Imperial College
London

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

Reinforcement Learning With Continuous

Controls For Foreign Exchange Trading

Author: Tzyy Shyang Tong (CID: 00402411)

A thesis submitted for the degree of

MSe in Mathematics and Finance, 2020-2021




Abstract

The Foreign Exchange (FX) marketplace is hugely complex driven by vast quantities of trans-
actional and pricing data. Information that can be gleaned from the data offers opportunities
for modelling and problem solving toward profitable, data-driven solutions. However, attempting
to utilise forecasts from traditional supervised learning approaches can be difficult to translate
into robust, profitable trading strategies [1|. In this thesis, a Deep Deterministic Policy Gradient
(DDPG) model which can handle continuous controls is applied to derive the optimal strategies for
an agent who trades in FX market. Within the DDPG framework, Multi-Layer Perceptron (MLP)
and Convolutional Neural Network (CNN) are used for the DDPG's actor and critic networks for
performance comparison. Hindsight Experience Replay (HER) is also investigated as a means to
augment trading performance.

In particular, this thesis will explain some procedures such as market data preparation, environment
setup, model training, the derivation of reward function and the trading simulation for the training
of the DDPG framework. A performance comparison between DDPG+MLP, DDPG+CNN, each
with and without HER will be presented. The results demonstrate that DDPG+MLP models can
perform better than DDPG+CNN models during some market conditions. Moreover, the results
show that the HER algorithm can affect the inventories of DDPG+MLP and DDP G+CNN models
and has some impact on the models’ daily PnLs.




Acknowledgements

Foremost, I would like to express my sincere gratitude to my internal supervisor Dr. Paul Bilokon
for his continued support of my MSc research. His gnidance helped me in all the time of research
and writing of this thesis,

I would not have completed this project without the support of my external supervisors, Dr.
David Lindsay and Dr. Sian Lindsay. Thank you for their encouragement, insightful comments
and ideas on research and writing.

Last but not least, [ would like to thank Algolabs for providing the market data for my research
and experiments.




Contents

1 Introduction 6
2 Literature Reviews 7
3 Background 8
3.1 Forex Trading . . . . . . . 0 . 00 8
3.1.1 Foreign Exchange . . . . .. . .. ... 8

3.1.2  Technical Indicators . . . . . .. .. .. . L 8

3.2 Deep Neural Network . . . . . . . . . e 10
3.2.1 Neural Network Properties . . . . . . .. .. ... .. 10

3.2.2  Multi-Layer Perceptron (MLP) . . . . . ... ... ... ... ... ... .. 11

3.2.3  Convolutional Neural Network (CNN) . . . . ... .. ... ... ... ... 12

3.3 Reinforcement Learning . . . . . . ... ..o Lo 14
3.3.1 Reinforcement Learning Properties . . . . . . . .. .. ... ... ... 15

3.3.2 Markov Decision Process (MDP) . . . . . . . ... .. ... ... .. ... . 16

3.3.3 Deep Deterministic Policy Gradient (DDPG) . . . .. ... ... ... ... 17

3.3.4 Hindsight Experience Replay (HER) . . . . . . .. .. .. ... ... .... 18

4 Methodology 21
4.1 Markov Decision Process for FX Market (MDP-FX) . .. ... .. ... .. .... 22
4.1.1 State Space . . . . .. 22

4.1.2 Action Space . . . . .. 23

4.1.3  State Transition . . . . . . . .. .. e 23

414 Reward . ... .. e 24

2




4.2 Actor-Critic Network Architecture . . . . . . . . . . . .. .. . e

4.21 DDPG-MLP . .. 0.
4.22 DDPG-CNN . .. e
4.3 Hindsight Experience Replay (HER) Modelling . . .. .. . ... ... ... .. ..
4.3.1 DDPG-MLP . ... ..
432 DDPG-CNN . ... .

5 Experiment

5.1 Data . .. L.
5.1.1 Data Processing . . . . .. .
5.2 FX Trading Environment Set Up . . . . . . . .. ... o o
5.21 Environment Steps . . . ... L.
5.8 Model Training . . . . . . . . . o e e e e
5.3.1 Training Data . . . . . . . . . 0 e e e
5.3.2 Network Hyperparameters . . . . . . ... .. ... ... . ... ...
5.3.3 DDPG Hyperparamters . . . . . . . . .. ...

6 Results & Discussion

6.1 Analysis of In-Sample Results After Training . . . . . . ... ... ... .. ....
6.1.1 Actor-Critic Loss . . . . . . . .. L L
6.1.2 Optimal Cumulative PnL . . .. .. o000 000 0
6.1.3 Optimal Strategies After Training . . . . . . . .. ... .. ... ... ...

6.2 Analysis of Out-of-Sample Results . . . . .. .. 0.0 000
6.2.1 Trading Performance Metrics . . . . . .. .. ... . L.
6.2.2  Analysis of Trading Results . . . . . . ... ... . L.

6.2.3 Discussion

T Future Work

8 Conclusion

Bibliography

25

ar

25

25
27
27

29

30

30

30

33

33

33

36

36

39

39

40

40

44

47




List of Figures

3.4

3.5

6.5

6.6

One-dimensional loss functions. Source: Deep Learning [2] . . .

Graphical representation of a neural network with r = 2, I = dy = 4,dy = 6, ds =
§ and O = dy = 7. Source: Deep Learning [2] . . . .

Graphical representation of a convolutional neural network. Source: TowardsData-
Science.com [3] . .

Convolutional layers with padding and other variations. Source: Deep Learning [2]

Ilustration of pooling layers with pool size | = 2 and stride s = 2. Source: Deep
Learning [2] . . .

The interaction of agent and environment. Source: Sutton&Barto [4] . . . .

The models to control cash balance and position intra-day . .

The screenshot of the raw data used for the experiment
The screenshot of the technical indicators (21 features) used for the experiment .

The visualisation of time series of technical indicators that are inserted into the
networks .

Example of normalised MLP input

Example of normalised CNN input

The progress of the reward, actor and critic loss during network training . .
The optimal cumulative PnL for each model after training . .

The optimal actions for trading day 01-02-2018

The trading behaviour after taking policy actions for trading day 01-02-2018
The out-of-sample trading behaviour for trading day 06-02-2018 . .

The actions for each model for trading day 06-02-2018

11

13

13

14

14




List of Tables

3.1 The list of activation functions . . . . . . . . . . . ... ... 10
3.2 The list of Reinforcement Learning algorithms. . . . .. ... ... ... ... ... 15
4.1  Actor network architecture for model DDPG-MLP with or without HER . . . . . . 25
4.2 Critic network architecture for model DDPG-MLP with or without HER. . . . . .. 26
4.3 Actor network architecture for model DDPG-CNN with or without HER . . . . . . 26
4.4 Critic network architecture for model DDPG-CNN with or without HER . . . . . . 27
4.5 Explanation of desired goal and achieved goal used for DDPG-MLP . . .. .. .. 28
4.6 Explanation of desired goal and achieved goal used for DDPG-CNN . . . . .. .. 29
5.1 Hyper-parameters used for DDPG model training with or without HER . . . . . . 34

6.1 Intra-day trading performance using out-of-sample data from 02-02-2018 to 08-02-
2018 (5 trading days) EXCLUDING the last minute force close positions . . . . . . 41

6.2 Intra-day trading performance using out-of-sample data from 02-02-2018 to 08-02-
2018 (5 trading days) INCLUDING the last minute force close positions . . . . . . 41




Chapter 1

Introduction

FX trading markets comprise many thousands of brokers serving millions of traders worldwide,
trading currency pairs with each other in a large, decentralised global market that is open 24 hours
a day, 5 days a week. Brokers offer bid and ask quotes which are the prices at which they will
buy and sell at respectively, with the intention to profit from their transactions. The FX trading
market is massively complex with antomated or manual trades taking place over many different
time horizons {e.g. minute-by-minute or daily) between many different types of brokerages and
traders (i.e. large investment banks through to smaller hedge funds and to individuals trading
via broker platforms on their mobile phones). The sheer volume and complexity of transactional
and pricing data in F'X trading is vast and, when appropriately labelled, formulated and analysed,
offers quantitative traders (a.k.a. “Quants”) a wealth of information on which to develop profitable
data-driven trading models, algorithms or strategies.

Since the early 2000's there has been an ever-increasing use of machine learning techniques by
Quants in financial firms such as hedge funds or investment banks that have access to vast amounts
of historic market data. Quants have experimented with supervised- or unsupervised-learning and
even reinforcement-learning (RL) techniques. Traditional supervised learning works best when
the data is an ‘independent identical data’ (IID) type. However, FX market data comprises a
set of consecutive time series which is time-dependent on other datasets; this temporal nature
of market data is not suitable for traditional supervised learning tools such as linear regression,
support vector machines (SVM), decision trees and so on [3]. Moreover Moddy and Saffell [1]
demonstrated that the trading systems trained using reinforcement-learning could outperform the
systems trained using supervised learning methods.

In reinforcement learning, an agent learns to act within a complex environment in order to max-
imise the total reward which is dependant upon the actions chosen from the policies. Therefore
reinforcement learning provides a suitable framework to model complex financial systems such as
Foreign Exchange (FX) trading.

This paper aims to apply the reinforcement learning (RL) with continuous controls to solve some
complex financial problems presented in FX trading. With some trading constraints, we will try
to use Deep Deterministic Policy Gradient (DDPG) framework with two types of networks: mmlti-
layer perceptron (MLP) and convolutional neural network (CNN) to find out the optimal actions
for FX trading. In Chapter 2, some background knowledge that is needed to understand some
complex models used in this thesis will be introduced. It will cover the topics like FX trading, neural
networks, reinforcement learning and its algorithms like DDPG and HER. The methodologies on
how to structure the RL problem statements using Markov Decision Process (MDP) are mentioned
in Chapter 3. Then in Chapter 4, the methodologies to set up the experiments and train the
RL models will be explained. The results produced by trained models as well as the trading
performance on out-ol-sample data will be analysed and discussed in Chapter 5. Last but not
least, the future work and conelusion will be specified in Chapter 6 and 7 respectively.




Chapter 2

Literature Reviews

Deep Reinforcement Learning (DRL) is the emerging subfield of Artificial Intelligence that is nsed
to mimic how humans tackle the problem from the experience that was learnt from trial and error
in daily life. Reinforcement learning becomes more popular and has been applied to many areas
such as autonomous driving [6], healthcare [7], robotics (8], [9] and gaming sectors [10].

In robotic fields, Jan and Sethu [11] introduced Natural Actor-Critic algorithm to learn the non-
linear dynamic motor primitives for humanoid robot control. The ability for the algorithm to
tackle the learning of high-dimensionally continuous state-action systems offers a promising route
for the development of RL system. Silver and his colleagues from DeepMind [12] presented the
bespoke deep QQ-learning combined with CNN to let the agent to play the Atari games. Several new
concepts like replay buffers for the agents to learning from experience, new deep policy network
designs and bespoke reward engineering methods were introduced. A few years later, Silver and
Hannabis et al [13] introduced a revolutionary approach that lets the agent to use value and policy
networks to evaluate the Go board game and to make the moves. Their algorithms also applied
the Monte-Carlo Tree-Search (MCTS) algorithm to calculate the long term rewards in large search
space. This was the first ever RL algorithm to tackle the full-sized game of Go and to defeat the
human professional players. Since then RL becomes a popular framework to be used to tackle the
problems within complex and dynamic environments. Financial sector is one of the sectors that
starts to adopt the RL in automated trading to trade in complex financial market.

