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Abstract

The aim of this thesis is to study portfolio optimisation problems combining
a risk free asset with risky assets. A single period model with finite probability
space is first considered. The convex duality approach is used to find the optimal
trading strategy that maximises the final wealth.

A time-continuous model is then assumed, where the stock prices are driven
by stochastic differential equations. The Dynamic Programming Principle and
some of the related results are stated and used to solve the classical Merton’s
problem where we seek to maximize the expected utility of consumption under
an infinite time horizon assuming a deterministic interest rate and deterministic
stock volatilities.

These assumptions are then relaxed. A Hobson and Rogers stochastic volatil-
ity model is considered, where the volatility is expressed as an exponentially-
weighted mean of historic log-prices. The HJB equation is used to derive a non
linear ODE of the value function which can be linearised by a change of variable.
Then assuming a finite time horizon T , Feynman-Kac theorem provides a solu-
tion of the ODE, and by taking the limit T →∞ and considering a transversality
condition, the solution of the ODE can be written as the expectation of an Ito
process. Finally, a numerical example is provided to illustrate the results, where
the expectation is approximated by Monte Carlo simulations and the optimal
consumption and investment strategies and the effects of varying the parame-
ters on these optimums are analysed.

Finally, a consumption-investment problem is considered under a non deter-
ministic interest rate driven by a Vasicek model. The ODE is derived using the
HJB equation, which is again non linear and can’t be solved analytically. The
subsolution-supersolution method developed by Fleming and Pang is used to
find an upper and lower bound of the optimal solution.

Keywords: Optimal consumption-investment, HJB equation, Dynamic Pro-
gramming Principle, Stochastic volatility, Vasicek Interest Rate Model.
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1 INTRODUCTION

1 Introduction

1.1 Literature review

” Don’t gamble; take all your savings and buy some good stock and hold it till it goes
up, then sell it. If it don’t go up, don’t buy it. ” - Will Rogers

The objective of every investor is to gain the highest possible return and take
the lowest risk. He can build a portfolio by considering two types of assets: a risk-
free asset that returns a fixed low rate and consequently doesn’t imply any risk and a
risky asset that gives a preeminent expected return against a higher risk. Depending
on his preferences, the investor will either invest all of his wealth in one of these
assets or allocate it between the two assets and have a trade-off between high return
and riskiness. But how can he assess the performance of a given strategy?

The first approach that has been used is the expected value of the payoff, un-
til Nicholas Bernoulli introduced the ”St. Petersburg Paradox” in 1713. Suppose a
gambler can enter the following game: a fair toss coin is tossed until a head appears
and the gambler gets 2n where n is the number of times the coin was flipped. The
outcome of this game is Y = 2n with probability P (T T T T · · ·︸     ︷︷     ︸

n−1 times

H) = 2−n.

The question now is: how much this game is worth ? According to the expected
value approach, the gambler can pay :

E(Y ) =
∞∑
n=1

1
2n
∗ 2n =∞

This is absolutely not a reasonable price of the game. In 1738, Nicholas’s cousin
Daniel Bernoulli came up with a solution that revolutionized the world of finance.
He suggested to alter the nominal amount and replace it by the utility of this amount,
and proposed to take a logarithmic utility function U (x) = log(x):

E(U (Y )) =
∞∑
n=1

1
2n
∗U (2n) <∞

Arrow [2] suggested to take a bounded utility function and De Buffon [10]
argued that some sufficiently improbable outcomes are “morally impossible” and
should be ignored.

Bernoulli’s idea gave birth to the Marginalist Revolution in 1817, and a growth
in interest about utility maximization raised since then.

Some researchers were interested in the single period model. In this setting,
Markowitz [28] and Tobin [52] showed the ”Efficient Set Theorem” stating that if the
returns are normally distributed and the utility function is concave, then the problem
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1 INTRODUCTION 1.1 Literature review

of maximising the expected utility is equivalent to minimizing the standard devia-
tion of the returns for every concave utility function and maximizing the expected
returns for any standard deviation of the returns. If the returns are also indepen-
dent, the theorem holds for the quadratic utility function.

Fama [22] showed an extension of this theorem for a wider class of distribu-
tions: symmetric stable Paretian returns [26]. This class of stable distributions was
first introduced by Lévy [38].

Elton and Guber [20] proved a necessary condition for expected utility maxi-
mization under log-normal distribution: the optimal portfolio should lie on an exte-
rior boundary in mean variance space for all utility function U .
They have also found [19] that maximizing the expected utility is equivalent to max-
imising the geometric mean in the particular case of logarithmic utility.

The statistical properties of the efficient frontier have been investigated by Job-
son [35], Broadie [9], Chopra and Ziemba [15], Best and Ding [5] and MacLean and
Weldon [39]. They studied distribution tests and confidence sets to assess the as-
sumption of independence and normal distribution of log-returns.

The continuous time modeling has seen a grown interest after the introduction
of stochastic calculus. Merton has formulated and solved the optimal consumption-
investment model [42] under log-normally distributed returns with deterministic
volatility and interest rate and a Constant Relative Risk Aversion (CRRA) utility func-
tion using the Dynamic Programming approach. It was developed by Bellman [3] in
1975 and had been used in Optimal Control theory.

However, the assumptions made in Merton’s problem aren’t realistic. For in-
stance, interest rates aren’t deterministic in real life and should be modeled by a
stochastic differential equation. The main interest rate models that have been intro-
duced in the literature are Vasicek [54], CIR [16] and Hull–White [32] models.

Some papers studied utility maximisation under stochastic interest rates. In
the finite time horizon case, Chang and Chang [13] derived a closed-form solution
in a complete market under a Hyperbolic Absolute Risk Aversion (HARA) utility
function using the Legendre transform. Dong [34] derived the optimal solution of
the consumption-investment problem under CRRA utility function for a market that
consists of a risk-free asset where the interest rate is driven by a Vasicek model, a
zero-coupon bond and a risky stock that follows a log-normal model. Korn and Kraft
[13] and Grasselli [14] used the CIR interest rate dynamics to derive the optimal
solution under HARA utility.

For the infinite horizon time case, Fleming and Pang [24] developed a subsolution-
supersolution method and provided upper and lower bounds for the value function
under a CRRA utility function. The drawback of this method is that some of the

9



1.1 Literature review 1 INTRODUCTION

supersolutions/subsolutions are not explicitly derived but they are rather given in a
parametric form. Trybula [53] used Fleming and Pang’s approach to derive explicit
bounds in the case of a consumption problem without investment. We use the same
approach as Fleming and Pang to derive a numerical approximation of the optimal
solution under a Vasicek interest rate model.

The volatility is a very important parameter in pricing and hedging financial
securities. It has been proved that it is not constant (see [6] and [50]) and models
based on deterministic volatility don’t match the implied market distributions. Sev-
eral models have been suggested to model the randomness that drives the volatility
processes.

