Imperial College
London

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

Bitcoin Trading Strategies based on

Twitter Sentiment Analysis

Author: Konstantinos Tsoulias (CTD: 02007404)

A thesis submitted for the degree of

MSe in Mathematics and Finance, 2020-2021

Declaration

The work contained in this thesis is my own work, unless otherwise stated.

Acknowledgements

I would like to thank Avery Soh, Jordan Anaya, and Stuart Jamieson for their constant sup-
port, guidance, ideas, and trust thronghout this project, which gave me confidence and pushed me
to do better and go further.

Special thanks to Jose Forero, Keshav Nehra, Valentina Frezza, and Caspar Marney, as they
provided me with all the help and equipment needed to complete this project. 1 would like to
extend my deepest gratitude to the entire Velador family, for the heartfelt welcome and for making
sure that my internship would be a great experience.

I want to also express my appreciation to my tutor Dr. Antoine Jacquier for his crueial input
and assistance that allowed me to structure and present the contexts of this project in a compre-
hensible manner. I would like to thank all the teaching staff of MSc Mathematics and Finance for
the quality lectures delivered that provided me with great knowledge.

Lastly, [would like to sincerely thank my family and friends for their immense support all these

years, as nothing would have been possible without it.

Abstract

Asset price movements are the results of buy and sell orders executed over time. Knowing
how every market participant will behave in the future is equivalent to foreseeing the trajectory
of future market prices. Although this information is impossible to obtain, one can search for
an indication of participants’ intentions. Since thought precedes action, insights regarding par-
ticipants’ emotions and perceptions can indeed provide such indication. For many years now,
social media have become an integral part of our daily lives, with almost 90% of Internet users
expressing their thoughts and emotions on these platforms every day. These public channels that
host our online interactions have grown to become huge public databases of our own opinions and
ideas, that are conveniently timestamped and categorized. The recent advancements in Natural
Language Processing have led to the development of state of art models able to understand the
contexts and meanings of written language with great precision. In this project, I employed some
of the most advanced language models for classifying tweets about Bitcoin as either positive or
negative depending on their context. I then used the calculated sentiment values to construct
trading signals which I then incorporated into a trading strategy. Specifically, I created 4 signals
in total, distinguished by the timeframe on which they are traded (daily or hourly) and the model
they were created by (BERT model or GloVe model). After trading those signals through simple
buy-only strategies for the period between September 2017 and January 2019, all strategies ended
up profitable. The two strategies trading on BERT generated signals were able to produce returns
of 100% during that period. Interestingly enough, the two strategies based on signals calculated
by GloVe, performed even better, reaching total returns of 200% during testing.

iii

Contents

1 Background
1.1 Word Vectors
111 Word2Vee Lo
1.12 GloVe o
1.1.3 ELMo
1.2 Deep Learning for NLP
1.2.1 Sequence to Sequence models
1.2.2 Attention models
1.2.3 Transformers
1.24 BERT model
2 Related Work
3 Overview
4 Data
4.1 Training Data
4.2 Data for classification
5 Data Cleaning and Preprocessing
6 Natural Language Processing
6.1 Language Models for Sentiment Classification . .
6.1.1 Baseline model with LSTM
6.1.2 The GloVemodel
6.1.3 The ELMomodel
6.1.4 The BERT model
6.2 Training Results
7 Trading Strategy and Backtesting
7.1 Trading Signal Construction
7.2 Developing the Trading Strategy
7.3 Evaluation of the Trading Strategy
7.4 Comparison with Benchmarks
8 Conclusion
A Appendix
A1 Other methods for calculating the trading signal
A2 Visualizing the trading history
A3 Introducing trading costs
Bibliography

Tk e W L0 WO W R

(=21

oo

22

26
26
26
28
28
28
29

33
33
35
38
47

51
ol
51
ol

List of Figures

1.1
1.2
1.3

3.1

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8

4.9

4.10
4.11
4.12
4.13
4.14

4.15
4.16
4.17
4.18

5.1
5.2
5.3

6.1
6.2
6.3
6.4

7.1
7.2

7.3
74
7.5
7.6

7.7
7.8

Word vector illustration e
Example of attention matrix in machine translation.
Transformer architecture illustrated

Project’s main parts visualized.o oL

Pre-classified tweets data set inspection.
Label distribution for positive and negative pre-classified tweets.
Tweet lengths distribution for positive and negative pre-classified tweets.
Number of words distribution for positive and negative pre-classified tweets.

Number of unique words distribution for positive and negative pre-classified tweets.

Average word length distribution (left). Number of punctuation distribution (right)
for positive and negative pre-classified tweets. L.
Tweets for classification dataset overview.
Average tweet length distribution (left]). Number of words distribution (middle).
Number of unique words distribution (right) for the unlabelled tweets.
Tweets per user distribution for the unlabeled tweets
Number of unlabelled tweets per month00
Number of unlabelled tweets per weekday
Number of unlabelled tweets per hour0
Number of unlabelled tweets per year
Number of unlabeled tweets monthly, daily, hourly, and minutely timeframe (left to
right). . . L
Number of unlabelled tweets and Bitcoin price in monthly timeframe.
Number of unlabelled tweets and Bitcoin price in daily timeframe.
Number of unlabelled tweets and Bitcoin price in hourly timeframe.
Number of unlabelled tweets and Bitcoin price in minute timeframe.

Frequencies of most common words (1-gramms) in each group
Spam words word cloud
Spam filtering techniques classification sample.o 0000 L

Tokenization and padding procedures illustrated example.
Confusion matrix for all implemented models. 000
ROC curve for all four implemented models.
Precision-Recall curve for all four implemented models.

Classification sample of unlabelled data
Comparison of trading signals on monthly timeframe for three aggregation tech-
niques, for models GloVe and BERT (min-max normalized)
Comparison of trading signals on daily timeframe for three aggregation techniques,
for models GloVe and BERT (min-max normalized)
Comparison of user-averaged and non user-averaged daily sentiment for models
GloVe and BERT (min-max normalized)
Entry and Exit Signals visualized on the Bitcoin price
Daily sentiment strategy pseudocode L.

19
19
20
20
21

23
24
25

27
30
31
32

33

34

7.9

7.10
7.11
712
7.13
7.14
7.15
7.16

717
7.18
7.19
7.20
Al
A2
A3
A4

A5

Equity curves for all strategies for year 2018
Daily returns of the four implemented strategies.

Trade returns distribution for strategies of daily (left) and hourly (right) timeframes.

High-Water Mark and Drawdown of BERT - Hourly Sentiment Strategy
High-Water Mark and Drawdown of GloVe - Hourly Sentiment Strategy
High-Water Mark and Drawdown of BERT - Daily Sentiment Strategy
High-Water Mark and Drawdown of GloVe - Daily Sentiment Strategy
Calmar ratio for different threshold and maximum open positions combinations for
BERT signal Strategies 0
Calmar ratio for different threshold and maximum open positions combinations for
GloVe signal Strategies 0L
Final portfolio value distribution of 10,000 simulated equity curves for each imple-
mented SErategy. oL e e
Comparison of our Trading Strategies with the Buy and Hold on S&P 500 (Loga-
rithmic Scale). e e
Comparison of our Trading Strategies with the Buy and Hold on Bitcoin.

User sentiment weighted scores implementation psuedocode
Trading History of BERT - Daily Sentiment Strategy visualized.
Trading History of Glove - Daily Sentiment Strategy visnalized.
Comparison of Glove - Daily Sentiment Strategy with 1% comissions with S&P 500
Buy and Hold strategy.
Comparison of Glove - Daily Sentiment Strategy with 1% comissions with Biteoin
Buy and Hold strategy.

vi

45

48

48
49

02
52
53
53

53

List of Tables

5.1 Spam filtering methods evaluation results.
6.1 Classification report for all four implemented models

7.1 Summary of metrics for the four implemented strategies
7.2 Summary of metrics for the Monte Carlo simulated distributior

vii

18.

Introduction

Predicting price movements is proven to be no easy task. The efficient-market hypothesis suggests,
that stock prices reflect all currently available information, and any price changes that are based on
newly revealed information thus are inherently unpredictable. However, it has been seen that there
are inefliciencies like inside information and market manipulation that one can exploit for profit,
which makes the financial market efficiently-inefficient. In a more simplistic view, and since a price
chart is the product of buy and sell orders being executed over time, one can state that price move-
ments are a function of the behavior of market participants. Furthermore, since thought precedes
action, the price can be assumed to always reflect the participants’ psychology and understanding
of the information rather than the information itself. It is, therefore, reasonable to query whether
knowledge on the psychology of market participants and one time could give insights about price
movements in the future.

Acquiring such information would have been almost impossible in past years. Nevertheless, the
rise of social media has provided us a place, where people can interact, state their opinions, and ex-
press their feelings publicly. Moreover, their increased popularity has made it so that social media
are now an integrated part of everybody's life. Today, over 90% of the Internet is active in social
media [1], which translates to over 50% of Earth’s entire population. As a result, huge datasets of
public timestamped opinions have been formed in these networks, enabling research and statistical
analyses to be performed. Other advantages come from the fact that many of the most popular
platforms like Twitter or Reddit categorize their content with hashtags and subreddits, making it
easier to pinpoint textual data of a specific topic or content. Combined with the simplifications
and automation in accessing data supplied by the webpages’ APIs, these factors make obtaining
and handling social media data in real-time even easier.

Possessing such data however is not of any importance unless there is a way to process them
systematically and extract their informational value. The recent advancements in Natural Lan-
guage Processing and Machine Learning have allowed computers to understand human language,
enabling textual data to be processed, evaluated, and classified by their context and meaning. A
common categorization is to identify whether a message has a positive or negative meaning, known
as sentiment classification. This is usnally done with the use of neural networks that have been
trained on huge amounts of data to receive text and encode it in real-valued vectors that capture
its context. As for the classification, this is usnally a supervised approach that requires the training
of a model on pre-labeled data.

As it is understood, the quality of the evaluation depends directly on the quality of the data.
Even though social media data come in big quantities, they are usually low in quality. Most of
the messages contain slang language, sarcasm, and misspellings all of which make the job of the
classifier significantly harder. In addition, the amount of spam and advertisement in these datasets,
which provides no insight on user’s psychology, is overwhelming and adds noise, thus worsening
the classification results. Therefore, cleaning the data is an essential prerequisite for any analysis
to be performed.

With all the necessary tools available and data prepared, one can begin to investigate the re-
lationship between social media sentiment and market price movements. The main question to
be answered is whether the current emotional state ol social media users can predict their future
behavior and in part that of market participants. Or whether it just reflects the reaction of the
participants to recent news and price changes.

While proving one or the other is generally difficult, in the past social media activity has been
seen to heavily influence assets’ price movements. The most known example of this is possibly
Elon Musk's tweets, which have been followed by significant movements in cryptocurrency prices
in the past. Another such case is that of the /wallstreetbets subreddit which has been held respon-
sible for the enormous rise in GameStop stock prices. Several works have also been examining the
relationship between social media emotional content with financial markets over the past decade.
In 2] the author developed a model with four different types of investors; naive investors follow-
ing social media, fanatics that spread fake news, and rational short-term and long-term investors.
The model showed the eventual domination of fanaties and rational belief structures while many
historic market events were able to be explained. Other studies focus on utilizing social media
sentiment for producing returns. In [3] researchers were able to associate the sentiment in tweets
from users of few followers about a specific stock with its next-day returns. Authors in [4] derived
the emotional states of Twitter users and used the state calm to predict the price movement of the
Dow Jones Industrial Average (DJIA).

These findings are promising and encourage us to further search for these connections between
social media content and future price movements and exploit them for profit. For that, knowing
the sentiment of Twitter is not enough, for it needs to be incorporated into a suitable trading
strategy. The strategy is responsible for making decisions after observing a signal and it is directly
related to the hypothesis tested. For example, we can assume that positive sentiment can be
translated into an increased willingness of participants to buy assets in the future. In that case, we
expect a positive correlation between sentiment and future asset returns. On the contrary, a case
can be made for extreme optimism or pessimism having the opposite effect on market prices. As
John Templeton said "The time of maximum pessimism is the best time to buy, and the time of
maximmum optimism is the best time to sell” as sellers and buyers are getting exhausted in each case.

In this project, I attempt to answer all these questions by developing trading strategies based
on social media sentiment. The hypothesis to be tested is whether social media data can be used
as an indication for future price movements and specifically, il positive sentiment is an indication
of a future increase in prices. Acknowledging the aforementioned difficulties and limitations of
such an approach, Bitcoin will be the asset to be examined, as it is one of the most popular topics
on the Internet, and is more accessible to social media users than stocks are. Moreover, the state
of the art in NLP models has been employed for analyzing and classifying textual data, to reduce
operational risk as much as possible. The data, are collected from Twitter for the period between
September 2017 and January 2019. The data are preprocessed, cleaned of spam and advertisement
before their classification. As for the trading, the strategies implemented will be as simple strategy
mainly dependent on the calculated signal to guarantee that any benefit will come from the signal
itself rather than the complexity of the strategy.

In this report, I will present the methods employed and the incentives behind them as well as the
results of this work and their evaluation. The structure stands as follows: In Chapter 1 I introduce
some of the key concepts upon which this project is based. Chapter 2 summarizes a literature
review, where research papers of similar contexts are presented, together with explanations of how
this work utilizes their findings and ideas and in what ways it tries to extend them. Chapter 3
is where an overview of the methodology followed is given as well as an analysis of the project’s
main components. In Chapter 4, an analysis of the data is presented. Data are a major part of
this work, and getting a better idea of their structure and features is necessary, to best utilize
them later. Chapter 5 is dedicated to Spam Filtering and cleaning of the data sets as noise can
be devastating for obtaining meaningful results, and more in our case due to the peculiarities of
social media data. Chapter 6 contains the core methods, models, and results related to the Natural
Language Processing section of this project. Chapter 7 focuses on the caleulation of the trading
signal and the construction of the trading strategy. The evaluation of the latter is also performed
through various methods and metrics after being backtested on historical data. In the final chapter,
Chapter 8, I summarize the findings of this project, evaluate them, and discuss how the methods
employed can be enriched in the future.

Chapter 1

Background

1.1 Word Vectors

Transforming categorical data to vectors of numbers is a well-established technique in the field of
Natural Language Processing. One-hot-encoding [5] and bag-of-words [6], two widely used models,
create vectors that represent the presence or absence of a word within an observation with 1 and
0 respectively. However useful in particular projects, the encodings created by the aforementioned
techniques fail to capture the meaning and relationships between the words, thus making them
unsuitable for any type of semantic analysis on textual data.