There are some literature on applying RL in trading. Moddy and Saffell [14] applied the differen-
tial Sharpe ratio to optimise the risk-adjusted return using RL framework. Souradeep [15] used a
bespoke concept known as Financial Markov Decission Process (FMDP ) to model a deep reinforce-
ment learning framework which can make trading decisions on oil future and FX markets. The
framework used deep Long-short term memory (LSTM) network to generate buy, hold and sell
actions. More recently, Hongyang and Xiao Yang [16] adopted an ensemble strategy which com-
bines multiple actor-critic algorithms: Advantage Actor Critic (A2C), Deep Deterministic Policy
Gradient (DDPG) and Proximal Policy Optimization (PPO) to trade on US stock markets. They
used the most recent historical data to validate the performance of three models first, then they
picked the model with the best performance to trade for next few months. Alvaro & Sebastian
[17] used double deep Q network learning (DDQN) and a new variant of reinforced deep Markov
models (RDMM) to derive the optimal trading strategies for an agent who trades in a FX triplet.
The RDMM can figure out the inventory constraints of the triplet currencies and generate the
optimal actions for these triangular currencies.




Chapter 3

Background

3.1 Forex Trading

The foreign exchange (also known as FX or ForEx) market is the largest and most liquid asset
market in the world. According to the Bank of International Settlements, there are more than $5.1
trillion of forex being traded in volume daily. Unlike stock market where the stocks are traded
in centralised order books managed by the stock exchanges, this international FX market has no
central marketplace for trading. Rather, currency trading is conducted electronically over the
counter (OTC) and quote-driven, which means that the dealers are working with other parties
such as investment banks, commercial banks and broker-dealers to provide quoted prices for the
customers to trade. The market is opened from 10pm on Sunday until 10pm on Friday, with 24
hours a day every week.

3.1.1 Foreign Exchange

Currencies are traded and priced in pairs. For example, a currency pair EUR/USD is quoted as
1.1256, EUR is the base currency and USD is the quote currency. Another perspective on currency
trading comes from considering the position an investor is taking on each currency pair. The base
currency can be thought as a short position, i.e. to sell the base currency in exchange of quote
currency. In turn, the quote currency is a long position on the currency pair. In FX trading, the
smallest unit to trade a currency pair is known as lot which has multiplier effect on the currency
prices. For instance, if an investor buys one lot of EUR/USD at 1.1256 and sell at 1.1266, he will
gain $112660 — $112560 = $100, since one lot of EUR/USD has multiplier of 100000.

3.1.2 Technical Indicators

In the FX trading world, by analysing the historical data, the traders tend to use technical indi-
cators to predict the future price movements. Technical indicators are heuristic or pattern-based
signals that may be produced by the historical prices, volumes or open interest of stocks, derivatives
or contracts in the market. Below are some of the most commonly used technical indicators:

¢ Relative Strength Index (RSI) quantifies the trend of the recent price changes as shown




in equations below.

U, — close; — close; 4, if elose; > elose;
= 0, if close; < close;_
(3.1.1)
D, — close; 1 — closer, if close; < elose—
£ 0, it close; > close,
RS; = EMA(U;,n)/EMA(Dy.n
t (Us,n)/ (D¢, n) (3.12)

RSI, =100 — 100/(1 + RS;)

where RS is defined as the ratio of the n-day exponential moving average (EMA) of the Uy
and Dy time series. Very often, n = 14 is used for EMA [18]. The range of the RSI is [0, 100].
If RSI moves below support line (<20}, it indicates the stock is oversold, meaning the trader
can perform buy action. If it moves above the resistance line (>70), it indicates the stock is
overbought, then sell action can be performed [18].

Bollinger Band (BB) interprets the strength of a trend and helps to identify the tops and
bottoms of the market prices. Given a time series y; at time ¢ = t*, n-day SMA is defined
below.

t=t"
SMA. = > y/n t'=n,....T (3.1.3)
t=t*—n+1

2

# is defined as:

Next, the n-day rolling variance at time t =t*, o

t=t*
GE= Y. (w—SMAL)’/(n—1) t'=n...., T (3.1.4)
t=t*—n+1

Since BB is formed by three oscillating bands: the upper band (UB), middle band (MB) and
lower band (LB), then the relations of BB with 3.1.3 and 3.1.4 are constructed as below:

M Bt = SMA;.
UBy = SMAw + k64 (3.1.5)
LB:- = Sﬂ.f.r‘].g- — k * L‘}g-
where k is defined as the width of the band from the MB in standard deviation unit. Normally
k=2 is used [19].

Commodity Channel Index (CCI) is a momentum indicator that identifies the cyclical
trends and trend reversals of the market price. Unlike RSI, CCI is an unbounded oscillator,
meaning C'C'I € (—o0,00). The calculation of CCI with n lookback days is presented below.

TP, —SMA,.

CCL- = k% MD,. (3.1.6)
where
t=t*
TP-= Y (yl+ye+yl)/3) t'=n,...T
t=1't—_;::¢—1 (3.1.7)
MDy= Y |[(TPe—SMA.)|/n) t*=n,....T
t=t*—n+1

yf yk  and y refers to high, low and close prices. k is the multiplier of mean deviation (MD)
between TP and SMA. According to Mansoor [20], k=0.015 is used due to approximately
70-80% of time stability of CCI value falls in between -100 and +100.




3.2 Deep Neural Network

Deep neural network is a type of neural network with more than two layers apart from input and
output layers. In mathematical terms, deep neural network counld be seen as non-linear function,
f=0fi.....fo) : Bf - RO that turns I € N(:= {1,2,...,}, inputs z,,...,z; into O € N outputs
filzy,..ozr), .. folzn,. . ).

3.2.1 Neural Network Properties

I a process of designing a network, we need to consider the type of the network architecture de-
pending on the data structure of the inputs. The Multi-layer perceptron (MLP) and convolutional
neural network (CNN) are the most commonly used networks in reinforcement learning systems.
Also, within the network, the type of the activation functions for different layers need to be de-
cided as well. Once the network design is decided, we need to choose a suitable loss function and
optimiser. Then the network will be trained by using a technique called backpropagation [21].

A. Activation Function

The activation functions are normally placed after the nodes in a network layer. The most common
activation functions are summarised in Table 3.1

Activation Chart Definition Derivative Range
Sigmoid A glx) = 1—.;—4 g'(z) = glz)(1 — g(x)) (0,1}
ﬁiﬁil'll;bullc: Tangent . alz) = :jﬂ—J 7(@) = 1— g(x)? LD
Rectified Linear Unit N . , = 0, =<0 )
(ReLU) — g{x) = max{z, 0} g'(z) {1‘ o0 [0,5¢)
Parametric ReLU / ar, x < a, x<l

. £ ) = ! 0 x) = ! R
(PReLll) ‘*—‘ g{z) {.1.', x>0 a> g'(x) {1‘ e=0
Exponential Linear L (e" =1}, =<0 von Jola) o, <0 i
Unit (ELU) + 9(z) {J.‘ 2502”0 d@=17 eop o)
Sofiplus _{» glz) = log (1 + ) g'(z) = 1_.;—4 [0,50)

Table 3.1: The list of activation functions

B. Loss Function

The optimality of the neural network is determined by using a loss function. Mathematically, for
a neural network f : R = RO, FEN (I, di, ... d-—1,0), the loss function ¢ is defined as

¢ = L(j.y), where j= f() (3.2.1)

where = € R' is input and y € R® is reference value. In supervised learning, the value y € RY
would be the label. Figure 3.1 illustrates some of the common loss functions used for different types
of target outputs.

10




(a) Absolute loss (b) Squared loss

(. y (9,y)
T > }A’ : Cal }'-.
y y
(9y)=19-y., 9yer (P, =@-»>% yeR
(c) Huber loss (d) Binary cross-entropy
(. y ey
} t } > ¥ I B> 7
.V—()‘ ¥ _'|f+(5 y= 0 y= 1
Lip-2 p—yl<d  L(py)=-ylogy—(1-ylog(l- ),
(Gry) = (7= ly-yl= (7, y)=—-ylogy—(1-y)log(l— )
3(Up-yl-%6), 19-y1>6 y€(0,1), ye 0,1}

Figure 3.1: One-dimensional loss functions. Source: Deep Learning [2]
C. Optimiser

Stochastic gradient descent (SGD) technique is commonly used to optimise the loss function for
network training. In SGD, a sample is selected randomly for each iteration. In general, SGD is
computationally less expensive than typical gradient descent methods which take the whole data
set for each iteration. Diederik and Jimmy [22] have proposed a momentum-based SGD algorithm
called ADAM which shows that it performs better than other SGD algorithims such as Root Mean
Square (RMS) Prop and AdaGrad. The algorithm for ADAM is defined in Algorithm 1.

3.2.2 Multi-Layer Perceptron (MLP)

The multi-layer perceptron is also known as feed-forward neural network (FNN). IFrom M. Pakkanen
[2], given input I and output O, a function f : Bf — R is considered as feedforward neural network
(FNN) with r —1 € {0, 1,...} hidden layers, where there are d; € N units in the i-th hidden layer
foranyi=1,..., r — 1, and activation functions e; : B4 — B4 §=1,... r, where d, := O, if

f=0c,0L,0 - .ooycly (3.2.2)

where L; : R~ — R% for any i = 1,...,r, is an affine function L;(z) := Wiz + b, x € R,

The affine function has parameters presented as weight matriz, W*

Ji_ [t dyixd;—
W WLy, € RO (323)

and bias vector b’ = (b"l_.. . :1,) € R, with dy := . Such function should be denoted as
Ne(Ldy,....dv1,0:01.....00) (3.2.4)




Algorithm 1 ADAM Stochastic Gradient Descent Algorithm

1: Require «, © o Stepsize
2: Require [, [y, & (h, F2 € [0,1): Exponential decay rates for moment estimates
3: Require f(f), > f(#): Stochastic objective function with parameters #
4: Require 0 & fly: Initial parameter vector
5: my 0 & Initialize 1** moment vector
6: vg < 0 & Initialize 2" moment vector
Tt 0 > Initialize time step
8: while # not converged do

9: te—t+1

10: gt — Vafi(8i-1) - Get gradients w.r.t. stochastic objective at t
11: my Gy ome_y +(1—31) g > Update biased first moment estimate
12: v By vp g+ (1— B2) - g7 - Update biased second raw moment estimate
13: My — mgf (1 — ﬁi) © Compute bias-corrected first moment estimate
14: Ty v/ (1 — 5Y) > Compute bias-corrected second raw moment estimate
15: O b1 — - i/ (VT +€) » Update parameters
16: return > Resulting parameters

Figure 3.2 shows the graphical representation of the MLP network.

3.2.3 Convolutional Neural Network (CNN)

According to Keiron [23], one of the main differences between MLP and CNN is that the neurons
within the layers of the CNIN are comprised of neurons organised into three dimensions, which form
the spatial dimensionality of the input (height, width and depth) and the filters. CNN used the
convolution technique which is a linear filtering operation, ubiquitous in signal processing, image
processing and time series analysis. This allows the network to encode the image-specific, time-
specific or any successive input values are likely to be serially dependent, more efficiently compared
to MLP. Iigure 3.3 shows an example of the CNN architecture.

The CNN can be broken down into four main layers: input layer, convolutional layer, pooling layer
and fully-connected layer.

e The input layer can take image, temporal data or signals which have spatial dimensions
with height, width and depth.