Cox and Ross [17], Geske [27]), Rubinstein [49] and Bensoussan et al [4] sug-
gested to model it by a diffusion process that is correlated with stock prices and/or
with a firm’s debt. Johnson and Shanno [36], Scott [50], Hull and White ([33] and
[31]) and Wiggins [55] described the randomness of the volatility by a Brownian
motion independent of the price process.

In 1982, Engle [21] introduced ARCH processes and in 1986, Bollerslev [7]
introduced GARCH processes to model asset volatilities. Theses models capture the
stylized facts that log-returns volatility is clustered and highly persistent. These
proporties are also captured by Hobson and Rogers [29] model. They introduced
in 1998 an endogenous model of volatility that is expressed as an exponentially-
weighted average of the moments of historic log-prices. This model had the advan-
tage of being observable and also consistent with the ‘smiles’ and ‘skews’ implied by
the market.

Kraft [37] addressed the optimization problem under a Heston stochastic volatil-
ity model and the power utility function. Chacko and Viceira [12] investigated
the case of a dynamic hedging portfolio and derived closed-form formulas of op-
timal consumption and investment strategies for an infinite horizon. Fleming and
Hernandez-Hernandez [23] and Fouque, Papanicolaou and Sircar [25] were also in-
terested in the optimization problem with stochastic volatility.

In this paper, we model the volatitlity process by Hobson and Rogers [29]
model, and write the solution of the HJB equation as an expectation using Feynman-
Kac theorem and by imposing a transversality condition ([1] and [18], [42]), then
this expectation is computed using Monte Carlo simulations. This is a powerful
method that provides high level results. This idea has been suggested by Ravi in his
paper [40].

Other researchers combined the stochastic volatility model together with stochas-
tic interest rates. For example, Chang and Rong [14] used a CIR interest rate model
and Heston’s stochastic volatility model to derive a closed-form solution of the ex-
pected utility under a finite time horizon for both power utility and logarithmic

10



1 INTRODUCTION 1.1 Literature review

utility.

Noh and Kim [44] addressed the case of a Vasicek asset price volatility model
and a stochastic interest model such that the mean return µ(rt) and volatility σ (rt)
satisfy some conditions using HARA utility and logarithmic utility. They character-
ized the optimum by a supersolution and subsolution.

Finally, there is a plenty of variants of Merton’s problem that take into ac-
count transaction costs, taxes, random stopping time, etc. These problems have
been briefly discussed by Rogers [48], and some researchers were interested in these
problems and tackled them in a more detailed manner. We refer to the recent pa-
per of Hobson, Tse and Zhu’s [30] for the multi-asset investment and consumption
problem with transaction costs.

11



2 A CONVEX OPTIMISATION METHOD

2 A convex optimisation method

2.1 Model specifications

In this first chapter, we consider a single period model with initial time t = 0 and
final time t = 1, and finite probability space Ω = {ω1, ...,ωK }. P is the historical prob-
ability measure and Q is the risk-neutral measure.

Let B = {B0,B1} denotes the bank account process, such that B0 = 1, and
B1 = 1+ r where r is the interest rate.

We consider N securities, and denote the price process of the i-th security by
Si = (Si(0),Si(1)). The time t = 0 price Si(0) is a deterministic positive number and
Si(1) is a non-negative random variable representing the time t = 1 price.

We also consider the discounted price process S∗i (t) :=
Si(t)
Bt

for t ∈ {0,1}.

We denote by the vector H = (H1, ...,HN ) the trading strategy, where Hi is the
number of units held of the i-th security, and H the set of all trading strategies.

Finally, we denote the wealth process of the portfolio by V = (V0,V1), its value
at time t ∈ {0,1} is Vt = Bt +

∑N
n=1HnSn(t).

2.2 Optimisation problem

The problem consists of finding the optimal strategy, hence the need of quantifying
the performance of a given strategy H . One of the performance measures used is the
expected utility.

Let u : R ×Ω→ R be a function such that w→ u(w,Ω) is differentiable, con-
cave, and strictly increasing for each ω ∈ Ω. This function represents the utility of
the wealth ω.

The optimisation problem is formulated as:

maximize
H∈H

Eu (V1(H1, · · · ,HN ))
subject to V0 = v

Why this is a convex optimisation problem?

The function u is assumed to be a concave function and the expectation is
linear and increasing, so:

12



2 A CONVEX OPTIMISATION METHOD 2.3 Risk neutral approach

u(λV + (1−λ)W ) ≥ λu(V ) + (1−λ)u(W ) ( By concavity of u )
Eu(λV + (1−λ)W ) ≥ E(λu(V ) + (1−λ)u(W )) ( Expectation is increasing )
Eu(λV + (1−λ)W ) ≥ E(λu(V )) + (1−λ)E(u(W )) ( By linearity of expectation )

Thus the objective function is concave and the set of constraints is clearly con-
vex.

The objective function can be written as:

Eu (V1) =
∑
ω∈Ω

P(ω)u (V1(ω),ω)

=
∑
ω∈Ω

P(ω)u (B1
{
v +H1∆S

∗
1 + · · ·+HN∆S

∗
N
}
,ω)

We compute the gradient as follows:

∇(V1) =

∑
ω∈Ω

P(ω)u′ (B1(ω)
{
v +H1∆S

∗
1(ω) + · · ·+HN∆S

∗
N (ω)

}
,ω)B1(ω)∆S

∗
n(ω)


1≤n≤N

= (E [B1u
′ (V1)∆S

∗
n])1≤n≤N

So that the first order condition can be written as:∑
ω∈Ω

P(ω)u′ (B1(ω)
{
v +H1∆S

∗
1(ω) + · · ·+HN∆S

∗
N (ω)

}
,ω)B1(ω)∆S

∗
n(ω) = 0, n = 1, . . . ,N

This system of N equations is not always easy to solve, this is why we will in-
troduce the risk neutral approach.

2.3 Risk neutral approach

First, let’s get some intuition about this approach.

Let’s define Qu(ω) := P(ω)u′ (V1(ω),ω)B1(ω). If Qu is proportional to the risk-
neutral probability measure Q, then the first order condition is equivalent to:

EQ (∆S∗n) = 0, n = 1, . . . ,N (1)

By the property of the risk neutral probability measure, S∗n is a Q-martingale,
i.e EQ (∆S∗n) = 0, for n = 1, . . . ,N , which is the same as the system (1). Hence the link
between the risk neutral measure and our optimal investment problem. We will look
at more details in the following sections.

13



2.3 Risk neutral approach 2 A CONVEX OPTIMISATION METHOD

Recall the objective function of the optimisation problem:

(H1, · · · ,HN ) 7→ Eu (V1(H1, · · · ,HN )) ,

which is the decomposition of the two functions:

f : Wv → R and V1 : H → Wv
V1 7→ Eu(V1) (H1, · · · ,HN ) 7→ B1(v +

∑
Hn∆S

∗
n)

Where Wv is the set of attainable wealths.

