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Abstract

Black, Scholes and Merton, who deduced a formula for pricing an European option on an under-

lying whose price follows a log-normal diffusion process, contributed to major developments in

modern finance. Assumptions made in their theory were very restricted such as constant volatil-
ity, and many important features in finance were not included, for instance, credit, collateral and
funding. The aim of this project is to derive and study a pricing formula including those features
mentioned previously.

Firstly, we introduce and derive the mathematical expression of value adjustments for credit, collat-
eral and funding. Later on, we derive the semilinear parabolic Partial Differential Equation linked
to these value adjustments. We show the solution exists and is unique under some assumptions.

Final

we study the resulting PDE numerically for simple cases such as call option and straddle
contract and sensitivity analysis are run for parameters such as funding rate, default intensity etc.
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Chapter 1

Introduction

1.1 History of XVA

The acronym XVA refers to valuation adjustments due to some financial phenomena such as:
defanlt (CVA), hedging/funding (FVA) and collateralization (ColVA), etc. Such adjustments are
considered by banks when pricing derivatives in Over-The-Counter(OTC) markets, the importance
of which has grown in recent years especially after the financial crisis in 2008.

The first member of the XVA family is called Credit Value Adjustment (CVA). The reason why
CVA is born is very intuitive: banks are afraid that the counterparties will not be able to ful-
fil portions or the whole amount of cash payments incurred in a derivative contract. Through
CVA, the credit risks of the counterparty in a derivative contract are priced and such amount is
charged to the counterparty, making the contract cheaper than the default-free price. The term
CVA first appeared in the late 90s, after the Asian Crisis in 1997, the default of Russia and the
fall of Long-Term Capital Management in 1998, investment banks realized that credit risks of the
counterparties must be taken into account by the pricing procedure of derivative contracts. In the
carly 00s, the OTC market has grown rapidly, the default of some big companies such as Enron,
WorldCom and Parmalat alerted banks and CVA desks were created in all the banks. Caleulations
were simple, which were typically based on historic probabilities of defanlt, and banks considered
themselves as risk-free parties in derivative markets. CVA mark to market losses have contributed
importantly to the 2008 crisis, as stated by the bank of international settlements.

One of the major causes of the financial crisis was the systematic mispricing of American mortgages
and Mortgage-Backed Securities (MBSs). Those complex and structured products were mainly is-
sued by mortgage providers such as Fannie Mae and Freddie Mac, which held a large amount
of low-rated subprime loans, however, it was ignored as they were backed by high-rated issuers.
Mortgage securitization is a fast way to recover capital and mitigate the risks to other market par-
ticipants, and this particular feature attracts many financial entities in the market, among which,
Lehman Brothers, one of the protagonists of the crisis. During 2007-2008, investors were losing
faith on these securities due to the subprime mortgage crisis starting in 2007, which triggered a
liquidity erisis subsequently. Lehman Brothers faced a huge loss due to the price decay of MBSs,
which finally declared bankruptey in September 2008. Other entities such as Merrill Lyuch also
received financial aids from Bank of America which led to the merge of these two companies.
After the crisis, investment banks raised the importance of CVA and no longer considered them-
selves to be risk-free, leading to the second member of XVA family: Debit Value Adjustment
(DVA), which can be thought as the CVA charged from the counterparties’ point of view, that
is, both parties need to agree on the amount of CVA and DVA before entering into a contract.
IFurthermore, the calculation of CVA/DVA has evolved from historical default probabilities to a




general pricing framework, check for example Brigo's book Counterparty Credit Risk, Collateral
and Funding: With Pricing Cases for All Asset Classes [1].

Before the crisis in 2008, the term DVA was omitted and banks only calculated so-called unilateral
CVA (UCVA), see for example in the general framework of Brigo and Masetti 2], which is later on,
applied to price different products such as interest rates, equities and commodities by Brigo and
Pallavini [3], Brigo and Bakkar [4] and Brigo and Chourdakis [5]. After the erisis in 2008, DVA
has also been considered in pricing, leading to bilateral CVA. Brigo and Capponi [6] priced Credit
Default Swaps (CDS), taking CVA into account. In 2011, Pallavicini, Perini and Brigo developed
a framework for CVA, DVA, FVA and collateral [7], which served as the base in the pricing of
defanltable bonds and simple call options, according to Brigo, Buescu and Rutkowski [8].

Apart from counterparties’ credit risks, there are also valuation adjustments caused by other eco-
nomic /financial aspects, for example:

e Banks need to hedge the risks in derivative contracts they trade on, which comes with a
cost and will be accounted in the pricing of each contract, and this is called Funding Value
Adjustment (F'VA). The hedge is done by traders in a bank that deals with other market
participants. Whenever needed, traders will need to borrow money from the treasury and the
treasury from external funders. The interest rate incurred from borrowing is usually higher

than risk-free rate due to the credit risks of the banks and their contribution to FVA.

e Another way to mitigate the credit risk is via collateralization, which is a common practice
in the financial industry especially in OTC markets. The majority of the contracts are
collateralized, and both parties will post collaterals if needed, which also comes with a cost,
since collateral can be seen as capital and opportunity cost is present. Such cost is also
calculated and called as Collateral Value Adjustment (ColVA).

When the term FVA was first introduced, it was controversial in the financial industry, and there
were authors who did not agree on the inclusion of FVA in derivative pricing, for example Hull
and White [9], Burgard and Kjaer [10]. The reasons they provide include that pricing should be
separated from hedging which involves buying and selling securities in the market at a fair price,
thus there is no additional cost. However, over time, such adverse voice disappeared and FVA be-
came as prominent as CVA /DVA. Examples of the importance FVA can be found in the industry:
according to Wall Street Journal on January 2014, the funding valuation adjustment costed J.P.
Morgan Chase $1.5 billion in the fourth-quarter results.

There are lots of analysis of FVA in academia: Brigo, Pallavicini and Perini [7] constructed a
general framework including CVA, collateral and funding cost, Brigo, Liu, Pallavicini and Sloth
[11] discovered the non-linearity of pricing equation by introducing the funding cost, which is non-
separable from credit risks. Burgard and Kjaer [12] calculated the FVA of funding strategies that
only involved trading bonds, showing that different funding strategies would generate different eco-
nomic value and hence FVA was not unique. Later on, in 2017 Burgard and Kjaer [13] extended
the replicating strategy to multiple connterparties.

Nowadays, there are emerging terms of valuation adjustments. Capital Value Adjustment (KVA)
has been raised due to the cost of capital one has to set aside, so as to be able to trade. There
are theoretical discussions on it, see for the example of Green, Kenyon and Dennis [14]. Margin
Value Adjustment (MVA) has been created to offset the funding cost of the initial margin required
in trading. We will not focus on these adjustments in this project because in the industry, they
are not as well established as previous adjustments and there is not a standard agreement on the
calculation of these terms.

Focusing on the pricing theory, Black and Scholes [15] deduced a PDE formula for pricing an

European option on an underlying whose price follows a log-normal diffusion process, contributing




to major developments in modern finance. The famous Black-Scholes formula was widely used in
the industry, which, however, does not reflect the effect of CVA or other price adjustments. More
advanced mathematical tools were introduced to deal with new financial terms. For example, El
Karoui [16] introduced Backward Stochastic Differential Equation in the case of asymmetric inter-
est rates. In 2014, Lou [17] extended the classic pricing formula to include funding costs. Brigo,
Francischello and Pallavicini [18] managed to derive the Forward Backward Stochastic Differential
Equation and its corresponding semilinear partial differential equation including credit risks, col-
lateral and funding effects. They also showed the uniqueness and existence of viscosity solutions
under some mild conditions. Later on, in 2019, Brigo, Francischello and Pallavicini [19] conducted
a mumerical analysis on the FBSDE using Monte Carlo simulation.

This dissertation will be based on the work done by Brigo, Francischello and Pallavicini [18], we
will prove the existence and uniqueness of a classical solution of the semilinear PDE instead of a
viscosity solution. Instead of building numerical solutions to FBSDE, we will follow another path
and search numerical solutions to the semilinar PDE through finite difference method. We will

then study a number of numerical cases to illustrate our numerical methods.

1.2 Structure of the dissertation

The rest of the dissertation is organized as follows. In section 2.1 we provide a general theoret-
ical framework for the price adjustments mentioned previously, including a brief financial back-
ground and the derivation of their mathematical expression. Section 2.2 provides the derivation of
Black-Scholes PDE with credit, collateral and funding adjustments. Furthermore, we present the
existence and uniqueness theorems for the solution of the PDE and we verify the conditions for
these theorems are hold in our case. In section 3, we first introduce the finite difference method
to solve the PDE numerically. Then, we present two mumnerical studies: simple call option and
straddle contract, we also run some sensitivity analysis on different parameters. Conclusion and
futher work may be found in section 4.




Chapter 2

Black Scholes PDE with credit,

collateral and funding

2.1 financial Background

In this section, we will derive the Partial Differential Equation (PDE) linked to a general pric-
ing framework taking account the effect of credit, collateral and funding. It is noteworthy that
throughout the section, unless otherwise stated, we price the product under the point of view of
the "Bank”, and the other party is treated as the " Counterparty”, we will use X g and X to refer
any process X related to the "Bank” and " Counterparty” respectively. This pricing framework was
first introduced by A. Pallavicini [7] in 2011, later on, D. Brigo, M. Francischello and A. Pallavicini
extended that framwork[19], our work in this section will be based on their work and the lecture
notes from the course Interest Rates Models at Imperial College London [20].

We will start by introducing the general notation we adapt in this chapter. Next, we will intro-
duce and explain the mathematical expression for each of the value adjustments mentioned in the
previous chapter. Finally, we will put all the terms together and derive the corresponding Forward
Backward Stochastic Diflerential Equation (FBSDE) and Partial Differential Equation.

2.1.1 General Settings

First of all, we specify the probability space (€2, A, Q) we will be working on. The probability
measure (J is called the Risk-Neutral measure, i.e. the equivalent martingale measure such that
the discounted price process of any non-dividend paying contingent claim is a martingale with
respect to (.

We also need the probability space to equip a filtration that store the information available up to
time t. There are couple of filtrations that are interesting to us. We denote by (F;);~¢ the default
free filtration. Under this filtration, F; encodes the market information up to time ¢, however, F;
does not include the default intensity of either "Bank” or "Counterparty”. The other filtration
that is crucial is defined by G; = F; A Dy where Dy only contains the information about the fault
intensities at time £, we will go into details in the next section. We can call (G;)i>0 the complete
filtration.

Denote by r; by the short interest rate process. One of the products that we can trade in the market
is simply depositing the money in the Treasury and earn the interest rate. Assuming continuous

compounding, the dynamic of treasury account is given by:

dB; = 1 Bedt, By = 1.




We use this to derive the discount factor B;/Br = e~ I reds - We will now adopt the notation

D(t, T, x) = e~ " 242 o1 the discount factor with respect to the process z; and for simplicity we
assume D(t,T) = D(t,T,r). The classic pricing theory states that: if the market is free of default

and arbitrage, then for any derivative with payoff Vr at time to maturity 1" one has:
Vi = E[D(t, T)Vy|Fi]

where V; is the price of the derivative at time ¢ where [E denotes the expectation with respect to
probability measure (), since the only probability measure we will use is the Risk-Neutral measure,
we simply omit ( in the expectation expression. In this project, we will assume that the final
payoll of the derivative we try to price depends ouly on the price process Sy of the underlying asset
at time T, i.e. Vp = @(S7). We denote by 1I; the cash flow process incurred during the contract,
if II; = 0, then we expect to receive money from the counterparty, otherwise, we make a payment
to them. We assume that 1I; = I1(S;, ) depends only on the underlying asset process the current
time ¢. This assumption is valid for standard products such as european options, interest swaps
etc.

IFurthermore, to simplify the problem, we will assume in dimension of S; to be 1, that is, we
assume the derivatives we price has only one particular underlying asset, it can be a particular
stock or even a portfolio with constant weights. This also implies the market we are considering
only includes 2 different assets: risk-free bond B; and the underlying asset S; any trading strategy
including hedging will be based on this two products.

