

well: for all i ∈ {1, ..., n} and j ∈ {1, ...,m}

αS0 + β +

N∑
l=1

ωl0(xi −Kl
0)+ +

M∑
k=1

ωk1 (yj −Kk
1 )+ + θxi(yj − xi) ≥ c(xi, yj)

for some (α, β, θ) ∈ R3.
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the dual (3.11) can therefore be approximated by the minimization of a linear objective function

with respect to n×m constraints. This leads to the following linear program which approximates

the upper bound:

min
α,β,µ,ωl

0,ω
k
1

αS0 + β +

N∑
l=1

ωl0C(t0,K
l
0) +

M∑
k=1

ωk1C(t1,K
k
1 ) (3.20)

subject to, for every i ∈ {1, ..., n} and j ∈ {1, ...,m}:

αS0 + β +

N∑
l=1

ωl0(xi −Kl
0)+ +

M∑
k=1

ωk1 (yj −Kk
1 )+ + θxi(yj − xi) ≥ c(xi, yj) (3.21)

The lower bound is obtained by replacing in the above linear program ”min” by ”max” and

”≥” by ”≤” in (3.21).

3.4.3 Numerical examples

In this section, we will illustrate a simple numerical implementation of the previous Dual linear

program.

Our aim is the price the following contingent claim: c(St0 , St1) = (St0St1 −K)+ where t0 = 0.5

and t1 = 1, and Sti the underlying price at ti. Suppose also that the spot price is initially S0 = 1.

This time we do not use real market data, we rather simulate a volatility surface using the SSVI

model [28]. The parameters of the later model are chosen randomly but in a way to be consistent

with real market behaviour. We assume that the stock price at t0 and t1 is the Black-Scholes price

obtained with the implied volatility structure of the SSVI model at these dates (Figure 15).

Figure 15: Implied volatility structure obtained with the SSVI model at t0 and t1
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We use the same notations as the ones of previous section (3.4.2). We assume that the Vanilla

Calls are quoted on the market with 20 strikes in [0, 2] at t0 and t1 (N = M = 20). Finally,

we assume that the underlying can take 10 different values in [0, 2] and we discretize St0 and

St1 on a two-dimensional grid of 100 values. After solving the linear program (3.20) with the

constraints (3.21) for the upper and lower bound, we obtain the results shown in figure 16.

Figure 16: MOT linear program results

To verify our results, we simulated for each strike the price of the contingent claim using

Monte-Carlo to find out that the result indeed lies within the upper and lower bounds.

Finally, we compare the upper and lower bound spread to the one obtained with λ-UVM using

σmin = 0.22 and σmax = 0.35. These results are delivered in Figure 17.

Figure 17: Spread obtained with λ-UVM and MOT
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λ-UVM results seem to be more optimal than those obtained with MOT. This might be due to

several reasons: firstly, the linear programming approximation might be too brutal; secondly, λ-

UVM is less robust than MOT, in the sense that it is based on more assumptions (on the underlying

stock process and the calibration of [σmin, σmax]), which therefore leads to tighter bounds. We

refer to [3] and [2] for continuous time MOT versions which lead to even tighter spreads and thus

better results.

3.5 Conclusion

In this chapter, we introduced Optimal transport problems and derived important Duality results.

We then formulated similar problems but with an additional martingale constraint called MOT.

We also derived Duality results for MOT and outlined a few numerical techniques to solve

discrete-time versions with linear programming.

Finally, we illustrated how to price a two-period contingent claim by solving numerically the

MOT Dual, and we compared our results with those obtained using λ-UVM.
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4 Alternative model-independent methods for path-dependent

options

4.1 Introduction

In this Chapter we will study alternative model-independent methods to price some path-dependent

derivatives, more specifically digital and barrier options. The philosophy used here is quite similar

to previous chapter: the aim is to derive the optimal upper and lower bounds consistent with

market data to price digital and barrier options.

We shall assume that the risk-free interest rates are zero. Furthermore, we make the idealistic

assumption that Calls and Puts with all possible strikes are available in the market, this can be

obtained in practice with an interpolation routine.