The function V1 maps the trading strategies into the real random variables
representing the final wealth, and the function f maps these wealths to the real ex-
pected utility which we aim to maximise.

The approach is the following [46]:

1. Find the optimal attainable wealth V ∗1 which maximises the objective function.

2. Replicate the wealth V ∗1 and find the corresponding hedging vectorH = (H1, · · · ,HN ).

2.3.1 Complete models

Recall that a model is complete if every payoff V1 is replicable, and that there exists
a unique risk-neutral probability measure, under which the time 0 fair value of the
claim V1 is V0 = EQ(V1).

Thus, under the assumption of complete market, a wealth V1 is attainable iff
the discounted final wealth verifies v = EQ(V ∗1 ).

The set of attainable wealths can be then written as:

Wv =
{
V r.v : EQ

(
V
B1

)
= v

}
.

Step 1:

According to the above approach, one needs to solve the following optimisa-
tion problem:

maximize Eu (V )
subject to EQ(V /B1) = v

To do so, we introduce the Lagrange multiplier:

14



2 A CONVEX OPTIMISATION METHOD 2.3 Risk neutral approach

L(V ,λ) = (V )−λ
(
EQ

V
B1

)
and the density L =

Q

P

, so that for any random variable Y , one has:

EQ(Y ) = EP(LY )

and

L(V ,λ) = E
[
u(V )−λLV

B1

]
=

∑
ω∈Ω

P(ω)
[
u(V (ω))−λL(ω)V (ω)

B1(ω)

]
So now we are interested in the following problem:

maximize L(V ,λ)
subject to EQ(V /B1) = v

The necessary conditions can be written as:

u′(V ∗(ω)) = λ
L(ω)
B1(ω)

, for all ω ∈Ω

i.e

V ∗(ω) = u′−1
(
λ
L(ω)
B1(ω)

)
, for all ω ∈Ω (2)

where u′−1 denotes the inverse function of u′.

Solving the equation 2 would allow to have the expression of the optimal
wealth as a function of λ, then λ is determined such that the constraint is not vi-
olated:

EQ

[
1
B1
u′−1

(
λ
L
B1

)]
= v

Step 2:

In this step, we find the trading strategy H = (H1, · · · ,HN ) to replicate the
wealth V of equation 2. Thus, we need to solve a system of K equations:

B1(ωi)

v + N∑
n=1

Hn∆S
∗
n(ωi)

 = V (ωi) i ∈ {1, · · · ,K}

15



3 A DPP APPROACH

3 A DPP approach

In this chapter, we will consider an other approach to solve the control problems
based on the Dynamic Programming Principle (DPP) that we will introduce later.

3.1 Model specifications

We consider in this chapter a continuous-time setting.

Let (Ω,F , {Ft}t≥0,P) a filtered probability space and W = (W 1, · · · ,W d) a d-
dimensional Brownian motion.

We consider a financial market with two types of assets: risk-free asset repre-
senting the bank account, and a vector of risky assets St = (S1t , · · · ,Snt ) which are the
solutions of the following SDEs:

dBt = rtBt dt, dSt = µ(t,St)dt + σ (t,St)dWt, (3)

where µ(t,St) ∈Rn and σ (t,St) ∈Mn∗d(R).

The components of the second equation are:

dS it = µi(t,St)dt +
d∑
j=1

σij(t,St)dW
j
t , 1 ≤ i ≤ n

In the next sections, we consider the following drifts µi(t,St) and volatilities
σij(t,St) functions:

µi(t,St) = µiS
i
t , σij(t,St) = σijS

i
t ,

where µi and σij are constants.

We denote by Xt and Yt the money invested in the bank account and risky
assets respectively, and ωt the total wealth. We have then:

ωt = Xt + Yt,

Yt = nt . St,

where n is a n-dimensional previsible process, its component nit represents the num-
ber of shares of the i-th asset hold in the portfolio at time t and (u.v) denotes the
scalar product of u and v.

Assuming that the stocks S deliver a n-dimensional adapted vector of dividends
δ , and that the agent makes an endowment of a process e and consumes at the rate
process c, we can write the dynamics of X and Y as:

16



3 A DPP APPROACH 3.1 Model specifications

dXt = rtXt dt + et dt − ct dt,

dYt = nt . (dSt + δt dt),

so that the final wealth has the dynamics:

dωt = dXt + dYt

= rt Xt dt + et dt − ct dt + nt . (dSt + δt dt)

= rt (ωt −nt.St) dt + et dt − ct dt + nt . (dSt + δt dt)

The processes e, δ, S and r are assumed given. We will take e = 0 and δ = 0, i.e
there is not an endowment of money or dividends:

dωt = rtωt dt +θt . (σ dWt + (µ− rt)dt)− ct dt (4)

where θt := nt.St is the vector of each asset worth.

The equation (4) that describes the dynamics of the wealth process can be
written as:

dωt = f (ω(t),ν(t)) (5)

given that: ω(t0) = ω0 and such that :

ν(t) = (c(t),θ(t))

Theorem 1 (Carathèodory)
Suppose that:

1. f (·, ·) is continuous,

2. f (·,ν) satisfies the Lipschitz condition, i.e. there exists a constant Lf > 0 such
that:

|f (z,ν)− f (z′,ν)| ≤ Lf |z − z′ |

for all z,z′ ∈Rd and ν ∈ A,

3. f (z,ν(t)) is measurable with respect to t.

Then, there is a unique absolutely continuous function y : [t0,T ]→R
d that satisfies

y(s) = z0 +
∫ s

t0

f (y(τ),ν(τ))dτ

Proof 1
The proof can be found in [41].
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3.2 Structure of optimal control problems 3 A DPP APPROACH

The theorem 1 guarantees, under some conditions, the existence and unique-
ness of the solution of equation (5) and that the solution has the same properties as
the function y.

Finally, the agent has to control the processes c and θ in a way such that her
wealth ω is always non-negative. Thus, the couple (θ,c) is constrained to live in the
set of admissible controls A := { (θ,c) | ω ≥ 0 a.s. }.

3.2 Structure of optimal control problems

In an optimal control problem, we aim at finding the control processes (c and n in
section (3.1) for example). To do so, one needs to pay particular attention to the
four following elements [51]:

• State process Z (.): This process describes the state and hypotheses of the
problem. In the setting of the previous section, the wealth of the investor is
the state process and it is characterized by equation (4):

Z (.) := ω(.)

Any other information about the parameters of the problem should be taken
into account in the state process.

• Control process ν(.): This process is the one that the investor can control in
order to optimize his objective. It is represented by the processes (θ,c) in the
previous section:

ν(.) :=
[
θ(.)
c(.)