2.1.2 Credit risk: CVA and DVA

As explained in the previous section, CVA comes from the default possibility of the counterparty,
this value adjustment usually makes the contract cheaper. By switching the point of view to coun-
terparty, we can calculate the CVA due to the default from the bank. The debt value adjustment
can be seen as the opposite of the CVA seen from the counterparty:

DVAp = —CVA¢

In order to calculate them, we need also to clarify and model a couple of things. We start with the
defanlt scenario, a default situation happens when a party passes the payment deadline on a debt
they were due to pay, it can either be due to insolvency (the party has not enough asset the pay
its liabilities) or the party defaults intentionally, this is also called strategic default. We denote by
T and 7o the default time of the bank and counterparty respectively. A very common practice in
the industry is to model 7; as an exponential distribution. Mathematically speaking, let £ and &¢
be two independent exponential distributions with mean equals to 1, we also assume Fi-adapted,
positive processes AP and AS, then we define:

t

7; = inf {rgm )\id.¢>§i}, i€ {B,C}. (2.1.1)

0

Defined in this way, we can check that conditional on J;, the distribution of 7; behaves like a

discounting factor:

Qri > t1Fs) = E(lre|Fo) = e 4 s > ¢, i € {B,C).




Also, due to the independent assumption of &'s, we can further check that:
Bl s drpst, [ Fo) = Bl wr, | FOE(L 5, | Fe) Wt € [0, 5]

that is, given information up to time s, A\' are completely deterministic and we assume that A’
contains of the dependence structure of 7;. Since we are interested in the first default time regardless
the party who defanlted, we set 7 = 7 A 7. Combining the previous results we can show that

conditional on F, the distribution of tau has still the form of a discount process:
T B\
QUr > t1F) = B> | Fo) = E(lrgnilese|[Fo) = ¢ 0 A T408 s 5t

For a shortcut, we can write Q(7 > #|F,) = D(t,T,AF + AS). Check Duffle-Huang [21] for more
detailed explanation.
Now, we are able to extend the risk-free filtration F; to contain credit information of both parties

up to time t. Mathematically, denote by
HE =0l ye s < 1), HY =o0(liocs, s < 1),

the credit filtration, H;j contains the information whether a party defaults at or before time t. We

can now specify the filtration D; and the complete filtration G; to be:
D, =HEVHE, G =FvD,

We assume that both parties cannot default at the same time, i.e. (}{7g = 7¢) = 0. Denote by

7 = 7 AT. Finally, we can write our first version of the pricing formula including credit risk of

)

both parties:

Vi :lE(]l,>TD[t,T](I>(ST) 7[ D(t,u)IL, du
M — t

Part A
Part B
+E ( D(fs'r)l!\:r{‘f‘(]lr(_-grg (R-ECC-' (fr(_-)+ - (_fr(_-)+)) ' g!) (2.1.2)
Part C
+E ( D(t, T terer (Legere ((225) T — RECr(—2-,))) ' gf)
P;\:: D

Financially speaking, part A corresponds to the discounted final payoff where there is no default
scenario between [, T']. In integral in part B is the sum of all discounted cash flows incurred in the
contract during [¢,7 A T7.

The term z; used in part C and D is called the net close-out process this process, which represents
the amount that is owed by one party to another in a default scenario at time f. According to the

Gregory's book [22], in a general default scenario,

e Close-out is the right of the surviving party to terminate transactions with the defaulted

counterparty and cease any contractual payments.

e Netting is the right to offset the Mark-To-Market value across transactions and determine a
net balance which is the sum of positive and negative values. This will the single amount of

money one party pay to another depending on its sign.

Close-out netting is very common in the industry since it reduces settlement risk, for example, one
party A pays in USD and receives EUR, without close-out netting there is possibility of a sudden

drop in value of EUR after A transferred USD to its counterparty. Another benefit of close-out




netting is that the survival party can immediately realize the gain (if any) and avoid a potential
bankruptey process of the counterparty.

We first look at part C where we assumed that the counterparty defaults at r: if £; is positive,
then we can only receive a fraction of this amount (RECq times =), REC; is called the recovery
rate, normally is between 0.4 and 0.6. By contrast, if we owe money to the counterparty (=, is
negative) we have to pay the whole amount. Similarly, from the point of view of the counterparty,
we obtain the expression in part D. Part C and part D are called the CVA and DVA of the Bank
respectively, we will improve this expression when collateralization is involved.

There are two different ways to calculate the net close-out process £¢. The most intuitive way is

G.)

This amount is often called the defanlt-free close-out amount. One advantage of this setting is its

to take the average of discounted future cash flows up to time 7~

T
£ :E(D(T.T}@(Sﬂ—f D(t, u)lL,du

fast tractability since it is straight forward. However, in the practice, this is not always true: we
implicitly assumed that both parties will not default after time 7. Since we are discounting future
cash flows, it is reasonable to assume that both parties can default in the future as if the current
defanlt does not happen. Under this setting, we have =, = V;, we call it the replacement close-out

and we will stick with this setting in out pricing framework.

2.1.3 Collateralisation

According to Gregory’s book [22], a collateral is an asset supporting a risk in a legally enforceable
way. Collateralisation is another commonly practiced tool in the industry to mitigate the default
risk. If two parties enter into a contract with collateral agreement, then one party must post
collateral to another party to support such exposure on credit risk. The ownership of asset being
posted as collateral does not change unless the collateral giver party defaults, in that case, the
collateral receiver party becomes the permanent economic owner of the collateral. Collateralization
provides a really dynamic and flexible way to offset the loses in the event of default.

In a collateral agreement, both parties will have to concur on certain terms such as:

e Type of collateral: normally, cash or liquid tradable securities are accepted in order to
eliminate liquidity risk.

e Thresholds: the amount below which collateral is not needed. The reason of setting threshold
is to reduce potential operating risk and liquidity cost when the contract’s value is volatile.
Zero threshold means that collateral is always needed and an infinite threshold means no

collated is required.

e Haircuts: depending on the type of collateral, specially in the case of illiquid assets, the value
may be reduced in the counting of collateral required. The haircut is designed to reduce the

market risk and liquidity risk driven by the volatility of the asset and its liquidity.

At the early stage of collateralisation, the collateral was segregated, the receiver party was not
allowed to trade it in the market. Nowadays it is common that the collateral received can be
traded by the receiver party, this is called re-hypotecation. In this way, the receiver party gives up
some protection against credit risk to seek for higher return using the collateral.

Now, we introduce the mathematical model for the collateral. Denote by ' the collateral process
from the point or view of the bank. If C¢ < 0, the bank posts such amount at time t to the
counterparty, similarly if C; > 0, the bank has gained exposure to credit risk and receives collateral

from the counterparty. Although the collateralisation in the real practice is a discontinuous process

10




due to the minimum transfer threshold, haircuts and so on, we will treat it as a continuous process.
We assume the asset posted as collateral is cash and can be re-hypotecated. If two parties enter

in a derivative contract with collateral agreement, we describe the collateral process as follows:

e At the beginning, no party posts collateral since the derivative is traded at fair price. Hence

we have Cy = 0.

e Every day during the contract, both parties will calculate the MTM value of the contract and
agree to an unique value. Then, they compare the value agreed with the value calculated in
day before. The party whose contract has depreciated will have to post additional collateral

to the other party.

e I the case ol default by the collateral giver party, the collateral receiver party will become

the permanent owner of the collateral.

In this way, the party with positive exposure to default risk will be protected by the collateral
received up to day. Normally, this collateral has high liquidity in the market (such as cash or
liquid securities) so the collateral receiver can offset the losses rapidly. Note that, collateralisation
does not eliminate the risk, it transfers the credit risk to other risks such that market, operational
and liquidity risk.

We can now improve our pricing formula to include the effect of collateralisation. We define the
CVA and DVA term with collateral as:

CV-AC'OL =E (D(f, T)ltc;fc;T(]lf(_-{fy (R-E'CB(ET(.' - ("1'(.-)+ - [_ffr.' o (’Yfr.')+)) ' g!)
and
DVACOL =E (D(fsT)]l:{rc;T (]]'TB‘;:.T('((ErB - Cm)+ - (*R-ECC-'fm T Cfu)_'—)) ' Q!).

That is, we treat now the new close-out amount process as z; — ;. There is one more thing to
add to our pricing formula. From the point of view of the bank, unless the counterparty defaults,
the collateral received (if any) still belongs to the counterparty. Therefore, if we keep this asset,
we must remunerate it. Assuming continuously compounding, we denote by ¢ > 0 the rate at
which we remunerate the collateral, this is called the collateral remuneration rate. Hence, we need
to include another term in owr pricing formula, we call it the Collateral Valuation Adjustment:

;)

The financial explanation is simple: assume the bank receives the collateral (C > 0), then the

ColVA = —]E(-/ Dt u)(ey — ry)Cudu
t

bank will have to pay back Ctic: as compensation, also, the bank can invest the collateral in a
risk-free way to earn Cyry since we allow re-hypotecation. The converse case is derived similarly.

Putting all this together, the equation 2.1.2 becomes:

v :E(L>TD(1‘.T]¢>(ST] —/ D(t,u)IL, du
t

g:) + CVAcoL + DVAcor + ColVA. - (2.1.3)

2.1.4 Hedging cost

In the financial industry, the role of an investment bank is to design financial products that flfills
clients’ demand, price the product correctly, once the product is sold the bank tries to hedge the
risk using basic financial products such as stocks, swaps etc. In our case, we suppose that the

hedging strategy involves trading repurchase agreements (as known as repo). Repo can be seen

11




as a short-term, collateral-backed loan, if two parties enter in a repo, the dealer party sells its
asset to the investor party and agrees to purchase it back (typically in the next day) with a higher
price. The bank can use repo to gain/hedge exposure on the underlying by entering a repo as
investor /dealer party.

Denote by H; the value of the risky asset traded in the repo and CH by the cash exchanged in the
contract. We assume that the repo is traded at fair meaning that H, + CH¥ = 0, we also assume

that the bank can enter in a fair repo at any time. The trading strategy involving repo is as follows:

1. Starting at time t, suppose we want to hedge H; > 0 exposure to stock’s price movements,
thus, we need to short the stock. We can do this by entering in a repo agreement.

2. We first borrow from treasury H; amount of cash at rate f;. This rate does not need to be

the same as 74, in this section we will see that it does not affect to the hedging cost.
3. We enter in a repo agreement, to obtain H,/S; amount of stock.
4. Then, we sell the stock to obtain H; amount of cash and pays back to treasury.

5. At time f+dt, we need to close the repo agreement so we borrow from the treasury H; Sy 4,/S;

amount of cash to buy from the market H,/S; amount of stock.

6. We close the repo agreement, and receive (1+h,dt)H, of cash, we pay back this cash to cover

what we have borrowed earlier.

Trading under this way, we can gained a negative exposure to stock’s price movements, and the

hedge is completed. The PnL of the portfolio is:
(1+ hedt)Hy — Hi St/ Se = Hy + hyHydt — Hy — Hy [ SpdS;
where we used Siyar = 8¢ + dS:). Under risk-neutral measure we get:
hyH; — Hyrpdt = (hy — 1 )Hydt — odW, = —((ry — hy ) Hydt + 0 5,dW,)

where W; is a (J—Brownian Motion. Finally, the cost of hedging is calculated by taking expecta-
tion of the discounted PnL of our strategy up to 7, we give it the name of Hedging Valuationg

)

Note that, the calculation of HVA is independent of f; since in the trading strategy we designed,

Adjustment. Thus, we get:

HVA = —]E(/ Dt u)(ry, — hy)H, du
t

we assumed that we pay back immediately the cash we borrowed, hence no interest rate is involved.