For one-dimensional convolutional layer with d inputs and kernel k = (k_p, ..., k), in
which [,I' = 0,1,... such that [ + ' < d, is a function '}, : B? — R?~'~! denoted as

[}
Crl)i= Y kjmiey, i=U+1....d-1 (3.2.5)

=t
A convolutional layer with stride s = 1,2,... is a function Cy ; : E? - RY is denoted as

Nolz); o= Chlx),, i€ {sj—f’—l jELZO<] < Lg’;_l} (3.2.6)

where d' :=# (sj+1'+1:jeZ.0<j < %} Sometimes, we need to deal with the
boundaries of the input vector x by decreasing dimensionality from d to d —I —[’. This could

be solved by adding a layer, known as padding. It substitutes any out-of-bounds values of x
with dummy data, normally initialised as zeros, as shown in Figure 3.4

Pooling layer allows the network to downsample the output from the previous layer, by
aggregating data in a sliding window with either maximum or averaging operation.

12




o2
]
L] L] o3
L ]
L L
® L]
L] L]
L] L]
° ° O=d;=3
I=dy=4 L]
L] dy=5
di=6

Figure 3.2: Graphical representation of a neural network with r = 3,1 = dy = 4. d; = 6,ds =
§ and O = dy = 3. Source: Deep Learning [2]

fc 3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A ,—)h
(5 x 5) kernel Max-Poolin (5 x 5) kernel Max-Pooling (with
valid padding [2x2) valid padding (2x2) dropout)

r—)Hf—H

INPUT n1 channels nl channels n2 channels n2 channels
(2Bx28x1) (24 x24 x n1) (12x12xn1) (Bx8xn2) (4x4xn2)

® @0
O : o1
o 0?2
. -
@

@

OUTPUT

Figure 3.3: Graphical representation of a convolutional neural network. Source: TowardsData-
Science.com |[3]

13




A max pooling layer with d inputs, poolsize | = 2,3,... and stride s = 1,2, ... is a function
PP R — R denoted by

max . . — . d—1
PP (@) i=max {xs, .2y, ), TESJELI0< (3.2.7)
: s
where d’ ::#{jEZ:O <jE %}
An average pooling layer with d inputs, pool size | = 2,3,... and stride s = 1,2,... isa
function P§** : R? — R? denoted by
Tyt Ty, d—1
Ppif(e) = DT g {je Z:0<)<— } (3.2.8)

The definition of a pooling layer is illustrated in Figure 3.5.

e Full-connected layer is a MLP network in which its inputs are taken [rom the Hattened
outputs of CNN layers as illustrated in Figure 3.3.

(a) Basic convolutional layer (b) Stride =2
"
R Db
Input|3|1|D|d|2|2|3| Inpul|3|l|ﬂ|d|2|2‘3|

(c) Padded (d) Causal and padded

kK

Kernel Kernel 2 4 3 |
wixix PR
|uput0|3|1|n|4|2|2|3|ﬂ‘ Input | o [ 0 | 3 1|ﬂ|4|2‘2|3|
output | 15 | 10 | 14 | 2 | z | 2 | 16 | “-..u-m.| 9 15|10 | 1 | 2 ‘ 2 | n |

Figure 3.4: Convolutional layers with padding and other variations. Source: Deep Learning (2]

(a) Max pooling layer (b) Average pooling layer

| BODnRann
& max " avg

oo 3] [ owe [

Figure 3.5: Illustration of pooling layers with pool size | = 2 and stride s = 2. Source: Deep
Learning [2]

Input | 3

||n|4|2|2|3|1‘ [nput

3.3 Reinforcement Learning

Reinforcement learning is a system that uses stochastic dynamic programming approach to make
decisions that maximize rewards or minimize costs over a period of time. It involves the concept

14




of trial-and-error learning from the decision-maker called agent through a dynamic environment.
According to Sutton [4], other than the agent and the environment, the reinforcement learning
system consists of four basic sub-elements: a policy, a value function, a reward function and a
model of the environment. Recently, Some of the recently proposed RL algorithms are listed in
Table 3.2. This thesis will focus only DDPG.

Name Acronym Policy Action Space  State Space Operator
State-Action-Reward-State-Action SARSA On-Policy Discrete Discrete Q-value
Deep Q) Network DQN Off-Policy Discrete Continuous Q-value
Deep Deterministic Poliey Gradient DDPG Off-Policy Continuous Continuous Q-value
Asynchronous Advantage Actor-Critic A3C On-Policy Continuous Continuous  Advantage
Trust Region Policy Optimization TPRO On-Policy Continuous Continuous  Advantage
Proximal Policy Optimization PPO On-Policy Continuous Continuous  Advantage
Twin Delayed DDPG TD3 Of-Policy Continuous Continuous Q-value
Soft Actor-Critic SAC Of-Policy Continuous Continuous  Advantage

Table 3.2: The list of Reinforcement Learning algorithms.

3.3.1 Reinforcement Learning Properties

A. Policy

A policy 7(a|s) is defined as a mapping function that maps the current states of the environment
to the corresponding actions that were taken when in those states. Depending on the state space
size of the environment, the policy could be a simple function, a lookup table or even a deep neural
network. In general, policy function is the core of a reinforcement learning agent as it mimics
a human's behaviour that makes decisions in a new environment. It specifies how the agent’s
policy is changed as a result of its experience. In some cases in RL, policies may be stochastic by
specilying probabilities for each action.

B. Reward

A reward signal quantifies the feedback value coming from the environment when it receives an
action in a single step. The high reward value means it is more likely the agent will achieve the
goal in the short term. In other words, the reward defines what are the good and bad events for
the agent. The policy values are adjusted based on the reward signal. For instance, if an action
selected by the policy is followed by a low reward, then the policy may be changed to select another
action in that situation in the future.

C. Value Function

A value lunction specifies what is good in the long run. In other words, the value of a state s under
policy w, denoted vy(s) is the total amount of reward that an agent can expect to accumulate
over the future, starting from that state. The final element is a model of the environment which
represents the behaviour of the environment. The model will predict the resultant next state and
next reward when it's fed with a state and an action. The RL systems use models for planning,
which means to decide on a course of action by considering many different possible future scenarios
that have never been experienced before.

15




\ 4

Agent

state reward action
S, R, A

R [
.8, Environment]*—

Figure 3.6: The interaction of agent and environment. Source: Sutton&Barto [4]

D. Environment

Figure 3.6 depicts how does the elements like agent, state, action and reward interact with each
other within an environment in RL framework. At the ¢-th step of interaction, when the system has
a state s;, an agent chooses an action a; among possible actions from a policy. The environment
will take the action a; and provide a munerical reward r; 1 in response. In the subsequent time
period £ + 1, the learning agent chooses a next action a,, with the best reward value based
on its past experiences (exploitation) or it may explore a new path by choosing a random action
(exploration). This completes one step in the iteration process. As this process repeats, the system
will find the optimal state-action pair that optimises the long-run reward. The environment is
normally formulated by using Markov Decision Process (MDP) framework.

3.3.2 Markov Decision Process (MDP)

The reinforcement learning cycle described in Figure 3.6 can be formulated mathematically by
using Markov Decision Process (MDP). The MDP and agent together thereby generate a se-
quence of trajectory: Sy, Ap, Ry, 51, Ay, Ry, Sy, As, Ry, ..., and this process can be represented by
(S, A, P,, Ry) where

e S is a set of states called state space.

e A is a set of actions called action space. It can be discrete or continuous.

o P,(s,8") = Pr(syp1 = 8'|s; = 8,4y = a) is probability that the action a in state s at time ¢
leads to state s at time ¢ + 1.

e R,(s,s') is the immediate reward received after transit from state s to state s', due to action
a.

The goal in a MDP is to find an optimal policy 7*(s) for the agent. For MDP, we can define value
function vx(s) and its optimal value v} (s) formally by

-

vn(s) = En | Y A Ripis1 | Si=s|, forallse S, (3.3.1)
k=0

vu(8) = maxv,(s) for all s € § (3.3.2)

where E [-] denotes the expected value of a random variable given that the agent follows policy =
at any time step t. Note that the value of the terminal state, if any, is always zero.

16




Similarly, we define (0« (s, a) as the value of taking action e in state s under a policy © and (0} (s)
as its optimal value:

-

Qn(s.a) =Ep | AV Rippor | S =54, =a|, forall s €S,a € As) (3.3.3)
k=0

Q" (s,a) = max(Q,(s,a), for all s € S,a € A(s) (3.3.4)

The equation 3.3.3 can be explained as the expected future returns starting from state s, taking the
action a. The value functions vy and Q= can be estimated from experience. For the state-action
pair (s,a), we can write Q* in terms of v* as follows:

Q*(s,a) =E[Rep1 +90" (Sepa) | S = 5,4, = (3.3.5)

Both value functions v, and ¢, can be estimated by using Monte Carlo method, dynamic program-
ming (DP), neural networks etc. The MDP framework is abstract and flexible and can be applied
to many different problems in many areas such as trading, robotics, antonomous driving, games
ete.

3.3.3 Deep Deterministic Policy Gradient (DDPG)

Deep deterministic policy gradient (DDPG), proposed by Lilicrap et al. [24], is an algorithm
which uses actor-critic techniques to learn a (Q-function and a policy concurrently. It is an off-
policy algorithm. In contrast to Deep Q-Network (DQN) which can only handle discrete action
space, DDPG can only be used for environments with continuous action spaces. The key approach
for DDPG is to compute the optimal action a*(s) in any state s from the optimal action-value
function *(s,a) by solving:

a*(s) = argmax Q*(s,a) (3.3.6)

When there are a finite number of discrete actions, it is easy to compute the action which max-
imises the QQ-values directly. However for continuous action space, we cannot exhaustively evaluate
the space and also it is unacceptably expensive to compute argmax, Q* (s, a) by using conven-
tional optimisation algorithm. Therefore Lillicrap [24] proposed some novel techniques on learning
a Q-function and a policy to solve Q*(s, a).

First, the DDPG algorithm uses target policy network to approximate argmax, (0*(s,a) by
minimising the following mean square error (MSE) function with stochastic gradient descent (SGD)
method:
. , 2
LD = B [(Qulsa) = (r+ (1 = D@, (470, ()] (3.3.7)
(s,a,r8 d)~D

where mg, _is the target policy. (s.a,r,s’,d) ~ D means taking the a batch of sample transitions
(s,a,r, s, d) from experience replay buffer D, which is a finite-sized memory cache, in each iteration.

Second, since the action space is continuous and assuming the Q-function is differentiable w.r.t
action, to learn a deterministic policy pa(s) which gives the action that maximises Q4 (s, a), SGD
is used to solve the following:

max E [Qy (s,m(s))] (3.3.8)
0 s~D
Then the parameters between the original networks ¢ and target networks ¢,,, are updated once
in each iteration by averaging:
('jta\l'g — ﬂﬂ"jta\rg - (1 - ﬁ)(‘j (33‘:’)

where p is a hyper-parameter between 0 and 1.

Last but not least, to make the DDPG policies explore better, the author suggests to add stochas-
tic time-correlated Ostein-Urlenbeck (OU) noise N to actor policy 7§ (s;) = mg(s;) + N. The
pseudocodes for DDPG is shown in Algorithm 2.

17




3.3.4 Hindsight Experience Replay (HER)

DDPG algorithm uses experience replay buffer of past experiences to sample a finite batch size of
training examples (s,a,7, s, d) ~ D to update the neural networks. Given a behaviour policy w(.),
at each step t associated with a transition tuple (s, a,r, s',d), the agent can generate a trajectory
T={(s0.0). . (s7—1.ap_1)} of any length T". In many multi-goal RL tasks, the reward only
depends on whether the trajectory can reach a desired goal g or not. In most of the settings, only
the successful trajectories get non-negative rewards. Since the policy 7(.) is not [ully-trained and
has low success rate, the collected successful trajectories are usually insufficient for training, which
results in the sparse reward problem.