Word vectors address these shortcomings by representing words as vectors of real-valued num-
bers, where each point reflects a dimension of the word’s meaning so that similar words have similar
representations, capturing many linguistic regularities. The similarity or difference between two
words can be measure by the cosine distance between them. That being the case, the cosine dis-
tances between vector('king’') and vector('queen’) should be similar to that between vector('man’)
and vector('woman’). In that way we can use arithmetic on these vectors to derive their meanings,
as for example vector operations like vector('king’) - vector('man’) + vector('woman’) is close to
vector('queen’) 1.1.

1.1.1 Word2Vec

To take advantage of these regularities tools have been developed, like word2vec [7][8] that make
it possible to train neural network models on huge data sets to learn word associations. The func-
tionality of word2vec can be summarized as a feed-forward neural network taking a text corpus
as input and producing the word vectors as output. The two main learning algorithms used to
train word2vec are continuous bag-of-words and continuous skip-gram [9]. The former takes the
input as each word in the corpus, sends them to a hidden layer (embedding layer) and from there
it predicts the context words. While the latter has the reverse functionality predicting the original
word given the word’s neighbors. In both cases, the embedding vector for a particular word can
be obtained by taking the hidden layer value.

1.1.2 GloVe

Another similar model for obtaining word embeddings is Glove [10], which differs from word2vec
from the way it was trained. Specifically, it constructs a word/word co-occurrence matrix, that
describes how frequently words co-occur with one another in a given corpus, the intuition being
that word-word co-occurrence probabilities have the potential for encoding some form of meaning.
By factorizing this matrix it produces a word/features matrix of lower dimensions where each row
holds a vector representation for a particular word. The best factorization is achieved when the
lower-dimensional representations can explain most of the variance in the high-dimensional data
i.e. the “reconstruction loss” is minimal.

king king

\ queen \

man \man
\ woman woman

> —
>

v

Figure 1.1: Word vector illustration

Both of the aforementioned models are used in many NLP applications that require information
about the meaning of words such as sentiment analysis, document clustering, question answering,
ete. For this project, I used the pre-trained word vectors provided by GloVe that was trained on
Twitter data which makes them more suitable for this project’s purpose.

1.1.3 ELMo

While both Glove and Word2Vec are tools that immensely accelerated the progress in the NLP
field, they do have limitations. The most important one is that the embeddings fail to capture the
context in which the word has been used. The word "bat” for example can mean either a weapon
or an animal. To address this models have been developed that involve the contextual information
[11][12] to their vector representations, one of which is ELMo [13].

ELMo uses bi-directional LSTMs [14] and creates word embedding after first looking at the en-
tire sentence, in order to obtain contextual information. ELMo can do that by having been trained
to predict the next word in word sequences, an effective and convenient method for understanding
language since it can ntilize huge amounts of textual data without requiring labels. Furthermore,
by training bi-directional LSTMs the model is also aware of the words that precede the word that's
being processed. The final contextualized word embedding is a weighted summation of the LSTMs’
hidden states alter having been concatenated in an appropriate way.

1.2 Deep Learning for NLP

1.2.1 Sequence to Sequence models

Sequence to sequence neural networks has become the center of attention during the recent inno-
vations in the field of Natural Language Processing [15]. As the name implies a Seq2seq model
takes as input a sequence of items and outputs another sequence of items. An application where
that would be optimal is neural machine text translation. The hidden layers can be distinguished
into two separate parts, the encoder, and the decoder.

In most NLP applications both the encoder and the decoder are recurrent neural networks,
where the encoder processes the input, compiles it into a vector which is then passed to the
decoder for producing the sequence output. If the input sequence is for example a sentence then
the encoder processes it word by word. However for the processing to begin the input firsts need
to be represented by a vector that captures its meaning, a procedure in which word embedding
algorithms, mentioned before, find great utility. The RNN in the encoder starts off with an initial
hidden state and the first-word vector as an input. It then updates the hidden states and gets the
next item. The process is repeated until every word vector of the input has been encoded. After
the encoding, the last hidden state is passed to the decoder. The latter uses this input along with
the hidden states of its own calculates and outputs the resulting sequence word by word.

| am an engineer . <end>

ingénieur -

Figure 1.2: Example of attention matrix in machine translation.

1.2.2 Attention models

Of course, the seq2seq models have their limitations. One of them comes from the fact that only
the last hidden state is passed from the encoder to the decoder, which makes it hard for the model
to cope with long sentences. For that matter ”Attention” was introduced [16, 17] aiming to im-
prove the quality of machine translation by controlling the focus on the relevant words in the input
text.

In terms of functionality, attention models introduced two main changes to seq2seq models.
The first one is that the encoder now passes all hidden states to the decoder rather than the
last one. The second one is the inclusion attention decoder which precedes the decoding process.
Since each of the encoder’s hidden states is associated with a certain word in the input sequence
the attention decoder can learn to amplify or reduce each hidden state bringing attention to the
relevant parts of the text for each part of the output. In machine translation, for example, the
model learns how to strongly align words with their translations and weakly with the rest of them.
Note that this allocation input to output words is not always one to one thus training is needed.

1.2.3 Transformers

The impact that the concept of Attention had in improving machine translation is undoubted.
However, it also allowed the development of new models that use this idea to improve the accuracy
and the speed of training. One of them is the Transformer proposed by Google [18] that adopts the
same high-level architecture as seq2seq models, receiving and outputting a sequence while having
an encoding and a decoding component with connections between them.

Both the encoding and the decoding components are stacks of encoders and decoders respec-
tively of the same number. Each encoder can be divided into two main parts a self-attention layer
and a Feed-Forward Neural Network connect serially. The process beging by transforming each
word into vectors using an embedding algorithm, which is then passed into each encoder. The
self-attention layer receives the input and while processing each word in it, it looks at the other
positions to find some relevance leading to a much better understanding and thus a more efficient
encoding overall [19]. As a result in the sentence " The cat runs away from the dog because it was
afraid of it” the machine has can distinguish the meaning of the two "it” as they refer to different
things, which further translates into a different encoding. Before getting to the next encoder the
new vectors are passed to the FNN. In that phase they don’t share any dependencies, a fact that
allows from some parallelization in execution, speeding up further the training phase.

The decoder on the other hand differs from the encoder structure-wise as it interposes a third

Transformer

Encoders Decoders
Output
‘ Feed Forward NN ‘ l Feed Forward NN l E
' | Encoder-Decoder Attention |

Self-Attention Self-Attention

Feed Forward NN l

‘ Feed Forward NN 1 l

* | Encoder-Decoder Attention |
Self-Attention Self. A!en tion
L] L]

Input .
- -

Figure 1.3: Transformer architecture illustrated

layer between self-attention and FNN, the "encoder-decoder attention” layer. This layer's objective
is to utilize the set of attention vectors that the last encoder outputs to direct the decoder’s
attention on the relevant parts in the input sequence. As in the encoding side, each decoder passes
its output to the next one until reaching the final Linear and Softmax Layer that is responsible for
translating the number vectors back into words.

1.2.4 BERT model

Since the introduction of the Transformer, other variants of this architecture have been imple-
mented, with the most known of them being the BERT model [20]. BERT, a model that builds
on top of the Transformer and other clever ideas in Machnine Learning and NLP [21][22] provides
a contextual representation of sentences and has grown to dominate the models of NLP in various
tasks. BERT stands for Bidirectional Encoder Representations from Transformer, which perfectly
describes it since it is essentially a stack of bidirectional layers of trained transformer encoders.

Before passing the nput to the first encoder of the stack a special token needs to be inputted
that lets the model know the type of task BERT is being used for. Just like on the encoding side of
the Transformer the input is being passed from one encoder to the next while having self-attention
and FNN layer applied to it each step of the way [23|. Things start to differ at the output of
the Bert model. There according to the NLP task given by the special token supplied in the first
position of the input. Therefore by accessing the first position of the output, we can retrieve
a task-related vector representation of the input, that can be then passed into a trained neural
network suitable for the task. In the paper researchers got great results in the classification task
passing the output vector through a single layer classifier.

Interestingly enough it is possible to extract word embeddings from the hidden layers of the
BERT model. The outputs per token of each encoding layer are essentially an embedding for that

particular token. Authors have identified as best performing choices the sum the last 4 layers.

As for the tremendous benefits of BERT, they come from its bidirectional nature, its convenient

transformer-like architecture, and finally from its training process. Similar to Elmo’s contextualized
embeddings BERT is trained on next-sentence predictions, where it receives pairs of sentences
and identifies whether they are subsequent sentences in the same document. Again this is very
convenient as we have an abundance of texts on which we can train the model. In order to use
BERT however, it is proposed by its developer to fine-tune it by training on data relevant to the
task at hand. In that phase, only specific hyper-parameters are getting adjusted allowing BERT
to achieve state-of-the-art results on a variety of tasks.

Chapter 2

Related Work

Using Natural Language Processing and Deep-Learning Techniques to make stock market predic-
tions is a well-established idea. In this chapter, I present several studies that have examined the
forecasting power of unstructured data in the stock market, while also underlying their similarities
and differences from this project.

In the past several efforts have been made to extract information from news websites and use
them to forecast future stock price movements [24]. Here researchers tried to capture structured
relationships from unstructured textual data outsourced by news websites and headlines. The idea
is to identify big events stated in these articles and foresee their effect on future stock prices. The
approaches used to achieve that differ slightly in each paper. Specifically, the methodology of [24]
involves identifying organization names in news headlines and recognizing their actions. Then they
relate these actions to post-event drifts in the stock price, and finally, use the identified relation-
ships to construct an optimal portfolio.

Other papers have followed a deep learning approach, by developing and training language
models. Specifically, in [25] researches, events are compiled as dense vectors and passed into a con-
volutional neural network, which then produces a trading signal. The informational content of the
produced signal is then evaluated by incorporating it into a simple event-based trading strategy,
that opens a long position if the model predicts a rise in stock prices the next day. To test the
significance of their results randomized strategies and the S&P 500 were used as a benchmark.

This paper provides some significant guidelines for using Natural Language Processing and
Deep Learning models to make forecasts. This inclndes the prepossessing of data, the use of word
embeddings, the creation and training of the neural network as well as the evaluation of the pro-
duced signal. These general guidelines are also followed in this project and built upon to produce
and test the final trading signal. As for the main differences they are found in the data used in
each case and in the models employed. Here we examine only social media content which is more
cumbersome in nature as it requires cleanings from spam messages, is rarely grammatically cor-
rect, and might contain slang, sarcasm, and misspellings all very difficult for a model to identity.
Additionally for this project more sophisticated NLP models need to be employed that have been
lately developed and seen to produce greater results than CNNs and LSTMs, and also specialize
in handling social media data.

Nevertheless, a large literature regarding sentiment analysis on social media already exists [26]
[27] [28]. These studies are focused on employing NLP techniques and supervised machine learning
algorithms to correctly classify text as positive or negative. These efforts are concentrated on
overcoming the barriers set by the very nature of the data i.e. slang, misspellings, limited amount
of words, and leveraging other characteristics i.e. emoticons, hashtags to obtain an accurate classi-
fication. This objective is a prerequisite for this project as well, in order to construct a legitimate
trading signal. However, this is extended here as one needs to aggregate the sentiment of individual
postings on greater periods of time and use the calculated product to construct a profitable trading
strategy.

The use of social media sentiment as stock market indicator is also a well studied subject. In
[29] researchers studied the sentiment from a stock microblogging service over the period of three
months and found it to have strong predictive value for future market prices. Other works such
that of [30] that classified the sentiment of tweets with a Support Vector machine as positives or
negatives, showed that changes in positive sentiment probability can be used as indicators of the
changes in stock closing prices. Based on a similar hypothesis, researchers in [31] incorporated
Twitter sentiment scores on a trading strategy, a methodology that closely relates to the contents
of this report. Specifically, authors collected financial data from S&P 500 to trade on, and Twitter
textual data for sentiment analysis. The tweets for classification were examined to involve infor-
mation about a specific company or ticker, while the classification itself was done through word
analysis a technique that involves mapping each word to a dictionary of terms in order to deter-
mine its sentiment. The sentiment is aggregated for each day by calculating negative to positive
rates. Regarding the trading strategy, it involved buying stocks in the top 10% of sentiment score
and selling those in the bottom 10%. Ewven though the NLP Techniques used were not extremely
sophisticated researchers managed to accept the hypothesis and come up with a profitable strategy.
For this project, some of these methods will be modernized by utilizing progressive deep learning
models for text classification, and it will be investigated whether this additional complexity of the
classification methods will result in better results.

Chapter 3

Overview

The scope of this project is to examine if social media sentiment regarding Bitcoin can be used
as a signal and incorporated into a profitable trading strategy. Specifically, tweets from publicly
available sources will be classified through pre-trained classifiers and be consolidated in the decision-
making of a trading strategy. Lastly, I examine the results of testing the strategy during the period
09-2017-01-2019 and conclude the fitness of Twitter sentiment as an indicator for future Bitcoin
price movements. The final implementation can be distinguished into four major parts that will
be presented separately in this report:

Data Analysis: Here I inspect the pre-classified Data that will be used for training the text
classifier and the Twitter parsed data that will be evaluated to obtain the final signal. The
goal is to verily that the datasets are fit for the task that they will be used for.

Spam Filtering: After analyzing the datasets, the next and crucial objective is to clean them
from spam and advertisements that add noise to the final sentiment evaluation. For that
matter a few techuiques are being applied and evaluated by drawing samples of the Tweets
they label as "spam” or "not spam” and manually checking their correctness.

NLP classifiers and sentiment analysis: This is a major part of this project that concerns
the classification of tweets as positive or negative. The first step here is to bring the inputs
to a suitable form for the model to process. After that, we can deploy, train and evaluate
several NLP classification models. Then we apply the same prepossessing to the unlabeled
data before passing them through the trained classifier to end up with the final sentiment
score that captures the positivity /negativity of Twitter users regarding Bitcoin. A final step
is to evalunate the classification models and methods and decide which are more suitable to
use for this particular application.

Trading strategy: This section involves all segments directly related to the operation of our
trading strategy; trading signal construction and evalnation, trading strategy development,
testing, and results in the evaluation. The most significant problem faced in this section is
how to utilize the calculated sentiment in our trading strategy. However, this is not the only
parameter that needs to be determined as the trading strategy development also involves
deciding on the entering, exiting criteria, risk-management, and sizing of positions as well
as the timeframe of trading. inally, the strategy will be backtested and the informational
value of the signal will be assessed.