2.1.5 Funding Cost

In the previous section, we designed a strategy to explain how hedging cost is caleulated. In this
section we will derive a full replicating strategy to the derivative and we will see that, apart from
costs coming from collateral and repo agreement, there is an additional term to be considered. The
main reason is because the treasury will not lend the money at risk-free rate. Let F} be the funding
account with the treasury. As usual, if F} is positive /negative, it means we are borrowing/investing

money from/at the treasury and let:
fo = £ g0+ f k<0

12




be the interest rate at which we borrow/lend money with treasury.

We start by assuming that we can perfectly replicate the derivative V; in the following way:

VieF o+ g cH
3,

where we know H; + C}/! = 0 since the repo is traded at fair. Note that, we also assumed the
derivative is default-free, otherwise we need to include trading a credit default swap (CDS), see
Brigo's paper [8]. But it does not matter since the default risk is already covered by CVA and
DVA term defined previously.

Take the point of view of the derivative buyer (traders in the bank), we construct the following
strategy during a time interval [t,t + df], a trader would repeat the same process until the time of
maturity T of the contract.

At time t:

1. The trader borrows from the treasury Vi at interest rate f; and uses it to buy a contract.

2. By entering in the contract, the collateral account (Y is present, it can either be positive or
negative depending on the nature of the contract. If C'; > 0, the trader deposit it at treasury,

it ¢y < 0, the trader fund this amonnt from treasury.

3. Repeat the steps 2-4 in the previous section, assuming H; > 0 to be the exposure to stock’s
price movements.

Thus, the net funding account we have is F; = Vi — C}. At time ¢t + dt:
4. The funding account now becomes Fiiq: = (Vi — Ci)(1 + fielt).

5. Repeat steps 5 and 6 in the previous section. The PnL of the repo operation is:
[l - hgdf]Hg — HgSg+dg}(Sg = hgﬂgdf — .Hg/Sgng

So the exposure to price movements is eliminated.
6. Now the trader sells the contract and obtains V; 4 and pays back to the treasury.

7. By closing the contract, the trader also clears the collateral account €y together with interest

.
After the whole produce, the funding account is now given by:
Fipar = =Vigar + (Vi = Co) (1 + fidt) + G (L + egdt)

Vil + fudt) + Coler — fi)dt — Viw
—dVi + Vi fedt + Cyley — fi)dt

And the total PnL is given by:
A ; H,
dl’g — Lgfgdf — Cg[t’.’g - fg )(’If — TCES; - thgdl‘
S
Taking risk-neutral expectation conditional on t of above expression we get:

]Eg ({f‘r”g - L’gft{ft - C’g((.‘g - fg]{ft - %ds‘! - ![ng lﬁ')
i

H
= ?"g‘r’idf — {flp[f) — nggdf — C‘g[:’.‘g — fg)df — q—!?"gSgdf - thgdf
It

= (Vi = Ci)(ry — fi)dt — Celer — e )dt — Hy(ry — g )dt — dip(t)
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where we used E[dS:| = rrSidt and E;[dVi] = r:Vidt — dip(t), where dip represents the funding
cost. Since the trader starts with zero cash, he must earn nothing under risk neutral measure,

hence we equal the above expression to zero and we get:

dp(t) = (Vi — Ce)(ry — fi)dt —Cylee — re)dt —Hy(ry — hy)dt

~~ ~~ ~
Funding cost ColVA HvA

Indeed, we can check that dp(t) contains HVA and ColVA defined previously. Note also that, if
ft = 1, then the funding cost will vanish as expected. This is done in the interval [¢,t + dt], the

Funding Value Adjustment (FVA) is obtained by summing the discounted cash flow over [¢, 7], Le.:

FVA = —h(] D(t,u)(fu = ru) (Ve — Cu)du | Q:)
; [

To sum up, we conclude that:

v, :E(]l,>TD(r,T)tI>(.9T]—/ D(t,u)I1,du igt)
"_\f_/ t |

Part A —_— (2.1.4)
Part B

+ CVAcoL + DVAcoL + ColVA + HVA + FVA

2.1.6 External Funding Adjustments

As explained in the previous section, we borrow/lend money externally with funding rate f;. This
amount of money is not risk-free either, hence we need to consider the corresponding CVA and
DVA related to the funding amount Fy, we denote them by CVAp and DVAp respectively. The
mathematical modelling is similar to what we discussed in section 2.1.2, to simplify the problem,
we assime that if we have spare money, we always invest into safe assets such as Treasury Bonds,
therefore we have CVAp = 0. For DVApF we have:

DVAF = E(D(fsT)ﬂz-\'rgT (]]'fﬁiff'((f‘}b‘)_'— - H-E'C(-'(_f'}s)ﬂ) g!)
(2.1.5)
= E(U(fsT)]l!-\rgT(]lm;;r(_-(“/}B —Cry)t —RECG(Cry — Vi)Y | gz)

Finally, we can write the final expression for the price of the contract:

Vi =1E(11r>TD(f,T)‘I’(ST] —fr D(t,u)lL,du | gz)
\'—f_/ t |

Final Payoff — (2.1.6)
Cashflow

+ CVAcor + DVAcor + ColVA + HVA + FVA + DVAg

This is the equation we base to derive the semilinear Partial Differential Equation.

2.2 Derivation

Starting with the expression V; defined in equation 2.1.6, we will derive the Black-Scholes typed
Stochastic Differential Equation and its corresponding Partial Diflerential Equation. Note that, V;
appears iu both sides of the equation 2.1.6 because we assumed e; = V; under replacement close-out
setting, this will lead to what so called Forward Backward Stochastic Differential Equation.

A PBSDE is formed by an ordinary SDE and a terminal condition. It is not a time reversed SDE

since measurability of the solution is affected by the flow of time. Mathematically, a FBSDE is an
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equation in two variable processes (Y3, Z;) such that:
dY; = f(Ye, Zy, t)dt — ZedWy, Yp =€

check El Karoui, Peng and Quenez [16] for more details. We are only interested in the price of the
contract hefore default i.e. pre-default price, since the contract ends at defanlt and the value will
be zero afterwards. In other words, we want to caleulate 1, ,V; for any ¢ € [0, 7]. Generally, V; will
be a G;—adapted process, however, we can always find a F; process V; such that 1.V = ]l,.}!f’!
and this will give us a way to simplify the problem since the filtration F; is much less complex
than G, and we are allowed to only analyse V. This result is based on the following lemma:

Lemma 2.2.1. Let (2, F,F;. Q) be a filtered space and let Dy = o(L, .., s < t) where T is defined

in equation 2.1.1. Let Gy = F; W Dy, then for any A € Gy there exists C € F; such that:
Anft<ri=0Cn{t <7}

Proof. We will prove F; v Dt = C¢ where

Cg:{AE'Hg|HCE}}.?.fAﬂ{f('r}:Cﬂ{f(T}}

It is easy to see C; is a g—algebra. By construction we have C; C F¢ v D;. Also, note that F; C Cy,
and for any s < ¢
{r<stn{t<ri=0n{t <7}

which implies {7 < s} € C, for all s <t. Therefore we have:

}‘:U{{Tﬁs“ﬁff}i_iﬁ’!

Finally, we have:
FivDy = J(fg I {{T <st|s< f}) Co(C) =Cy
Hence, C; = F; vV D;. O
This lemma enables us to construct V;:

Lemma 2.2.2. Let V; be an G, adapted process, then there exists an F; adapted process V, such
that:

Loer Vi = ey Vs

Proof. Note first if 1;;. ) = 0 then the equality holds, so we assume I, .} = 1. Let x be in the
image of 1;;.,}V;, then the pre-image must have the form AN {t < 7} with 4 € G, by lemma
2.2.1, we obtain €' € F; such that An{t < 1} = Cn{t < r}. Thus, we define:

N V. ifwec,
Vilw) = .
0 Hwegd
we repeat the same process for all x in the image of 1j;--}V; and we are done. O
Now, we present the key lemma in the eredit risk pricing:

Lemma 2.2.3. For any A—measurable random variable X and for any t € R we have:

K[l X[ F

Elir> X160 = Lir>ry Efl |5
r

(2.2.1)
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Proof. Note that we can rewrite the equation 2.2.1 as follows:
EXNr oy |Fillr sty = Lo BIX|GHEQ rony [F] = E[X Lz p B[l o) | F1]|Gi]

now we let:
Y =E[X1 | Fllpnny, 2= X g B[ F)

s0 the problem reduces to show Y is the conditional expectation of Z given the filtration G;.

First of all, note that E[Y] is bounded. Secondly, Ij;~ is G, measurable by definition of 7,
E[X1{;.4] is also §; measurable because it is F; measurable, hence Y is §; measurable. Finally,
for any A € G, there is a such set ' € F; by lemma 2.2.1, now, using tower property of conditional

expectation we have:

ElaY] = E[E[X1( 0 [FiLlanron]
= E[E[X1{r>q [ FJlon r>a]
= E[QcE[XT - | FEL =) [F2]]
= E[E[Xlcn > Bl | F] | Fe]]
= E[Xlen{rs Bl | F]]
=Lk :X]lzln{rx}lh:[]l{rm} |~F!]]
= E[l4Z]

and the proof is complete. O

This lemma gives us a way to price products conditional on a simpler filtration J; and the only
thing we do is to divide by E[l; | F;] whose closed form is known and equals to D(t, T, AF +A{).
Now we want to extend this result to calculate integrals involving stopping time, for example the
HVA and FVA term in the equation 2.1.6. Also, we want to compute the expectation of stopped

process such as net close-out amount £, at default.

Lemma 2.2.4. Suppose @, is a G, adapted process. Let 7 be a default time with intensity A.

Then: . -
h[/ wudu ' Qs} =]1{1->:}1E[] D(t,u, \)@udu ' J":}
i i

where @, is an F,—adapled process such that 1j;~ ,y0u = Lrwy)@u-

Proof. We first note that, the LHS is equivalent to:

T T T
lEI:f l,-?"du ' gt] = E[/ ]]-{T>t}]]-{r>u}‘a'9ud"- ' gt] :/ ]]-[T>!}1E[]1{T>u}‘f9u|g!]d“'
t t t

where the last equality holds because of linearity of conditional expectation and Dominated Con-

vergence theorem. Now, we apply lemma 2.2.3 and the RHS becomes:

T - T
]h‘[]l{f>u}lfoﬂ|‘}:!] [ _
O ) el L B | Bl 0y 00|71 D(0, £, A) " du
ft [r=t) Ell 20 |7 > | [Lprs ) | Fe ] D
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now, let ¢, be such an Fi-adapted process, we get:
T T
1{%[ B[y Gul F] D(0, £, 3) "L du =1{m}/ E[E[(, oy $u| 7 FID(0, £, 3) L du
t t
T
:1{f>!}f E[E[]].{,>UHJ'—”]L,5”|.}'_!]D(O_.f,/\]_]'d‘if.
t
T
:1{”,}[ E[D(0, 1, \)@u| Fe| D(0, 8, A due
t
T
:]]-{1'>!}[ E|@u|Fe] D (¢, u, X)du
t
T
:1{”,}15[] BuD(t,u, \)du | }a}
t

this completes the proof. O

Lemma 2.2.5. Suppose that @, is an F—predictable process. Let 7 and 7¢ be two default times
with intensities AB, A& respectively. Then:

T
Elgecrer)rparc)r | G = 1rsn = 1'1[/ Dt AE + XN E o du ) F:}
t

Proof. See Bieleki, Jeanblanc-Picque, Rutkowski 2009. [

Now, we can apply lemma 2.2.4 to cashflow term, HVA, FVA and ColVA to get:

9

T
HVA = —11[,>!}1|£(/ Dt w4+ N (ry — hy)H,du
t

T
Cashflow =1, .y E (/ Dt u,r+ A, du
t

"

T
FVA = —Jl{,>,}l|£(/ D(t,u,r + N(fu — 1)V, — C)du
[

"

Where I:I;, i;’;, .F:;_. f:: are F—adapted processes stated in lemma 2.2.2. Note that, II; and C; are