]

• Set of admissible controls A : The control process ν(.) has to respect certain
constraints in order that the strategy can be admissible. We call the set of such
control processes the admissible controls:

A := { (θ,c) | ω ≥ 0 a.s. }

• Objective function: The aim of the agent is to achieve a certain optimal cri-
terion. To assess the performance of a given control process, one needs to set
an optimisation measure. In the majority of optimal control problems, this
function is taken as the expectation of a certain utility function of the control
process and the investor seeks to maximise that quantity:

J(ν(·)) = E
[∫ T

0
u(t,ν(t))dt +G(T ,ωT ) |Z0 = z

]
18



3 A DPP APPROACH 3.3 Dynamic Programming Principle (DPP)

where T is the time horizon, it can be finite or infinite. The function u will
mostly be taken as:

u(t,x) = e−ρtU (x)

where U is the Constant-Relative-Risk-Aversion (CRRA) function U (x) :=
x1−R

1−R
s.t R > 0 and R , 1 .

The discount factor e−ρt guarantees the convergence of the integral.

We can notice that the problem suggests a feedback process: the control changes
if there is a change in the state process. Thus, we will use the Dynamic Programming
Principle (DPP) since it leads to solutions in a feedback format [41].

The aim of the agent is to attain the supremum of the above functional. The
value function is then defined as:

V (z) := sup
ν∈A

J(ν(·))

Some control problems aim to minimise a cost function:

V (z) := inf
ν∈A

J(ν(·))

Then instead of solving the problem only at the initial time t = 0, we will be
interested in finding the optimal strategy at every time t, i.e:

V (t, z) = sup
ν∈Az

E

[∫ T

t
e−ρs

c1−Rs

1−R
ds | Z(t) = z

]
where Az denotes the set of admissible control processes of a state process Z such
that Zt = z.

3.3 Dynamic Programming Principle (DPP)

The Dynamic Programming Principle (DPP) is a sine qua non theorem in tackling
optimal investment problems.

Theorem 2 (Dynamic Programming Principle)
For any stopping time τ ≥ t

V (t, z) = sup
ν∈At,z

E

[∫ τ

t
u(s,ν(s))ds+V

(
τ,Zνt,z(τ)

)
| Ft

]
where Zνt,z(τ) is the value of the state process starting at time t with value z and
controlled by the process ν evaluated at time τ.
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3.4 Hamilton Jacobi Bellman Equation (HJB Equation) 3 A DPP APPROACH

3.4 Hamilton Jacobi Bellman Equation (HJB Equation)

Theorem 3 (The Davis-Varaiya Martingale Principle of Optimal Control (MPOC) [48])
Assume that:

1. There exists a function V : [0,T ]×R+→R which is C1,2, such that:

V (T , ·) = u(T , ·),

2. For any (n,c) ∈A (w0):

Yt ≡ V (t,wt) +
∫ t

0
u (s, cs)ds is a supermartingale, (6)

3. For some (n∗, c∗) ∈A (w0) the process Y is a martingale.

Then (n∗, c∗) is optimal, and the value of the problem starting from initial wealth w0 is

V (0,w0) = sup
(n,c)∈A (w0)

E

[∫ T

0
u (t, ct)dt +u (T ,wT )

]
By equation (6), and by applying Ito’s formula, we obtain:

dYt = Vtdt +Vwdw+
1
2
Vww(dw)

2 +u(t, c)dt

= Vwθ · σdW +
{
u(t, c) +Vt +Vw(rtw+θ · (µ− rt)− c) +

1
2

∣∣∣σTθ∣∣∣2Vww}dt
by assuming the dynamics of ω in equation (3).

Then, by integrating from t to t + h:

Yt+h−Yt =
∫ t+h

t
Vwθ · σdW︸               ︷︷               ︸

Local martingale

+
∫ t+h

t

{
u(s, c) +Vs +Vw(rsw+θ · (µ− rs)− c) +

1
2

∣∣∣σTθ∣∣∣2Vww}ds
So,

Yt = E
[
Yt+h −

∫ t+h

t

{
u(s, c) +Vs +Vw(rsw+θ · (µ− rs)− c) +

1
2

∣∣∣σTθ∣∣∣2Vww}ds | Ft]
By setting

Lνv := µ(t,x,ν) · ∇v + 1
2
tra(t,x,ν)D2v

where,

a(t,x,ν) := σ (t,x,ν)σ (t,x,ν)t and tr a :=
d∑
i=1

aii
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3 A DPP APPROACH 3.5 Verification theorem

and in view of the DPP,

sup
ν∈At,x

E

[
−
∫ t+h

t

(
∂
∂t
v +Lν(s)v +L

)
ds

]
= 0

Assuming that µ,a,L are continuous, and dividing the above equation by h and let-
ting h go to zero, we obtain

− ∂
∂t
v(t,x) +H

(
x, t,∇v(t,x),D2v(t,x)

)
= 0

where

H(ω,∇V (ω),D2V (ω)) := sup
(θ,c)∈A

[
µ(ω,θ,c)∇V (ω) +

1
2

tr(σσT (ω,θ,c)D2V (ω)) +U (c)
]

(7)

3.5 Verification theorem

Let β > 0 and f : Rn ×A→ R a measurable function. For x ∈ Rn, we denote by A(x)
the subset of controls α in A0 such that:

E

[∫ ∞
0
e−βs |f (Xxs ,αs)|ds

]
<∞

The gain function is defined as:

J(x,α) = E
[∫ ∞

0
e−βsf (Xxs ,αs)ds

]
for all x ∈Rn and α ∈ A(x).

The associated value function is:

v(x) = sup
α∈A(x)

J(x,α)

Theorem 4 (Infinite horizon [11])
Let w ∈ C2 (Rn) , and satisfies a quadratic growth condition, i.e. there exists a constant
C such that

|w(x)| ≤ C
(
1+ |x|2

)
, ∀x ∈Rn

i- Suppose that

βw(x)− sup
a∈A

[Law(x) + f (x,a)] ≥ 0, x ∈Rn

limsup
T→∞

e−βTE
[
w

(
XxT

)]
≥ 0, ∀x ∈Rn,∀α ∈ A(x)

Then w ≥ v on R
n.
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4 MERTON’S PROBLEM

ii- Suppose further that:

- For all x ∈ Rn, there exists a measurable function α̂(x),x ∈ R
n, valued in A

such that

βw(x)− sup
a∈A

[Law(x) + f (x,a)] = βw(x)−Lα̂(x)w(x)− f (x, α̂(x))

= 0

- The SDE
dXs = b (Xs, α̂ (Xs))ds+ σ (Xs, α̂ (Xs))dWs

admits a unique solution, denoted by X̂xs , given an initial condition X0 = x,
satisfying

liminf
T→∞

e−βTE
[
w

(
X̂xT

)]
≤ 0

- The process
{
α̂
(
X̂xs

)
, s ≥ 0

}
, lies in A(x).