Unlike uncertain volatility models, no assumption is needed concerning the behaviour of the

underlying asset and the calibration of the volatility band. We will see how the knowledge of

Vanilla prices is sufficient to produce optimal bounds for digital and barrier options. The method

to calculate these bounds is based upon simple replicating strategies.

Since we work under a zero-interest-rates framework, the process of the underlying asset is a

martingale with respect to the filtration of Brownian Motion. The main idea is to exhibit (astutely)

upper and lower bound prices based on hedging strategies, then to verify that these bounds are

indeed optimal by exhibiting martingales for which these bounds are attained. These martingales

should also be in compliance with market data. The idea is quite similar to the volatility best and

worst case scenarios seen in the uncertain volatility models in the sense that here we look for the

minimum or maximum possible martingale laws.

The structure of the chapter is articulated as follows. Firstly, we will discuss the simple example

of pricing a path-dependent digital option. Then, we will mainly focus on the core part which is

pricing knock-in and knock-out barrier options. Finally, we will outline our results with some

numerical examples.

4.2 Digital options

Let us fix the maturity T (say T = 1 year) and Call C(K) the prices of Calls with maturity T and

Strike K. Following section 3.3.1, we define µ the implied law of the underlying asset (St)t≥0 at

time T i.e for each strike K ≥ 0, µ satisfies:

C(K) =

∫
(x−K)µ(dx)

Assume that all Calls with all strikes are available in the market and that x → C(x) is twice

differentiable, then µ(dx) = C ′′(x)dx. Throughout the chapter, we denote P and E respectively

the probability and the expectation associated to the implied measure µ. For instance, a binary
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option which payoff at T is 11{ST≥B} where B is a constant barrier, the price of this option is

E(11{ST≥B}) = P(ST ≥ B) = µ([B,∞)).

Digital options also have an unit payoff. However, unlike Binary options, Digital options

are path-dependent options i.e their payoff at T depends on the value of the underlying asset

before this time. If the underlying asset price crosses a fixed Barrier B before T, the unit payoff

occurs; otherwise, the payoff is null. Formally, the payoff of a digital option is 11{HB≤T} where

HB = inft≥0(St ≥ B)

To find the upper bound price of the digital option, the main idea is to find an upper bound

of the payoff small enough to be the optimal upper bound. Similarly for the lower bound, we

should find a lower bound big enough to be optimal. These bounds are derived using the so-called

martingale inequalities based on the work of Gilat and Dublins [25] and Hobson [26].

Let us firstly derive the optimal lower bound of a digital option.

Proposition 4.1. Let B > S0. The optimal Lower bound consistent with market data of a digital

option is given by :

Ldig = −C ′(B) (4.1)

where C(K) is the market Call price with maturity T and strike K. If we assume that the

underlying asset process is a continuous martingale, then we can improve the previous bound by

adding a positive term, the new lower bound is given by:

L′dig = −C ′(B) + sup
K<B

C(B)− P (K)

B −K
(4.2)

Proof. Let us first prove the result in the general case where no continuity assumption of the

martingale (St)t≥0 is made. The first step is to show that for any martingale (St)t≥0 with S0 given

and ST has law µ (i.e in line with available market Call prices), the price obtained of the digital

option is above -C’(B). The second step is to exhibit a martingale such that the lower bound -C’(B)

is attained and therefore becomes the optimal lower bound.

Let (St)t≥0 be any martingale so that ST has law µ. We trivially have 11{HB≤T} ≥ 11{ST≥B}

since {HB ≤ T} ⊇ {ST ≥ B}. Taking expectations we obtain:

P(HB ≤ T ) ≥ P(ST ≥ B) = µ([B,∞] = −C ′(B)

Now take the martingale (S∗t )t≥0 such that S∗t = 1 for every t < T and with a jump at time T

so that S∗T has law µ. With this specific martingale the inequality P(HB ≤ T ) = −C ′(B) holds.

Therefore Ldig is the best lower bound we can obtain.