9

T
ColVA = —1{,>!}1|£(/ D(t,u,r+ Ay, — ry)Cudu
t

F—adapted since they are not related to the credit risk of either parties thus there is no need to
change them.
Furthermore, we can apply lemma 2.2.5 to CVA, DVA and DVAg:

T
CVA = ]]'{fbv!}lE( ‘/ D(f' u,r T )‘)AE(RECB (51'(_' - C'Tr.')+ - (_51'(_' T C‘T(.']+Jd“-
t

9
9

T
DVAF :1{,}!@(/ D(tou,r+ M)A ((ery — Co)™ = RECC(Cry —£00)™)) ' f!)
[3

T
DVA = ]l{,.>!}lh‘.(/ Dt u,r+MNAB (20, — Crp)T — (FRECe (21 + O ) )due
t
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Finally, using lemma 2.2.3 the final payoft becomes:

Eli;~my D(t, T)2(S7) | 6] = EQ(ruiylyrogy D(E, T)2(ST) | Gi
_ ]l{,>11.,E[l{"}!}l[?ﬂﬂu"TJ(P(ST] | Fi
Ell{z>e | Fi]
= ]].[T>1}1E[]].{T>T}D(f,T)(I’(ST] | E]U(ﬂ.f,)\]71
:11[,>,}1E[1|£[11{,>T}D(f T)®(St) | Fr] | FD(0,t,A)7"
=l E[D(t, T)2(S7)E[lr o7y | Fr| | F]D(0,£,0)7"
= ]l[,.>!}l|!.[D(f T)®(ST)D(0,T,A) | .}_g]D 0,607t
= ]l[,.>1}1E|D(f TV®(8S ]D(O,T,)\)D(ﬂ.f,)\]_l | Fi
(t. (S
(

=1 E[D(t, T)B(S7)D(t. T, \) | F
=1 E[D(t T, r + N@(S7) | F)

Summing all the terms together, we get a new expression for Vy:

T
v, :]1{,%}]!:‘.[}_)(& T.r+ A)®(S7) | I!] —]1{1->:}1E[[ Dit,u,mr+ A)x
t
(I, = (e0 = 70)Ch — (fu — 1) (Vi = Cu) = (1 — b)) H,)du | fg] (2.2.2)
f]L{,.}!}lE D(f,u,rf)\](ﬁ LGDB/\B( — ) )du | J-',]

where
éu = fu)‘u - LGD()‘E(EU - (J'u J+ L LGDB"“?(EU - (JYUJ_

By including the credit risk in the default-free filtration the indicator term 1y, becomes an extra
funding cost term D(t, T, A). Financially, this is reasonable since vulnerable contracts must have
lower value than defaunlt-free contracts and we modelled the default intensity deliberately to have
to form of discounted factor.

By lemma 2.2.2 we have Iy~ Vi = ]].{,->gj,'i;'g for some F—adapted stochastic process Vi, by com-
paring this with equation 2.2.2, we can deduce that:

V, = E[D(t, T,r + \)®(Sp) | F] + [f Dt u,r + \)x
(I, — (c0 —70)Cu — (fu — 1) (Vi — C) — (ry — ) H, )du | fg] (2.2.3)

T
+ 1&.[/ D(t,u, 7+ N)(f, + LGDpAE(V, — C,) ") du | }}}
(1

Now, are can going to derive the BSDE of V; that is equivalent to equation 2.2.3.

Proposition 2.2.6. The process Vi satisfies the following BSDE:

V; =®(Sr) [ (ML, — (fu + AV + 04 + (fu — cu)Cu

T
= (ru = b )Hu + LGDBL o oy A (Vi = Cu) ]du—/! Z.dWu
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Proof. We introduce the process:

13 i
X, = | DO,u,r+MLdu+ [ DO,ur+ N0, +LCDAZ(V, — C,)7)du
1] 1]
! - -
D(O,‘!I,}" s )\][(Gﬂ - }"“ u fu rn Vi — C‘n) h (rn - h-u)Huldﬂ-
1]
Note that:
D(0,t,r + M)V + X, = E[D(0,T,r + \)®(S7) | Fi] + E [] D(0,u,r + A)x

(I, — (4 — 1) Cu — (fu = 1) (Ve = Cy) = (ry — hy) H,)du | E]
(2.2.4)
—m[f D(0,u, 7 + N (6, + LGDpAB(V, — )" du|}}}

:E[XT—D(O.TJ—)\]I;&" IE]

Thus, Xv+ D(0,T,r + )\)i:"T is a F—martingale. Now, we divide by D(0,%,7 + A) and apply Ito’s
lemma to both sides of equation 2.2.4 to get:

- X ~ Xy ‘ "
Vit —t Vb —t o aV
DO Er+ N YT D0,0,r + A) u

o

t 1 t 1
+ X,d + dX
ﬂ YUD0,u T+ X) o D(0,u,r+Ax) "

and
E[Xr + D(0,T.7r+ X\)Vr | Fi]  Xo+ D(0,0.7 + \)Vp
D(0,t, 1+ A)  D(0,0,r + A)
! 1
+f xpd—
ﬁ D0, r+ A)
! - 1
D0, u,r + A)Vd—-——
0 D0, u, T+ A)
t
1 -
B [Xp+D(0,T,r+ Ny | F
DO (X7 (0.T,7 + X)Vp | F,]
combining these two expressions and note that Xy = 0, D(0,0,r + A) = 1 and d

D0, x+/\1 =
(ru+Auldu

Diour Ay Ve get:

t t
- 1 - -
Vit | ————dX. =1r"u—/ Vi(ru + Au)du
o D0ur+A) 0
‘ 1

— — dE[X¢+ D0, T, r + NV u
o D(O,u,r +0) [Xr+ DO, T,r + \Vr | 7]

-

M,

Since E[X1+ D(0,T, MV | F¢] is also a F—martingale, we have that M, is a local martingale.
By martingale representation theorem we can write

t
M = f ZudW,

0
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for some F—predictable process Z,. Thus, we have for any ¢ € [0, 77

t t t
_ 1 _

Vi=VW— —dX, + / Vi (ry + Ay )du + j Z,dW,
o D0,u,r+A) ] 0

'

- - T 1 T T
Vip =V =— ——dX, + V, + Ay )du + Z,dW,
T t [ D(O,u,r—)\) u ,/g u(ru u) u ,/g i i

By noting also that I;’T = @(Sp), substitute for d X, in the previous equation we get the result. [l

The proposition 2.2.6 gives us a general framework of the BSDE as V; depends on the future
dynamics of itself.

Before deriving the PDE subject to this BSDE, we make some assumptions:

1. 1I; is a deterministic function of time t and the underlying asset S; and is Lipschitz continuous

in Sg‘
2. r!,f:', r.‘?'. AB L AC h.?' are deterministic continuous bounded functions of time.

3. The collateral posted/received is a fraction of the value of the contract: C; = oV, where

0 < a; < 1is a deterministic continnous function of time.

4. We assume the hedging strategy Hy = H(t,5,V;, Z4) is a deterministic function, Lipschitz
continnons in ];’g_.Zg and uniformly continuous in ¢. Furthermore, we assume H({,s,0,0) is

continous in s.
5. The dynamic of S; is described by the SDE:
dS; = r Sedt + oS, dW,
with constant volatility under the risk-neutral measure.

The Lipschitz continuous condition is crucial for the existence and uniqueness of the solution to

BSDE. Under these assumptions, the dynamics of V; can be written as follows:

dSPS =S + 0 S8pdWy, g <t < T
Sy=s0<t<gq

AVIS = —B(t, 875, VIS, 205V dt + Z8° AW,
Vi = o(s§")

(2.2.5)

where

B(t, S, VI, Z") =[I; + 6, + ((1 — 0, )(LGD glys '>u})‘g3 — fi)
= A — o) VP — (g = he ) H (2, S7°, V5, 210
and the super-script g, s denotes the stochastic process with initial condition S, = s. We omit all
the tildes now and assume that all processes are F;— adapted.

To derive the PDE subject to this BSDE, we assume that V;"* = u(t, §§"%) is a function of ¢ and

Si and we apply lto's lemma to it:

duf(t, §9°) =(a! ult, ST%) + ST Dult, ST + %r;?s;f--“afhu(r, S;f-”))dt

+ oS¢ dau(t, 8% ) dWy
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comparing with equation 2.2.5 and equation dt and dW; terms we get:

Boult, ST%) + 1, ST B u(t, ST*°) + 502.92”"'”263jsix[r, S9%) = —B(t, S VI* Z8*)

a8 dul(t, 877 = Z7°
Thus V; satisfies the PDE:

1, oo
deult, s) + Eozszr')fsu(f,s) +rysdeul(t,s) + B(t, s, ult, s), osdu(t,s)) =0 (2.26)
2.6

u(l, s) = d(s)

We can simplify further this equation by assuming that the funding rate and repurchase rate are

the same: fi = he. Also, if we adopt the delta-hedging strategy, i.e.

ér,: El

o .8 .8
H = 87" du(t, §7°) = 5 7“ 2

then, we notice that terms involving ry in equation 2.2.6 are eliminated, so the PDE does not
depend on r;. This is a desirable property since the short rate r; is unobservable in the market. It

turns out that the PDE can be writte as:
Dt s) — i (—ult,s) + sdeult, s) + agult,s)) T + fi (u(t,s) — sult, s) — agu(t,s)) " —
Aeu(t, s) + %r}uﬁgr}fﬁu(f, s) + 1 — cpovpu(t, ) + 6 + LGDB)\?(H“,S) —agu(t,8)) =10 (2.2.7)
u(l, s) = @(s)

This equation is not linear, indeed, it is a semilinear parabolic PDE. We will discuss two different

cases below:
1. The simplified case, we just assume f; = f;” = f;. In this case, the system in equation 2.2.7

becomes a linear parabolic PDE:
: L 5o :
dyult,s) — fru(t,s) — Mu(t, s) + Erf stoCu(t,s) + frsdoult, s)+
I + (f; — ed)asult, s) + 6 + LGDAB(ult, s) — agu(t,s) = 0 (2.2.8)
u(l,s) = d(s)

and is gnaranteed to have one and only one solution as we will discuss in section 2.3.

2. The realistic case, we assume f; = f,; if the process multiplied by f; is positive, and f; = f,
if the process multiplied by f; is negate. In this case, the PDE is no longer linear parabolic
because dyu(t,s) is also multiplied by f;; In fact, the system becomes semilinear and the
best we can obtain is the existence and uniqueness of a viscosity solution. This is explained

in sections 2.4.

Finally, the numerical procedure to compute the solution of equation 2.2.8 also depends on those

cases mentioned earlier, this will be explained in section 3.1.

2.3 Existence and Uniqueness of the solution with symmet-

ric funding rate

In this section, we show that the parabolic partial differential equation 2.2.8 stated in the previous

section has one and only one solution under some mild conditions provided f; = f;7 = f;" ™.
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The work was done by Avner Friedman in his book Partial Differential Equation of Parabolic Type
[23]. We will give a brief summary of the result, check the book for more details. We adapt a dif-
ferent notation from previous sections and we introduce some definitions related the mathematical

analysis.

Definition 2.3.1. A function f is said to be Hoélder continuous of exponent 0 < o < 1 if there

exists a positive constant K such that:

f(z) = f(y)] < K|z —y|° (2.3.1)

for all z,y in the domain of f. The smallest K such that 2.3.1 holds is called the Holder coefficient.

If e« = 1, we simply say that f is Lipschitz continuous.

Denote by C"™ to be the space to m—th continuously differentiable, real valued functions such
that their m—th derivative is also a—Hélder continuous, C™* is also called Holder space. We will
discuss solution functions in this space.