Then:
w(x) = v(x), ∀x ∈Rn

and α̂ is an optimal Markovian control

4 Merton’s problem

4.1 Problem formulation

As mentioned in section 3.2, we need to specify the following elements for the opti-
mal control problem:

• State process:

The model is driven by the differential equations of the wealth:

dωt = rωt dt +θt. (σ dWt + (µ− r)dt)− ct dt, (8)

where r,µ,σ ,β, r̄,σr are constants and the correlation parameter η lies in [−1,1].
The state process is in this case Zt :=ωt. It is the unique solution of the follow-
ing equation:

dZt = rZt +θt. (µ− r)− ct dt +θt.σ dWt (9)

where Wt is a standard Brownian motion.

Thus, (Zt) is a diffusion process with drift and volatility:

µ(ω,r,θ,c) := rωt +θt. (µ− r)− ct and σ (ω,r,θ,c) := θt.σ respectively.
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4 MERTON’S PROBLEM 4.2 Time-homogeneous property:

• Control process:

The state process is controlled by the consumption process ct and the money

invested in the risky assets θt, ν is then νt :=
[
ct
θt

]
.

• Set of admissible controls Aω0
:

The admissible control process for a state process ω which starts at ω0 at time
0 is:

Aω0
:= { (θ,c) |

(
π :=

θ
ω
,c
)

bounded, adapted ; ω ≥ 0 a.s. }

The reason behind taking the constraint of bounded processes is the following:

If π :=
θ
ω

takes a negative value that is too large in absolute value, then the

agent needs to borrow a very big amount. This situation is not realistic: the
agent can’t borrow as much as she wants.

• Objective functional:

The time horizon is infinite in this problem. The objective functional is the
expected discounted utility derived from consumption:

J(Z(·),ν(·)) = E
[∫ ∞

0
e−ρtU (c(t))dt | w0 = w0

]

where the utility function is the CRRA function U (ω) :=
ω1−R

1−R
.

The value function is the supremum of the objective functional:

V (t,ω) = sup
(θ,c)∈Aω

E

[∫ ∞
t
e−ρs

c1−Rs

1−R
ds | w(t) = w

]

4.2 Time-homogeneous property:

This problem is time-homogeneous: By changing the variable inside the integral
s 7→ s − t, we can deduce that:

V (t,ω) = e−ρtV (0,ω)

This is why we will focus on V (0,ω) and we will write W (ω) to denote V (0,ω):

V (t,ω) = e−ρtV (ω)
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4.3 Scaling property 4 MERTON’S PROBLEM

4.3 Scaling property

Let’s consider an admissible control process ν̂t :=
[
ĉt
θ̂t

]
∈ Aω̂0

. That means that the

wealth process ω̂t controlled by these processes and driven by the dynamics:

dω̂t = rω̂t + θ̂t. (µ− r)− ĉt dt + θ̂t.σ dWt

is a.s positive, and starts at ω0.

Now let’s consider λ > 0, the control process ν′t :=
[
c′t
θ′t

]
:= λ

[
ĉt
θ̂t

]
and the wealth

process ω′t = λω̂t. It verifies the SDE:

dω′t = rλω̂t +λθ̂t. (µ− r)−λĉt dt +λθ̂t.σ dWt
= λdω̂t

Thus the wealth process ω′ is also a.s positive.

Furthermore, the processes π′ :=
θ′

ω′
and c′ are bounded and adapted, so ν′ is an

admissible control process of a wealth that starts from λω̂0.

So we can conclude that λν ∈Aλω0
is equivalent to ν ∈Aω0

.

We can also notice that, for all ω > 0:

V (λω) = sup(θ,c)∈AλωE

[∫∞
0
e−ρt

c1−Rt

1−R
dt |ω(0) = λω

]

= sup(λθ,λc)∈AλωE

[∫∞
0
e−ρt

(λct)1−R

1−R
dt |ω(0) = λω

]

= sup(θ,c)∈AωE

[∫∞
0
e−ρt

(λct)1−R

1−R
dt |ω(0) = ω

]
= λ1−RV (ω)

By taking ω = 1, we obtain V (λ) = λ1−RV (1), which means that V is propor-
tional to the utility function U .

Now, we need to write down the HJB equation and try to solve it. If we find a
solution, then most likely it will be the solution to our optimisation problem.

4.4 HJB equation

The associated HJB equation is given by:
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4 MERTON’S PROBLEM 4.5 Optimal control parameters

ρV (ω)−H(ω,∇V (ω),D2V (ω)) = 0, ω ∈R (10)

where:

H(ω,∇V (ω),D2V (ω)) := sup
(θ,c)∈A

[
µ(ω,θ,c)∇V (ω) +

1
2

tr(σσT (ω,θ,c)D2V (ω)) +U (c)
]

(11)
First, we compute the quantities:

µ(ω,k,c)T∇V (ω) = (ωr +θ. (µ− r)− c)Vω
and

tr
(
σσT (ω,θ,c)D2V (ω)

)
= tr(θ.σ (θ.σ )>Vωω)

= θ.σ (θ.σ )>Vωω

By substituting these expressions in the equation (11), we obtain:

H(ω,∇V (ω),D2V (ω)) = sup(θ,c)∈A [(ωr +θ. (µ− r)− c)Vω + 1
2θ.σ (θ.σ )

>Vωω +U (c)]

= ωrVω + supc [−cVω +U (c)] + supθ
[
θ. (µ− r)Vω + 1

2θ.σ (θ.σ )
>Vωω

]
4.5 Optimal control parameters

This step consists of solving the optimisation problems:

sup
c≥0

[−cVω +U (c)] and sup
θ≥0

[
θ. (µ− r)Vω +

1
2
θ.σ (θ.σ )>Vωω

]
By the time-homogeneous and scaling properties (see sections 4.2 and 4.3),

the value function can be written as:

V (t,ω) = e−ρtV (ω) = e−ρtγ−RM
ω1−R

1−R
- Optimal c∗:

Since R > 0, the function c 7→ −cVω +
c1−R

1−R
is concave and thus it admits a

supremum.
The first order condition can be written as:

∂c(−cVω +
c1−R

1−R
) = −ω−Rγ−RM + c−R = 0

i.e. the optimal proportion of wealth consumed is:

q∗ =
c∗

ω
= γM
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4.6 Value function 4 MERTON’S PROBLEM

- Optimal θ∗:

The function ω 7→ θ. (µ− r)Vω + 1
2θ.σ (θ.σ )

>Vωω is quadratic. Since Vωω < 0
(the value function should be concave), we can deduce that it has a maximum.
The gradient of this function is:

∇θ(θ. (µ− r)Vω +
1
2
θ.σ (θ.σ )>Vωω) = (µ− r)>Vω +θ>σσ>Vωω

So that the first order condition can be written as:

θ∗>σσ>Vωω = − (µ− r)>Vω

i.e

θ∗ = − Vω
Vωω

(σσ>)−1(µ− r)

i.e

θ∗ =ωR−1(σσ>)−1(µ− r)

And the vector of optimal proportions of wealth invested in risky assets is:

πM = R−1(σσ>)−1(µ− r)

4.6 Value function

Let’s plug the optimal values in the equation (10):

e−ρt
[ R
1−R

(γMw)
1−R − ργ−RM u(w) + rwγ−RM w−R +

1
2
γ−RM w1−R|κ|2/R

]
= 0

e−ρtw1−Rγ−RM
1−R

[
RγM − ρ − (R− 1)

(
r +

1
2
|κ|2/R

)]
= 0

where

κ ≡ σ−1(µ− r)

So:

γM =
ρ+ (R− 1)

(
r + 1

2 |κ|
2/R

)
R

Thus the value function is:

V (t,w) = e−ρtγ−RM
ω1−R

1−R
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4 MERTON’S PROBLEM 4.7 Analysis of optimal values

Figure 1: The value function of Merton’s problem as a function of time t and wealth ωt

4.7 Analysis of optimal values

Both control processes c∗ and θ∗ are proportional to the wealth.

The optimal controls suggest that the agent should allocate a constant pro-
portion π∗i of wealth in each asset i. This constant is inversely proportional to the
volatility of the asset: the greater is the volatility, the higher is the risk and the lower
is the optimal proportion of the asset.

We can also notice that it’s proportional to the excess return of stocks over
bonds adjusted by the risk: this is called the sharpe ratio; it measures the profits
associated with risk-taking investment in a given stock.

If for an asset i, µi = r, which means that the expected return is equal to the
risk-free rate, the allocation to that risky asset i is null. This can be expected since
investing that money in the risk-free asset yields to the same return without taking
any risk.
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5 STOCHASTIC VOLATILITY

5 Stochastic Volatility

In Merton’s problem, a Black and Scholes model of stocks dynamics is assumed.
Although this model has proven a high tractability, the stocks log-returns prices
are supposed normally distributed with a constant variance and independent in-
crements. This is not consistent with the market implied distributions, and the de-
terministic volatility needs to be altered by a Stochastic Volatility (SV) model.

Different approaches have been suggested for the dynamics of volatility pro-
cess:

• Level dependent volatility models:

dSt = rStdt + σ (St)dWt

Cox and Ross [17], Geske [27], Rubinstein [49] and Bensoussan et al [4]
suggested and derived prices formulas for the Constant Elasticity of Variance
(CEV) model where σ (St) = σS

−(1−α)
t such that 0 < α < 1. This model, has the

same drawback as Black and Scholes: the volatility is deterministic.

• Stochastic volatility models:

dSt = µSt dt + σtSt dWt

– Stein-Stein:
dσt = κ (θ − σt)dt + σ̃dBt

this is the same as Vasicek model for interest rates (see section 6 for pa-
rameters interpretation).

– Hull-White:
σt =
√
vt ; dvt = µvtdt + σ̃vtdBt

where the parameters µ and σ̃ are constants.

– Heston:
σt =
√
vt ; dvt = κ (θ − vt)dt + σ̃

√
vtdBt

where κ,θ, σ̃ are positive constants.

– Scott: σt =
√
vt and variance process vt satisfies

vt = exp(yt) ; dyt = k (ln(θ)− yt)dt + εdBt

where B and W are correlated Brownian motions with correlation coefficient
ρ constant.
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5 STOCHASTIC VOLATILITY

• Exponentially weighted average of the historic log-price:

dSt = µSt dt + σtSt dWt

Hobson and Rogers [29] suggested to model the randomness in the stochas-
tic volatility by the previous log-prices, so that no new Brownian motion is
introduced.

σt = f (Yt) ;Yt =
∫ t
−∞ λeλ(s−t)(Xs −Xt)ds ; Xt = ln(St) (12)

In this variant of Merton’s problem, we model the volatility by the Exponen-
tially weighted average of the historic log-price model.

Yt can be expressed as:

Yt =
∫ t
−∞λe

λ(s−t)Xs ds −Xt
∫ t
−∞λe

λ(s−t)ds

= e−λt
∫ t
−∞λe

λsXs ds −Xt
(13)

By setting At and Ht as At :=
∫ t
−∞λe

λsXs ds and Ht := e−λtAt, we have then:

dAt = λeλtXt and dHt = −λe−λtAt dt + e−λt dAt (By Ito’s formula)

= −λe−λtAt dt +λXt dt

= −λ
(
e−λt

∫ t
−∞λe

λsXs ds −Xt
)
dt

= −λYt dt

So that we have:
dYt = dHt−dXt

= −λYt dt−dXt
(14)

By Ito’s lemma applied to Xt, we obtain:

dXt =
dSt
St
− 1
2
dS2t
S2t

=
(
µ−

σ2
t

2

)
dt + σt dWt

By substituting this expression in the equation (14), we obtain:

dYt +λYt dt = −
{(
µ− 1

2
f (Yt)

2
)
dt + f (Yt)dWt

}
(15)
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5.1 Problem formulation

• State process:

The model is driven by two differential equations:

dωt = rωt dt +θt [f (Yt)dWt + (µ− r)dt]− ct dt,

dYt = −λYt dt −
(
µ− 1

2
f (Yt)

2
)
dt − f (Yt)dWt

(16)

where µ,r,λ are constants.

We set the state process to be the vector Zt :=
(
ωt
Yt

)
. It is the unique solution of

the following equation:

dZt =

rωt +θt (µ− r)− ct−λYt −µ+
1
2
f (Yt)

2

dt + [
θtf (Yt) 0
−f (Yt) 0

][
dB1t
dB2t

]
(17)

where
(
B1t ,B

2
t

)
is a two-dimensional standard Brownian motion.

Thus, (Zt) is a diffusion process with drift and volatility matrix:

µ(ω,Y ,θ,c) :=
[
ωr +θ (µ− r)− c
−λY −µ+ 1

2f (Y )
2

]
and σ (ω,Y ,θ,c) :=

[
θf (Y ) 0
−f (Y ) 0

]
respectively.

• Control process:

The control process is set to be the vector νt :=
[
ct
θt

]
.