Let us see the case where we assume that the underlying asset process is continuous, so that

if the Barrier is attained, the underlying price equals it. This time we will be using the following

inequality, for every K < B:
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11{HB≤T} ≥ 11{ST≥B} +
(ST −B)+

B −K
− (K − ST )+

B −K
+
B − ST
B −K

11{HB≤T}

The above inequality can be easily proven by distinguishing the cases where the barrier has been

reached from the cases it has not. If not reached, the left hand side (LHS) equals zero and the

right hand side (RHS) equals − (K−ST )+

B−K , however, which is not positive. If the Barrier is reached

then the LHS is equal to 1 and the RHS is equal to 11{ST≥B} + (B−ST )+−(K−ST )+

B−K . Whether ST is

bigger or smaller than B the result is always smaller or equal than 1.

Taking expectations and using the martingale property for the last term of the RHS, we ob-

tain (4.2). We refer to [27] for the proof that there exists a martingale for which the bound is

attained.

Let us derive the optimal upper bound of a digital option.

Proposition 4.2. Let B > S0. The optimal upper bound consistent with market data of a digital

option is given by:

Udig = inf
K<B

C(K)

B −K
(4.3)

The bound does not improve when the underlying is assumed to be continuous.

Proof. We adopt a similar reasoning as before to prove that (4.3) is the optimal bound. We bound

the payoff from above, for every K < B:

11{HB≤T} ≤
(ST −K)+

B −K
+
B − ST
B −K

11{HB≤T} (4.4)

In the aim of proving the above inequality we distinguish once again the case where HB ≤ T or

not. If HB ≥ T (i.e the barrier has been attained), the LHS of (4.4) is equal to 1 and the RHS

is equal to 1 if ST ≥ K and B−ST

B−K otherwise, either case the RHS is greater than or equal to

1. If the Barrier is not reached, the LHS is null and the RHS non-negative. Then, by taking

expectation in (4.4) and using the martingale property for the last term in the RHS, we obtain

for every K < B: P(HB ≤ T ) ≤ C(K)
B−K . Let us point out that (4.4) can be interpreted with a

super-replicating argument, The RHS refers to a strategy that consists of: a long position of 1
B−K

Calls with strike K (and maturity T) and if the barrier is reached a short position of 1
B−K forward

contracts (with strike B). Since the short position of the forward is costless, the cost of the hedging

strategy is therefore the cost of 1
B−K Call options.

Finally by taking the infimum over all K < B we obtain (4.3). To prove that it is actually the

optimal upper bound, we refer to [27] for the existence of the martingale consistent with market

data and for which the bound is attained.
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4.3 Barrier options

In the previous section, we have seen how to derive optimal upper and lower bounds of digital

options. Let us now outline similar results for other path-dependent derivatives commonly known

as single barrier options, more specifically up-and-in and up-and-out Calls and Puts. Down-and-in

and down-and-out barrier options can easily be deduced from ”up” barrier options. We will see

how to then derive optimal lower bounds using optimal upper bounds.

Just as before, our aim is to derive an astute super-replicating strategy to bound the payoff

from above to then derive the upper price. Optimality is then shown by exhibiting a martingale

in such a way that the upper bound is actually attained.

In this section, we do not assume that the underlying asset is continuous (allowing jumps). We

will only provide a sketch of proof for the up-and-in Call, while other proofs are discussed in detail

in [27] and [26].

4.3.1 Upper bounds of barrier Call options

The up-and-in Call with strike K and Maturity T has the same payoff of a Call if the underlying

asset crosses the barrier B before T and has a null payoff otherwise. Formally, the payoff of an

up-and-in Call is (ST − K)+11{HB≤T}. Notice that if K ≥ B, the payoff is the same as a simple

Call option and, thus, we assume B > K.

Proposition 4.3. Let us define a = infK<B
C(K)
B−K (one can show that the infimum is attained). If

a > K, the optimal upper bound price of an up-and-in Call is given by:

B −K
B − a

C(a) (4.5)

and C(K) otherwise.