Before looking at each part separately, the whole process can be visualized in Figure 3.1 below.

10

Data Preprocessing > Clasé'glc:"on
Spam ™ o Trading
Filtering NLP Classifier v Signal
»| Tokenization BMui(\Jc(Iji:lg Trading Strategy $»| Results
»| Padding ! Trg\;\li;g Asset Price
i r====-= A E r-- - = il
H : Feature : H : Word : Risk
"""" ' Analysis ! 7™ Embeddings 1 Management
1 1
| F - o | W — 4
Exit
Strategy

Figure 3.1: Project’s main parts visualized.

11

Chapter 4

Data

A core part of any analysis is the Data used. Thus it is crucial to visualize the input data sets, to
gain a better understanding of their contents and evaluate their fitness for the task at hand. For
this project, two different data sets were utilized,

1. a set of 1.5 million Tweets!, labeled as 1 for positive or 0 for negative sentiment, that are
used for the training of the classifier NLP model.

2. aset of 17.7 million Tweets related to Bitcoin?, for the period 09-2017 - 01-2019, timestamped
and unlabelled, for the trained classifier to evaluate and construct the trading signal.

Both of the aforementioned data sets are publicly available, and so are all the tools and models
that were used for this project, assuring that any benefit will derive from the usefulness of the
employed methods rather than our accessing of hard to come by information.

4.1 Training Data

Starting with the labeled Tweets, we get an idea of its contents by drawing a random sample and
by printing the description of the set, as presented in 4.1.

text target
text target
961446 I's been a year since Mark Speight died A year goes so fasl 0 _ _
count 1577838 1577838
44391 @AnnaHearty have funlll wish i didnt hav to go to college. double english hope you like it xx 0
@A ; g = 9 pel unique 1577727 2
1301185 Yawn yawn yawn! | heavy want a dominos 0 o -
1235278 sludied 1or my Soc exam 0
freq 26 789771
1401381 Finally home and playing with a new toy 1

Figure 4.1: Pre-classified tweets data set inspection.

The set has 2 columns, text and target, for the tweet and its labeled sentiment, respectively.
A target of 0 corresponds to a negative sentiment whereas when labeled 1 the tweet is considered
positive. From the descriptive statistics on the right, perhaps the most interesting one is the dif-
ference between the unique and total counts of text data, which hints the existence of duplicate
tweets in our labeled dataset, perhaps consisting of spam messages or retweets. Fortunately, the
number of them is quite low (111 out of 1,577,838 total Tweets), corresponding only to the 0.007%
of the whole set, which is acceptable for our purpose. Then, examining the distribution of tweets
in positives and negatives (Figure 4.2), it is clear that there is no class imbalance. This is encour-
aging, as it won't bias the model towards a particular direction, which can happen with heavily
imbalanced training sets.

'Source: http://thinknook.com/twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/
23ource: https://www.kaggle.com/jaimebadiola/177-millicon-bitcoin-tweets

12

800000

700000

00000

500000

Fositive

Figure 4.2: Label distribution for positive and negative pre-classified tweets.

However, there are still other characteristies that may differ between positive and negative
tweets, thus making it easier for them to be distinguished. An example is the fact that negative
texts tend to be more lengthy on average than positive ones, as people tend to over justify them-
selves when expressing a negative position. To check if that is the case here as well, I calculated
the length of each tweet, classified them in positives and negatives, and plotted the histograms of
the two groups as seen in Figure 4.3. The results, show that the the distribution is slightly more
heavy-tailed for the negative group, but other than that they don’t reveal any significant difference

between the two classes.

Another important note here is the fact that some outliers seemingly exceed the limit of 250 set
by Twitter. This is because mentions and hyperlinks are included here in the text column which
may extend a tweets length beyond the defined limits.

000

000

%000

B negative
BN positive

Figure 4.3: Tweet lengths distribution for positive and negative pre-classified tweets.

The same comparative analysis of distributions between the positive and negative tweets we
can apply to several other features. Below I have included the distribution of word count and
unigue word count, both very important features in any NLP analysis. In Figure 4.4 we see the

13

distribution of both sets having a smooth curve with some spikes in certain word numbers, while
negative tweets appear to contain more words on average. This is also evident in Figure 4.5 for
unique words counts, although here instead of spikes we have sudden drops for certain values.

BN negative
B positive

0000

000

Figure 4.4: Number of words distribution for positive and negative pre-classified tweets.

B negative

Bl positive
w000
000
20000
000
" —
0 5 0 15 = = - =

Figure 4.5: Number of unique words distribution for positive and negative pre-classified tweets.

Lastly, average word length and punctuation count distributions are plotted in logarithmic scale
in Figure 4.6 for viewing purposes since the vast majority of the tweets being on the lower end
makes it impossible to view the right tail. Looking at the histograms there doesn't seem to be any
significant difference between the groups in both cases.

From the feature analysis we can conclude that even though the negative tweets tend to be
lengthier and wordier than the positive, the differences are so marginal that we can safely say that
the two groups are almost identical.

14

BN negative
N positive

N negative
. positive

El

5

ﬂil.lul...
O

: ‘IIHI‘III 1 N
. 2 = = n o e

Figure 4.6: Average word length distribution (left). Number of punctuation distribution (right)
for positive and negative pre-classified tweets.

4.2 Data for classification

Moving on, an overview of the unlabelled Bitcoin tweets data set is necessary, as it is on this data
set where the trading signal and thus the trading strategy will be based. Starting with an overview
of the set like we did before, we get the following (Figure 4.7).

usemame date retwests favorites text geo mentions hashtags id permalink to year
count 1TTIE4E ATTIEN4E 1TTIENE 1TTI6NE 17726148 1TIE0253 1T1576TA ATISTSOT ATASTI0N ATIETIHI 16101475 1775148
unique 1517848 12644452 1860 2887 15324435 159009 435416 1962976 16994759 17142660 405674 3
Wp CyberTocisBooks 2016-02-06 09:00 o 0 “STAAT BITCOIN MINING hitp:ikeita2016 jp* 2018
treq 134430 316 15425419 13001249 23254 16968431 14964816 8013ZM 90249 9251 14585521 11540950

Figure 4.7: Tweets for classification dataset overview.

From this description, the following can be noticed:

1. The data set contains much more information (columns) than needed for the NLP analysis.
In the following figure, we can see a sample of the data that will be actually used for the
NLP classification.

2. From the unique user number, it can be calculated that each user in the data set has sent
approximately 11.67 messages. In reality, as we will see this ratio might be way smaller for
real users since the current dataset also contains spam or tweet bots, which tend to output
a lot more messages than an average user.

3. Another indication for spam is the number of duplicate texts contained in the set. This
number corresponds to around 2.4 million tweets that needs to be addressed moving forward.

4. The current dataset contains tweets about Bitcoin, posted during the period of one and half
years and specifically from 2017-08-01 to 2019-01-22.

For the inspection of the data, I performed the same analysis as on the training data set and
looked for similar distributions in text length, number of words and number of unique words.
Looking at Figure 4.9 it seems that this is the case, as distributions seem to follow similar patterns
as before. This is encouraging as it is important for the model to be trained on data close to those
it will eventually evaluate, in order to achieve optimal performance.

As stated before another strong indication of spam is users that have posted an unrealistic

number of tweets during that period. To pinpoint such users the number of tweets per user dis-
tribution needs to be plotted. The right tail of the distribution in Figure 4.9 gives us the number

15

of users suspected of being spambots. We can look at a sample of tweets sent by these users and
calculate the average number of tweets they output in a day on average, to get an indication of a
daily threshold. In order to be able to see the outliers, the histogram is plotted on a logarithmic
scale.

.L == L : A‘I Iln......_.._,

Figure 4.8: Average tweet length distribution (left). Number of words distribution (middle).
Number of unigue words distribution (right) for the unlabelled tweets.

o
.
hm |“"L!" L !

Figure 4.9: Tweets per user distribution for the unlabeled tweets

Another analysis that we can make in this data set is to get the number of tweets per month,
weekday and hour. This will give us insights about the average twitter activity during certain
periods and maybe also reveal information about the geographic location of the majority of the
users included in this dataset. Firstly looking at the months chart in Figure 4.10 we can see an
obvious decrease in activity during the summer months which is expected for people living in the
north hemisphere not being so active while on vacation.

Moving on to weckdays, from the analysis presented in Figure 4.11 it is obvious that less people
tweet during the weekend which can be taken into account when examining the significance of a
signal during these days. Lastly, a view on hourly activity (Figure 4.12, reveals an increase during
7:00 - 17:00 Central Daylight Time (US) or 14:00 - 00:00 Central European Summer Time. Hence
we can expect the majority of tweets to come from Europe and US, as these results are inline with
those of past works related to this topic [32].

Finally, a look at the evolution of the number of tweets over different timeframes is necessary,
since multi-timeframe profitability is an important criterion of the fitness of the trading strategy
implemented. First, the number of tweets per year is plotted in Figure 4.13 but it doesn't reveal
much, since the only full year for which we have data is the year 2018.

16

1e?

0 IIIIIIIIIII‘

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

w

[X]

-

Figure 4.10: Number of unlabelled tweets per month

1e?

0 II

day Tuesday Wednesday Thursday Friday Saturday Sunday

'Y

w

[X]

-

Figure 4.11: Number of unlabelled tweets per weekday

Next, an overview of number of tweets in monthly, daily, hourly, and minutely timeframe is
given in Figure 4.14. In these charts, we look for inconsistencies like huge spikes or dips and verily
that are few in number. Such inconsistencies might be caused by many factors varying from sig-
nificant price movement resulting in abnormal twitter activity, to even defective scrapping by the
researchers that gathered this data.

Indeed snch inconsistencies are detected more often in smaller timeframes but they average out
for bigger periods resulting in a cleaner looking behaviour overall. Another interesting fact is that

17

17

20

1.5
1.0
a5

UTC © 1 2 3 4 5 6 7 8 0 10 11 1213 14 1516 177 18 10 20 21 2 23
CST 1922122 01 2 3 456 78 911 1212 1415 16 17 18
CEST 2 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 22 0 1

Figure 4.12: Number of unlabelled tweets per hour

o7

10

08

06

04

02

0o I
017 218 2019

Figure 4.13: Number of unlabelled tweets per year

the number per tweet resembles the actnal price of bitcoin during that time, again this is especially
obvious in the monthly chart where the noise is minimal.

In order to see that in more detail, I once again plot the number of tweets for each of these
timeframes against the Bitcoin Open price for the same timeframe both min-max normalized for
visualization purposes.

Figure 4.15 reveals some strong correlation between the monthly bitcoin price and the monthly

number of tweets. In fact the number of tweets behaviour front runs that of the bitcoin price,
meaning that if we were to use that statistic to predict to drift of Bitcoin price over the next

18

/ _ wﬁﬂ mfﬂ.«w%

Figure 4.14: Number of unlabeled tweets monthly, daily, hourly, and minutely timeframe (left to
right).
month

— Number of tweets

— Bitcoin price

Value

9/2017 1208 s/2018 9/2018 12019

Date

Figure 4.15: Number of unlabelled tweets and Bitcoin price in monthly timeframe.

month, we would have made profits during that period. Moreover, it can be viewed as evidence
that social media bear some forecasting power in cryptocurrencies. An intuitive explanation can
be also given as in general when the popularity of an asset peaks, the number of potential buyers
caps, following a decrease in price. On the contrary when an asset is overlooked the sellers are
being squished an inerease in popularity might canse imbalance in the order books towards the
buy side. However this effect is becomes less prominent in lower time frames as seen in Figures
4,16, 4.17 and 4.18 below.

Again this is expected as noise related to the parsing method used, the week day and the data
used kicks in, one cannot be sure about the significance of a dip or spike in the number of tweets.
However to goal of this report is to go further than that, by understanding and evaluating the
contents of these tweets rather than merely looking at their number. This evaluation might give us
greater insight regarding the current views of social media users and their future decision making.
Of course, even in that case we should expect greater amount of inconsistencies appearing in low
time frames, but before dealing with that we first should handle another more noticeable source
of noise in our dataset.

19

Value

day

1005 — Number of tweets
= Bitcoin price
B0%
0%
o
2
s
40 %
0%
0%
92017 12018 s/2018 9/2018 1/2019
Date

Figure 4.16: Number of unlabelled tweets and Bitcoin price in daily timeframe.

hour
100 = Number of tweets
= Bitcoin price

BO%

60 %

40 %;

20%;

0%

9/2017 1/2018 5/2018 9/2018 1/2019
Date

Figure 4.17: Number of unlabelled tweets and Bitcoin price in hourly timeframe.

20

Value

minute

B0%

20%;

0%

= Number of tweets

= Bitcoin price

8/2017 1/2018

52018 9/2018 1/2019
Date

Figure 4.18: Number of unlabelled tweets and Biteoin price in minute timeframe.

21

Chapter 5

Data Cleaning and Preprocessing

From analyzing the data in the previous chapter, the existence of spam in the data has been no-
ticed. This is problematic for two reasons, first, it adds noise to the calculation of the signal since
spam messages do not contain any valuable information and second spambots tend to output a
huge amount of tweets which amplifies their effect in the final signal. Moreover, understanding the
purpose and content of spam tweets which are usually to sell or advertise, one can expect these
messages to have an optimistic tone on average which if included would bias our classification
towards positive sentiment. Hence, cleaning of the data set is necessary.

In order to classify something as spam, we need to know how it looks like in our case We can
do that by getting a sample from the most {requent posters assiming they are most likely spambots.

Before moving any further it should be made clear that not all spam is the same, and thus not
all should be handled in the same way. Dealing with spam on e-mail is a much different task since
in that case, false positives are devastating since wrong classifying a mail as spam may cause one to
lose an important or urgent e-mail [33]. In our case, however, it only causes us to lose a data point
that can be overcome. Optimally the filtering criteria should be such that correctly identify a high
percentage of spam messages without too many false classifications. For that matter, I developed
several mechanisms to spot suspicious tweets or users.

1. (C1) Excluding suspicious users from the dataset. Here I have excluded once and for all,
users that have sent the exact same message multiple times. This is the definition of spam
s0 it is safe to completely exclude these users from our dataset.

2. (C2) Another idea is to also exclude nsers have posted several tweets in one day that exceeds
a predefined threshold (e.g., 100 tweet per day). Abnormally increased activity is another
main characteristic of spam usernames.