Mancini [25] addressed the sparse reward problem by suggesting Hindsight Experience Replay
(HER ) algorithm. This algorithm treats the failed experience as successes and learns from them
again. Ior any off-policy RL algorithm like DQN, DDP G, NAL and etc, HER modifies the memo-
rised states s and s’ from transition tuple (s, a,r, &', d) with the desired goal state g, and g;1. In
this research, the concepts of desired goal g and achieved goal g} are used. The desired goal g; is
the actual goal that the agent aims to achieve, and the achieved goal g; is a state that the agent has
already achieved. For example, in a golf game, a golf ball could be modelled if landing in a sand
pit by receiving a reward r; = —1 (achieved state could be the ball’s position in the sand pit), then
from the agent’s perspective, the desired goal state for golf ball should be on the green (desired
goal state should be ball’s position on the green) with r; = 1. Once the achieved goal g; is replaced
by a desired goal g, the corresponding failed experience is assigned with a desired non-negative
reward and is thus added to replay buffer D. This will provide more successful experiences for
the agent which can lead to better learning policies. The pseudocodes for HER are displayed in
Algorithm 3.

18




Algorithm 2 DDPG Algorithm

1: Randomly initialise eritic-network @, (s, a) and actor network s (s) with weights ¢ and 6

2: Initialise target network Q,,., and g, with weights ¢'*% « ¢, '8 ¢
3: Empty replay buffer D
1: for episode=1, M do

5: Observe state s
6: Select action a; = my (5) + N} according to current policy and exploration noise
T: Execute a; in the environment
8: Observe next state s, reward r, and done signal d to indicate whether s’ is terminal
9: Store (s,a,r,s',d) in replay buffer D
10: If s is terminal, reset environment state.
11: if it's time to update then
12: for n=1,N do © 7 is optimization step size used to train the network
13: Randomly sample a batch of transitions, B = (s,a,r, s, d) from D
14: Compute targets
y(rsd) =1 +7(1 = d)Qp.... (s's7o,.., () (3.3.10)
15: Update the critic (Q-function) by one step of gradient by minimising the loss:
Ve 3 (Qsls,a) —y(rs,d)” (3.3.11)
[ie} |B| @l & J 19y Wetd-
(s,a,r8 deB
16: Update the actor policy by one step of gradient ascent
Vo > Qo (s.m(s)) (3.3.12)
7o — 4 (s, mals 3.3.12
Bl
seB
17: Update the target networks:
f.'ﬁmrp. — ;’Jf.'ﬁl,\rp; +(1—plo (3.3.13)

gtm-g — ﬂgn\rp; +(1- ﬁ)g

19




Algorithm 3 HER Algorithm

1: Given
e an off-policy RL-algorithm A, reg. DQN, DDPG, NAF, SQDN
e a strategy S for sampling goals for replay, reg S(so,....sr) =mn(s7)
e areward function r: S x Ax G - R > eg r(s,ag) = —[fs(s] =0
2: Initialise A > initialize neural networks

3: Initialise replay buffer D
4: for episode=1, M do

5: Sample a goal g and an initial state sy

6: for t=0, T-1 do

7 Sample an action a; using the behavioral policy from A:

8: as +— 7wy (8¢]|g) > || denotes concatenation
9: Execute the action a; and observe a new state St

10: for t=0, T-1 do

11: Tt =T (8, e, q)

12: Store the transition (s; ||g, as, ry, se41]|g) in D > Standard experience replay
13: Sample a set of additional goals for replay G := 8( current episode )

14: for ¢ € G do

15: r'i=r (s, as,q)

16: Store the transition (s ||g', ar. v, 8¢41| ¢') in D = HER
17: for t=1, N do

18: Sample a minibatch B from the replay buffer D

19: Perform one step of optimization using A and minibatch B




Chapter 4

Methodology

This chapter describes the ways to do FX trading using the reinforcement learning system. Before
we use RL framework for antomated trading, we use a novel way to build the FX Market Markowv
Decision Process (MDP-FX) for the system setup. Within this framework, we use the DDPG mod-
els with two different types of neural network architectures (MLP and CNN) as the actor-critic
functions. By going through the training processes, the optimal policy of this deep reinforcement
learning framework could be achieved.

For the trading simulation, we set some trading constraints and make some assumptions:

e No slippage cost: The market is very liquid, hence the orders can be executed immediately
with the latest prices py € {pBid, pAk} for all currency pairs S at time t, where pPid and

psk be the vector of the bid-ask prices for currency pairs §.

e No leverage: The agent is not allowed to borrow money for trading. This means that the
account balance by is always non-negative, b; = (0. We set )gB as buy amount and xis as sell
amount for each currency pair i € 8, then after each transaction, the balance will be updated
as

beyr = be — pixP + pPixg 2 0 (4.0.1)

e Non-negative position: During the trading, the agent’s position or inventory values I, are
non-negative for each currency pair i € S.

Ask *

Livyr = Lie +piy -1-'5?1 - Pf;'r * 1“ >0,i€S (4.0.2)

e Transaction cost: In real trading world, there are many types of transaction costs such as
commission fees, overnight interest rate charges, execution fees and ete. For our case, we set
the total costs of the every transaction as

ce = pTxe % 0.1%, where x; € {x®,x5} (4.0.3)
e Intra-day trading: The trading agent will perform intra-day trading only. This means that
it trades only at certain time in a day and it has to close all of its currency pairs’ positions

at the end of trading hour T, i.e. Ty_p = 0. When the agent closes all position at the last
minutes, we assume no slippage cost and all transactions can be executed immediately.

At next few sections, we will explain how would the above trading rules and constraints can be
adopted to MDP framework and used for the trading environment setup.

21




4.1 Markov Decision Process for FX Market (MDP-FX)

Inspired by the previous works done by Souradeep [15], which suggested a MDP framework specific
to stock market, we create a generalized bespoke MDP framework for FX trading market known as
MDP-FX. This MDP framework treats the trading agent as an trading algorithm which will make
the trading decisions based on the observations [rom the FX market as well as from its account
states. The aim of the agent is to generate consistent profits (PnL) with optimal inventory controls
in the dynamic environment with the trading constraints mentioned above. Also the methods on
how to setup the FX trading environment for simulation will be mentioned below.

4.1.1 State Space

The MDP-FX is defined in such a way that an agent trades on any currency pairs with some trading
constraints in a dynamic market. During the trading hours, a trading agent needs to take care of its
inventory and balance while observing the market data. The agent relies on the technical indicators
to make the trading decisions to buy (long) and sell (short) the suitable amount of currency pairs
at certain time #. Technical indicators are usetul as they could capture some statistical properties
or market behaviours of the market. With these in minds and inspired by Hongyang[16], the state
space for the MDP-FX consists of account state and the technical indicators.

During trading simulation, at each time ¢, the agent needs to record the cash balance b;, the
mid-price py of currency pair ¢ € § and the latest inventory of currency j, I;. Seven technical
indicators chosen:

e Moving Average My¥ € RY

e Bollinger Band (consists of upper band UW € RY and lower band LW € RY)
e Commodity Channel Index (CCI) CW < R

e Average True Range AP" S Ri

e Percentage return of each time bar RV € R"

e Relative Strength Index (RSI) ¢V € [-100,100] € RY

The superscript W is the lookback window used for calculation. For example, if L = 14, then

t=t*
1
14 _ L * 14 y
Mt = S op tT=14....T
t=t*—1441

is the 14-day moving average.

Assuming an agent trades o currency pairs in its portfolio and each technical indicator has 3
lookback windows to calculate, then the state space size |S| = 7% 3 + 2% o+ 1. The state space
for MLP input can be represented by a vector S, € RS

Se = [be.pr - pe I I MY LYY

W, Wi W W W, W W, Ws W, W
U Uy 7 G O AT AT R Ry LG G

For example, if an agent trades with only 1 currency pair X and each technical indicator has 1
lookback window Wi = 20. The state space for MLP input is represented as |S| = 10-dimensional
vector:

Sp = [b. pe. I, M. LY, U CZ0 AP R, ()

The state space for CNN input consists a consecutive series of features, so it is represented by
a matrix S¢ € RY*5! as shown below. To simplify the expression, we assume the input with

22




T consecutive steps has only one currency pair X and 1 lookback window W for all technical
indicators.
X X W W w w w W W
e PR MY IR oUW ob AR Ry &
g by pu P MY LY UL CYF AN RY &
t = .

bropy Dy My LY UY CF AY RY

4.1.2 Action Space

We define a; = [a14,. ... a, | as a vector of action values for & currency pairs traded by the agent.
They are continuous values generated by the policy 7 in DDPG and ranged within [-1,1]* € R*. In
the simulation, during the trading hour £ = 1...7—1 before the end of the day, the environment will
multiply a; ; by a multiplier /; of currency pair ¢ and we denote the executed action aﬁ =a;* K.

Since the agent needs to close all of the positions at the end of the day, then the agent have to sell

aip = —1% I+ pip for each currency pair @ at time 7" as shown below:

s JaK,  ift=1...T-1
a = I e
~Lipg, ft=T

The range of the action space for a¥ is therefore (—o00, 0] | J [~ K, K] = (—o0, K|. K is a predefined
parameter.

4.1.3 State Transition

The state value S; consists of portfolio state and technical indicators. For each time step t, the
cash balance b; and inventories It ... I for @ number of currency pairs, which are part of S, are
updated in response to the action a; received. By considering the trading constraints we defined
earlier, the state changes for the buy (long) and sell (short) transactions for a currency pair ¢ are
denoted below. ¢ is the fraction of transaction cost.

¢ Buy (long) within trading hours, ie. a;,; >0, t=0,...T -1
o, = min[K; xa,; #pis o (1+¢), by
yft = min[K; * a; 4 * pi s, .1?&]
Ligpr = die + .Uﬁ
bryp = by — .1.'5'?;

where ¢; is the transaction cost %, .1.‘?! is buy amount with transaction cost included, y?x

is buy amount without transaction cost. To long J.‘fi amount of currency pair i, the agent
needs to check its balance if it has enough cash. If there is not enough cash in its account
then it will only long zZ, = b, amount of currency pair 1.

Sell (short) within trading hours, ie. a;; <0, t=0,...7 -1
2f = min[K; #a;; xpgw (1—e), Ligsps(1—0c)
y;ﬂ = min[ffi gk Pig, Lk Pi__:]
Ligyr =1y — .Uf:
bepr = by + .1.‘{’:!
where 7, is sell amount with transaction cost included, 7, is sell amount without transaction

cost. To short .1.‘;5__'! amount of currency pair i, the agent needs to check its inventory if it has
enough position for selling, since negative position is not allowed. If there is not enough cash
position in its inventory then it can only short ‘1.';5__! = Iit % piy amount of currency pair i.

23




e Close all positions at the end of the trading day, ie. t =T
.].‘;S:T =Lir 1*pisx(l—c)
Lir =0

")
b]" = bT_ 1T .1(-_.]—-

The above state changes are straight forward, the agent just needs to sell all of the currency
pair i in its inventory at the end of the day.

4.1.4 Reward

The reward function r(sy, as, s;1) at time ¢ is defined as below.