Let u(x,t) be a two-dimensional function with domain D x [0, T, we denote the differential operator
by L as follows: ‘

Lu= {)j + a(a.‘,f]ﬁ + b(x, i){:)l

Ox? or

where a(z,t), b(z,t) and e(z,t) are continuous and bounded functions with the same domain as

+elxr. tiu (2.3.2)
u(x,t). We will assume that the domain of D is a closed bounded set.
We consider the semilinear partial differential equation as follows:

Lu(z,t) = f(x,t,u,d,u) for (z.t) € D x[0,T]
ulr, T) = ®(x)

(2.3.3)

where I is the domain for variable x. We assume that the function f is Lipschitz continuous in w.
The work of Iriedman provides a more general framework and includes the set of semilinear PDLs.
We are stating stronger theorems for linear parabolic PDEs in this section, these theorems will
also be used in the next section where the PDE becomes semilinear. We state now the uniqueness
theorem for the PDE defined in 2.3.3:

Theorem 2.3.2. Consider the equation 2.3.3, if f is further uniformly continuous with respect
to (x,t,u,8;u) in the closure of domain D x (0,7, then there erists at most one solution of the

equation 2.5.5.
Proof. See Friedman's book, Chapter 7, Section 4, Theorem 6 [23]. ]

In order to prove existence ol the solution, we need some stronger assumptions. First of all,
we shall introduce some new definitions. We define the notion of distance in the domain space
D x [0,T] as follows:

Definition 2.3.3. For any two points P = (zy,t;) and Q(zy, ;) in the domain D x [0, 7], the

distance between them is defined as:
d(P,Q) = “:I.‘]_ - :1.‘Q|2 + |t — fg”lf?

We adapt this notion of distance when defining Holder continuity for functions in two dimensions

by simply replacing equation 2.3.1 to
[f(P) = f(Q)] = Kd(P,Q)"
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for any P.Q € D x [0,T].
Now, let u(z,t) be a function in the domain D x [0,T]. We define:

|u|[j;_)xi[}"Ti = sup |u(P)
PeDx[0,T)
(0.7 u(P) —u(Q)
HEP*OT () = sup | AP .‘Q |
Poepxjo) AP Q)"
Dx[0,T) Dx[0,T) D« [0,T)
||, 0 = [y * +H, 0 u)

Based on this, we defined so called (1 + o) norms that involves also the norm of the derivative of

the function:

Dx[0,T) 0,7 0.7

|H. 1+x”_[} 1 _ |u|[J‘3x_[},_T_ 0 |uw|£‘3x_[},_T_
Dx[0,T) D [0,T) 10,7

|u 1—x[} = uly 4 LDX'[}"T'["]
Dx[0,T] _ Dx[0,T) Dx[0.,T)

[uly o = |ul,"y + [ua 1

where Ju(z, t) — (!, 1)
- u(x, t) —u(x",
LoxoT [u] = sup

{z,t) (2 t') e Dx [0,T) |z — 2| + [t =t/

We say that a function u belongs to €1, (5), C1-a(S), Co_o(S) if |u|{"+(_‘_. |u|f_ » |u|f_u are finite
respectively.
The existence of solution of equation 2.3.3 exists under the following conditions:

1. a(z,t), blx,t) and e(x,t) are a—Hélder continuous in the closure of IJ, that is:
|a|Dx:[},_T: 1 |b‘Dx:[},_T: 0 |(,,|Dx:[],_T: < H
for some constant H.
2. a(z,t) isin C1—(D x [0,T7]).

3. There exists a constant My such that for all M > My we have:

2K | fz tou )| < M, (z,f) € D x[0,T)] (2.3.4)
for all functions u = w(z,t) satisfying |u|f)>:_;U‘T' < M and K is a constant such that:
Dx[0,T) e D[0,T]
luliya < K|flg T

4. Finally, ® € Ca45 for some a < § < 1 and L& = f(x,t, P, $;) on the set dD = {T" = 0}.
We have:
Theorem 2.3.4. If above conditions are hold, then there is a solution to the Equation 2.5.3.

Proof. See Friedman’s book, Chapter 7, Section 4, Theorem 8 [23]. O

Next, we shall verify that the Black-Scholes PDE we derived in equation 2.2.8 satisfies conditions
stated above. The first thing we shall discuss is the domain of the stock price S;, in theory, S; can
take any positive value, however, we are only interested in the behaviour of the contract price up
to some level. We assume that, the stock price rises sharply to an extreme value (for example the

99%-percentile) then one of the parties will enter into default scenario, indeed, this statement is
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true for standard products such as forwards or call options.
Now, we write the the PDE 2.2.8 in the form of 2.3.3, we have that:

alx,t) = %G’QJ‘Q

blz,t) = fix (2.3.5)
e(z.t) = (fi — et)oy + (1 — a)(LGDpAF — LGDcAY) — f,
fle, t,u, dpu) = —11;

We assumed II; to be bounded, Lipschitz continuous in z,f and it does not depend on wu, d,u.
Thus, the uniform continuity in (z,t) is implied by Lipschtiz continuity (z,?). The functions
a(x,t), b(x,t) and e(x,f) are all continnous and bounded functions due to the boundness and
continnity of processes A, oy, e; and f;. Thus, all the conditions for imiqueness are satisfied and
there is at most one solution of the equation 2.2.8.

For existence, we divide the verification in the subsequent lemmas.
Lemma 2.3.5. a(x,t), b(x,t) and c(x,t) are ao— Hélder continuous in the closure of D.

Proof. We start with a(z,t), let P = (z,,#,), @ = (z2,%2) be two points in D x [0,T] and let
0 < a <1 we have:
d(P,Q)* = [|z1 — m2)® + |t1 — £/ = |7y — 0|

and

1 4, - : 1 .
la(P) —a(@)| = §UJ|-1?f —x3| = 50‘2\-1‘1 — zollz1 + z0]

therefore,

a(P)—a 1. Ca .
H]i(?)': ooy — |t + x| € K
|zy — x5 2

for some constant K since z1,x9 are bounded. Finally we have

la(P) — a(Q)] _ |a(P) —a(Q)|
AP.0)" = |z — ol

< K

and the Holder continuity holds.
For b(xz,t), we have that, for any P, @ in D x [0,7] and 0 < v < 1:

|b(F) = b(Q)| = | fr,x1 — fiy7al
we can assume rp > rp w.l.o.g. and we divide in two cases:

1. If f, = fi, then:

| £, [
|fe.os = frywa| = |f!2|:_f!] Ty — Ta| < |fe,||T1 — 22
2

in this case, we can follow the steps for a(x,t) to find such K, for Holder continuity.

2. If fi, = fi, then:

(fr,z1 — fromo)? = ff] z? + fi.l.‘g — 2ft, frorra2
= f!z] (11 —m2)* + 2)’!2] ry1xy — 2fy fr, 7110
= fglz, (1 — -1-‘2)2 +2f, ezl fi, — fin)
= fi (1 — z2)® + 2f, miza Lty — to
< Kyllzy — ao]” + |ty — 1]
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for some constant K3 and L where we used Lipschitz continuity of f;. Thus, we have b(z, )
is Lipschitz continuous with respect to (x,t) together with boundedness we get Holder con-

tinuity in this case.

Finally, we just pick Ky = max(/Ks, K3) and we are done.
The Holder continuity for c(x,t) holds because f;, ar, ¢, A are all bounded, Lipschitz continnous
functions. We have that any sum and product of bounded and Lipschitz continuous functions are

also bounded Lipschitz continuous and hence Holder continuous. |
Lemma 2.3.6. a(z,t) is in C1_o(D x [0,77).
Proof. We need to show that LP*%7)[q] is finite, i.e.:

la(z.t) — a(a’.1)|
sup S TE——— e ]
{a,t), (2 t)eDx [0,T) |-1? - | - |i -t |

Let (z,t) and (2',t") be two points in D x [0, 7], we have:

la(z,t) —alz' t)| _ |a(z,t) —alz',t)] 1 Q|

r -
=—clr+z|< K
|z =2 |+t =t — |z — z'| 2 |

for some constant K, since x, z' are bounded. The result follows directly. [

The condition 3 is antomatically satisfied because f(z,t,u,d,u) in our case does not depend
on v and dyu and it is a bounded function so we can always find such constant Mj.
Finally, the last condition to be satisfied depends on the choice of @, the boundary conditions we
adapt for our system, in particular, the product we choose to price. Fortunately, since we assumed
D is one dimensional, the boundary of D just consists of two points which has Lebesgue measure
0, hence, even if the condition are not satisfied we do not have to worry about it as it does not

affect the solution. Thus, we can apply theorem 2.3.4 and the existence is gnaranteed.

2.4 Existence and Uniqueness of the solution with asym-

metric funding rate

In this section, we discuss the case where f; is variable and depends on the sign of zd, u— (1 — oy )u.
In this case, the system becomes semilinear since now f(z, t,u, d,u) depends on hoth u and d,u.
Similar to previous section, the object we study is a two dimensional function u(z, t) in the domain
D % [0,T] where D is an one-dimensional closed bounded set. We rewrite the equations in 2.3.5
as follows:

alxr,t) = 102.1'2

bz, t) =10

e(z,t) = (1 — a;)(LGDRAE — LGDEAY) — e,

Sl tou, dpu) = —(11; — f!+(.1.‘(‘)1-11(.1.‘_.f] —(1—adulz, )t + [ (1 — e )ulz, t) — alpulz, )t

We notice that, a(z,!) remains unchanged, there is nothing to check for b(x,{) since it is zero,
finally, c(xz, ) has a reduced form [rom the previous section, hence we don’t have to check the
conditions for a(xz,t), bz, t) and c(z, t) again.

The only thing we need to check is f(z, ¢, u, d,u), we need f(z,t,u, d,u) to be uniformly continuous
for uniqueness and the condition in 2.3.4 for existence. These conditions may not be guaranteed

to be satisfied unless we make the following simplifications: we assume f;" = f* and f; = f~ to
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be positive constant functions and d,u to be a bounded function in D x [0, T]. Also, for simplicity
of notation we write f(x,t,u,d,u) as f(z,t,u, w) where u and w are just some numbers.

Starting with uniform continuity, we have:

Lemma 2.4.1. If % and f are positive canstant processes, then f(x,t,u,w) is uniformly con-

finuous.

Proof. Suppose P = (zq,t;,uy,wy) and P(zy, ty, uy,we) are two different points in the space.
There are four difference scenarios depending on the sign of g(z, t,u,w) = rw — ({1 — ay)u, by

symmetry, we only analyse two different cases:
1. Suppose that g(FP) > 0 and g(@) does not change the sign, we have:

|F(P) — F(Q)] = s, — I, + f(z1wn — mowa — (1 — o) (1 — ug))|
<y — My [+ (1= ey —ua| + f o |wy — wo + fwy||xy — a2
<Lty —to] + fT(1 = ag)lur —ug| + frofwy —wo| + fF|wellzy — 22
< K ([t = o] + oy — mof + |ur — ua| + Jwr — ws|)
2K ([t — to® + |y — o] ® 4+ [y — 0] + |y — H.'Q‘Q)_;

= 2K,d(P,Q)

where in each line we used triangle inequality, Lipschitz continuity of 1I;, and boundedness

of the parameters/variables and Cauchy-Schwarz inequality respectively.

2. Suppose that g(£) > 0 and g(()) changes sign:

[F(P) = f(Q)] = g, — L, — fH(zywn — (1= a)un) — f((L — aJug — zpun)]
< gy — My | + | (i — (1 — ag)un) + F (1 — avg)ug — zoun)|
= |1[:l - 1[tz| _f+| (rrwy — (1 — oy )uy ) + (1 — g us — wpwn )‘
S Ll —to| + fH(1 = au)ur — up| + frafwy —wa| + fHwslfz) — 2y
< Kg(|n —fo| + |21 — wo| + |ur — ua| + |un — wg|)
< 20 (|t — o] + oy — o + g — un | + wy — w2|2)%

= 2K,d(P, Q)
where we used the same reasoning as before and f+ > f-.

Similarly, we can obtain other two constants K3 and Ky for the rest of situations. Finally, by
choosing K = max (K, Kv, K3, K4) we obtained Lipschitz continuity of f in this case and hence

uniform continuity. O

With lemma 2.4.1, we obtain the uniqueness of solution. Next, we need to prove the following
result:

Lemma 2.4.2. The function f(x,t,u, w) satisfies condition 2.5.4 with correspondent constant K
and M .