3. (C3) Removing messages that contain suspicious n-grams [34]. For example, a suspicious
2-grams would be *free bitcoin” or “learn more”, which are phrases commonly used for
advertisement and have been seen frequently in this data set as well. This method relies
too much on the n-grams we check for. The good choice is to use the n-grams that appear
most frequently in suspicious tweets so that we get a high number of true positives and a low
number of false negatives. To find the most common n-grams in spam tweets we can either:
{a) use the results of existing research in spam filtering or
(b) find these n-grams that appear with high frequency in spam messages and with low
frequency in non-spam messages, by performing analysis in a small subset of spam messages
from our data set.

We can test the effectiveness ol each method by drawing random samples of the tweets that
they flag. Checking the first two criteria is simple as they only require finding the number of
tweets per user per period and finding of duplicates, both feasible with some data manipulation.
The third method is slightly different as it takes into account the context of each tweet, hence it
heavily depends and what we do classily as "spam” in this setting. Here a tweet is considered to
have informational value if it reflects the opinion of an individual in some way while the rest of
them are unwanted. After inspecting some samples I understood that the unwanted category is

22

populated by bots that advertise products or services and news bots that constantly post headlines
from other sources.

Going back to the n-gram detection method, I tried both methods, that is, excluding tweets
that contained suspicions words according to existing research on spam filtering and calculating
the suspicious words for our set by performing word frequency analysis in small subsets of the cur-
rent data set. Unlike the first method which is quite straightforward, finding the n-grams popular
in spam requires classifying some data as spam by hand. To expedite things I classified a small
number of tweets as "spam”/ "not spam”/ "N/A" and kept a score for their senders. If a nsername
has over 2 tweets classified as spam then it is categorized as spam user and the contrary for the
"not spam” group. In the case of both then the username gets excluded from both. Now I can find
all tweets outputted by these usernames of each group which provides me with a greater amount
of classified tweets than those classified by hand. This is true only by the assumption that if a user
outputs at least 2 tweets that can be definitively characterized as either spam or not spam then all
future messages by the same user also inherit this classification. After acquiring the two opposite
sets, [can caleulate the frequencies of n-grams contained in each one and pinpoint from that, the
n-grams that appear much more frequently in the "spam” set than in the "non-spam” set. Those
are the n-grams that have a greater probability of appearing in spam than in a non-spam group,
thus can potentially work as an accurate signal of suspicious tweets.

In Figure 5.1 the frequencies of the most common words are plotted for each group. The plot
is on logarithmic scale for visualization purposes since the words "bitcoin” and "http” dominate

the set. Irom the bar chart, we see that the words "reddit”, "http”, "news” and "cryptocurrency”
appear more frequently in the spam than in the non-spam set, which gives us an idea of what
W not_spam

"spam” in our data looks like.
| I I
Iil-‘
3 ke prce: #oe biockchan cash news cypiccurency new one exchange reddt bitcain bch maney peaple becans b oypie

Figure 5.1: Frequencies of most common words (1-gramms) in each group

_mmm spam
10

By utilizing the difference in frequencies of such words between the groups we build the set of
spam words that when found in a text associate the highest probability of being spam to that text.
This is calculated as follows:

Fvents:

st text is spam

w: word is found in text

23

Probabilities:

P(s | w) : text is spam given that a specific word is found in it

Plw | 5)
Plw)

Plw | s)
Plw | s)+ Plw | s')

Pls|w)= x P(s) = x P(s)

Where P(w | s) and P(w | s') are the probabilities that the word in the text, given a text is
spam or not spam respectively. These probabilities directly relate to the frequencies calculated
before for the two sets. P(s) is the probability of the tweet being spam which is the same for all
tweets in our data set. By weighting each word by its P(s | w) probability we construct the word
cloud presented in Figure 5.2 below.

saye

currency bubble y

first free bank -exchange price

L%gh%q
mJ llon unCh "

radlng wallet

ysis

ethereum

v

.QJblockchain

1
base
-2toda

trader

bat
.
bat

.ana

A
-,
ot

coln

o |

cryptocurrency

Figure 5.2: Spam words word clond

For the word cloud, I used only the words that appear more often than the 99% of the words in
the spam set so that to eliminate the effect of very unique words that happened to appear in one
group and not in the other during the testing. In the word cloud we can see words like "reddit”
which stood out during the frequency analysis before, words that one expects to find in the spam
set like "launch”, "analysis”, "buy”, "trader”, "free” and others that is unclear why they are in
the set like "ga” and "china”. In addition, one can construct the data set of the word that favor
a non-spam classification and cross-examine the two.

The aforementioned method however bears, of course, some drawbacks. The classification was
performed on a limited amount of data which makes results difficult to generalize, while the impli-
cations of possible misclassification may be catastrophic. Hence, testing the effectiveness of these
methods is necessary. To do that, I sampled 200 lines of data from the textual data set classified
them by hand, and then by each of the three criteria. A smaller sample of this classification is
presented in Figure 5.3.

Here "1" stands for spam and the opposite for 70", Moreover from the C3 method I used,
commonly found words in spam and data set specific uni-grams and bi-grams associated with high
spam probability. In the above sample, only in one case, every spam method failed to catch the
spam message and the same goes for a false positive classification. [t is hmportant to minimize
False Positives as much as possible since eliminating valid data points is unwanted behavior. Now,
to analyze the effectiveness of each method in more depth I calculated their accuracy and true/false

24

negatives /positives which are presented in Table 5.1.

T

t Cl1 C2 C3a:uni C3b:uni C3b:bi Spam
"Eamn FREE bitcoin at FaucetHub.io! http://faucethub.io/r/11275486 #ibitcoin #faucet #game #faucets # 0 0 1 0 1 1
"5 Practical Ways Bitcoin and Blockchain Can Impact your SMB @ItaiElizur @smallbiztrends https:/fsma 1 1] o 1 o 1
"Encrypted Email Provider Protonmail Now Accepts Bitcoin as Payment https://charlesmaldonado510.w 0 o 0 o 0 1
"Good. Let them. More power for bitcoin, ppl are not stupid, they will figure it out.” [/} o 1] o [0
"Free Bitcoins Faucet - Earn $100 free btc in 5 minutes https://goo.gl/0lr5uj #bitcoin #freebtc #getbtc g" 0 0 1 1 1 1
"HODL! right now: http://ift.tt/2wDOTic #bitcoin #btc"] 1 0 0 0 (]
"Just learned what a bitcoin is and I'm blown away” 0 (1] 1] 1] 1] 0

Figure 5.3:

Spam filtering techniques classification sample.

Metrics C1 | C2 | C3a: unigrams | C3b: unigrams | C3b: bigrams
Accuracy 38% | 40% 38% 16% 37%
True Positives | 12 22 8 30 6
Accuracy 64 58 68 62 68
Accuracy 4 10 0 6 0
Accuracy 120 | 110 124 102 126

Table 5.1: Spam filtering methods evaluation results.

As seen in these metrics, some methods are more conservatives than others, as they classily
only a few messages as spam with great precision. On the contrary to achieve greater accuracy
overall one needs to allow for some [alse positives. The results shown are quite average and from
the low number of positives seems that not all characteristics that classify a tweet as spam have
been captured. Other more sophisticated methods [35] [36] involving language models and neural
networks can be applied to achieve greater results overall that also use the context of a message to
make classifications. However, this exceeds the scope of this research so instead, for our purposes
a combination of the above methods will be utilized. Finally given that spam is most likely a news
bot or some type of advertisement they almost always will include some type of URL. Using that
characteristic I immediately classify as "non-spam” all tweets that don’t contain hyperlinks, the
contrary is not true.

25

Chapter 6

Natural Language Processing

Now that the analysis of the data has been completed, their structure, contexts, and features have
become more apparent, which enables the construction of more suitable langnage models for clas-
sification. The idea is to construct a black box which when fed with a tweet will output a number
signifying the sentiment expressed by the tweet’s context, either positive or negative. By repeating
the process for all tweets in the data set and by aggregating these values for longer time periods,
the trading signal will be constructed. As a result, the efficacy of this "black box” also known as
the classifier, will strongly affect the quality of the final signal.

For constructing a sentiment classifier, there exist several alternatives and so one can follow
many different approaches. In this section four different models are presented, all of which have
produced great results in the recent past in text classification but slightly differ in the ideas they
introduce to the field of Natural Language Processing. Every model requires supervised learning
[37, p. 9], which involves training on labeled data that have been first prepossessed and brought
to the correct form for each model to handle. Progressing from the simplest to the more complex
models, [present the implemented classifiers, evaluate and compare their results.

6.1 Language Models for Sentiment Classification

6.1.1 Baseline model with LSTM

The first classifier used consists of only 3 layers; an embedding layer, a bidirectional LSTM with a
dropout layer, and a dense output layer. Prior to training this model, a basic prepossessing of the
data needs to take place. This is initiated with the removal of mentions, URLs, punctuation, and
stop words from the text as they don’t usually reveal any particular sentiment for the text. The
only exception to that is perhaps the punctuation, but due to the symbol-heavy nature of tweets
(hashtags, mentions, emojis), such modification is necessary. Finally, words are lowercased so that
there exists a unique representation for each word.

The next steps are to split the tweets into lists of separate words. Then a word index is created
which similar to a dictionary, assigns a unique integer value to each word in the corpus. The split
sentences are then transformed into lists of integers by replacing each word with its key in the
index. This whole operation is known as tokenization. Now that each tweet is represented by lists
of numbers, the final step is to enforce a fixed length on them, to be handled by the model. This
procedure is called padding, where after setting a fixed threshold, every tweet-sequence is enforced
to the same length. Specifically, tweets with a lower amount of words than the predetermined
threshold have (s appended to them while lengthier tweets have words taken out. Hence the
final fixed length of the sequences is chosen so that the vast majority of tweets can be represented
without removing words from them. From the analysis presented in Figure 4.4, one can see that
a length of 50 should be enough for almost every tweet in our data set. In Figure 6.1 an example
of tokenization and padding procedure with fix length 10 is illustrated in order to consolidate our
understanding of the preprocessing stage, as it is quite similar for most of the implemented models
we will develop.

26

Tokenization Padding

Input Sentence
5 an example sentence
Jnkenized sequency
i Jed) e [O] & \Pammv.Len;tr-m

Padded sequonce
78 M w2 6 89 0 o o [0

.

thief : 44

| this : 178
R Tokenized sequence
though : 542 Mz 1 5 & 22 5 B Wz 3¢ 19

.

Paided sequence J

. .
M2 1 5 & mz 5 M o1 2 R} Padding Langth = 10

Word Index
n 22 & B9

Tokenized sequence

Figure 6.1: Tokenization and padding procedures illustrated example.

Once the input sequences are all of the same lengths, the next step is to pass through an em-
bedding layer. Contrary to a dense layer that performs the dot product operation and adds a bias
vector, an embedding layer performs the select operation. Its functionality is to convert each word
token into a fixed-length vector of defined size. There are several ways to convert the word features
to input features. A common technique is to use one-hot encoding to transform these indices into
vectors of ('s and 1's and use dense layers instead. In that case, however, the vectors would be of
the size of the dictionary that would increase the dimensionality of the features’ space severely. To
avoid the "curse of dimensionality”, embedding layers are used, which map each word to a vector
of a smaller, fixed-size vector of real numbers, allowing for an infinite number of possible encoding
with finite vectors.

The vectors produced by the embedding layer are then fed to a bidirectional LSTM with a
dropout layer. An LSTM consists of a group of recurrently connected blocks, known as memory
blocks [38]. These feedback connections allow them to deal better with long time lags between
the inputs and their corresponding outputs, introducing some form of memory to the model. It is
that trait that makes LSTMs well-suited for language modeling since there can be lags of unknown
duration between important events in a time series. Introducing bidirectionality to the network
enables the processing of data in both directions, utilizing both the previous and future context
of the text. And while may appear unconventional at first, it often that sentences gain meaning
after the reveal of their future context. Bi-directional LSTM’s exploit these language character-
istics to produce even better results and have an increased understanding of context relative to
their unidirectional counterparts. The Dropout layer after the LSTM is used to prevent overfitting.

Lastly, the output layer is a dense layer with a sigmoid activation function. Since we have a
binary classification task, I need an activation function on the output layer to produce a bounded
output of range (0,1). Another option would be tanh but it has a range of (-1,1) which doesn’t
work for the pre-labeled we have data that are labeled 0 for negative and 1 for positive. The
output of the model is a real number ranging from 0 to 1, with 0 being absolutely negative and
1 being absolutely positive. This value is the confidence score, which answers how certain is the
model for the classification, which is basically the confidence score rounded. Here a reasonable
question arises, as to whether one should use the confidence score or the classification completely
disregarding the certainty of the model about it, something that will be examined in the next
section.

27

6.1.2 The GloVe model

The previous model seems to be well suited for the sentiment classification task of categorical data,
vet it allows for improvements. The biggest flaw of this implementation derives from the fact that
embeddings carry none of the contextual meaning of the encoded-word. Fortunately, other NLP
models have been developed and trained on huge amounts of data to understand relationships be-
tween words. Then by utilizing these relationships, vector representation that reflects some of the
contexts of the word can be created. Such trained word vectors are definitely a superior method
of word encoding, hence by incorporating them into our existing model one can expect superior
results. To test that GloVe pre-trained word vectors have been recruited.

GloVe is an unsupervised learning algorithm for obtaining vector representations for words.
GloVe vectors offer a great way ol encoding words to munber vectors, so that they can be handled
and classified by the model while inheriting both the meanings and the relationships between the
words they encode. This is achieved as GloVe utilizes the frequency of word co-occurrences to
construct word vectors that directly relate to the probability that these words co-oceur in the
corpus. Through this embedding [10], it is possible to incorporate word context into the sentence
and therefore to the classification. Lastly, GloVe developers offer pre-trained word vectors, trained
on tweets which satisfies the needs of this project to the fullest.

Following the same procedures as before data are preprocessed, tokenized, and padded. Then
the downloaded GloVe pre-trained vectors are imported and from them, the embedding dictionary
is constructed mapping each word to its vector representation. Lastly, the word index is updated
with the embedding of each word in the corpus instead of a single number representation. The final
set is passed into the embedding layer which will provide the encoding of each word it encounters.
The input dimension in this layer should be set to match the dimension of the word vectors provided
by GloVe developers which in this case is 100.