T(Sg,Qp,8041) =Ta +Tw — 0 (4.1.1)
where
min(log z;, 1.0}, it > ey
ra ={ —min(log(jz,]), 1.0), ifz, < (4.12)
0, otherwise

3.0, if yr > ew
1.0, if 0.5 % ew <y < ew
o — 0.2, ?f 0.0 <- Yo = 0.5 * ey (4.13)
—0.2, i —05%ey <y <00
1.0, if —ew < Y = =05 x ey
—3.0, iy < —ew

a; = |tanh (aF — a;)| * e, (4.1.4)

€4, ew and e, are the predefined thresholds which can be set before the simulation. From equation
4.1.1, the reward function is broken into three parts: cash asset reward r4, PnL reward ry and
mismatch action penalty .

ra € (—1,1) is designed to give reward (penalty) if the trade is profitable (loss) when there is
change in portfolio balance from b; to byy,. We define z; = b1 — by as the short term PnL with
only one step t after the agent buys or sells from time ¢ to t + 1. ey is the predefined parameter
for the threshold of z;.

rw (equation 4.1.3) is a step-function which considers longer term PnL with lookback period
of N steps from current t. Similar to xy, yj\"' = by — b;_n is the difference of portfolio balance
from by to by, but it reflects longer term PnL which should have more advantages for trading.
Therefore, ri € [—3, 3] has higher reward or loss compared to r4. ey is the predefined parameter
for the threshold of ;.

Sometimes, the a;, assigned by the policy 7 may not be executed in the environment if the
agent does not have enough cash to long or does not have any currencies from the inventory to
short as described in section 4.1.3. For example, if a; , = 0.5610 is assigned, it means to long
0.5610 # K currency pair ¢ at time t. However, the agent has zero balance (no cash) in its account,
ie. by = 0, then execution action will be zero, i.e. a¥, = 0. This misalignment between the assigned
action ai; and execution action af, will cause the instability in network training. Therefore, we
use o € [—€,,€,] to give more penalty when there’s bigger discrepancies between assigned and
execution action.

24




4.2 Actor-Critic Network Architecture

From Algorithm 2, two types of networks are needed: critic networks (Q (s,a) and Qy,,  (s,a))
and actor networks (g (s) and 7, (s)). We will describe the network architectures used for
DDPG-MLP and DDPG-CNN.

42.1 DDPG-MLP

A. Actor network architecture

Table 4.1 illustrates the network architecture for DDPG-MLP’s actor function wy (s) . Recall the
description from section 3.2.2, the actor function a; = we (5) = N.({, N1, N2, O). This means
that the network has an input layer one-dimensional input size I, two hidden layers (first hidden
layer has N1 nodes and second hidden layer has Na nodes) and then an output layer with Naction
outputs. Batch normalisation (BN) layers are used after two hidden layers to normalise the inputs
that could have large variances within the network. This can help to stabilise the parameters by
not generating large output values. Activation functions ReLU are used after BN layers. The
range for the output needs to be (—1,1), therefore activation function tanh is used to generate
the action values a; € (—1,1). In summary, the network takes a batch size of environment states
(observations) as input and then generate action values as output.

Layer No Layer Type Nodes
L0 Input Layer

L1 Linear Layer (Hidden 1)

Bl Batch Normalisation Layer

R1 ReLU

L2 Linear Layer (Hidden 2}

B2 Batch Normalisation Layer

R2 ReLU

L3 Qutput Layer N

R3 Tanh Naction

Table 4.1: Actor network architecture for model DDPG-MLP with or without HER

B. Critic network architecture

Table 4.2 shows the network architecture of DDPG-MLP’s critic function @y (s,a). The critic
network has similar architecture as actor network. However, as the critic function has two inputs:
environment state (observation) and action, one extra simple neural network (known as NN2) with
only one linear layer, which takes the actions as the inputs, is created. The outputs of NN2 network
are then combined with second hidden layer (L2) of the main network (NN1). The output layer
has only one node to generate a single value. The value produced from this critic network that
can be called as state-action value or QQ-value which has the range (—oo, no). Therefore activation
tanh is not needed after the output layer.

4.2.2 DDPG-CNN

A. Actor network architecture

The actor network architecture for DDPG-CNN is more complicated than MLP network. From
Table 4.3, the network consists of two parts: CNN with two 1D-convolutional layers and MLP
network with two hidden layers. [t takes the environment state (observation) s with input size of

25




Layer No Layer Type (NN1) Nodes (NN1)  Layer Type (NN2) Nodes (NN2)
Lo Input Layer I

L1 Linear Layer {Hidden 1) Ny

B1 Batch Normalisation Layer Ny

R1 ReLU Ny

L2 Linear Layer {Hidden 2) Na

B2 Batch Normalisation Layer (N2)

B0 Input Layer Naction
El Linear Layer Ny
E2 ReLU Ny
L2(C) Combined B2 with E2 (L2 + E2) Na

R2 ReLU Na

L3 Output Layer 1

Table 4.2: Critic network architecture for model DDPG-MLP with or without HER

(T, Np) as input. T is the time step size and N; is the feature size of the state s. Imagine the
s as a 2-dimensional image, the T is the height and N is the width of the image. The input is
then passed to 1D-convolutional layer with Np; of filters. Within CNN, leaky-ReLU is used as
the negative values should not be ignored as they could be useful for preventing the dying ReLU
problem. Leaky-ReLU is a parametric-ReLU (PReLU) with o = 0.01. Dropout layer is used after
CR1 to prevent overfitting during the network training.

The outputs after CR2 is flattened into full-connected layer with node size Ngy #+ W and

Wi =Ny

W, — r+2
Wit :7: 'o—l_.n:l‘..C'
W= We

where C is the mumber of convolutional layers in CNN, # is the kernel size, p is padding (at here,
p = 0) and ¢ is the stride. Full-connected layer is actnally a linear layer. The other layers after
L1 have similar architecture as MLP shown in previous section. The output of the network is
a, € (—1,1).

Layer No Layer Type Nodes
1l Convolutional Layer (1D)

CR1 LeakyReLU

D1 Dropout Layer (2D) (N1, Npr1)
C2 Convolutional Layer (1D) (Np1,Npa)
CR2 LeakyReLU (Np1,Npga)
L1 Full-Connected Layer Npo =W
L2 Linear Layer (Hidden 1) Ny
LB1 Batch Normalisation Layer Ny
LR1 ReLU N3

L3 Linear Layer {Hidden 2} Ny
LB3 Batch Normalisation Layer Ny
LR3 ReLU Ny

L4 Linear Layer Naction
o] Tanh (Output) Naction

Table 4.3: Actor network architecture for model DDPG-CNN with or without HER

B. Critic network architecture

The critic network architecture for DDPG-CNN model is similar to actor network and since
()4 (s,a) has two inputs: environment state s and action a, one extra simple neural network
(known as NN2) with only one linear layer, which takes the a as the input, is created. The rest
is the same design described in section B of 4.2.1 to generate Q-value for DDPG-CNN. Table 4.4
illustrates the CNN architecture of the critic network.

26




Layer No Layer Type (NN1) Nodes (NN1)  Layer Type (NN2) Nodes (NN2)

C1 Convolutional Layer (1D} (N1, Ngq)

CR1 LeakyReLU (N1, Ngq)

CD1 Dropout Layer (2D) (N1, Ngq)

C2 Convolutional Layer (1D) (Np1,Npa)

CR2 LeakyReLU (Np1,Npo)

L1 Full-Connected Layer Npo + W

L2 Linear Layer {Hidden 1) Na

LB2 Batch Normalisation Layer Na

LR2 ReLU Ny

L3 Linear Layer (Hidden 2) Ny

LB3 Batch Normalisation Layer Ny

E0 Input Layer Naction
E1l Linear Layer Ny
E2 ReLU Ny
L3{C) Combined LB3 with E2 (LB2 + E2) Ny

LR3 ReLU Ny

(8] Linear Layer 1

Table 4.4: Critic network architecture for model DDPG-CNN with or without HER
4.3 Hindsight Experience Replay (HER) Modelling

In trading world, a trader does not just to maximise the PnL or Sharpe ratio, but also needs to
keep other constraints in mind. One of the most important constraints is the inventory control,
this is particularly important for intra-day trader. Due to the intra-day trading constraint specified
before, it's always good for the trader to have smaller inventories or positions before the end of
the trading day. Hence, coupled with DDPG framework, the HER algorithm is used for intra-day
trading’s inventory control.

We propose some simple mathematical models as illustrated in Figure 4.1 for the desired amount
of cash b and the desired currency position I during intra-day trading. After some mathematics
derivations, the equations for b and IP are shown in 4.3.1 and 4.3.2.

bD B 4 % b;uul: * tQ 4 % b;uul: %t
L T? T

+ bas (43.1)

. _dwdpens ? A Ipee st (4.32)

T2 T
where b{** and I/ are maximum cash and inventory allowed during the trading hours, T is
the total time steps in a trading day. The thoughts for the above models are simple, we hope the
trading agent has maximum position at mid-day ¢ = 7/2 and no position at the end of the day
t = T to minimise the risk when the agent close all position at the end of the trading day.

4.3.1 DDPG-MLP

To apply HER for inventory control, for each time step £, the agent calculates b2 |, bP, IP | and
IP using the equations 4.3.1 and 4.3.2. The concepts of desired goal and achieved goal are shown
in Table 4.5. The tuple § = (s¢,a¢, 7t 8¢41,d, 1,1, v,7') generated after each action step a; will
be stored into a memory buffer T known as transition memory. If d = 1, it means the trading
simulation for all periods has completed or the end of an episode.

At the end of an episode, the agent will scan though all of the transition memory T. For each
tuple # taken from HER experiences, the agent replaces the cash balance by and positions I
within s, and s;,; with the desired goals v and 4" if some criteria are met (see Algorithm 4).
Also the reward value r; will be updated. Last but not least, these modified experiences with

27




Desired positions intra-da

st
P RS Fosinons
e ™~
- / \
/ \
168 Desired Cash intra-day
Max b \ —— Cash
\ c
\
\ /
4
9 | /
5
3
~
~— _~
0 T T

Figure 4.1: The models to control cash balance and position intra-day

0 = (stoae, re,8i41,d,7,1',7,7") improvements will be stored into the memory buffer known as
HER experiences H. This means that the agent will have more good experiences for training to
achieve its optimal inventory control during intra-day trading guided by the above mathematics
equations. This is summarised in Algorithm 4.

Algorithm 4 HER for DDPG-MLP

1: procedure AppLYHER(T) © Apply HER function for each step t, T is transition memory
2 Initialise I > Initialise HER experiences
3: for § = (s¢, as,1¢,8e41,d, 7,9, 7,7") in T do

4: (b!D_. I!D] —

5: (b1 150) <+

f: (byy 1) + 1

7 (b1, dega) 1

8: if |7 — 7| = ¢ then & If achieved goal and current goal have big difference
9: Take (b, I;) € 54 > Get cash and position from current state s
10: Take (byy1.de41) € Se41 & Get cash and position from next state s
11: be, Iy + bP 1P

12: beyrs L1 + bﬂlsfﬂl

13: ry +— rpx 0.2 > Reduce the penalty value as ry is negative
14: Store updated (s, at, 7¢, st4-1, d) into H > store the goal state into HER experiences

15: Return H

Name Symbaol Value Description

Current desired goal ¥ {LL’,IEL’} Desired cash balance and position caleulated from the models
above at time t

Next desired goal ' {E"{J—l‘ Iflll Desired cash balance and position caleulated from the models
above at time t+1

Current achieved goal 7 (b, I4) Cash balance and position taken [rom trading account during
trading hour above at time £

Next achieved goal 7' (b1, Teaq) Latest cash balance and position taken from trading account
during trading hour above at time £ + 1

Table 4.5: Explanation of desired goal and achieved goal used for DDP G-MLP

28




Name Symbol  Value Description

(P P,

Current desired goal ¥ Desired cash balance and position calculated from

ez 12y
W the models above from time t-W to t (with lookback
period W)
[T 7
Next desired goal ~ If,_”' +H If’_l. Desired cash balance and position calculated from
imwa - 1ii) the models above at from time t-W41 to t+1
Current achieved goal 7 {Ibt_”'. . 'Ibt}" Cash balance and position taken from trading ac-
W it count during trading hour above from time t-W to
t
Next achieved goal 7' (be—wr- b, Latest eash balance and pesition taken from trading

I wer. o i)

account during trading hour above from time t-W4+1
to t41

Table 4.6: Explanation of desired goal and achieved goal used for DDP G-CNN

4.3.2 DDPG-CNN

For DDPG-CNN, HER algorithm is used similarly as DDPG-MLP. Since CNN contains series of
states s with W steps for observation fed into the networks, then each item within the tuple # =
(st, a7, Sp41.dy 17,0, . ") 18 the vector (except a; and r;) which contains series of W elements.
Table 4.6 shows the differences between the DDP G-MLP and DDP G-CNN for desired and achieved
goals. Algorithm 5 summarises the HER usage for inventory control.