• Objective functional:

The objective functional is the expected discounted utility derived from con-
sumption:

V (t,ω,y) = sup
(θ,c)∈A(ω,y)

E

[∫ ∞
t
e−ρsU (c(s))ds |ωt =ω,Yt = y

]

where the utility function is the CRRA function U (ω) :=
ω1−R

1−R
.
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5.2 HJB equation

The associated HJB equation is given by:

ρV (ω,Y )−H(ω,Y ,∇V (ω,Y ),D2V (ω,Y )) = 0, ω,Y ∈R (18)

where:

H(ω,Y ,∇V (ω,Y ),D2V (ω,Y )) := supθ≥0,c≥0 [µ(ω,Y ,θ,c)∇V (ω,Y )+

+1
2tr(σσT (ω,Y ,θ,c)D2V (ω,Y )) +U (c)

(19)
Let’s compute:

µ(ω,Y ,k,c)T∇V (ω,Y ) =
[
ωr +θ (µ− r)− c
−λY −µ+ 1

2f (Y )
2

]T [
Vω
VY

]
= (ωr +θ (µ− r)− c)Vω +

(
−λY −µ+ 1

2f (Y )
2
)
VY

and

tr
(
σσT (ω,Y ,θ,c)D2V (ω,Y )

)
= tr

[θf (Y ) 0
f (Y ) 0

][
θf (Y ) 0
f (Y ) 0

]T [
Vωω VωY
VωY VYY

]
= f (Y )2

(
θ2Vωω − 2θVωY +VYY

)
By substituting these expressions in the equation (19), we obtain:

H(ω,Y ,∇V (ω,r),D2V (ω,Y )) = supθ≥0,c≥0[(ωr +θ (µ− r)− c)Vω +
(
−λY −µ+ 1

2
f (Y )2

)
VY+

+1
2f (Y )

2
(
θ2Vωω − 2θVωY +VYY

)
+U (c)]

= ωrVω +
(
−λY −µ+ 1

2
f (Y )2

)
VY + 1

2f (Y )
2VYY+

+supθ≥0
[
θ (µ− r)Vω + 1

2f (Y )
2θ2Vωω − f (Y )2θVωY

]
+supc≥0 [−cVω +U (c)]

(20)
By the same arguments as in sections (4.2) and 4.3, the value function can be

written as:

V (ω,Y ) =U (ω)g(Y ) =
ω1−R

1−R
g(Y )
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5.3 Optimal control parameters

Here we derive the optimal values of consumption and the wealth invested in the
stock by solving the optimisation problems:

sup
c≥0

[−cVω +U (c)] and sup
θ≥0

[
θ (µ− r)Vω +

1
2
f (Y )2θ2Vωω − f (Y )2θVωY

]
- Optimal c∗:

By the same assumption as the previous section, the first order condition can
be written as:

∂c(−cVω +U (c)) = −ω−Rg(Y ) + c−R = 0

i.e. the optimal proportion of wealth consumed is:

q∗ =
c∗

ω
= (g(Y ))−

1
R

- Optimal θ∗:

The function ω 7→ θ (µ− r)Vω + 1
2f (Y )

2θ2Vωω − f (Y )2θVωY is polynomial of
second degree. Assuming Vωω < 0, we can deduce that it has a maximum at-
tained at:

θ∗ =
−f (Y )2ω−Rg ′(Y ) + (µ− r)g(Y )ω−R

Rf (Y )2g(Y )ω−R−1

And the optimal proportion of wealth invested in the risky asset is:

π∗ =
−f (Y )2g ′(Y ) + (µ− r)g(Y )

Rf (Y )2g(Y )

=
1
R

[
µ− r
f (Y )2

− 1
g
g ′
]

We can notice that the optimal consumption and investment proportions of
wealth don’t depend on th wealth ω.

By substituting c∗ and θ∗ in (30), we obtain the second order ODE:

Rg1−1/R−ρg+r(1−R)g+(1−R)

{
(µ− r)g − f 2g ′

}2
2f 2Rg

+
1
2
f 2g ′′−(λY +µ− 1

2
f 2)g ′ = 0 (21)
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5.4 Solving the ODE

By reordering the terms of the equation (21), we obtain:[
r(1−R)− ρ+

(µ− r)2(1−R)
2f 2R

]
g +

[
−
(µ− r)(1−R)

R
−µ+ 1

2
f 2 −λY

]
∂g

∂Y

+(1−R)
f 2

2R
1
g

(
∂g

∂Y

)2
+
1
2
f 2
∂2g

∂Y 2 +Rg
1−1/R = 0

(22)

This equation is not linear, to linearise it [43] we introduce the function h such that:
g(Y ) = h(Y )R.
The derivatives of g are:

∂g

∂Y
= Rh(Y )R−1

∂h
∂Y

∂2g

∂Y 2 = Rh(Y )R−2
(R− 1)( ∂h∂Y

)2
+ h(Y )

∂2h

∂Y 2


So that:

1
g

(
∂g

∂Y

)2
= R2h(Y )−R

(
∂h
∂Y

)2
∂2g

∂Y 2 = Rh(Y )R−2
(R− 1)( ∂h∂Y

)2
+ h(Y )

∂2h

∂Y 2


Thus

(1−R)
f 2

2R
1
g

(
∂g

∂Y

)2
+
1
2
f 2
∂2g

∂Y 2 =
1
2
f 2Rh(Y )R−1

∂2h

∂Y 2

Plugging this formula into equation (22), we obtain the following linear second-
order ODE:

[
r
1−R
R
−
ρ

R
+
(µ− r)2(1−R)

2f 2R2

]
h+

[
−(µ− r)1−R

R
−µ+ 1

2
f 2 −λY

] ∂h
∂Y

+
1
2
f 2
∂2h

∂Y 2 +1 = 0

(23)

This equation doesn’t admit a closed-form solution in general.
Inspired by the paper [40], we will find a solution of the ODE by considering first a
finite time horizon T using a boundary condition.

By considering: h(Y ,t) := e−
ρ
R th(Y ), the equation (23) has the form:

∂h
∂t

(Y ,t) + µ̂(Y ,t)
∂h
∂Y

(Y ,t) +
1
2
σ̂2(Y ,t)

∂2h

∂Y 2 (Y ,t)− φ̂(Y ,t)h(Y ,t) + F̂(Y ,t) = 0
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defined for all Y and t ∈ [0,T ], with terminal condition

h(Y ,T ) = ψ(Y )

where:

µ̂(Y ,t) −(µ− r)1−R
R
−µ+ 1

2
f 2(Y )−λY

σ̂2(Ŷ , t) f 2(Y )

φ̂(Y ,t) −r(1−R)−
(µ− r)2(1−R)

2f 2(Y )R

F̂(Y ,t) e−
ρ
R t

Table 2: Coefficients of PDE of h

The Feynman-Kac theorem states that the solution can be written as a condi-
tional expectation:

h(Y ,t) = E
[∫ T

t
e−

∫ r
t
φ̂(Ŷτ ,τ)dτ F̂

(
Ŷr , r

)
dr + e−

∫ T
t
φ̂(Ŷτ ,τ)dτψ

(
ŶT

)
| Ŷt = Y

]
(24)

where Ŷ is an Itô process verifying the equation:

dŶ = µ̂(Ŷ , t)dt + σ̂ (Ŷ , t)dW (25)

such that W is a Brownian motion and the initial condition for Ŷ (t) is Ŷ (t) = Y .