6.1.3 The ELMo model

It has now been made clear that the quality of the classification is strongly correlated with the
quality of the word embeddings we use. GloVe was a big leap forward going from random em-
beddings to pre-trained vectors that inherit the meaning of words. However, it is possible to go
one step further and have encodings that associate not only with the meaning of a word but its
contextual information in the particular sentence. This is incentivized by the fact that the same
word can appear the same in two instances and have much different meaning like the words "stick
and "left”. To allow for such representations I used ELMo a model trained on large datasets to
understand language by next word prediction.

Preprocessing with ELMo is similar to the previous models. An exception is the removal of
stopwords and punctuation which is avoided since ELMo can utilize them as extra information for
the context of the sentence. Tokenization and padding are still necessary for ELMo to handle the
input. The model’s architecture consists of an input layer, ELMo embedding layer, bidirectional
LSTM, and a Dense layer with Dropout for the output.

6.1.4 The BERT model

Lastly, I experimented with the BERT model [20]. BERT is a bidirectional sequence to sequence
model that uses transformers (encoders), a neural network that seems to deal better with long and
short-term memory than LSTMs do. It was introduced by Google and has been quite popular due
to its many different applications. BERT has been trained to find the missing word in a text and
answer questions will allows it to extract the contextual meaning of each sentence. While BERT
was initially implemented to improve machine translation (being a sequence to sequence model)
its ability to understand language made it stand out and eventually become the best NLP model
on several other tasks, one of which is text classification.

To use BERT as our classifier we simply pass as input a << CLS > token at the beginning of

each sequence. Then at the output layer, we take the first element of the sequence and pass it to
a custom classifier built on top of BERT. Another choice we can make is if we want BERT model

28

parameters to be trainable or not. In the first case, we fine-tune the BERT model to optimally
perform our task, while in the second approach we only train our classifier on the data. The
fine-tuning of BERT is the suggested method to use BERT according to its developers as it offers
greater adaptability with some time and memory overhead. Having tested both, the trainable
BERT seems to perform much better than its non-trainable counterpart indeed, yet it introduces
over 170M parameters which make it slow to train and cumbersome to use especially on conven-
tional machines since the use of a GPU is absolutely necessary.

Unlike the previous models BERT doesn’t need separate word vectors as input, in fact, it caleu-
lates its own representations internally, which are accessible from its hidden layers even though it
is not of any importance for this application. Moreover, the removal of stopwords and punctuation
is not necessary nor suggested, since the model is pre-trained on whole sentences. Additionally,
stopwords even though overused in language still provide context which BERT can utilize for the
classification. Still, tokenization and padding of the inputs are performed, this time using the
model’s tokenizer for the former. That is the case because BERT s tokenization is not the stan-
dard procedure of mapping each word to a unique integer. In addition to that special characters
are included in each sequence such as the < C'LS > token mentioned before and the < SEP =
representing whitespace. Finally, BERT requires two additional inputs to function; the input mask
and the input type ids. The input mask, used mainly for word prediction in this case indicates
which input ids correspond to padding, having value 1 where tokens are and 0 for padding. Similar
to that the input type ids signify the position of actual words (excluding tokens) in the input.

After the preprocessing has taken place, the data are passed into the final model. The model
can be distinguished into 3 main parts: the input, the BERT langnage model, and the classifier.
The input is essentially 3 input layers for the three sets of input constructed. The input layers
are connected to BERT which undertakes the majority of the computations and returns two types
of output; the pooled output and the sequence output. The former holds representations for the
entire input sequences while the second fore each token in the input sequence separately. For the
task of classification, only the pooled output is needed and passed into the classifier. The classifier
is a feedforward neural network of dense layers not ol any specific architecture. BERT researchers
have suggested that a unique Dense layer with Dropout achieves great results so this is what 1
went with as well. Now that the model is set the training phase can begin, which will fine-tune
BERT to the Twitter data and train the classifier.

6.2 Training Results

After all models have been trained on the same data, they can be evaluated on their performance.
The evaluation will determine if the added layers of complexity can be translated to an increase
in effectiveness as well. There as several measures that quantify effectiveness in classification,
the simplest of which are accuracy and loss. Accuracy is the main measure of performance and
represents the percentage of correct classifications within an epoch. Loss on the other hand is
a number that also takes into account the confidence with which the classification was made.
Measurements for both accuracy and loss are taken for the training and validation set separately.
In general, the results on the testing set are considered to be more representative of the model’s
actual skills, since they are produced from newly seen data.

As straightforward of a concept as accuracy is, it can be analyzed even further to better un-
derstand the performance of your classification model. In practice, for a binary classifier such as
this, the possible errors are of two types: classifying a negative tweet as positive known as a false
positive or classifying a positive tweet as negative known as a false negative. Respectively, cor-
rect predictions can be seen as true positives and true negatives. This separation between classes
allows one to understand the types of error being made and investigate possible class imbalances
in the evaluations. These four metrics are displayed in tables, known as confusion matrices. The
confusion matrices for our models are displayed in Figure 7?7 below.

29

Baseline GloVe

8000
€500
True Positives False Negatives True Positives False Negatives Tooo
- 7069 2893 o0 - 8223 1780
6000
— 5500 _
©]
é 5000 é 5000
< w00 <
4000
'@l False Positives True Negatives 000 Bl False Positives True Negatives
2996 7042 2953 7044 13000
3500
3000 2000
1 Predicted 0 1 Predicted 0
ELMO BERT
BOOG
000
True Positives False Negatives True Positives False Negatives oo
- 7900 = 8243
6000 6000
™ ™
2 5000 2 5000
o o
< <
2000 4000
o False Positives True Negatives "9l False Positives True Negatives
2934 7072 1708 7588 2000
3000
2000
1 Ppredicted 0O 1 Predicted ©

Figure 6.2: Confusion matrix for all implemented models.

Looking at the above tables, we can see a significant improvement going from our baseline
model to the three more complex ones. Specifically, the baseline model seems to identify positives
and negatives with the same accuracy, while this is not the case for the rest of them. GloVe,
clearly better than the baseline model in both ends, seems to be predicting negative sentiment
more accurately than positive ones. The opposite is true for the BERT model, that is the results
indicate better performance on identifying positive sentiment. This characteristic will be very use-
ful when constructing our trading strategy later, as what's indicated by each sentiment class may
be different in non-symmetric strategies. Elmo results are near the same range but seem worse
than those of the GloVe model even though it is a more complex model.

From these values four additional measurements can be extracted; sensitivity, specificity, pre-
cision, and false positive rate. Sensitivity or recall is the true positive rate and is calculated as
the number of true positives over all positive labeled data evalnated. Sensitivity describes the
ability of the classifier to identify positive sentiment. For identifying negative sentiment we use
specificity, which is the percentage of negative labeled tweets classified correctly. False positive
rate of fall-out is the number of false positives over the total mumber of data predicted as negatives.
This measure is also known as the false alarm ratio since it desecribes the percentage of negative
classifications that were correct. The precision or positive predictive value is the percentage of true
positives over all positive classifications that the model made. Precision is also referred to as the
positive predictive value. Lastly the fl-score is an average of precision and recall that quantifies
the accuracy of the binary classifier. The aforementioned measures are calculated for each model
and displayed in the classification report of Table 6.1.

In these tables, we can see that BERT scores higher than the rest of the models, while excelling
in precision. On the contrary the baseline model trails in performance in each category. These
measurements can be also illustrated graphically by certain curves. One such plot is the receiver
operating characteristic (ROC) curve [39], which summarizes the trade-off between the true positive

30

Baseline GloVe
precision | recall| fl1-score | support precision | recall | f1-score | support
class 0 0.7 071 0.71 9562 class 0 0.74 0.82 0.78 10003
class 1 0.71 0.7 0.71 10038 class 1 0.8 0.7 0.75 9997
accuracy 0.71 20000 accuracy 0.76 20000
macro average 0.71 071 071 20000 macro average 0.77 0.76 | 0.76 | 20000
weighted average 0.71 071] 071 20000 weighted average 0.77 076 | 0.76 20000
Elmo BERT
precision | recall| f1-score | support precision | recall | f1-score | support
class 0 0.73 0.79 0.76 9994 class 0 0.83 0.77 0.8 10704
class 1 077 |0.71| 0.74 10006 class 1 0.76 |0.82| 0.78 9296
accuracy 0.75 20000 accuracy 0.79 20000
macro average 0.75 0.75 0.75 20000 macro average 0.79 0.79 0.79 20000
weighted average 075 |0.75| 0.75 20000 weighted average 079 |079| 079 | 20000

Table 6.1: Classification report for all four implemented models

rate and false positive rate for a predictive model using different probability thresholds. Essentially
ROC is a probability curve that tells us how effective is the model in distinguishing between classes.
Graphically, the closer the curve is to the upper left corner the better the model’s performance is.
This is quantified further through the area under the ROC curve (AUC) measure which represents
the degree of separability ranging from 0.5 to 1. Thus in our case, a higher AUC corresponds to a
better ability in discriminating between positive and negative sentiment.

Lo

0.8

0.6

0.4

True positive rate

0.2

0.0

0.

2

ROC curve

0.4

— Baseline (area = 0.760)

—— BERT (area = 0.871)

— GloVe (area = 0.849)
Elmo (area = 0.829)

0.6

False positive rate

0.8

1.0

Figure 6.3: ROC curve for all four implemented models.

The ROC curve and AUC presented in Figure 6.3 also indicate the overall superiority of BERT

compared to the rest of the models, but not by a large margin. GloVe even though far more sim-
plistic and faster than BERT performs almost as well. This makes GloVe model a strong candidate,
as space and time complexity are equally important as accuracy, especially in the case of online
classification. As for Elmo, I found it to be the most cumbersome to use, as it requires outdated
python libraries to operate and a complicated setup. Moreover is quite slow to train, while all this
added complexity doesn’t really translate to better results as it closely competes with the much
simpler Glove. Lastly, the baseline model, however, is definitively worse than the rest of the models
as expected, since it doesn't utilize any meaningful information related to the text’s meaning.

Another common way of visualizing a model’s performance is the Precision-Recall curve [40]. As
the name suggests, the precision score, representing the ability of the model to identify positive sen-
timent is plotted against the recall, indicating the sensitivity of the model in identifying positives.
Similar to the ROC curve, as the Precision-Recall cirve approaches the top-right corner the better
the model is considered to be. The recision-Recall curve for all four model is displayed in Figure 6.4

Precision - Recall curve

10
L —— Baseline (area = 0.760)
e —— BERT (area = 0.871)
—— GloVe (area = 0.849)
as e Elmo (area = 0.829)
c 0.8
ge.
SN
[
w
|-
o 0.7
0.6
0.5
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 6.4: Precision-Recall curve for all four implemented models.

The four measurements reveal a certain aspect of the classifier’s performance, not all equally
important. The significance of each evaluation high relates to the task at hand. For example, a
trading strategy that goes long on positive sentiment should value a good precision score much
higher than a high recall score, since a false positive may cause money losses while false negative
only results in missed opportunities. Recall would be however more important in cases where there
is a higher cost associated with a false negative than with a false positive.

Aflter analyzing the performance of the NLP deep learning classifiers, I chose to use the BERT
model as the most accurate one, and the Glove model as the one with the highest accuracy-to-speed
of evaluation ratio. Another advantage of the BERT model is that it is a multilingual model that
has been trained to understand language so it can be easily applied to a larger variety of textual
data without compromising its performance.

32

Chapter 7

Trading Strategy and Backtesting

7.1 Trading Signal Construction

Now that the NLP models are built and trained the construction of the trading signal is next. The
first step is the classification of the unlabelled Bitcoin tweets. For that, the models I am going to use
are the GloVe model and the BERT model as they showed great results during their training phase.

While the evaluation performed in the previous section gives us great intuition about the abil-
ities of each model, results can differ slightly when evaluating completely new data. An example
of that is that having been trained on general tweets, it may be hard for a model to associate
positive sentiment with the word "long” and negative sentiment with the word "short” with high
confidence. Thus, one can expect pre-trained models that have greater langnage understanding
like BERT and Elmo, to perform better in this case since they are more adaptable in general.
However their cumbersome nature and high time complexity overhead make it harder to use in
an online setting. On the other hand, the Glove model is shown to combine speed and accuracy
during training which makes it a legitimate candidate for the test. In order to examine the models’
effectiveness on the unlabelled data set, I present a sample of unlabelled Bitcoin tweets classified
by the two models in Figure 7.1 below.

Tweet GloVe BERT
"Bitcoin's Back Alright! SBTCUSD" 0.5893358 0.959055483
"Cruel but also just goes to show how much Bitcoin has grown over the years." 0.08104911 0.777292967
"AP Explains: Threat of a bitcoin split avoided, for now" 0.087365 0.833399773
"Bitcoind€™s Civil War is Over But Bitcoin Price Set For Extreme Volatility" 0.34970394 0.553968966
"#Bitcoin Is Splitting in Two. Now What? " 0.96538657 0.240877911

"Everyone worried about Bitcoin cash and I'm over here selling SETH on the top” 0.06633031 0.027282974

Figure 7.1: Classification sample of unlabelled data

In this example, the misclassifications are indicated with red color. We can observe that GloVe's
sentiment evaluation is heavily influenced by strong words in the text like " Cruel” and "Threat”.
On the contrary, BERT seems to understand better the meaning of the tweet. This, of course,
doesn’t always work out as demonstrated in the case of the 4th tweet, where BERT correctly clas-
sifies the phrase "Civil War is Over” as positive, but doesn't value correctly the second part " But
Price Set For Extreme Volatility” resulting in a false classification. On the contrary, GloVe looking
at the phrases "Civil War” and "Extreme Volatility” happens to correctly classify the Tweet in
this case. Here one needs to be reminded that, unlike BERT, GloVe doesn’t take the whole Tweets
as displayed here as an input, but rather a processed version of them without stop-words and
punctuation since these bear small informational value on their own. However, in the context of a
sentence, this information is crucial for understanding the meaning of the tweet, and that is why
BERT utilizes them to derive its final classification.

33

Before the evalnation can begin the data set needs to been cleaned of spam, using the criteria
addressed in the section about spam filtering. This is a necessary step as spam adds noise to the
final signal since its populate by tweets that don't reflect a market’s participant sentiment in any
way. During some test classification without filtering, I observed an elevated tendency towards
optimistic sentiment, possibly due to the positive nature of spam and advertisement tweets. Fur-
thermore for the data to be passed into a model, one needs to follow the same preprocessing steps as
for the training dataset of the particular model. That also includes saving and importing the same
tokenizer and word index since the encodings created by the models are based on these particular
token ids. For words that did not appear in the training set, but exist in the evaluation set, we use
astandard < oov > (out of vocabulary) token that maps these words to a predefined representation.