Algorithm 5 HER for DDPG-CNN

1: procedure AppLYHER(T) = Apply HER function for each step t, T is transition memory

2 Initialise I > Initialise HER experiences

3: for § = (s, a;, 74, 8041.d, 1,1, 7,7") in T do

4 (0w - 0P 1) =y

5 (b w1 b5 I g - I5) <

6: (be-w .. b Li—w ... i) =7

7 bi—wr - beprs Le—win - Lign) & 7'

8: if |E[n] — E[+]| > ¢ then - If achieved goal and current have big difference

9: Take (by w...by, Ly w ... 1;) € 8¢ b Get W consecutive steps of cash and positions
from current state s

10: Take (by—w1 .. beg1, L—wyr .. dep1) € Seqa

11: (be-w by e o L) e (B gy - 0P TP g

12: (be-w 1. b, Temwar o Ten) = (0 gy b I gy - 15

13: ry k0.2 > Reduce the penalty value as r; is negative

14: Store updated (s, a;, 7, 8¢41.d) into H > store the goal state into HER experiences

15: Return H

29




Chapter 5

Experiment

Using the methods described in Chapter 4, the experiments are setup for the model training and
testing by using the Foreign Exchange (FX) market data. We use the experiments to investigate
if it's possible to obtain the optimal continous actions on the selected trading days using DDPG
with different type of neural networks and with or without HER.

5.1 Data

We use the FX market data provided by AlgoLabs. The data is aggregated into minute bar data
as shown in 5.1. We use one currency pair GBP/USD for the experiment to simplify the training
process of the DDPG algorithm.

Figure 5.1: The screenshot of the raw data used for the experiment

5.1.1 Data Processing

The raw data is used to calculate the technical indicators mentioned in 3.1.2 and 4.1.3. Figure 5.2
and Figure 5.3 show the sample data for technical indicators (21 features) and the visualisation of
the technical indicators’ time series that are inserted into the networks respectively.

Figure 5.2: The screenshot of the technical indicators (21 features) used for the experiment

Before the state or observation S is fed into actor and critic networks, they need to be normalised
first. The state S consists of two types of data set: account state and technical indicators. For the
technical indicators data set, we calculate the global historical mean fi and standard deviation &
from the whole historical data set of GBP/USD. Then we perform standard normalisation using
equation 5.1.1 on the values of all technical indicators. The normalisation for balance b and position

30




Avemge Prices vs. Close Pries in GEFUSD

RS! indicalar in 20-day Lookback Window on 01-02-2018
RS
— Soll Threshoid
—— Buy Thvashold

©C120 in 20-day Lookbadk Window on 01-02-2018

S — oo
“ | | ] Il [ | =Sl Thewmhcitd
— Buy Threshoid

- i

- LI 1 f f—

Pet Retums in 20-day Lockback Window on (H-02-2018
o4 —— PaReum 20

o

o & o N @ - e L

o

Figure 5.3: The visualisation of time series of technical indicators that are inserted into the networks

I are shown in equation 5.1.2 and 5.1.3 respectively.

GBPUSD _ GBPUSD
ZGBPUSD _ Uy M (5.1.1)
t - GGBPUSD P
-~ b
by = h‘ (5.1.2)
- I; P,
i, - ‘T,p‘ (5.1.3)

where p; is the global mean for GBP/USD mid price, K is the initial amount of cash investment
for trading. For our case, the trading agent has the principle money by = 1000000 (in USD).

31




5.2 FX Trading Environment Set Up

We use Gym API designed by OpenAl [26] to setup the FX trading environment according to the
trading rules and constraints specified in Chapter 4. PyTorch is used to implement the actor-critic
networks and Stable-Baseline3 API [27] are used to log the results into Tensorboard.

5.2.1 Environment Steps

As we use only GBP/USD for experiment, we can assume @, is the buy or sell proportion for
GBP /USD. This section describes how the trading agent will respond after receiving action a; from
the actor network. The flow of the trading steps within the simulated environment is displayed
in Algorithm 6. We initialise K = 10000, by = $100000. Also we assume there is no cap limit
on trading bet size, i.e. no clip size for each bet. For the reward function 4.1.1, we use €4 = 5,

ew = 100 and €, = 10.

Algorithm 6 Action steps for FX trading

1: K+ 10000

2: by < 1000000

3 Iy +— 0

4: Initialise Done + False
5: 1+ 0

6: ¢+ 0.001

7: procedure STEP(a;)

8: if t <T then

9: ty — a; % K

10: if dy < 0 then

11: if I; > 0 then

12: .1:{"%min(h’*a:*m,f;*p;)*(lfr.‘)_.
13: Y min(K * ap * pe, Iy % py)
14: bepy ¢ by + x?

15: Tipy 1 — ?Jf

16: af « —z7 /K

17: else

18: af —0

19: else if 4; > () then

20: if b; = 0 then

21: P — min(K #ap+px1—c,by),
22: th — min( K * aq *pg_..l.‘?)
23: b!+]_ — b! — .1??

24: Iipr I + ‘ij?

25: af « zP /K

26: else

27: af 0

28: else if t =T then

29: xf — Ity xpr—1+ (1 —¢),

30: br & br_1 + .]‘f

31: Ir+0

32: af « 27 /K

33: d + True

34: Si41 £ St

35: Calculate reward r;

36: return s¢y1, ¢, d, infos

> Multiplier for GBP/USD

> Position GBP/USD = 0 at t=0

> Transaction cost fraction

> Action function for each step t

- Sell action

= Buy action
> when cash | 0

& Close all position

32




5.3 Model Training

We run the training mode of each DDPG model in a high performance computer which has 32
CPU cores and 32GB of RAMs.

5.3.1 Training Data

To train the model, we take the GBP/USD data from 02-01-2018 to 02-02-2018 as in-sample
training data. For each day, only the minute data from Gam to 8pm are taken and there are 840
minute-bar data per day (i.e. 60 bars per hour per for GBP/USD cwrrency pair). The train data
is organised as described in 4.1.3, for each technical indicator, we use three lookback windows
Wi = 20, W = 60 and W5 = 180. Hence, by taking o = 1 {one currency pair) and 5 = 3, we will
have |S| = 2% 1+ 7 %3+ 1 = 24 elements in the state space 8. We use 1" = 30 consecutive steps to
form a 30x24 two-dimensional matrix for CNN state input. Figure 5.4 and 5.5 show the examples
for the normalised MLP and CNN input states.

Figure 5.4: Example of normalised MLP input

Figure 5.5: Example of normalised CNN input

5.3.2 Network Hyperparameters

For all of the batch normalisation layers, we use the default values set by PyTorch. With reference
to Table 4.1 and Table 4.2, we use N7 = 400 and N2 = 300 for both actor and eritic MLP networks.
In our case, we have only one currency pair GBP/USD, then N, ;. = 1.

CNN is more complicated and has more parameters than an ordinary MLP network. With reference
to Table 4.3 and Table 4.4, we set Ny = 30 (30 consecutive time steps), N = 24 (no. of features in
state S), Npy = 16 (channel size for convolutional layer 2), Ny = 400 (node size for L2), Ny = 300
(node size for L3) and N,uipn = 1. For the kernel settings and with reference to equation 3.2.6,
we set the kernel size | = 3, stride s = 1 and padding p = 0.

5.3.3 DDPG Hyperparamters

We list the value of hyperparameters for DDPG+MLP and DDPG-CNN models in Table 5.1. For
all of the actor and critic networks for DDP G models, we use ADAM as the network optimiser.
We denote the learning rates for actor and critic networks as a and 3. The memory buffer size T

33




in DDPG is set to 1000000 and minibatch with batch size |B| = 128 is used in gradient descent.
As shown in Algorithm 2, + is the discounting factor and 5 is the optimisation step size.

Madel o g ¥ Memory size 7 Episode 7
DDPG+MLP 0.00001 0.0001 0.99 1000000 0.001 2000 G0
DDPG+MLP+HER  0.00001 0.0001 0.99 1000000 0.001 2000 100
DDPG+CNN 0.000005 000005 0.99 LO00000 0.001 1000 100
DDPG+CNN+HER  0.000005  0.00005  0.99 LO00000 0.001 1500 100

Table 5.1: Hyper-parameters used for DDPG model training with or without HER




Chapter 6

Results & Discussion

In this chapter we first analyse the training results to investigate how the network architecture
within DDPG could have impacts on the trading behaviours of the agent and achieve the optimal
trading strategies with the constraints set. Then we test the intra-day trading performance by
using the test data from 02-02-2018 to 08-02-2018 (5 trading days).

6.1 Analysis of In-Sample Results After Training

As only up to 72 hours are allowed to train one model, we are not able to run 2000 episodes for
both DDPG+CNN models (i.e. with and without HER). For DDPG+CNN without HER we run
for 1000 episodes and for 1500 episodes with HER. Both DDPG+MLP models run are trained in
2000 episodes.

6.1.1 Actor-Critic Loss

First we take a look at the loss values for the actor-critic network and the rewards after the training.
Figure 6.1 illustrates the progress of the reward, actor and critic losses during the network training.
For critic loss, we observe that both DDPG+CNN variations have significant lower values compared
to DDPG+MLP. Also, it seems that CINNs help to let the DDP G's critic loss converges earlier than
MLP networks. DDPG with CNN networks start to converge at around 20 after 1500 episodes,
while the DDPG+MLP with HER starts to converge after 1700 episodes and DDPG+MLP without
HER has not reached converge even at episode 2000. One possible reason for early convergence
with CNN network in critic loss could be due to more temporal information stored within CNN
network (one CNN input contains 30 steps of consecutive states) and therefore the Q-network could
detect more overlapping patterns between current state and next state and hence less loss is given
according to equation 3.3.11.

Surprisingly, we don't observe any convergences for actor loss for all models after episode 2000.
Although no convergence is observed, the rate of growth in actor loss is slowing down and we can
deduce that there will be convergence if we have increased the episodes for training. The actor loss
for DDPG+MLP with HER is significantly larger compared to other models. The explanation for
this is, since the actor loss is derived from policy gradient (see equation 3.3.12), some augmented
experiences calculated using HER algorithm may canse unusually big gradient changes during
the policy gradient update at each episode during the early stage of training. In reward chart,
all models’ rewards converge in the range ol 2000-5000 (excluding DDPG+CNN with HER). As
expected, reward for DDPG+MLP with HER should be higher compare to DDPG+MLP without
HER due to the angmented experiences with desired goals and better rewards.