Proof. Just note that, f is a linear function in u as long as f; is a constant function in {. We know
that ¢ is bounded by 7" and u is bounded by some constant Ly as long as T and Sy, are bounded,
since the price of a contract can not be infinite, one party would just enter into default before
the price spikes. Similarly, the term II; is also bounded by L, there is no contract with infinite

cashflows over the period. The only crossterm is zw, however, we know the range of x, depending
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on the scenario we can bound f by substituting = by 0 or Spax. Summarising above, we have:

fletu,w) < Lo+ Spew — (1 —ag)Ly| ifrw —(1—ap)u=0
flot,u,w) < |Ly+ (1 — o)Ly ifzw — (1 — e )u <0

[

The second case is just a constant and we are done. In the first case, we need to bound w which
we assiined in the simplification step. Note that, if w is unbounded then the condition 2.3.4 is

clearly unsatisfied, we would require

Dx|0,T D [0,T

M < K|f|} < 2K|f|} <M

and this is a contradiction. With w bounded, then f is bounded in both cases, we can just choose
large My and this is satisfied. O

Remark 2.4.3. Note that, we used the boundedness of w a-priori to complete the proof, however,
we do not know it until we derived such solution. Rigorously speaking, we will need to prove that
there exists at least one solution with bounded w, otherwise we could be stating an empty theorem.
The existence of such solution is still an open question in the academia and goes beyond the scope
of this dissertation. We only state this theorem as an indicative theorem, the numerical examples

we provide does not suffer from this assumption as we avoided infinity in the discrete setting.

To sum up, we have constructed the results we need despite under strict conditions. If we
remove the simplifications, the best we can get is the existence and uniqueness of a viscosity
solution, for more details check theorem 5.3 in Brigo, Francischello and Pallavicini [18]. In chapter
3, we will use numerical methods to solve this semilinear parabolic PDE and use it as an empirical
verification to our theorem stated in this section.
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Chapter 3

Numerical methods

In this section, we will use numerical methods to solve both the semilinear parabolic PDE and
FBSDE we derived in the previous section. Concretely, we will use finite difference method to solve
the equation 2.2.8 numerically and we will adopt a deep learning approach to solve the FBSDE.
We divide this section in three parts. In the first part, we deseribe the methodology adopted,
i.e. the finite difference method. Secondly, we present a case study with constant funding rate f.
Finally, we present the same case study with f as a function of hedging strategy. We will analyse
the price function as well as sensitivity behaviour to parameters.

3.1 PDE approach: finite difference method

The finite difference method is a classical approach used to solve PDEs numerically. The key idea is
to replace the partial derivative term by a differential quotient and convert the PDE to a difference
equation. Mathematically, let w(t,s) : [0, 7] x [0,00) = [0, 00) be a differentiable function in ¢ and

twice differentiable function in s. The partial derivative of u with respect to t is defined as:

duult,s) = lim w(t + h,s) —ult,s)
i) h
and we obtain a similar expression for s. In the Black-Scholes theory, the dynamic of §; is given
by dS; = rSpdt +05;dWy, it is log-normally distributed and it can take any value between [0, 0o).
In practice, we set an upper bound Sy 4x for S; to be the a%th quantile so that S; is unlikely to
exceed Sy ax. From now, we assume that Sy can only take values between [0, Syax]. In the finite

difference setting, we first divide the domain of ¢ and s into equidistant points, define:

ti =iAt, 1 =0,1,...,N, At =T/N
s; = jAs, j=0,1,...,M, As = Syax/M.

If we can find the solution function u(f, s) evaluated at those grid-points, we can roughly build up

an estimate of the true solution via linear interpolation, we denote by
w; j = ulti, s;)

discretized values of the function wu.
In the next step, we approximate the partial derivative of u at #,, s; by forward difference quotient,
namely:

; Wit1,j — Uiy . ; .

Oy j =2 5 0<i<N-1,0<j<M
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and
; Ui 41 — Ui -1 . . .
Oy joo——— 2 << N 1<j<M-—1
sUij 9As y U=, L= 7=

also, for the second order derivative we have:

Uil — 2 g+ i1

(As)?

as.s‘“(.',l = . 1 é j S M-—1

this is not valid for the edge cases, we need to use forward and backward difference:

) Uy g — g g Ui — Ui g
dyug ;= 7.}Af Py g A b

. | B
5 — UNG — UN-15 ) — Ui pr — Ui M—1
Qo ;= — IR v

similarly, for second order derivatives we have:

wio — 2u; 1 +u;

0 wi g — 205 01 + Wi pf -
- T Dty S — : :
(Aﬁ)z S8,

(As)?

Doty o ==

Recall our system in equation 2.2.7, we have the boundary condition uy ; = ®(s;) for all j. We
also need to specify boundary conditions for s, i.e. u; o and 1w, pr for all ¢, which depends on the
contract. Omnce the boundary conditions are set, we can work backwards to get ug ;. We will
discuss two different scenarios of the equation 2.2.7: when f; is a symmetric process and when f;
is asymmetric and depends on the sign of the process to which it multiplies.

For the first scenario, the algorithm is straightforward. We just replace dyu, du and dgu in the
equation 2.2.8. Formally, we can construct the following recursive relation. For any 1 <i < N —1
and 1 <j < M-—1:

Ui,y — Uiy Ui j+1 — Ui j—1 l o olij+1 — 2?1('_-15 T Ui -1
+ fos. 1+ Zgts? — LN =
A fis; 9As 50 5 (As)? (e + A Jui g (3.11)

— (]-[t - (ft — t’.‘g](.'ttiiir__‘; - 6; - LGDB)\?(I — (.'tg)il,‘r_};]]

where
0; = Aruij — LGDeAY (1 — ag)ui

This can be written as:

‘AJ i j—1 T BJ”L.;' L Cf Wi g1 = Wity T D (3.1.2)
with

. olg?

A=A fesi _ ]
245 2As7
ol s? .

Bj=1 Af[ Ae; —(fi — ey —LGDRAP (1 — ay) + LGDe AL (1 — ay) + fi

fis; | a8
O = —Ay J o,

2As  2Ag7
D = Al
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forany 1 <i¢< N—land1l < j < M—1. With matrix notation, we can write the above expression

as:
B, C, 0 0
U1 Uip11 D — A].ui._(}
Ay By Gy - 0 ;0 Uiy 2 D
. Crrog | Wb =2 Wit 1, M —2 D
0 0 Ay, By, Liar- Wit 1, M1 D — Cryyui
hence, by knowing the terminal condition [ux,1, . .. _.uN__M]T and boundary conditions (i, . . . _.uN__U]T

and [up s, ... .u_.\:__M]T we can work backwards to get the vector [ug1,. .. _.u[;__M]T.

In the second scenario, we set f; = f;" if the process multiplied by f; is positive, and f; = f; if the
process multiplied by f; is negate. With this in mind, we replace the derivatives in the equation
2.2.7 to get:

Wig1,j — Ui 1(}2?9 i1 — 2 g+ Uit
At 27 % (As)?

— fi (s

Ui g1 — U j—1

2As
- Ui g+1 — Wij—1
+ I (1 = gy — =t

— ].[g o Ol T 9: - LGDB)\?(‘!II'__J — t’.'tgui___j)]

— (1 —ar)uiy)*

+
) — )\gﬂi__); =

Mig41—Hig-1 (
2As

we can see that fi depends on the sign of s; 1 — ¢ )ui j thus we decompose f; into

plecewise constant functions f;; and we derive again the recursive relation in equation 3.1.2 as

follows:
Ajui g1+ Bjui g+ Citti jy = i1y + D
with
fiis; o%s?
A = _A J%3 J
J 1245 7 2A82
o’s] B c
B, =1+ At| =2 (1 —a))fi; + cooe — LGDAP (1 — a) + LGDEAC(1 — ag) + fi
d I:&Sz +J (2 (2 +d (314)
fijs; o028t
C o= A J8% i
’ ‘ [ 2As  2As?
D= AT,
where:
i I sy tist (1 —ag)uy > 0
v o st +;;Z"'_] — (I —agju; 5 <0

This recursive relation is more complex because, although we know f," and f,” at the heginning,
we can not determine f; unless we solve the system of equations in 3.1.3. To solve this problem,

we do the following thing:

1. To calculate [u; 1, ... _.u(-:M]T for any index i, we start assuming that f; ; = ft+ regardless the

sign of the multiplied process.
2. We solve the backward equation 3.1.3.

3. Once we obtained the result for [ui1,... .u(-__M_l]T from [wig11,. .., Wit1, -1 T we verity if
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our assumption were actually hold, i.e. check the sign of

Wi 41 — Ui j—1
IjT — [1 - ('.'tg]'ﬂi___);
and compare it with the value of f; j forall 1 < 7 < M — 1.

4. We correct those f; ; which mismatch with its proper definition, then we repeat the Step 2-4

until every f; ; matches its own definition.

5. We proceed to the calculation of [u; 11,...,1u; 1 217 until we get [ug 1, ..., ugnr-1]7-

3.2 Case study 1: European Option with symmetric funding

rate

In this section, we deliver a special case study: an European option with payoff (Sr — K)* at
maturity. The following table summarizes the numerical values of our parameters:

T f a I ¢ AB LGDg LGDe M
Tyvear 0.5% 40% 05 02% 2% 0.6 0.6 1000

Table 3.1: Parameters for a call option

To simplify the problem we assume that all the parameter processes are constant in time. We
can extend easily to deterministic processes by evaluating them at each grid-point (1, s;).
We assume that the initial stock price is Sy = 100 and the option is at the money (K = 100),
also, we set Syax = 300. Finally, we set terminal and boundary conditions in order to proceed

the finite difference method in the following way:
1. In the case where S; = 0, then the option loses its value hence u(t,0) = 0 for all ¢ € [0, 7).

2. In the case where Sy = Swax we assume that the counterparty, i.e. the option seller will
immediately enter into a default scenario to avoid this payment. Then, the contract ends at

time £ and the payment we receive is just
:"t]:! - R.EC(:(SMAX - K- t’.'tVt)

therefore, we set w(t, Syax) = cult, Syax) + RECo(Syax — K — ault, Syax)), solving the

equation we obtain:

(1 — LGDe)(Suax — K)
1 —aLGD¢

u(t, Smax) = , for all £ € [0, 7

3. At time £ = T, the contract ends and u(T,s) = (s — K)* for all s € [0, Syax)-

The last parameter we need to set is the default intensity process AC. The intensity can also
be thought as the default probability in the near future [t,f + di| given that the party has not
defanlted before. To be realistic, we assume that the defaunlt intensity depends only on the stock

price. Mathematically, we assume the counterparty’s default intensity to be:

A 0.04 s < 100
5] =
096, 044 s> 100
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so AC start with 4% and approaches to 100% as the stock price increases.

Note that, there is a discrepance at (ty,Sys) between terminal and boundary conditions, the
discrepancy disappears if o = 1 i.e. the contract is fully protected by collateral. We give preference
to the boundary condition since the counterparty is very likely to default at extreme scenarios
regardless the life of the contract.

To do this, we
increment N progressively and calculate u(0, Sy) for each N. For instance, we let N to take values
between [100, 250, 500, 1000, 2000, 3600).

We will use empirical results to show that this method is indeed convergent.

3.3 Result and analysis

In this section we present the result of our numerical method. As shown in Figure 3.1, we can
see a similar trend of the Credit, Collateral and Funding adjusted price as time step N increases.
For Out-of-The-Money(OTM) options, i.e. K > S, we can see that the adjusted price is close to

Black-Scholes price meanwhile deep In-The-Money (ITM) option prices show a divergent behaviour.