After calculating the confidence score for each tweet, we need to process them and aggregate
them for longer periods, to construct the final trading signal. Several choices can be made here,
with the most obvious one being the average of the confidence scores for the period (e.g per hour).
Another possibility is to map each sentiment to either 1 or -1 (positive or negative respectively)
before averaging them out. The created signal will show what is the percentage of outstanding pos-
itively identified tweets in the current period. This excludes the confidence level of the prediction
from the final signal, accounting only for the direction. We can further expand this calculation by
including an additional class for neutral sentiment. In that way, we map each sentiment to -1, 0, or
1 depending on the confidence of the prediction (confidently negative, neutral, confidently positive
respectively) in an attempt to increase the definiteness of the final signal. The signals calculated
with each aforementioned technique are min-max normalized and presented in 7.2 and 7.3 for each
model on monthly and daily timeframe resepctively.

Monthly Twitter Sentiment

15 1 —ociove Average Sentiment
— GloVe Outstanding Positive Sentiment
— GloVe Outstanding Strong Positive Sentiment
05 -
0 -
A t T t t T
812017 142018 52018 912018 172019
Monthly Twitter Sentiment
. — BERT Average Sentiment
1 BERT Qutstanding Positive Sentiment
4 BERT Outstanding Strong Positive Sentiment
N = ="
1 h S =
e .
— ‘\\,,/
0.5 AV "
0
L T T T T T
92017 112018 572018 w2018 12019

Figure 7.2: Comparison of trading signals on monthly timeframe for three aggregation techniques,
for models GloVe and BERT (min-max normalized)

These charts indicate strong similarities between the results of each method. However, the

34

Daily Twitter Sentiment

167
4 — GloVe Average Sentiment
— GloVe Outstanding Positive Sentiment
2 E GloVe Outstanding Strong Positive Sentiment
13
3]
0.8 3 Y i
E I
0.6 A
043
02 4
0 T T T Ll T
912017 112018 52018 92018 112019
Daily Twitter Sentiment
14 — BERT Average Sentiment
12 — BERT Outstanding Positive Sentiment

— BERT Outstanding Strong Positive Sentiment
fl ' WW "W”Wq‘
0.8 H
06 | | \m
04 |
W i
02

T U T T
2017 12018 512018 9/2018 112018

Figure 7.3: Comparison of trading signals on daily timeframe for three aggregation techniques, for
models GloVe and BERT (min-max normalized)

evaluation performed by each model seems to differ substantially during certain periods especially
for the year 2017. However, In lower timeframes, we can see the effect of noise in the calculation
through the fluctnations of the trading signal. However, this is amplified by the min-max normal-
ization, since without it we can see the signal agreeing on the range of the sentiment score.

Another way of combining the scores is to the first average per user for each period and then
per period. The idea behind this method is to eliminate the impact of users that output a large
number of messages per period. While spam filtering helps by cutting outliers, the opinion of a
more "vocal” user will still be valued more than more reserved ones. Visualizing the two signals
deriving from each method side by side helps to identify their characteristics. In 7.4 the two signals
are min-max normalized and plotted for each model separately for the daily timeframe. Here one
can see that averaging over user first can result in cutting off some extreme spikes that may appear
in the final sentiment score.

7.2 Developing the Trading Strategy

After the signals have been constructed, it is time to test them by incorporating them into a trad-
ing strategy. In order to implement a trading strategy, several characteristics need to be specified.
Most importantly is how the strategy will utilize the trading signal for decision making. This
closely relates to the hypothesis tested in each case. For example, one hypothesis could be that
in periods of extreme optimism the buyer is being depleted leading to a future decrease in price.
In that case, one should go short when observing high sentiment values. On the contrary, if one
wants to test the simple hypothesis that prices will increase when people are optimistic, they must

o
&

Daily Twitter Sentiment

123 — GloVe standard sentiment

— GloVe user weighted sentiment

T f t t T
82017 12018 52018 92018 172019

Daily Twitter Sentiment

— BERT standard sentiment

— BERT user weighted sentiment

iy

t 1 t T
12018 52018 ar2018 172019

Figure 7.4: Comparison of user-averaged and non user-averaged daily sentiment for models GloVe
and BERT (min-max normalized)

go long on high sentiment values. In each case the thresholds that signify the opening of a position
needs to be determined. In this project, I'm examining whether signal values above a rolling mean
indicate a future increase in Bitcoin’s value, hence when such values are observed the strategy will
buy Bitcoin.

To demonstrate this idea of nsing sentiment moving averages for decision-making, in Figure
7.5 the outstanding positive sentiment calculated by the BERT model is plotted along with its
50-Day Rolling Average and the Bitcoin price, all min-max normalized for better visualization. I
have marked the areas where the daily sentiment is above the 50 rolling average with green where
the strategy (with threshold value 1) would buy and those below with red where it would exit, we
can get a better understanding of our strategy’s potential. On a first look, we can see more red
areas after the Bitcoin crash than before which is a wanted behavior.

The timeframe of the trading plays also a significant part in the strategy and is connected to
the initial hypothesis as well since it relates to the duration of the impact of the signal. Specifically,
one idea might be that the average minute sentiment can provide insights for the price movements
of the next minute as its impact decays over time. A counterargument to that could suggest that
is that calculations on low timeframes tend to be extremely noisy as other parameters influence
the quality of the signal. Timeframe selection also associates with the number of trades we allow
for during a period. More trades allow for a more reliable evaluation of the trading strategy in
the same amount of time but are involve increased trading costs, while strategies with a small
number of trades can be harder to evaluate as any profits can be attributed to luck. Here I develop
strategies that trade on daily and hourly Biteoin prices.

A third parameter has to do with the sizing of the positions and whether this will be a fixed

36

Entry and Exit Signals

BERT Daily Sentiment
" BERT Daily Sentiment 50-Day Rolling Average
Bitcoin Price
Exit Signal
Entry Signal
L
o II | Tk, Tt R a A
i W{ L il \
A !
5 71 " .“.\.“']I
1 [(
W, ‘,\JI ML,)", J,“b V'\‘v\ -
3
W, ! AL -]
.
i \
0 -~ - \“""Pﬁ st
L T 1 T 1
82017 112018 5/2018 82018 12018

Figure 7.5: Entry and Exit Signals visnalized on the Bitcoin price

amount, a fixed percentage of our portfolio value, or whether it should be solely determined by the
intensity of our signal. The sizing is directly connected to the maxinuum number of open positions
allowed at a time by the trading strategy. So whether it is better to invest the whole capital at
once or average it into multiple trades. But again in that case this needs to be done carefully as it
will have devastating consequences for our profit if done excessively, due to trading costs. In our
case, for each trading signal, I searched for the optimal sizing and entering threshold as will be
demonstrated later in this report.

Now that the criteria for entering a trade have been set, so it must be for exiting one. Exiting
a strategy is equally important a can be done in several ways; after a fixed amount of time, on
specific prices, through the trading signal, or a combination of the three. Fixed exit points are
usually set at the end of the day for stocks since the market closes and trading is not possible.
Exiting on specific prices is related to risk management and is usually done through stop losses and
take profits. Lastly using the trading signal for exiting is also logical and closer to the objective of
this project. Thus, the strategy exits and long position when the entry criteria are not met, while
in the case of hourly timeframe temporal exits are also applied at the end of each day. The final
component of our trading strategy is the analyzer, responsible for tracking and storing our trading
history, which is erucial for the backtesting and evaluation of our strategy.

One can understand the possible arrangements of these specifications are endless and each can
result in a much different performance. In this case, however, the core objective is not to produce
a profitable strategy but rather to evaluate the informational value of our calculated signal. There-
fore, I focused on constructing simple strategies that base their decision-making on the trading
signal as much as possible so that any profits can be attributed to social media sentiment instead
of the complexity of the trading strategy.

To summarize, the strategy operates as follows. Starting with a unit portfolio the strategy
checks at each time step if the current average sentiment value is above a threshold. The threshold
represents a percentage of the sentiment’s scoring rolling mean value and is optimized for each sig-
nal through testing. After examination, I determined that the optimal window size of the rolling
mean is 20 days for daily strategies and 200 hours for hourly ones. If this criterion is satisfied the
strategy will buy at the open price of the next time step. The sizing of the positions is a fixed
percentage of our portfolio which corresponds to a maximum number of concurrent open trades.
This parameter is also adjusted for each signal and timeframe individually. On the contrary, if the
entering criterion is not met the strategy closes all open positions on the open price of the current
time step. Additionally for sub-day strategies and additional exiting condition is applied which

a7

forces the strategy to close all open positions at the close price of each day. The workings of the
daily strategy are presented in the pseudocode of Figure 7.6.

Algorithm 1 Daily Sentiment Strategy

Initialize: threshold > buy threshold
Initialize: maximum allowed posilions © max concurrent open positions
Initialize: current positions < 0 > current open positions

while not final date do
if current positions = 0 then
size < port folio.value /mazimum allowed positions
end if
if sentiment > threshold x sentiment.rolling.mean(20) then
if current positions < maximum allowed positions then
buy(price = markel, size)
maximum allowed positions++
end if
else
if current positions > 1 then
close(all positions, price = market)
end if
end if
end while

close(all positions, price = market)

Figure 7.6: Daily sentiment strategy pseudocode

Buying and closing positions on the open price of the next time step based on the average
sentiment values of the current time assumes a low time complexity in sentiment evaluation to be
able to apply in the online fashion. This is a safe assumption in the case of the GloVe model since it
is quite lightweight. For BERT, on the other hand, it is best to exclude the last 10 seconds of each
time step from hour evaluation (or include them in the evaluation of the next), but since the av-
erage sentiment derives from thousands of tweets per hour [assumed that the difference is marginal.

7.3 Evaluation of the Trading Strategy
I developed 4 strategies in total, which will be evaluated in this section:

¢ GloVe - Hourly Sentiment Strategy: Uses the outstanding positive sentiment percentage of
each hour calculated by the GloVe model, and compares it to the average outstanding positive
sentiment percentage of the last 200 hours.

GloVe - Daily Sentiment Strategy: Uses the outstanding positive sentiment percentage of
each day calculated by the GloVe model, and compares it to the average outstanding positive
sentiment percentage of the last 20 days.

e BERT - Hourly Sentiment Strategy: Uses the outstanding positive sentiment percentage
of each hour calculated by the BERT model, and compares it to the average outstanding
positive sentiment percentage of the last 200 hours.

38

e BERT - Daily Sentiment Strategy: Uses the outstanding positive sentiment percentage of
each day calculated by the BERT model, and compares it to the average outstanding positive
sentiment percentage of the last 20 days.

In order to evaluate the performance of the implemented strategies, we will perform several
tests. All the results presented below are calculated under the assumption of 0% commission.
First, we track the equity curves of the implemented strategies, which is simply a graphical repre-
sentation of the change in the value of their portfolios. This is presented in Figure 7.7.

Starting with an initial value of 1 the strategy in most cases doubled the portfolio over the
period of 2 years. However, a substantially different performance can be observed before and after
the Bitcoin crash. This can be visnalized better by plotting the equity curve for each strategy for
the two calendar years 2017 and 2018 separately. In Figures 7.8, 7.9 we can see that each strategy
benefits from the uptrend of 2017 but struggles during the bear market of 2018. However, GloVe
strategies were still able to generate profit during that time which shows great resilience.

Next up are the returns series, which are presented in Figure 7.10, calculated both per hour
and per day for sub-day strategies. Here we look for periods of extreme losses or great fluctuation
which are considered an unwanted characteristic for a trading strategy. Indeed we can see increased
returns in both directions between the end of 2017 and the first months of 2018. However to better
visualize the profitability of our strategies we plot the histogram of the returns of each trade. This
is displayed in Figure 7.11 for each timeframe separately. There we can see that in most cases
the right tail of the distributions is heavier than the left one, which reveals a high probability of
profits than losses. This is more evident for GloVe based strategies, which seem to outperform
those based on BERT calculated signals.

To put this in numbers we can calculate the Value-at-Risk and Expected Shortfall of the daily
returns for 95% and 99% confidence intervals. Value-at-Risk (VaR) is the most widely used loss-
distribution-based risk measure in quantitative risk management. By fixing a large probability a,
VaR indicates the level for which the probability that the loss L exceeds this level is less or equal
than 1 —ev. In other words VaR is simply the a-quantile of loss L. Mathematically VaR is defined
as follows:

VaR,(L) =inf{leR:P[L >] <1 —a} = q.(L)

However useful, VaR has limitations as it does not show the severity of losses and tail risk, in cases
where with a very small probability extreme losses might occur. To address that the expected
shortfall (ES) was introduced also known as average value-at-risk. Since ES at confidence level
o is essentially the expectation of losses L that exceed the VaR at confidence level e, and is
mathematically deseribed as follows:

1 1
ES, (L) = ! f VaR,(L)du = ;‘/ qu (L) du
l—a i 1—a @

Another popular metric for evaluating portfolios returns is the Sharpe Ratio, a risk-reward
ratio, which compares the expected excess return generated by the strategy to the corresponding
standard deviations:

E[R — R

Sharpe ratio = m

R: annual return of the asset
Rf: anmnal risk-free rate

This performance measure depends on the time horizon over which it is measured. For example,
the same strategy does not have the same Sharpe ratio if measured over a day as in this case or a
year. However, if we assume returns to be independent and identically distributed we can calculate
the annualized Sharpe Ratio from daily (assuming 252 trading days) returns as seen below:

39

TN TS PR

biaaifu

Ll b b

Equity Curve

BERT - Daily Sentiment Strategy
Nl ;
[| a
IATYIS T &
[Uy | i Yy ~
I " l' W
| L [’
o 1 W
~ -';.j
t t t t t
92017 12018 512018 912018 12019
Equity Curve
Glove - Daily Sentiment Strategy ‘ ..-\,r Ind
e |
| A T .
A " \
M - W=
| \
"I‘ ‘I“II
t t t t t
927 172018 52018 972018 12019
Equity Curve
— BERT - Hourly Sentiment Strategy
A AN
{ / " ™ ey
| fh : k‘\f M‘.f«/ Y
ff : *[\ \ Wl
n W
il
aamd
P |
/
T T T T T
9”017 172018 52013 92018 12019
Equity Curve
— GloVe - Hourly Sentiment Strategy)H”’, 0 UJ‘
W
A "
Nl N W L w
] -l w:' Moy f \‘_L'_
\
a by
Y
r
A
+
q,v'r""(ﬁ
f“’%‘w’”
T T T T f
9207 172018 52018 %2018 12019

Figure 7.7: Equity curves of the four implemented strategies.