Proof. Let s ∈ (K,B). We use the inequality:

(ST −K)+11{HB≤T} ≤
B −K
B − s

(ST − s)+ +
s−K
B − s

(B − ST )11{HB≤T} (4.6)

Let us prove the above inequality. If ST ≤ K or HB > T , the LHS is zero and (B−ST ) in the RHS

is non-negative; therefore, the RHS is non-negative. If the LHS is non-negative (i.e ST −K > 0

and HB ≤ T ), then the RHS is equal to the LHS when (ST > s) and the RHS is strictly greater

than the LHS when K < ST < s.

Here again, (4.6) can have a super-replicating interpretation. It is the strategy that consists

in buying B−K
B−s Call options with strike s and, if the barrier is reached, shorting s−K

B−s forward

contracts with strike B.

Taking the expectation in (4.6) and using the martingale property for the last term (or saying

that the short position on a forward contract is costless), we obtain that the price is bounded by
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B−K
B−s C(s) for every s ∈ (K,B). The best bound is therefore obtained by minimizing the function

s → B−K
B−s C(s) over all s ∈ (K,B), which leads to the minimizer s∗ = min(a,K). The upper

bound of the proposition 4.3 follows.

The optimality is then demonstrated by exhibiting a martingale for which the bound is attained.

This is explained in detail in [27].

The payoff of an up-and-out Call with strike K and Maturity T is (ST − K)+11{HB>T}, it is

the same as the one of a Call if the underlying does not reach the barrier B before T and zero

otherwise. Again, if K ≥ B the option is worthless as the payoff is always equal to zero, we thus

assume that B > K.

Proposition 4.4. The optimal upper bound of an up-and-out Call is given by:

C(K)− C(B)− (B −K)µ([B,∞)) = C(K)− C(B) + (B −K)C ′(B)

This bound can be improved if we assume that the underlying asset process is continuous.

Proof. See [27, Proposition 3.2, page 296].

4.3.2 Lower bounds of Barrier Call options

Optimal lower bounds are obtained with previous results and using the parity relation:

(ST −K)+11{HB≤T} = (ST −K)+ − (ST −K)+11{HB>T}

Proposition 4.5. The lower optimal bound of an up-and-in Call is C(K) if B ≤ K and C(B)−

(B −K)C ′(B) otherwise.

The lower optimal bound of an up-and-out Call is equal to zero if B ≤ K or a ≤ K < B (where

the notation of a is the same as before). If B > a > K the lower bound is:

C(K)− B −K
B − a

C(a)

4.3.3 Upper bounds for Barrier Puts

In this section we will state the optimal upper bounds of Barrier put options. The payoff of an

up-and-in Put with strike K and maturity T is (K − ST )+11{HB≤T}.

Proposition 4.6. Let us define α = supK<B
C(B)−P (K)

B−K (one can show that this supremum is

attained). The upper optimal bound of an up-and-in Put depends on whether B > K or not. For

B > K the upper bound is P(K) if α > K and

K − α
B − α

C(B) +
B −K
B − α

P (α)
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otherwise. For K ≥ B, the optimal upper bound is:

C(K) +
K −B
B − a

C(a)

where a remains unchanged.

Proof. See [27, page 298]

Notice that when the Barrier B is equal to the strike K, the price of the up-and-in Put is similar

to a Call option with strike K. This can also be achieved with the following replicating strategy:

long one call with strike K at initial time and if the underlying asset breaks the barrier B, short

one forward contract (with strike K) on the underlying. If the barrier is reached before T, the

payoff of the replicating portfolio is (ST − K)+ + (K − ST ) = (K − ST )+. If the barrier is not

reached, the payoff remains null. The hedging strategy therefore offers exactly the same payoff as

the up-and-in Put. Since the forward position is costless, the price of Barrier put is therefore the

cost of the hedging strategy C(K).

On the other hand, the payoff up-and-out Put is (K − ST )+11{HB>T}.

Proposition 4.7. If B > K, the optimal upper bound of an up-and-out Put is P(K). Otherwise,

it is P (B) + (K −B)µ((−∞, B)) = P (B) + (K −B)(1 + C ′(B)).