35




6.1.2 Optimal Cumulative PnL

Now, let’s take a look at Figure 6.2, which shows the optimal cumulative PnLs, one of the per-
formance benchmarks that the agent should earn if it starts trading daily from 02-01-2018 to
02-02-2018. The cumulative PnLs for both DDP G+MLP models are almost converging at episode
2000. DDPG+MLP with HER has slightly higher cumulative PnL than same model without HER.
At episode 1000, there is not much difference in PnLs for DDPG+CNN with and without HER.
It seems like the HER algorithm does not have much impact on DDPG+CNN.

6.1.3 Optimal Strategies After Training

After the training, we would like to investigate if the DDPG models with different networks can
generate feasible optimal actions within such an infinitely large search space. For each model,
we take the last episode of the training results on trading day 01-02-2018 for analysis. For the
DDPG+MLP with and without HER, they are trained until episode 2000. For DDPG+CNN with
and without HER, they are trained until 1500th and 1000th episodes respectively. Figure 6.3 shows
the optimal actions or strategies generated by the actor-critic networks for each model for trading
day on 01-02-2018. Then the agent’s trading performance triggered by these trading actions is
shown in Figure 6.4.

Analysis from 6.00am to 8.00am

In Figure 6.3, we start the analysis from 6.00am to 10.00am. At this time, the GBP /USD prices
are moving from some of the lowest prices to the highest prices of the day, then we observe that
the actions from DDPG+MLP without HER are volatile, meaning the model fails to spot the best
chance to maximise the profit by buying low and selling high. The other three models manage to
spot this opportunities to long as much as possible (with action a; = 1) from 6.00am to 8.00am
and then short some GBP/USD positions at around 1.425.

Analysis from 8.00am to 6.00pm

Now we analyse the time in between 10.00am to 6.00pm. During this hours, we notice that the
actions from DDPG+MLP with HER model are fluctuating, this means that this model is trying
hard to maintain the inventory patterns defined by the inventory model equation 4.3.2 without
sacrificing much PnL. This can be shown in Figure 6.4 that the cumulative PnLs produced by
DDPG+MLP with HER are on par with DDPG+CNN models while maintaining the inventory
shape designed for the agent. It's interesting to see that for DDPG+CNN models, the model
without HER has more fluctuated actions than with HER but both of them have similar PnL and
position profiles. We could deduce that the strategies for DDPG+CNN with HER has to minimise
the long-short transactions due to the inventory constraint defined for the agent, but this also
minimises the transaction costs. In contrast, the strategies for DDPG+CNN without HER are to
long and short positions at the right time to produce the similar PnL profiles since it does not
need to control its inventory. Furthermore, DDPG+MLP without HER model starts to reduce the
positions from 4.00pm as it tries to follow the inventory model designed for it. However, we don't
see the DDPG+CNN with HER model to do the similar.

Analysis from 6.00pm to 8.00pm

After 6.00pm, it's surprise to observe that DDPG+MLP with HER model does not obey the
inventory model and build more long positions. We believe that the model thinks it is more
important to have higher PnLs than to follow the inventory rules, as observed from the cumulative

36




Actor Loss

0
#
2 50 T ——— —— DDPG+MLP
3 —— DDPG+MLP+HER
2 —— DDOPG+CNN
—— DDPG+CNN_HER
Critic Loss
100
bl
g DOPG+MLP
2 s —— DDPG+MLP+HER
G —— DDPG+CNN
- —— DDPG+CNN_HER
0
Reward
0 ———r —_—
B -20000 —— DODPG+MLP
H —— DDPG+MLP+HER
£ ~40000 —— DDPG+CNN
. —— DDPG+CNN_HER
0 250 500 750 1000 1250 1500 1750 2000
Episode

Figure 6.1: The progress of the reward, actor and eritic loss during network training

CumPnL
60000
£ 40000
% —— DDPG+MLP
3 —— DDPG+MLP+HER
20000 —— DDPG+CNN
— DDPG+CNN_HER
0

o 250 500 750 1000 1250 1500 1750 2000

Figure 6.2: The optimal cumulative PnL for each model after training

PuL chart in Figure 6.4. The DDPG+CNN with HER model does not follow the inventory rules
too.

Discussion

With the above analysis on different time sessions, without HER, DDP G+CNN model manages
to find the optimal actions which provide higher Pnls in lesser episodes (recall that DDPG+CNN
models are trained in 1000 episodes only). Thisis helped by the CNN network’s abilities to spot the
temporal patterns from the time-series inputs. Now we compare the behaviours of DDPG+MLP
and DDPG+CNN with HER, though both models generate reasonable optimal actions, but it's
obvious to see that the DDPG+MLP follows the inventory rules more than DDPG+CNN. In other
words, combined with the analysis from Actor-Critic Loss section, HER algorithm seems to have
lesser impacts to DDPG+CNN as opposed to DDPG+MLP. This could be due to the criteria we
defined in Algorithm 5 may not be good enough and thus there are less augmented experiences to
be provided to DDPG+CNN model for training.

a7




Price

1.

1

Actions

Actions

Actions

425

420

=

0.5

LXi]

0.5

Mid Prices in GBPUSD on 01-02-2018

——Close

DDGP+MLP Actions

—— DDPG+MLP Policy Actions

DDGP+MLP With HER Actions

g I

I DDF‘G+MLP+HER F‘{)Ilc‘a«I Ac‘llens

DDGP+CNN Actions

—— DDPG+CNN Policy Actions

DDPG+CNN+HER Actions

DDOPG+CHN+HER Policy Actions

tff"@ o ® o o Nt w® R E @

Time

Figure 6.3: The optimal actions for trading day 01-02-2018




Mid Prices in GBPUSD

—Close
1.425
@
=
& 1420
Position
750000
o DOPG+MLP
3 DOPG+MLP+HER
£ DOPE+CHM
A
DOPG+CMM+HER
2 250000 ol b
&
[
Cumulative PnL
7500
= Al
& 5000 DDPG+MLP
E DOPG+MLP+HER
G 2500 DOPG+CNN
o DOPG+CNN+HER
I : y o : : o :
@.@ @.@ o® ol N o R 1(,.@
Time

Figure 6.4: The trading behaviour after taking policy actions for trading day 01-02-2018
6.2 Analysis of Out-of-Sample Results

Once all of the models are trained, we use the trained models to run the out-sample intra-day
trading from 02-02-2018 to 08-02-2018 (5 working day) to test the trading performance.

6.2.1 Trading Performance Metrics

Four trading metrics are used to evaluate our results: cumulative return (CR), Sharpe ratio (SR),
Sortino Ratio (SSR) and Calmer Ratio (CAL). The equations of each metric are denoted as:

(by — bg) * 100

CR = (6.2.1)
bo
where by and by are the initial value and final value of the portfolio assets.
Elr] —
SR = M (6.2.2)

where E[r] is the annualised mean return, ry is the risk free or benchmark rate, o, is the annualised
standard deviation (volatility) of the return.

Elr] —
ssp = Elrl—re) (6.2.3)
ay
where o, represents the annualised down-side standard deviation.
car - El 6.2.4)
} - MDD (6.2.

where MDD is the maximum draw-down of the return.

39




6.2.2 Analysis of Trading Results

Tables 6.1 and 6.2 show the intra-day trading performance by using the out-of-sample data from
02-02-2018 to 08-02-2018. The former table does not include the last minute PnL generated by the
end-of-day force close position. Normally when a trader closes the large big positions at the end
of the day, this will have big impact on the daily PnL. Hence we use these two tables to compare
it there is any impact. If both DDPG+MLP and DDPG+CNN with HER follow the inventory
model defined in equation 4.3.2, they will have smaller positions at the end of the day and hence
their daily PnL should be less affected.

In Table 6.1, DDP G+CNN with HER are the winners on day 1 and day 2. Surprisingly, DDPG+MLP
without HER model is the winner for the rest of the week. Day 3 is the most interesting as both
DDPG+MLP models have positive values in all of the metrics. Now we examine the trading re-
sults in Table 6.2. As expected, we spot that all performance results are dropped for all of the
models. DDPG+MLP with HER is out-performing DDPG+CNN with HER as winner on day 1.
DDPG+CNN with HER and DDPG+MLP without HER models stays the same as second day
and third day winners respectively. However, on day 4 (07-02-2018), DDPG+MLP with HER is
out-performing DDPG+MLP without HER in CR(%) and Sortino Ratio. This means that the
inventory control method may help the model to reduce less profit. On day 5, both DDPG+MLP
and DDPG+CNN without HER are close with each other, as the former is winning on CR(%) and
Sharpe Ratio, whereas the latter is winning on Sortino and Calmer.

Since the unusual performance for DDPG+MLP on 06-02-2018 is spotted, we analyse the trading
actions generated by the networks as well as the trading activities that occurred on that day. In
Figure 6.5, we detect that there are very high positive correlations between the GBP/USD mid
prices and the cumulative PnLs for all of the models. After closer investigation, this is caused the
high positions held by all of the agents.

In between 10.00am and 2.00pm, there was big drop in GBP/USD and hence this will also bring
down the unrealised PnLs for all of the models (cumulative Pnl. = cumulative realised PnL +
cumulative unrealised PnL). Unluckily for the models with HER, the inventory model (equation
4.3.2) followed by them is totally opposite with the market price patterns, that explains why their
cumulative PnL is highly correlated with the GBP/USD market price. As for the other two models
without HER, with reference to the actions in Figure 6.6, we discovered that the two models start
to build up the positions from 6.00am to 8.00am. At 8.00am, DDPG+CNN withont HER has
higher positions of £375000 than DDPG+MLP without HER model’s £550000. After 8.00am,
DDPG+CNN without HER started to offload some positions as it spotted the downward trends but
it's not doing enough. When the GBP /USD dropped to 1.385, the lowest of the day, DDPG+CNN
without HER still has GBP position around £400000. After 4.00pm, all models start to long for
GBP /USD and we see that the higher the position at this time, the more gain they will have until
the end of the day. Both DDPG+CNN models have lower positions after 4.00pm and they have
lesser long actions compare to DDPG+MLP models. The DDPG+MLP with HER needs to follow
the inventroy model to reduce the positions before end of the day. However this isn’t the case for
DDPG+MLP without HER, this could explain why DDPG+MLP is the winner on 06-02-2018.

6.2.3 Discussion

From the trading performance shown in Table 6.1 and Table 6.2, we observe that the HER algorithm
plays some important roles on inventory controls which could have impact on trading performance.
We also explain why DDP G+MLP without HER could outperform other models on some occasions.
Moreover, we find out that DDPG+MLP models could perform as good as DDPG+CNN in the
out-sample tests. We believe that if we could let DDPG+CNN models to be trained with more
episodes, then they may perform better.