Furapean call price with N=100

Furopean call price with N=250

00— adjusted M0 1 — adjusted
1y | — Black-Scholes 1y | — Black-Scholes
150 150
¥ 125 ¥ 125
; 100 ;* 100
B Ew
50 50
s *
a o
o 50 100 150 200 250 300 o 50 100 150 200 250 300
Stock price Stock price
European call price with N=500 European call price with N—=1000
00 1/ — adjusted 001 — Adjusted
175 | = Black-Scholes 175 | — Black-5choles
150 150
£ 125 ¥s
:‘f 00 i‘ 100
En E
50 50
F2 F3
a a
] = 100 150 00 0 00 o 50 100 150 200 >0 00
Stock price Stock price
Eurgpean call price with N=2000 European call price with N=3600
2001 — Adjusted 00— Mjusted
175 | — Black-Scholes 175 | = Black-Schales
150 150
¥ 15 ¥ 125
; 100 ; 100
E:? s ,’_:'7 i
50 50
x5 x
[ 0
o 50 100 150 200 =0 300 o 50 100 150 00 =0 300
Stock price Stock price

Figure 3.1: European Call price at different time step N




Now, we focus on some particular values of initial stock prices. Figures 3.2, 3.3, 3.4, 3.5 show
the European option valued at different initial stock prices (Sy = 50, 100, 150, 250 respectively).
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European call price with different N near S = 250 Price convergence with 5 = 250
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Figure 3.5: Convergence result at Sy = 250

In an OTM setting (Figure 3.2) we can see the adjusted price dicreases as a function of time
step N and converges near 0.491. By contrast, in an At-The-Money setting (Figure 3.3) the price
starts increasing as N increases and moves towards to the Black-Scholes price. Finally, in an
ITM setting, the price becomes again decreasing as a function of N, however, the price moves in
an opposite direction to Black-Scholes price. In all these cases, we can clearly see a converging
behaviour of the adjusted prices calculated using Finite-Difference method.

Next, we are going to explore the sensitivity of the option’s adjusted price to its parameters.

3.3.1 Sentisivity to collateral amount

Figure 3.6 shows the option price when the collateral posted « is equal to 0.2, 0.4, 0.6 and 0.8
times the value of the contract respectively. It is natural to expect that, as o increases, the price of
ITM options also increases since more value is protected by the collateral. There is not big notable
difference at OTM and ATM scenarios since the counterparty do not need to post any collateral

in those cases.
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Figure 3.6: Option prices with different collateral amount

Similarly, we focus on the sensitivity behaviour at specific values of Sy. In Figure 3.7 we present
the relationship of option value with respect to the collateral amount « at different initial stock
prices Sy = 50, 100, 150 and 200. In the OTM scenario Sy = 50, the relationship is linear. As Sy

increases, the price function u(a; Sp) presents positive convexity. This is not surprising because as
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Sp increases the option becomes I'TM, hence, the counterparty will very likely default, in this case,
collateral plays an important role and the relationship is more than linear.
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Figure 3.7: Sensitivity to e at Sy = 50, 100, 150, 200

3.3.2 Sensitivity to funding rate

Funding rate will affect the hedging cost as the hedging strategy described in section 2.1.5. The
option seller (in this case the counterparty) would hedge it’s exposure to stock price changes, hence,
the higher funding rate is, the more expensive the option is. Figure 3.8, shows the contract price
as a function of initial stock price with different funding rates ranging from 0.5% to 9.5%. Indeed,
the contract price is increasing as a function of funding rate. Note that, the effect of funding rate
[ is mild even though we used exaggerated values for f, this is because, f is not appearing in the
boundary and terminal conditions. Therefore, we expect that the I'unding Value Adjustment shall

be small.
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Price sensitivity to funding rate

— f=0.005
100 f=0.035
—— f=0065
— f=0.005
BU 4
<
E m 4
c
=
a
[=] 40 A
20
0

0 50 100 150 200 250 300
Stock price

Figure 3.8: Option prices with different funding rates

Next, we focus on the sensitivity behaviour to funding rate f at specific values of Sy. Figure 3.9
shows the relationship of option value with respect to the funding rate f at different initial stock
prices Sy = 50, 100, 150 and 200. We can see that, the relationship is approximately linear at
ATM and ITM scenarios (Sy = 100 and Sy = 150 respectively). In the OTM scenario Sy = 50, the
value function u( f; Sy) exhibits a positive convexity. By contrast, at deep ITM scenario S, = 250

anegative convexity is present. It is hard to find a financial explanation of this change of convexity

behaviour.
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Figure 3.9: Sensitivity to funding rate f at Sy = 50, 100, 150, 200
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3.3.3 Sensitivity to default intensity

In this section, we explore the affect of changes in counterparty’s default intensity. We let the
counterparty’s default intensity to range from A, = [0.08, 0.16, 0.24, 0.32, 0.4], Figure 3.10 shows
the option price dynamic with different values of default intensity. We can check that, as the
defanlt intensity increases, the price of the contract decays for all S. As an option buyer the more
likely the counterparty will default, the less we are willing to pay for that contract. The local
relationship of the contract price with respect to counterparty’s default intensity is shown in the

Figure 3.11. The relationship is linear and decreasing in all scenarios.
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Figure 3.10: Option prices with different default intensity
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3.3.4 Sensitivity to loss given default

Loss Given Default (LGD) when the counterparty defaults is also a measure of the credit risk,
it plays an important role in our model since we assumed the counterparty for always defaunlt at
Suax. Figure 3.12 shows the option price when the Loss Given Default ranges from 0.2 to 0.8.
The trend is clear at I'TM scenarios where the contract price decays sharply as LGD incresases. In
OTM and ATM scenarios, the trend is still decreasing as LGD increases however, the effect is mild.
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Figure 3.12: Option prices with different loss given defaunlt

The above observation is again verified by Figure 3.13 where we focus on the sensitivity be-
haviour at specific values of S;. We notice that the relationship starts as linear decreasing trend
at OTM scenario Sy = 50. The trend becomes negatively convex at ATM and ITM scenarios
(Sp = 100).
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Figure 3.13: Sensitivity to loss given default at Sy = 50, 100, 150, 200

3.3.5 Sensitivity to strike price

Strike prices is also an important parameter in option valuation theory. We explore the sensitivity
of option price to the strike price by letting K = 80, 90, 100, 110, 120. As shown in Figure 3.14,
it is natural to see that, as strike price increases the option value decreases.

We now focus on the sensitivity behaviour at specific values of Sj. As shown in 3.15, in the OTM
scenario Sy = 50, the function u(K; S,) presents positive convexity. As Sy increases, the trend
becomes linear and decreasing. This is not surprising because as Sy increases the option becomes
ITM, hence, the payoff function becomes S — K and the option becomes a forward contract, the

classic pricing theory yields u = Sy — Ke™"" which is linear in K.
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Figure 3.14: Option prices with different strike price
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Figure 3.15: Sensitivity to strike price at Sy = 50, 100, 150, 200

3.4 Asymmetry of Put option

We wonder now, does the same phenomenon happen in the case of put option? To answer this

question, we calculate the numerical solution of a put option using the same parameter as before:

T f a I ¢ AP LGDp LGDe M
1Lyear 0.5% 40% 05 02% 2% 0.6 0.6 1000

Table 3.2: Parameters for a call option

To recover the full symmetry as the case 1, we set the strike price to X = 200. Note that,
this is a really irrealistic case if we assumed the stock price to follow a lognormal distribution with
boundaries [0, 300], instead, we only focus on the qualitative behaviour of value adjustments.

The default intensity, terminal condition and boundary conditions are different from the simple
call scenario since the counterparty will default if the stock price is approaching 0. We present the

conditions in the following way:

1. We assume the counterparty’s defanlt intensity is linear decreasing in S;, namely

. 0.96
Mis)=1- "¢
() 300
2. In the case where S; = 0 the counterparty will immediately enter into a default scenario to
avoid buying those stock at strike. Then, the contract ends at time ¢ and the payment we
receive is:

aVi + RECo(K —alVy)
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again, setting u(t,0) = au(t,0) + RECo (K — au(t,0)), solving the equation we obtain:

(1-LGDe)K

ult.0) = 3= rap.

, for all t € (0,7

3. At time t = T, the contract ends and u(7, s) = (K — s)+ for all s € (0, Syax).

Figure 3.16 shows the price process obtained by classical Black-Scholes formula and PDE in equa-
tion 2.2.8:
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Figure 3.16: Put option price

The result is surprising, we observe that, unlike the case of call option, the adjusted price is not
far from the Black-Scholes price when Sy is approaching to zero there is neither negative convexity
observed in call case. In other words, the default scenario we set at the boundary 0 x [0, T'] does not
contribute much in the pricing equation, the difference in price is mainly explained by adjustment
parameters such as A7, f; and LGD.

Inspecting into the equation 3.1.3 we notice that, the boundary condition is multiplied by A;,

namely:

2.2
a=a (o ;&ig] = 24 fi-0?)
this amount is extremely small and reduces the effect of the boundary condition. Clearly, this
behaviour does not conewr with reality, nobody is willing to pay this option by $200 when the
stock price is small, we can regard this as a major drawback of our method as it reduces versatility.
However, the behaviour of the solution in central range is well explained and the method is still
valuable for the analysis in common situations.

We will not run the sensitivity tests in this case as they are included in the second case study.

3.6 Case study 2: Straddle with dynamic funding rate

Inn this case study, we price a synthetic product: a straddle contract. Entering in a long position of
straddle means we buy a call option and put option of the same underlying asset at the same time
and at the same strike price. The payoff of this product and maturity 7" is given by |5y — K|, that
is, we bet on the market being more volatile, we make profit out of price movements regardless in

which direction.
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Similar to the first case study, we assume that the stock price is between [0_.51\1,\)(] with Suax =
300. Also, we set the initial stock price to be S; = 100 and the options are at the money, i.e.
K = 100. Aditionally, we assume that if we borrow money (F; > 0) from external funding source,
we are charged at a rate f* which is bigger than the risk-free rate r;. Conversely, if we lend money
(#: < 0), we assume that we will always receive [~ = r; as interest rate as we always buy risk-free
securities such as Treasury bond to avoid the additional caleulation of credit adjustments. The

following table summarizes the numerical values of our parameters:

T i it a o c A LGDg LGDe M
Tyear 04% 0.7% 40% 05 02% 2% 06 0.6 5000

Table 3.3: Parameters

Again, we assume all the parameters but counterparty’s default intensity are constant. The only
difference here is that we increased the number of grid-points by inereasing M, we divide the
interval [0, Snax=300] into 5000 subintervals instead of 1000 in the previous case. This is because,
if we assume f; to be dependent on the hedging strategy, we must be more sensitive to the change
in stock price.

The terminal condition and boundary conditions are different from the simple call scenario since
the connterparty will default also if the stock price is approching 0. We present these conditions
and the process A in the following way:

1. In the case where S; = Syax the put option loses its value and we assume that the coun-
terparty, i.e. the option seller will immediately enter into a default scenario to avoid the

payment ol the call. Therefore, we retreive the case of the simple call and we have:

(1 — LGD¢)(Smax — K)
1 - alGDg

u(t, Smax) = , forallt € (0,7

2. In the case where 5; = 0 the counterpaty will also default due to the put contract. Then,

the contract ends at time t and the payment we receive is:
aVi + RECo(K — aVy)

again, setting u(t,0) = au(t,0) + RECo (K — au(t,0)), solving the equation we obtain:

(1-LGDa)K

u(t,0) = [~ aLGD,

, for all t € (0,7

3. Since the counterparty will default in both directions of S;, we assume the default intensity
A€ is linear decreasing on s € [0,100) and linear increasing on s € [100, 300], mathematically
we have:

1 —0.0096s s < 100

A%s) = 0.96
095044 5> 100

4. At time ¢ = T, the contract ends and u(T, s) = |s — K| for all s € (0, Spax).
We will use empirical results to show that this method is also convergent. To do this, we increment
N progressively and calculate u(0, Sy) for each N. For instance, we let N to take values between

[100, 250, 500, 1000, 2000, 3600].
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3.6 Result and analysis

In this section we present the result of our numerical method applied to straddle product.