Proof. See [27, page 299]

4.3.4 Lower bounds for Barrier Puts

Similarly, to derive optimal lower bounds for Barrier Puts, we use the following parity relation:

(K − ST )+11{HB≤T} = (K − ST )+ − (K − ST )+11{HB>T}

Proposition 4.8. The optimal lower bound of an up-and-in Put is 0 if K < B and P (K)−P (B)−

(K −B)(1 + C ′(B)) otherwise.

Concerning the optimal lower bound of an up-and-out Put. For B > K the lower bound is 0 if

α ≥ K and

P (K)− K − α
B − α

C(B)− B −K
B − α

P (α)

otherwise. For B ≤ K, it is:

K − S0 −
K −B
B − a

C(a).

Proof. See [27, page 300]
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4.4 Numerical examples

4.4.1 Introduction

In this section, we will illustrate previous robust bound results with a few numerical examples. We

assume that the initial spot price is equal to 1 and that all payoffs occur within 1 year: S0 = 1

and T = 1.

We generate a volatility structure using the SVI model with parameters chosen randomly but

in a way to reflect real market behaviour. Call prices are Black-Scholes one obtained with the

latter volatility structure. These results are represented in Figure 18.

Figure 18: Simulated implied volatility structure and its according Black-Scholes prices

Put option prices can be obtained easily using the Put-Call parity.

Using the above Vanilla prices, the aim is to compute upper and lower bounds of Barrier options

as seen in previous sections. Then, for comparison purposes, we will compute Barrier option prices

with models that are consistent with market data and see whether or not the result indeed lies

within the upper and lower bound. For the sake of this investigation, we will mainly use two

models: Black-Scholes and square root CEV.

4.4.2 Black-Scholes framework

Let us first see whether the prices obtained with the Black-Scholes model are coherent with upper

and lower optimal bounds. While recalling that the risk-free interest rate is zero, we assume that

the underlying satisfies for each strike K:

dSt = σ(K)Stdt (4.7)

where σ(K) is the implied volatility for each Strike K as shown in Figure 18. By definition of

the implied volatility, this model is consistent with available Vanilla prices. Under this framework,
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we compute numerically the prices of Barrier options using a Monte-Carlo simulation with a finite-

difference method to discretize the PDE (4.7). All the results are obtained with an average of M

= 10000 paths and while allowing the underlying asset to take n=100 values between 0 and T.

Let us start with the up-and-in Call option. The knock-in barrier B is 1.04, we use the proposi-

tion 4.3 and 4.5 to compute upper and lower optimal bounds, C ′(B) is numerically approximated

by C(B+ε)−C(B−ε)
2ε for ε is small enough (for instance ε = B/1000), a and α are obtained using

a simple minimization/maximization routine. Results are shown in Figure 19 for strikes ranging

from 0.8 to 1.1.

Figure 19: Optimal upper and lower bounds and Monte Carlo prices of up-and-in Call options.

The knock-in barrier B = 1.04.

It should be noted that when the strike stands above the Barrier 1.04, the barrier feature is

useless as the payoff is the same as a simple Call option. This is the reason why the upper, lower

and Monte Carlo prices are all the same.

The results obtained for up-and-in put options are plotted in the Figure 20 for a fixed Barrier

B = 1.04.
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Figure 20: Optimal upper and lower bounds and Monte Carlo prices of up-and-in Put options.

The knock-in barrier B = 1.04.

Let us highlight that near the barrier, the upper and lower band is the most narrowed and

when the Barrier is equal to the Strike, the lower and upper bounds are simply equal to a Call

option with the same Strike (see section 4.3.3).

For the up-and-out Call option, we assume that B = 1.3 > K for every K, otherwise the option

is worthless. The results obtained are summarized in following figure 21.

Figure 21: Optimal upper and lower bounds and Monte Carlo prices of up-and-out Call options.

The knock-in barrier is B = 1.3 and is greater than all strikes

For the up-and-out Put option, we use a Barrier B equal to 1.05. The results are shown in

figure 22.
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Figure 22: Optimal upper and lower bounds and Monte Carlo prices of up-and-out Put options.