40

Equity Curves 2017

35 -
E — GloVe - Hourly Sentiment Strategy —~
31 — BERT - Hourly Sentiment Strategy | Y
3 BERT - Daily Sentiment Strategy | I
251 GloVe - Daily Sentiment Strategy p==
2 :
‘] _,-v-_,..{j&w ~ 7
] P e e W = _I,_«.f"‘"J”
] AN T
B T T T T T U
82017 w2017 102017 12017 1212017 112018
Figure 7.8: Equity curves for all strategies for year 2017
Equity Curves 2018
25 GloVe - Hourly Sentiment Strategy
1 BERT - Hourly Sentiment Strategy
1 BERT - Daily Sentiment Strategy
“ | —— GloVe - Daily Sentiment Strategy
15 4
1 4

Figure 7.9: Equity curves for all strategies for year 2018

b[Zf;’i Raity — ‘Hﬂui{y] _ 2525“"-@:&; - ‘H'ﬂm{y]
VVarlSis Rusity = Rl,a,) \/252Var(Raws, — B,

R: daily return of the asset
Rf: daily risk-free rate
SRyaiy,: daily Sharpe ratio

SR_m:url_t,a = = S-Hdux'(_u\v" 2h2

While this is true for stocks, in the case of Biteoin, however, which is traded 365 days per year
we can state:

SRycarty = SRairy /365

While the Sharpe ratio penalizes for all types of volatility in return series, the Sortino Ratio
takes only into account the downside deviation for making calculations, as this is what's devastating
for any trading strategy. Sortino ratio is defined as follows:

E|R — RY) E[R — R

Sorti tio = =
orine Tane = G IR — RT] Std[R — RIR < 0]

R: annual return of the strategy
Rf: anmual risk-free rate

Another important characteristic of strategies is their performance relative to their past maxi-
mum, known as the high-water mark:

41

Returns (Daily)

1 . BERT - Daily Sentiment Strategy

eeeeeeeeeeeee

eeeeeeeeeeeeeeeeeeeeeeeee

DDDDDDDDDD

Returns (Daily)

T
11111

Returns (Daily)

[l GloVe - Hourly Sentiment Strategy

1111111111111111111111111111

B BERT - Daily Sentiment Strategy] BERT - Hourly Sentiment Strategy
GloVe - Daily Sentimant Strategy = || GloVe - Hourly Sentiment Strategy

E =

]] |
&’ &

» |

2 |

J o |

1 d |

/ N - o/
o — 1 = o et —
14 42 w0 a2 4 as a1 o a1 02
Trade Returns Trade Returns

Figure 7.11: Trade returns distribution for strategies of daily (left) and hourly (right) timeframes.

HW M, = max P,
s<t

The decline from the HWM is called the relative drawdown. This is an important indicator
as it describes the conditionality amongst the returns increments. Investors often withdraw their
money when a hedge fund drops too far below the high-water mark, so values closer to zero are an
indication of a better strategy. The relative drawdown at time t is described as follows:

HWM, — P,
DD, =—"—_—*t_°¢
t HW M,

Py Price at time t

And the maximum of all past relative drawdown wvalues is called the maximum drawdown,
which looks for the greatest downward movement from a high point to a low point before a new
peak is achieved. Maximum drawdown is defined below:

MDDy =max D,
st

We can visualize High-Water Mark, Relative Drawdown, and Maximum Drawdown on each
equity curve as presented in Figures 7.12 - 7.15. In each case we see the maximum drawdown
occurring during the bear market of 2018. Also while the relative drawdown seems to be high for
the strategies, if we into account the severity of the decrease in Bitcoin's value during the crash,
the strategies seem to hold up decently.

The last ratio we will look at is the Calmar Ratio, which incorporates the maximum drawdown
into its calculation. Specifically, the Calmar ratio measures the annual expected return of the
strategy over its maximum drawdown and is widely used as a measure of performance of investment

funds.

R

Calm tio = ———

almar ratio = 307
R: annual return of the strategy

MDD: maximum drawdown of the strategy

Similar to the other risk-reward ratios, high Calmar ratio values are considered to be better.
As hinted in the previous section, I tried to optimize the parameters of each strategy by adjusting
their buy threshold and maximum allowed position number. For that, I implemented strategies
with several different combinations of these values and evaluated them on their Calmar ratio. In
Figures 7.16 and 7.17 the heatmaps of this evaluation for each signal are presented. On a first
look, the fact that the Calmar ratio changes gradually with the changes in these parameters is an

43

Equity Curve

e — BERT - Hourly Sentiment Strategy
High-Water Mark
*1 M Relative Drawdown
- - Maximum Drawdown
25
prr W o s
F rll"‘ {(r\ | 'ﬂ"-‘\‘ ¥ NI A WS N TN
2 A * \ ! W
157 ‘rn'uﬂ
Fanin. i
/
-
0.5 -
| A ol e il
017 12018 52018 az0e 12019

Figure 7.12: High-Water Mark and Drawdown of BERT - Hourly Sentiment Strategy

Equity Curve

— GloVe - Hourly Sentiment Strategy
— High-Water Mark
B Relative Drawdown

JHH

- - Maximum Drawdown ‘\1 .

g r Y A AL.;
7

sR017 a2017 12012 S/2018 92018 1/2019
Figure 7.13: High-Water Mark and Drawdown of GloVe - Hourly Sentiment Strategy

Equity Curve

— BERT - Daily Sentiment Strategy
High-Water Mark

B Relative Drawdown

- - Maximum Drawdown

-

92017 12018 52018 92018 12019

Figure 7.14: High-Water Mark and Drawdown of BERT - Daily Sentiment Strategy

44

Equity Curve

1 Glove - Daily Sentiment Strategy
High-Water Mark

M Relative Drawdown

- - Maximum Drawdown)
3 r if

rI
I"— [A]
2 n—_—_fm "1
e
JI'_‘ '
-,

1 -
04

12018

32018

2018

Figure 7.15: High-Water Mark and Drawdown of GloVe - Daily Sentiment Strategy

BERT - Daily Sentiment Strategy

threshold

w
c

k]
=
=]

(=%

2 .
o

o

=] @
£

=

E

&

£ o

087
BERT - Hourly Sentiment Strategy

p -
8

£ .
-]

=5

c =
2

e -
E

3

E -
]

E o

038 [T 10

Figure 7.16: Calmar ratio for different
BERT signal Strategies

101

threshold

threshold and maximum open positions combinations for

encouraging sign for the validity of our strategies.

Glove - Daily Sentiment Strategy

25
w =
[
S
2 - 20
=}
a
c w
g 15
o -
E
E 10
i
E = - 05
oo
087 088 088 10 o 102
threshold
GloVe - Hourly Sentiment Strategy
“
P
2
o
% 20
2
(=5
-
o
=5
s 15
5
E -
%
g "

as7 038 089 10 m 108

threshold

Figure 7.17: Calmar ratio for different threshold and maximum open positions combinations for
GloVe signal Strategies

As we see the best BERT-based strategies have a Calmar ratio close to 2.0 which is considered
good. The optimal BERT - Daily Sentiment Strategy invests the entire capital at once when the
daily sentiment is higher than the 99% of its 20-day moving average and exits otherwise. The
BERT - Hourly Sentiment Strategy allows for 3 open positions at maximum each day, with a size
equal to 1/3 of portfolio value each and the optimal threshold 3% above the 200-hour average
sentiment.

The optimal GloVe strategies perform even better, with the GloVe - Daily Sentiment Strategy
scoring a Calmar ratio of value 3.0 which is exceptional. This strategy also invests the entire capital
when the daily sentiment exceeds its 20-day moving average by at least 1%. Lastly, the optimal
GloVe - Hourly Sentiment Strategy with an equally high Calmar ratio allows for a maximum of
4 concurrent open buy positions of size equal to 1/4 of portfolio value each, while the optimal
threshold is 2% below the 200-hour average sentiment.

The last metric I will check for the implemented strategies is their Capital Usage Ratio. This
metric shows what percent of our total portfolio value is being traded each day on average. Higher
ralues of the ratio are considered to be better since it is generally preferred to have most of our
portfolio invested at all times. For our strategies, however, this is absolutely true. Since we only
open long positions on Bitcoin, it is generally a better strategy to avoid investing during periods
of falling prices, like most of the year 2018.

All of the aforementioned measures are presented in Table 7.2 for the four implemented strate-

46

gies. From these results, we can understand that the two strategies based on the GloVe produced
signal perform better than those on BERT. The Sharpe Ratio is a good indication of that, which
with a value of around 1.6 makes the two GloVe strategies tradeable. Sortino ratio of values close
to 2 is considered good, while the value of 2.54 in the case of GloVe based hourly strategy is great.
The maximum drawdown (MDD) is higher than we would like it to be, but given that Bitcoin
price experienced a downfall of over 80% during the period of testing, it is acceptable.

Metrics BERT Hourly | GloVe Hourly | BERT Daily | GloVe Daily
VaR 95 0.031 0.032 0.059 0.046
ES 95 0.048 0.045 0.078 0.066
VaR 99 0.054 0.053 0.096 0.067
ES 99 0.083 0.058 0.102 0.094
Sharpe Ratio 1.287 1.556 1.190 1.642
Sortino Ratio 1.806 2.542 1.442 1.845
Calmar Ratio 2.028 2,741 L.877 3.059
MDD -26.93% -30.05% -40.22% -37T%
Capital Usage 22.489% 26.053% 15.277% 14.682%
Daily Returns
mean 0.001578 0.00191 0.00217 0.002468
std 0.023005 0.02311 0.034386 0.028397
min -0.12357 -0.068269 -0.112211 -0.112713
max 0.150933 0.225005 0.158404 0.134674
Total Returns 98.95% 145.41% 129.34% 205.66%

Table 7.1: Summary of metrics for the four implemented strategies

The last evaluation technique of our trading strategies we are going showcase in this section
uses Monte Carlo simulation. The incentive is to look at the potential evolution of the equity
curves over time from their daily returns, on the assiumption the latter follow a normal distribu-
tion. Having the mean and volatility of daily returns for each strategy we can simulate thousands
of possible equity curves with the same parameters on their daily returns. For these parameters,
we can use their values estimated during the strategy testing by assuming past mean returns and
volatility levels will continue into the future. After simulating 10,000 equity curves for each of the
implemented strategies, I plot the distribution of the simulated portfolios final values after 540
days (since it is the original strategies testing period) as shown in Figure 7.18.

The distributions show that all strategies are profitable on average, while the weight of their
right tails indicates that they can reach extremely high returns with a relatively high probability.
In Table 7.2 we can see that the expected final portfolio value of each strategy for the period of
testing is over 2 units, starting with the unit portfolio. Especially for the daily strategies, this
number exceeds the 200% in total returns.

Metrics BERT Hourly | GloVe Hourly | BERT Daily | GloVe Daily
Average Final Portfolio Value 2.32 2.81 3.23 3.77
5% quantile 0.83 1.01 (.64 1.02
95% quantile 4.90 5.93 8.73 9.07

Table 7.2: Summary of metrics for the Monte Carlo simulated distributions.

7.4 Comparison with Benchmarks

In this section, 1 will compare the four implemented strategies with the most widely used bench-
marks. The first and most standard evaluation is the comparison of our portfolio value with that
of the S&P 500 during the same period. This will tell us if our strategy is better than simply
undertaking market risk and buying the market. The results are displayed in Figure 7.19 on a

47

025

s BERT - Daily Sentiment Strategy mm BERT - Hourly Sentiment Strategy
040
020 0.35
0.30
015
= Z 015
w
g
a é 020
010
015
008 010
005
o L |
oo 0 5 10 15 2 25 30 5 o " 2 4 [8 10 2 14 16
Final Portfolio value Final Portfolio value
0.25
- GloVe - Daily Sentiment Strategy 035 mam GloVe - Hourly Sentiment Strategy
0.20 030
025
015
&
-'E % 020
& &
010 015
010
0.05
00s
0.00 u — —
0 5 0 15 20 %5] » 010 0 2) 8] 10 12] 18
Final Portfolio value Final Portfolio value

Figure 7.18: Final portfolio value distribution of 10,000 simulated equity curves for each imple-
mented strategy.

logarithmic scale to allow for better visualization. The curves reveal the big difference in riskiness
of our strategy compared to the market index, with both the upside and the downside being sig-
nificantly amplified. However, starting with a unit portfolio our strategies were able to produce
substantially higher profits than the buy and hold on S&P 500. The results however change if we
introduce some commission costs to our strategies, as [will show in the appendix.

Equity Curve
B — GloVe - Hourly Sentiment Strategy
4 — BERT - Hourly Sentiment Strategy MHL"H#

BERT - Daily Sentiment Strategy “\IJ N

14 M

j — GloVe - Daily Sentiment Strategy !

i1 —saps00
24
9 -1

T T T T T T
52017 Q2017 12018 5/2018 9/2018 172019

Figure 7.19: Comparison of our Trading Strategies with the Buy and Hold on S&P 500 (Logarithmic
Scale).

48

The contrary is true, however, if we compare our strategies with the Buy and Hold strategy in
Bitcoin for the same period as shown in Figure 7.20. In some cases, it might be simply better to
buy and hold a position on the underlying asset than trading on it, which is also cheaper in terms
of trading costs. In this case, however, while our strategies weren't able to benefit in the fullest
from the bull market in Bitcoin prior to the crash, they still performed significantly better than
Bitcoin during the bear market of 2018.

Trading History

8
— BTC price

7 GloVe - Hourly Sentiment Strategy
6 BERT - Hourly Sentiment Strategy
. BERT - Daily Sentiment Strategy
’ GloVe - Daily Sentiment Strategy
4

3

2

Figure 7.20: Comparison of our Trading Strategies with the Buy and Hold on Bitcoin.