As shown in figure 3.17, the pattern of the contract price as a function of underlying stock price is
similar with increasing number of time-grids set, this provides an empirical evidence of convergence
to the theoretical solution of the equation despite being a viscosity solution. The adjusted price
function behaves symmetrically around the strike price K’ = 100 in the range S = [0, 200]. However,
this is not because the payoff function is symmetric around & = 100. In fact, the contract price
at Sy € [0_. 100] is reduced because of default intensity and the default scenario at boundary is not
affecting its price as discussed previously. By contrast, the price at Sp € [100,200] is both affected

by the default intensity and boundary condition.
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Figure 3.17: European Call price at different time step N

Furthermore, we can notice that the trend is also different between the ITM range of call side
and put side. When the option is deep ITM due to the put option, we see that the trend is linear
and decreasing. Also, there is a drastic price change when the underlying stock price approaches
to zero by observing the peak the all of these graphs in figure 3.17. By contrast, under the I'TM
scenario due the call option, the contract price behaves smoothly when the stock price approaches

its left boundary and presents a change in convexity. All these observations indicate an asymmetry
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between the price of call and put options with the same strike and time to maturity.
Next, we show in more detail the convergence of the solution by focusing on some particular values
of underlying stock prices (Sp = 50, 100, 150, 250 respectively). Figures 3.18, 3.19, 3.20, 3.21 show

the convergence behaviour of the contract price at stock prices stated previously.
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Figure 3.19: Convergence result at Sy = 100

In fact, we can observe that, as N increases, the contract decreases when S = 50 and § = 250,
those cases represent deep I'TM scenarios of the call option and put option. Since it is natural to
expect that the contract price is less than the theoretical Black-Scholes price, we can deduce that:
as NV increases, our method exaggerates the elfect of credit, funding and collateral adjustments
thus makes the contract price to move in the opposite direction of theoretical price. By contrast,
when the contract is at the money the convergence is increasing, approaching to its theoretical
price. In all these cases, we can clearly see a converging behaviour of the adjusted prices calculated

using Finite-Difference method.
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Next, we are going to explore the sensitivity of the contract’s adjusted price to its parameters.

3.6.1 Sentisivity to collateral amount

Figure 3.22 shows the option price when the collateral posted « is equal to 0.2, 0.4, 0.6 and 0.8

times the value of the contract respectively.
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Figure 3.22: Option prices with different collateral amount
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It is natural to see when the contract is deep in the money as Sy is large, the higher the
collateral amount is, the more valuable the contract is, since the buyer of the contract is well
protected. When collateral posted is high (e = 0.8) we observe a straight line as S increases.
However, when « is low, the contract price exhibits negative convexity around S; = 200 and
switches to positive convexity near S; = 250. A financial explanation of this phenomenon could
be as follows: we know that both CVA and ColVA reduced the value of the contract, although
CVA is increased (in absolute value) by low amount of collateral posted, it is compensated by the
reduction of ColVA (in absolute value). As a result, this trade-off between CVA and ColVA causes
the convexity behaviour of straddle’s price.

On the other hand, when the contract is ITM from the put side, the effect is also significant. The
contract ends in different prices as Sy approaches to zero although the boundary condition does
not affect much on the pricing equation as discussed in 3.4.

To be more precise, we provide another point of view by concentrating in particular values of S.
The figure 3.23 shows the relationship between the contract value and the collateral amount a at
different initial stock prices Sy = 50, 100, 150 and 200.
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Figure 3.23: Sensitivity to e at Sy = 50, 100, 150, 200

We can observe that, when the underlying stock price is small (S = 50, 100), the change due to
collateral amount is mild (from 50 to 50.5 and from 31 to 31.5 respectively), the trend is increasing
and linear. However, as § is large, the behaviour becomes positively convex and the price change

is significant.

3.6.2 Sensitivity to funding rate

IFunding rate will affect the hedging cost as the hedging strategy described in section 2.1.5. The
option seller (in this case the counterparty) would hedge it's exposure to stock price changes, hence,
the higher funding rate is, the more expensive the option is. In this case, we got two different rates:

f7 and f~, we only alter the value of fT since we assume f~ is always the risk-free rate. Figure
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3.24, shows the contract price as a function of initial stock price with different funding rates f*
ranging from 0.5% to 15.5%. Indeed, the contract price is increasing as a function of funding rate.
When the contract is I'TM from the call option (S, > 100), we note that, the effect of funding rate
7 is mild even though we used exaggerated values for f1, this is because, f is not appearing in
the boundary and terminal conditions. Therefore, we expect that the Funding Value Adjustment
shall be small. The behaviour is different in ITM scenarios when Sj is small. Although is price is
decreasing as « i8 decreasing (check figure 3.25), the effect is not significant. Another reason of this
phenomenon is due to the size of S, if we inspect the equation 3.1.4, as s; approaches to zero, the
effect on funding rate will also approach to an amount less than 1. Then, by backwards induction
in g; all the terms related to credit, collateral and funding will converge to zero, as a consequence,
the contract price done in this way will eventually be independent of these parameters when S is
small. We will check this for other parameters.
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Figure 3.24: Option prices with dilferent funding rates

Next, we focus on the sensitivity behaviour to funding rate f at specific values of Sy. Figure
3.9 shows the relationship of option value with respect to the funding rate f at different initial

stock prices Sy = 50, 100, 150 and 200. The relationship is approximately linear in all the cases.
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Figure 3.25: Sensitivity to funding rate f at Sy = 50, 100, 150, 200

3.6.3 Sensitivity to default intensity

In this section, we explore the affect of changes in counterparty’s default intensity. We let the
minimum of counterparty’s default intensity to range from A. = [0.08,0.16,0.24,0.32, 0.4], Figure
3.26 shows the option price dynamic with different values of default intensity. We can check that,
as the default intensity increases, the price of the contract decays for all Sy. As an option buyer
the more likely the connterparty will default, the less we are willing to pay for that contract. The
effect of changing default intensity is relatively significant around Sy = 100. This is not surprising,
as Sy diverges from the strike level K' = 100, the default intensity of counterparty will increase and
eventually converges to 1 at both ends, therefore no remarkable difference is observed in Sy = 0
and Sy = 300.
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Figure 3.26: Option prices with different default intensity

The local relationship of the contract price with respect to counterparty’s default intensity is
shown in the figure 3.27. Again, the assertion of divergence is verified by noting that the spread in
straddle value at Sy = 50 (50—45) is bigger than the case with Sy = 100 (31 —28). The relationship

is linear and decreasing in all scenarios with the presence of negative convexity at Sy = 250.
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Figure 3.27: Sensitivity to counterparty’s default intensity at Sy = 50, 100, 150, 200

3.6.4 Sensitivity to loss given default

The amount Loss Given Default (LGD) when the counterparty defaults is also a measure of the
credit risk, it plays an important role in our model since we assumed the counterparty for always

defanlt at Sy = 0 and Sp = Smax. Figure 3.28 shows the option price when the Loss Given Default
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ranges from 0.2 to (.8.

The trend is clear at I'TM scenarios from the call option side where the contract price decays
sharply as LGD incresases, however, this effect is less significant than simple call case. Straddles
tends to be more valuable than simple call if LGD is high. Also, unlike the simple call option case,
the effect of LGD is relevant also around strike level meanwhile in the call case, the prices start to
diverge around Sy = 150. This phenomemnon indicades straddle are more volatile to LGD, since
LGD is an unobservable parameter (one cannot know it until the counterparty defaults), one can
expect bigger bid-ask spreads in the market.

On the other side, as Sy approaches to zero, the effect is mild as we discussed in section 3.4 and
3.6.2. We can clearly see the divergence of the prices around Sy = 200 is much bigger than Sy = 0
this is another evidence of the asymmetry mentioned in 3.4. Overall, we expect higher values of
the straddle as LGD decreases.
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Figure 3.28: Option prices with different loss given default

The above observation is again verified by figure 3.29 where we focus on the sensitivity behaviour
at specific values of Sy = 50, 100, 150 and 250. We notice that the relationship starts being linear
decreasing as Sy is small and it becomes negatively convex at higher values of S;. We can see
the price reduces more than half at Sy = 250, to explain why this situation happens, we can not
separate the effect of LGD and increasing default intensity, the combination of these two effects is

more than additive.
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Figure 3.29: Sensitivity to loss given default at Sy = 50, 100, 150, 200

3.6.5 Sensitivity to strike price

Strike prices is also an important parameter in option valuation theory. We explore the sensitivity
of option price to the strike price by letting K = 80, 90, 100, 110, 120. As shown in figure 3.30,
straddles with less strike price is more valuable in deep [TM scenarios for the call option as S gets
large and less valuable in deep ITM scenatios for the put option as S approaches to zero. This

phenomenon agrees with the nature of a straddle.
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Figure 3.30: Option prices with different strike price

Also, we notice there is an upward shift, we can see the minimum of the contract value is

ascending as the strike price increases. One possible reason for it is, as strike prices moves up, its
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effect on the put option part of straddle over-weights its effect on the call option part. Another
reason could be the asymmetry of the domain § € [0,300]. Unfortunately, we can not choose
K = 150 for the symmetry because if the contract is at the money with K = 150, we need
to change the upper-bound Syyax subsequently because the possibility of a log-normal random
variable to double its value can not be neglected in this case.

Next, we now focus on the sensitivity behaviour at specific values of S in figure 3.31. The
asymptotic behaviour is not different from the simple call when Sy is large as we expected. The
behaviour of contract value when Sy is around 100 is of a parabolic shape. We deduce there is a
global minimum, we can potentially observe arbitrage opportunities if there is a inversion of the
shape in the market when Sy is around 100. Finally, when Sy = 50 the relation is linear and

increasing just like a simple put option.
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Figure 3.31: Sensitivity to strike price at Sy = 50, 100, 150, 200
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Chapter 4

Conclusion

In this dissertation, we managed to derive the pricing formulas for CVA, DVA, ColVA, FVA
and HVA following the general framework done by Perini, Pallavicini, Brigo [7]. We deduced
the corresponding FBSDE and PDE related to the contract’s price dynamic. We discussed the
existence and uniqueness of the PDE in equation 2.2.7 in two different cases: when f; i3 symmetric
and asymmetric with respect to borrowing/lending. We showed under some strict conditions the
PDE in equation 2.2.8 has unique solution in a closed bounded domain, in a more general settings
we state the existence and uniqueness theorems of viscosity solutions discussed in [19].

Next, we used finite difference method to solve numerically the PDE and delivered two case studies:
simple call option and a straddle. We showed evidences of asymmetry between call and put options
in the straddle case. We found out that under finite difference method, the effect of default scenario
on the boundary Sy = 0 fades away but remains significant on the boundary Sy = 300 causing the
asymmetry. Furthermore, we ran sensitivity analysis with different parameters related to credit,
funding and collateral, we observed that straddles are in general more sensitive to those parameters.
There are lots of further research directions inspired by this dissertation. In the theoretical part,
as stated in remark 2.4.3, finding a solution with bounded derivative to the equation 2.2.7 is
crucial for the rigorous proof of lemma 2.4.2, unfortunately, this problem remains unsolved in the
academia. Furthermore, we imposed very strict conditions on the funding rate f; to be constant in
time to get the existence and uniqueness of the classical solution for the pricing PDE, one might
try loosing this condition to continuously differentiable functions. In the numerical part, we may
choose other numerical methods such as Galerkin method [24], finite element [25] or upper-lower
solutions method [26] to eliminate the drawback on boundary conditions of finite difference method.
Finally, we have not discussed much about the FBSDE derived in this dissertation, solving FBSDE
numerically would be an sensible alternative to obtain the price function. In academia, solving
SDEs numerically is a topic that has gained attention recently, there are lots of methods available:
from classical ones such as Monte Carlo simulation to the use of Neural Networks see for example

Han, Jentzen and Weinan [27].
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