The knock-in barrier is B = 1.05

This the upper/lower bound is tighter for smaller strikes.

For all previous results, the Monte Carlo prices simulated numerically under the Black-Scholes

framework lie within the upper and lower bounds. This result is in line with previous theoretical

results since any model consistent with Vanilla market prices should satisfy this property. The

next section will allow us to explore another model example.

But what happens if the model is not consistent with market data? For example, a naive

approach in the Black-Scholes model is to use the same volatility σ for every strike. Generally, this

volatility is taken to be the implied volatility calibrated with the at-the-money Call option. Let

us however use the implied volatility of the Call with strike K=0.75 to have more striking results.

Given the volatility skew before the ATM strike (see figure 18), we basically tend to over-price

Calls with strike above 0.75 and under-price those with strike below 0.75. Therefore, this model is

not consistent with market Data, which Figure 23 illustrates with the results obtained under this

model for the case of up-and-in Call options with the same barrier as before (B = 1.04).
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Figure 23: Optimal upper and lower bounds prices of up-and-in Call options. Monte Carlo prices

are obtained with a fix σ corresponding to the implied volatility of the Call with strike K=0.75

This time, some Black-Scholes prices lie above the upper bound. This is why pricing naively

under a Black-Scholes model with one single calibration leads to arbitrage opportunities.

4.4.3 Square root CEV framework

We will now study another model consistent with Vanilla prices and coherent with upper and lower

optimal bounds. We consider the square root CEV model:

dSt = σ′(K)
√
Stdt, (4.8)

where the CEV volatility σ′(K) is calibrated for each strike in order for it to be consistent

with available Call prices. The calibration is done through an optimization routine by minimizing

the quantity |CCEV (K) − CMkt(K)| for each K, where CCEV is the Call price with Strike K of

the CEV model (obtained numerically with Monte Carlo simulations), and CMkt(K) is the Call

market price.

The simulation results obtained for up-and-out and up-and-in Call options respectively sum-

marized in Figures 24 and 25. The simulated prices under the Square root model are in line with

previous theoretical results since they lie within the optimal bound too.
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Figure 24: Monte Carlo simulation of Black-Scholes and Square root models for an up-and-out

Call option. The knock-out barrier is B = 1.3

Figure 25: Monte Carlo simulation of Black-Scholes and Square root models for an up-and-in Call

option. The knock-in barrier is B = 1.04.

4.5 Conclusion

In this chapter, we outlined robust methods to price Digital and Barrier path-dependent options.

Using astutely upper and lower bound for the payoff, we then saw how the knowledge of Vanilla

prices allows us to produce optimal bounds. Finally, we verified these bounds numerically using

two models that are consistent with market data.
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Conclusion

In this thesis, we explored a few methods of robust pricing. In an environment where regulators

are very demanding regarding model risk, these methods seem to provide alternative ways to reduce

and manage the risk effectively.

We firstly saw how uncertain volatility models offer a way around autoregressive or stochastic

models for the volatility process. Then, we outlined optimal transport problems and how they

can be applied to robust pricing. Finally, we studied robust methods for specifically Barrier and

Digital path-dependent options.

All these methods are exogenous and use market Vanilla prices to provide robust and optimal

upper/lower bounds. However, the less model assumptions, the wider the upper/lower bounds

spread. Robustness can therefore produce large bounds that are without any practical use. For

instance in the second chapter, we saw that the λ-UVM, which calibrates the parameters σmin and

σmax and assumes that the discounted stock process has no jumps and is a martingale with respect

to the Brownian Motion filtration, gives narrower upper/lower bounds compared to MOT (which

is based on fewer assumptions). It is therefore important to compromise between robustness and

model assumptions in order to produce optimal bounds that decrease model risk and are still used

in practice.

Numerical methods covered in this paper are mainly based on a discrete-time framework.

Continuous-time versions would be an interesting topic to explore as they lead to even tighter

and robust bounds.
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