40




Date Model CR (%) Sharpe Ratio Sortino Ratio

Calmer Ratio

02-02-2018 DDPG+MLP —0.796 —0.856 —1.068 —0.219
02-02-2018 DDPG+MLP+HER  —0.743 —0.856 —1.050 —0.227
02-02-2018 DDPG+CNN —0.794 —0.819 —1.010 —0.224
02-02-2018 DDPG+CNN+HER — —0.626 —0.811 —0.984 —0.227
05-02-2018  DDPG+MLP —0.582 —0.704 —0.902 -0.184
05-02-2018 DDPG+MLP+HER ~ —0.671 —0.766 —0.946 -0.189
05-02-2018 DDPG+CNN —0.713 —0.812 —0.995 -0.191
05-02-2018 DDPG+CNN+HER — —0.553 —0.709 —0.889 —0.178
06-02-2018  DDPG+MLP 0.115 0.132 0.213 0.040
06-02-2018 DDPG+MLP+HER  0.048 0.050 0.083 0.015
06-02-2018 DDPG+CNN —0.053 —0.074 —0.115 —0.020
06-02-2018 DDPG+CNN+HER — —0.053 —0.063 —0.097 —0.018
07-02-2018 —0.309 —0.488 —0.677 —0.142
07-02-2018 —0.420 —0.516 —0.673 —0.175
07-02-2018 DDPG+CNN —0.440 —0.559 —0.744 —0.162
07-02-2018 DDPG+CNN+HER — —0.493 —0.610 —0.798 —0.184
08-02-2018 DDPG+MLP 0.541 0.453 1123 0.391
08-02-2018 DDPG+MLP+HER  0.194 0.126 0.250 0.051
08-02-2018  DDPG+CNN 0.5143 0.417 1.088 0.473
08-02-2018 DDPG+CONN+HER 0188 0.136 0.202 0.069

Table 6.1: Intra-day trading performance using out-of-sample data from 02-02-2018 to 08-02-2018

(5 trading days) EXCLUDING the last minute force close positions

Date Model CR (%) Sharpe Ratio Sortino Ratio  Calmer Ratio
02-02-2018 DDPG+MLP —0.863 —0.920 —1.139 —0.237
02-02-2018 DDPG+MLP+HER  —0.743 —0.856 —1.050 —0.227
02-02-2018 DDPG+CNN —0.892 —0.905 —1.094 —0.251
02-02-2018 DDPG+CNN+HER  —0.715 —0.906 —1.071 —0.259
05-02-2018 DDPG+MLP —0.635 —0.758 —0.958 -0.195
05-02-2018 DDPG+MLP+HER  —0.748 —0.842 —1.026 -0.204
05-02-2018 DDPG+CNN —0.786 —0.877 —1.048 -0.203
05-02-2018 DDPG+CNN+HER  —0.614 —0.772 —0.947 —0.193
06-02-2018 DDPG+MLP 0.037 0.043 0.067 0.013
06-02-2018 DDPG+MLP+HER  —0.046 —0.048 —0.077 —0.015
06-02-2018 DDPG+CNN —0.108 —0.150 —0.229 —0.041
06-02-2018 DDPG+CNN+HER — —0.133 —0.154 —0.231 —0.044
07-02-2018 DDPG+MLP —0.496 —0.586 —0.785 —0.174
07-02-2018 DDPG+MLP+HER  —0.491 —0.596 —0.764 —0.204
07-02-2018 DDPG+CNN —0.505 —0.635 —0.832 —0.186
07-02-2018 DDPG+CNN+HER — —0.552 —0.676 —0.875 —0.205
08-02-2018 DDPG+MLP 0.484 0.403 0.976 0.350
08-02-2018 DDPG+MLP+HER 0.124 0.080 0.156 0.032
08-02-2018  DDPG+CONN 0.476 0.386 0.996 0.438
08-02-2018 DDPG+CNN+HER 0.135 0.097 0.208 0.050

Table 6.2: Intra-day trading performance using out-of-sample data from 02-02-2018 to 08-02-2018

(5 trading days) INCLUDING the last minute force close positions

41




Position in GBP
(=] S %
S5 8

Cum. PnL

=

-5000

Figure 6.5:

®®

Mid Prices in GEPUSD

— Close
e
Position
- — DDPG+MLP
Ny —— DDPG+MLP+HER
‘“\-—\_,—/_\—:—\— DDPG+CNN
—— DDPG+CNN+HER

Cumulative PnL

o=
" —— DDPG+MLP
DDPG+MLP+HER
—— DOPG+CNN
—— DDPG+CNN+HER

#® awt® a® N o w® ';,0'90

The out-of-sample trading behaviowr for trading day 06-02-2018

42




Actions

Actions

0.5

LXi]

0.5

05

LK}

-0.5

Actions
=

Mid Prices in GBPUSD
—— Close

DDGP+MLP Actions

%M’U‘M/WWWMLP (.

DDGP+MLP With HER Actions

—— DDPG+MLP+HER Paolicy Actions

DDGP+CNN Actions

WMWWW W

DDPG+CNN+HER Actions

DDPG+CHNN+HER Policy Actions

tff"@ o ® o o Nt w® R E @

Time

Figure 6.6: The actions for each model for trading day 06-02-2018

43




Chapter 7

Future Work

Due to time constraints, there are some ideas have not been implemented. In the future, we plan
to explore more experiments with the following scenarios.

Allow long and short positions in the inventory: Currently only the inventory with long
positions (as shown in Figure 4.1) are tested with DDPG+MLP and DDPG+CNN models.
It will be nice to see if the models could perform better if the long and short positions in the
inventory are allowed for an agent.

More currency pairs: [t will be interesting to find out how would the RL system responds
to multiple currency pairs. Could the DDP G model be able to detect the correlations between
different pairs of symbols by using different types of networks?

Comparison with other RL models: We could have more experiments by implementing
other RL models such as DQN, PPO, TRPO ete. The trading performance of the trading
agents, each with different RL models, could be compared.

LSTM network in DDPG model: For our experiment, we have tried MLP and CNN
networks within DDPG. How about LSTM network? Could the agent have better trading
performance if we have adopted DDP G+LSTM model?

Transaction cost control: We use the HER algorithm for inventory control. Then on top
of that, we should be able to use similar techniques to impose the transaction cost control as
well to obtain optimal solutions for maximising PnL.

Ensemble strategies: Hongyang et al. [16] proposed to use an ensemble strategy for
automated trading. [t would be interesting to implement a similar strategy for FX trading.

44




Chapter 8

Conclusion

The tasks to find out the optimal strategies for FX trading using reinforcement learning, especially
with continuouns controls, are challenging since it involves multi-disciplinary knowledge such as
computing, mathematics, deep learning as well as the trading experiences.

We implemented the DDPG algorithm to work with two different types of deep learning net-
works MLP and CNN to generate continuous actions for FX trading. In addition, by combining
the MLP or CNN with the innovative HER algorithin, we demonstrated that DDPG can be used
to provide the continuous optimal strategies for I'X intra-day trading with inventory controls. We
did some analysis on the training results to compare the optimal actions provided by the all four
models and we found out that they can provide the optimal PnLs with the constraints set by us.
The abilities to use DDPG to find these optimal strategies are useful in trading world especially in
automated trading. Then we compare the trading performance among the four models and to our
surprise the DDPG+MLP models perform slightly better than DDPG+CNN models. We believe
that if we could improve the training speed for DDPG+CNN models so that it can be trained with
more episodes, then they could have better trading performance. Moreover, we demonstrate that
the HER algorithm can affect the inventories of DDPG+MLP and DDPG+CNN models and this
eventually have some impacts on the models’ daily PnLs.

Overall we performed the model implementation well and achieved some satisfactory results. Due
to time constraints and hardware limitation, we managed to train the reinforcement learning system
with DDPG models by using one month of historical FX market data only. We think that the
models could have chance to recognise more market patterns and perform better, if there are more
training data to be fed into the system.

45




Bibliography

1

2]
3

[4

51

(6]

[7

[8

o

(10]

(11]

(12]

13

[14)
[15)

16

John Moody and Matthew Saffell. Learning to trade via direct reinforcement. [EEE Trans-
actions on Neural Networks, 12(4). pages 875-889, 2001.

M. Pakkanen. Deep Learning Lecture Notes. Imperial College London, 2020.
Sumit Saha. A comprehensive guide to convolutional neural networks, 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction, 2nd
Edition. The MIT Press, Cambridge, Massachusetts, 2018.

Md. Saiful Islam, Emam Hossain, Abdur Rahman, Mohammad Shahadat Hossain, and Karl
Andersson. A review on recent advancements in forex currency prediction. Algorithms 13(8),
page 186, 2020.

Victor Talpaert, Ibrahim Sobh, and Ravi Kiran et al. Exploring applications of deep rein-
forcement learning for real-world autonomous driving systems. 2019.

Abdellatif Alaa, Mhaisen Naram, Chkirbene Zina, Mohamed Amr, Erbad Aiman, and Guizani
Mohsen. Reinforcement learning for intelligent healthcare systems: A comprehensive survey.
2021

Tengteng Zhang and Hongwei Mo. Reinforcement learning for robot research: A comprehen-
sive review and open issues. International Journal of Advanced Robotic Systems, pages 1-22,
2021

Xinghua Lu, Yunsheng Chen, and Ziyue Yuan. A full freedom pose measurement method for
industrial robot based on reinforcement learning algorithm. 2021.

OpenAl, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw De-
biak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal
Jozefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé
de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szy-
moun Sidor, Llya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale
deep reinforcement learning. 2019.

Jan Peters, Sethn Vijayakumar, and Stefan Schaal. Reinforcement learning for humanoid
robotics. Third IEEE-RAS International Conference on Humanoid Robots, 2003.

David Silver, Volodymyr Mnih, and Koray Kavukcuoglu et al. Playing atari with deep rein-
forcement learning. 2013.

Silver D., Huang A., and Maddison C. et al. Mastering the game of go with deep neural
networks and tree search. Nature 529, page 484-489, 2016.

John Moddy and Matthew Saffell. Reinforcement learning for trading. 1998.

Souradeep Chakraborty. Deep reinforcement learning in financial markets. Computational
Finance (g-fin.CP), 2019.

Hongyang Yang, Xiao-Yang Lin, Shan Zhong, and Anwar Walid. Deep reinforcement learning
for automated stock trading: An ensemble strategy. 2020.

46




(17]

(18]

[19]

(20]

(21]

(22]

23

(24]

25

126]

(27]

Alvaro Cartea, Sebastian Jaimunga, and Leandro Sanchez-Betancourt. Deep reinforcement
learning for algorithmic trading. 2021.

Bing Anderson and Shuyun Li. An investigation of the relative strength index. Banks and
Bank Systems, pages 92-96, 2015.

Mark Leed. Bollinger bands thirty vears later. Statistical Finance (g-fin.ST), 2012.

Mansoor Maitah, Petr Prochazka, Michal Cermak, and Karel Sredl. Commodity channel
index: Ewvaluation of trading rule of agricultural commodities. International Journal of Eeo-
nomics and Financtal Issues 6(1), pages 176178, 2016.

Massimo Buscema. Back propagation neural networks. Substance Use Misuse 33(2), pages
233-270, 1998.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. Jrd
International Conference for Learning Representations, 2017.

Keiron O'Shea and Ryan Nash. An introduction to convolutional neural networks. [Online/
hitp:/ farziv.org/abs/1511. 08458, 2015.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, and etc. Continuous control with
deep reinforcement learning. ICLR 2016, 2016.

Marcin Andrychowicz, FilipWolski, Alex Ray, and Jonas Schueider et al. Hindsight experience
replay. 31st International Conference on Neural Information Processing Systems, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

Raffin Antonin, Hill Ashley, Ernestus Maximilian, Gleave Adam, Kanervisto Anssi, and Dor-
mann Noah. Stable baselines3. https://github.com/DLR-RM/stable-baselines3,
2019.

47




TONG_TZYY_00402411_THESIS

GRADEMARK REPORT

FINAL GRADE GENERAL COMMENTS

/O Instructor

PAGE 1

PAGE 2

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10

PAGE 11

PAGE 12

PAGE 13

PAGE 14

PAGE 15

PAGE 16

PAGE 17

PAGE 18

PAGE 19

PAGE 20




PAGE 21

PAGE 22

PAGE 23

PAGE 24

PAGE 25

PAGE 26

PAGE 27

PAGE 28

PAGE 29

PAGE 30

PAGE 31

PAGE 32

PAGE 33

PAGE 34

PAGE 35

PAGE 36

PAGE 37

PAGE 38

PAGE 39

PAGE 40

PAGE 41

PAGE 42

PAGE 43

PAGE 44

PAGE 45

PAGE 46




PAGE 47

PAGE 48

PAGE 49