49

Chapter 8

Conclusion

In this project, I examined the usefulness of social media sentiment in predicting future Bitcoin
price movements. For that, some of the more advanced Natural Language Processing Models were
utilized and used to classify 2 million tweets regarding Bitcoin as either positive or negative. The
calculated sentiment values were incorporated into a Trading Strategy is a signal based on which
trades on the Bitcoin were made. I constructed four strategies in total distinguished by the time-
frame on which they traded (daily or hourly) and by the signal they used for decision-making
(signal calculated by the BERT model or signal calculated by the GloVe model). The strategies
were simple buy-only strategies that would buy Bitcoin when they observed positive sentiment
values above a rolling average. After running the strategies for the period 2017-2019 most of the
strategies managed to double their initial portfolio in value while one of them tripled its value.
Furthermore, each strategy was able to benefit from the bull market of 2017 in Bitcoin while they
sustained the 2018 period decently where Bitcoin lost 80% of its value. This speaks in favor of
our initial hypothesis that Twitter sentiment can be employed for predicting future Bitcoin prices.
However, in order to solidify this idea some more testing is required possibly on more recent data.

The analysis conducted in this project involved the parsing and analysis of textual data, their
spam filtering, and transformation, the development and training of neural networks, and the
adaptation of state of art Language model to the needs of our classification task. The choice of
Bitcoin as the nnderlying asset was made as it i3 a popular topic amongst Twitter users. I leave
it as future work to apply the same models and ideas for tweets related to stocks and test the
predictability of the calculated signal on the stock market. While evaluating the implemented
sentiment classifiers it was shown that each model relies on different language characteristies to
make its classification. Thus another step forward could be the combination of sentiment values
calculated with different langnage models to enhance the reliability of the final signal. The final
step of this analysis will be to coustruct a trading bot, that connected to Twitter's API will parse
data, classify them construct the final signal in an online fashion, and depending on the calculated
signal, will trade the underlying asset in real-time.

50

Appendix A

Appendix

A.1 Other methods for calculating the trading signal

When constructing the trading signal, more complex method can be employed that also utilize
other information from our tweets data set . One such methods involves taking into account the
sentiment history of the user that is posting each tweet. This can be done by holding ongoing
average sentiment scores for each user (from their past tweets) and using those to weigh each
tweet. The idea is that a positive message (negative resp.) has much more gravity when coming
from a pessimistic user (optimistic resp.) on average rather than from an optimistic (pessimistic
resp.) one. When implementing this scheme, all users are assumed as nentral at the start (initial
sentiment score 0.5) while the “weighting” is simply

new sentiment-past average sentiment

which broadens the sentiment value range to (-1,1).

Putting the above example in numbers:

0.8 0.1 0.1-0.8=-07
0.3 01 01-03=-02

The final tweet sentiment of Userl is much lower than that of User2, even though they have
posted the same tweet, due to their past scores. The whole process of calibrating the weighted
scores is presented in pseudocode in Figue A.1.

With this technique I was able to avoid some sudden spikes for the final signal that occurred
with the simpler methods. However since it involves storing and accessing a table of every user in
each evaluation, it slows down the classification process significantly. Thus, [went with the much
simpler method of averaging per user per period which operates in a similar fashion.

A.2 Visualizing the trading history

In this section the visualization of the two daily sentiment strategies is presented by pinpointing the
opening and closing of positions on the Bitcoin price chart. The Figures A.2 and A.3 summarize
the entire trading history of the strategy. In these figures we can see reduced trading to occur
during the major drops in Bitcoin's price which is a positive sign for the validity of our strategies.

A.3 Introducing trading costs
As explained in the Chapter 7 comparing our strategies with the Buy and Hold in Bitcoin and
S&P 500 doesn’t reveal the true differences of the approaches. Here 1 backtested the GloVe daily

strategy for the same period but, this time I included fixed comissions of 1% of the position size.
Then I repeated the comparison with the S&P 500 and Bitcoin Buy and Hold strategies and the

ol

Algorithm 1 User sentiment weighted scores calculation

Initialize: U «+ {} > dictionary for users’ past scores
get u, s > username and sentiment score of tweet
while u # None and s # None do
//Update
if u ¢ U then
S, — 8
t, 1
Ulu] + (sn,t,)
else

(spstp) Ulul
Sp+— Sp+s
byt +1
U['h'] ~— (-"’rutn)
end if
//Calculation
(8nstn) < Ulu]
Sweighted < 8§ — ;_L
vield s,cighted
get u, s
end while

Figure A.1: User sentiment weighted scores implementation psuedocode

Trading History BERT - Daily Sentiment Strategy

20000
T
1 @ Long position
i
@ Close position
| %

15000 1 BTC price b (50

1 i Ms

.

1 - i
10000) e

1 $ " B -

1 LN UL .

1 'h f P . - \

-l ‘P.‘a- Wt ‘At ee .
5000 —
M » .
] M -y ¥V
T T T T T
92017 112018 52018 912018 112019

Figure A.2: Trading History of BERT - Daily Sentiment Strategy visualized.

results are presented in Figures A4, A.5. The results are significantly worse, but the strategies
still managed to end up more profitable than the two benchmark strategies.

Trading History

20000 -
@ Long position .
@ Close position
.
15000 - BTC price \
s
. 0
10000 - . A D
! . w
el “s - -
Al . LI P o~ A
o e P o' oa e sey
5000 &
" o " e
t t t t t
92017 12018 5/2018 2018 112019
Figure A.3: Trading History of Glove - Daily Sentiment Strategy visnalized.
Equity Curve
3
GloVe - Daily Sentiment Strategy
— S&P 500
25
2

PR e
T

e I e

T U U t f
92017 172018 52018 92018 12019

Figure A.4: Comparison of Glove - Daily Sentiment Strategy with 1% comissions with S&P 500
Buy and Hold strategy.

Trading History

BTC price

° 3 GloVe - Daily Sentiment Strategy
E
4 - f
31 Y
-

Figure A.5: Comparison of Glove - Daily Sentiment Strategy with 1% comissions with Bitcoin Buy
and Hold strategy.

Bibliography

(1]

(2]

(3]

(4]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

13

(14]

19

Jim D.says: et al. How Many People Use Social Media in 20219 {65 Statistics). Available on-
line at: https://backlinko.com/social-media-users, last accessed on 09.06.2021.
Sept. 2021.

Lasse Heje Pedersen. “Game on: Social networks and markets”. In: Available at SSRN
3794616 (2021).

H. Sul, A. Dennis, and L. Yuan. “Trading on Twitter: Using Social Media Sentiment to
Predict Stock Returns”. In: Decis. Sei. 48 (2017), pp. 454-488.

Johan Bollen, Huina Mao, and Xiaojun Zeng. “Twitter mood predicts the stock market”.
In: Journal of Computational Science 2.1 (2011), pp. 1-8. 188N: 1877-7503. DOI: https:
//doi.org/10.1016/9.90cs.2010.12.007. URL: https://www.sciencedirect.
com/science/article/pii/S187775031100007X.

Jason Brownlee. Why One-Hot Encode Data in Machine Learning? Available online at:
https:/ /machinelearningmastery . com/why-one-hot-encode-data- in -
machine-learning/, last accessed on 09.06.2021. June 2020.

Jason Brownlee. A Gentle Introduction to the Bag-of-Words Model. Available online at:
https://machinelearningmastery.com/gentle-introduction-bag-words-
model/, last accessed on 09.06.2021. Aug. 2019.

Tomas Mikolov et al. “Distributed Representations of Words and Phrases and their Compo-
sitionality”. In: Jan. 2013, pp. 1-9.

Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space. 2013.
arXiv: 1301.3781 [es.CL].

Implementing Deep Learning Methods and Feature Engineering for Text Data: The Continu-
ous Bag of Words (CBOW). Available online at: https://www.kdnuggets.com/2018/
04/ implementing — deep- learning-methods - feature-engineering-text -
data-chow.html, last accessed on 09.06.2021.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe: Global Vectors
for Word Representation”. In: Empirical Methods in Natural Language Processing (EMNLP).
2014, pp. 1532-1543. URL: http://www.aclweb.org/anthology/D14-1162.

Matthew E. Peters et al. “Semi-supervised sequence tagging with bidirectional language
models”. In: CoRR abs/1705.00108 (2017). arXiv: 1705.00108. URL: http://arxiv.
org/abs/1705.00108.

Bryan McCann et al. “Learned in Translation: Contextualized Word Vectors”. In: CoRR
abs/1708.00107 (2017). arXiv: 1708 .00107. URL: http://arxiv.org/abs/1708.
00107.

Matthew E. Peters et al. “Deep contextualized word representations”. In: C'oR R abs /1802.05365
(2018). arXiv: 1802.05365. URL: http://arxiv.org/abs/1802.05365.

Jason Brownlee. How to Develop a Bidirectional LSTM For Sequence Classification in Python
with Keras. Available online at: https://machinelearningmastery.com/develop-
bidirectional-lstm-sequence-classification-python-keras/ last accessed
on 09.06.2021. Jan. 2021.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning with Neu-
ral Networks™. In: Proceedings of the 27th International Conference on Neurul Information
Processing Systems - Volume 2. NIPS'14. Montreal, Canada: MIT Press, 2014, pp. 3104-
3112

16

(17]

it
[19]

(20]

(21]
(22]

23]

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Translation by
Jointly Learning to Align and Translate”. In: CoRIt abs/1409.0473 (2015).

Minh-Thang Luong, Hien Pham, and Christopher D. Manning. “Effective Approaches to
Attention-based Neural Machine Translation”. In: Co RR abs/1508.04025 (2015). arXiv: 1508.
04025. URL: http://farxiv.org/abs/1508.04025.

Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762 (2017). arXiv:
1706.03762. URL: http://arxiv.org/abs/1706.03762.

Jay Alammar. The Ilustrated Transformer. Available online at: https:// jalammar .
github.io/illustrated-transformer/, last accessed on 09.06.2021.

Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: CoRR abs/1810.04805 (2018). arXiv: 1810 .04805. URL: http: //
arxiv.org/abs/1810.04805.

Alec Radford and Karthik Narasimhan. “Improving Langnage Understanding by Generative
Pre-Training”. In: 2018.

Andrew M. Dai and Quoc V. Le. “Semi-supervised Sequence Learning”. In: (2015). arXiv:
1511.01432 [cs.LE].

Jay Alammar. The Hllustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning).
Available online at: https: // jalammar . github .io/illustrated-hert/, last
accessed on 09.06.2021.

M. Chew et al. “Using Natural Language Processing Techniques for Stock Return Predic-
tions”. In: Econometric Modeling: Capital Markets - Forecasting eJournal (2017).

Xiao Ding et al. “Deep learning for event-driven stock prediction”. In: Twenty-fourth inter-
national joint conference on artificial intelligence. 2015.

Alec Go, Richa Bhayani, and Lei Huang. “Twitter Sentiment Classification using Distant
Supervision”. In: ().

Efthymios Kouloumpis, Theresa Wilson, and Johanna D. Moore. “Twitter Sentiment Anal-
ysis: The Good the Bad and the OMG!” In: JCWSM. 2011.

Federico Neri et al. “Sentiment Analysis on Social Media”. In: 2012 IEEE /ACM International
Conference on Advances in Social Networks Analysis and Mining. 2012, pp. 919-926. por:
10.1109/AS0NAM.2012.164.

Chong Oh and Olivia Sheng. “Investigating Predictive Power of Stock Micro Blog Sentiment
in Forecasting Future Stock Price Directional Movement.” In: vol. 4. Jan. 2011.

Jasmina Smailovic et al. “Stream-based active learning for sentiment analysis in the financial
domain”. In: Inf. Sei. 285 (2014), pp. 181-203.

Hong Kee Sul, Alan R Dennis, and Lingyao Yuan. “Trading on twitter: Using social media
sentiment to predict stock returns”. In: Decision Sciences 48.3 (2017), pp. 454-488.

Hai Liang and King-wa Fu. “Testing Propositions Derived from Twitter Studies: General-
ization and Replication in Computational Social Science”. In: PLoS ONE 10 (Aug. 2015),
e0134270. po1: 10.1371/journal.pone.0134270.

Gordon V Cormack. “Email spam filtering: A systematic review”. In: (2008).

loannis Kanaris et al. “Words versus character n-grams for anti-spam filtering”. In: Interna-
tional Journal on Artificial Intelligence Tools 16.06 (2007), pp. 1047-1067.

Thiago § Guzella and Walmir M Caminhas. “A review of machine learning approaches to
spam filtering”. In: Erpert Systems with Applications 36.7 (2009), pp. 10206-10222.

Chao Chen et al. “6 million spam tweets: A large ground truth for timely Twitter spam detec-
tion”. In: 2015 IEEE International Conference on Communications (ICC). 2015, pp. T065—
7070. por: 10.1108/ICC.2015.7249453.

Trevor Hastie, Jerome Friedman, and Robert Tisbshirani. The Elements of statistical learn-
ing: data mining, inference, and prediction. Springer, 2017.

o
&

33

39

[40]

Jason Brownlee. A Gentle Introduction to Long Short-Term Memory Networks by the Experts.
Available online at: https://machinelearningmastery.com/gentle-introduction
long-short-term-memory-networks-experts/, last accessed on 09.06.2021. July
2021.

Sarang Narkhede. Understanding AUC - ROC Curve. Available online at: https: //
towardsdatascience . com/ understanding - auc- roc— curve - 68b2303cc9c5,
last accessed on 09.06.2021. June 2021.

Paul van der Laken. ROC, AUC, precision, and recall visually explained. Available online
at: https: //paulvanderlaken.com/2019/08/16/roc-auc-precision-and
recall-visually-explained/, last accessed on 09.06.2021. May 2020.

56

TSOULIAS_KONSTANTINOS_02007404

GRADEMARK REPORT

FINAL GRADE GENERAL COMMENTS

/O Instructor

PAGE 1

PAGE 2

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10

PAGE 11

PAGE 12

PAGE 13

PAGE 14

PAGE 15

PAGE 16

PAGE 17

PAGE 18

PAGE 19

PAGE 20

PAGE 21

PAGE 22

PAGE 23

PAGE 24

PAGE 25

PAGE 26

PAGE 27

PAGE 28

PAGE 29

PAGE 30

PAGE 31

PAGE 32

PAGE 33

PAGE 34

PAGE 35

PAGE 36

PAGE 37

PAGE 38

PAGE 39

PAGE 40

PAGE 41

PAGE 42

PAGE 43

PAGE 44

PAGE 45

PAGE 46

PAGE 47

PAGE 48

PAGE 49

PAGE 50

PAGE 51

PAGE 52

PAGE 53

PAGE 54

PAGE 55

PAGE 56

PAGE 57

PAGE 58

PAGE 59

PAGE 60

PAGE 61

PAGE 62

PAGE 63

PAGE 64