Adding the transversality condition ([1] and [18], [42]):

lim
T→∞

E

[
e−

∫ T
t
φ̂(Ŷτ ,τ)dτψ

(
ŶT

)
| Ft

]
= 0,

and taking the limit T →∞ in equation (24), we obtain :

h(Y ,t) = E
[∫ ∞

t
e−

∫ s
t
φ̂(Ŷτ ,τ)dτe−

ρ
R sds | Ŷt = Y

]
To find the value of this function, we will use Monte Carlo (MC) simulation.
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5.5 Numerical solution

In this section, we will implement numerically the optimal solution of the consumption-
investment problem assuming a Hobson-Rogers SV model.

The stock dynamics are:

dSt = µSt dt + σtSt dWt

where

σt = f (Yt) ;Yt =
∫ t
−∞ λeλ(s−t)(Xs −Xt)ds ; Xt = ln(St)

Recall that the optimal controls are:

q∗ =
c∗

ω
= (g(Y ))−

1
R

and

π∗ =
1
R

[
µ− r
f (Y )2

− 1
g
g ′
]

and the value function is:

V (t,ω,y) = e−ρtU (ω)g(y) = e−ρt
ω1−R

1−R
g(y)

where
g(y) = h(y)R

h(y) = E

[∫ ∞
0

exp
(
−
∫ s

0
φ̂
(
Ŷτ , τ

)
dτ

)
exp

(
−
ρ

R
s
)
ds | Ŷ0 = y

]
dŶ = µ̂(Ŷ , t)dt + σ̂ (Ŷ , t)dW

The functions µ̂(Ŷ , t), σ̂ (Ŷ , t) and φ̂(Ŷ , t) are given in table (2).

To find q∗, π∗ and V (t,ω,y), we will compute h(y) using Ns MC.
To derive π∗, we need to compute an approximation of g ′(Y ) by the finite-difference
method:

∂g(y)
∂y

≈
g(y +∆)− g(y)

∆

Steps:

We can summarize the steps of the approximation as the following:

1. Discretize the time onto a grid of Nt equally-spaced values : 0 = t0 ≤ · · · ≤ tN
for a large value of tN ;
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2. Simulate Ns paths of the process Y starting at y : (Yti )0≤i≤tN using MC simula-
tions:

Yti+1 = Yti +
[
−(µ− r)1−R

R
−µ+ 1

2
f 2(Yti )−λYti

] TN
N

+
σ (1 +Yti )√

2+Y 2
ti

√
TN
N
Zi+1

where Zi+1 are independent standard normal variables.

3. Approximate
∫ ∞
0

exp
(
−
∫ s

0
φ (Yτ , τ)dτ

)
exp

(
−
ρ

R
s
)
ds by Riemann sums:

h̃ =
Nt∑
i=0

exp

− i∑
j=0

φ(Ytj )
tN
Nt

exp(
−
ρ

R
ti

) tN
Nt

;

4. Take the average of these values and obtain h(y) then g(y):

ĥ(y) =
1
Ns

Ns∑
i=1

h̃i ; ĝ(y) = ĥ(y)R

5. Compute approximations of
∂g(y)
∂y

:

ĝ ′(y) =
ĝ(y +∆)− ĝ(y)

∆
;

6. Compute π∗, q∗ and V .

For this numerical part, we will consider the following parameters:

Parameter Value
µ 0.15
r 0.05
R 2
λ 0.1
ρ 0.02

f(y) σ
1+ y2

2+ y2
σ 0.35
tN 25
Ns 1000
Nt 10000
∆ 10−1

Table 3: Parameter values of the numerical solution of SV model
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Plot of f:

In Hobson and Rogers stochastic volatility model, the volatility function is assumed
to be Lipshitz. The choice made for f guarantees this condition. Furthermore, f is
an even function.

Figure 2: Function f : y 7→ σ
1+ y2

2+ y2

Computation of g(5):

Figure 3: Ns Path simulations of Ŷt
with Y0 = 5 and Ns = 1000

Figure 4: Ns simulations of ĥ(5) with
Ns = 1000

The figure (3) represents Ns MC paths simulations of the process Ŷt with the dynam-
ics given by equation (25). The figure (4) shows the simulated values of ĥ(5). These
values fluctuate around the mean with a small variance, which makes the algorithm
stable and reliable. We obtain ĥ(5) ≈ 9.75 and ĝ(5) ≈ 95.
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Plots and analysis of g, g ′, q∗ and π∗

Let’s plot the functions g, g ′ and the optimal consumption and investment propor-
tions q∗ and π∗:

Figure 5: The numerical solution of
the function y 7→ ĝ(y)

Figure 6: The numerical derivative of
the function y 7→ ĝ ′(y)

We can notice that the function g has the same shape as the function f . The
plot of g is smooth and the one of g ′ is less smoother, this might be due to the step
∆ used to approximate the derivative.

Figure 7: The optimal consumption
proportion of wealth c∗ as a function
of y

Figure 8: The optimal investment
proportion of wealth π∗ as a function
of y

We can see in figure 8 that the investment rate is surprisingly greater than 1
for some values of the offset. This might be due to the computational errors.

The consumption rate in figure 7 is high for low offsets, and it gets lower for
higher offsets y. This behaviour is similar to Merton’s problem, where the con-
sumption proportion is inversely proportional to the volatility when R > 1 which
corresponds to a risk averse investor.

The same behaviour can be seen for the investment proportion. In both models,
the investor invests less in stocks with high volatility.
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5 STOCHASTIC VOLATILITY 5.5 Numerical solution

Analysis of parameters effect:

In this section, we will analyze the effects of varying the parameters of risk aversion
R, volatility σ of the function f and the discounting rate of past information λ on
the consumption and investment proportions.

Effect of risk aversion parameter R:

Figure 9: Effect of varying R on
the optimal consumption proportion
of wealth c∗ evaluated at y = 1

Figure 10: Effect of varying R on
the optimal investment proportion of
wealth π∗ evaluated at y = 1

The figures 9 and 10 show that the optimal consumption and investment pro-
portions decrease as the factor R increases, i.e as the investor becomes more risk-
averse. This can be guessed intuitively as a risk-averse investor would take less risk,
and thus would consume and invest less in the risky asset.

Effect of the volatility parameter σ :

Figure 11: Effect of varying σ on
the optimal consumption proportion
of wealth c∗ evaluated at y = 1

Figure 12: Effect of varying σ on
the optimal investment proportion of
wealth π∗ evaluated at y = 1

The plots 11 and 12 suggest that the consumption should be lower and the
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investment should be higher as the parameter σ increases. The first part is as ex-
pected, but the second part concerning the investment proportion is surprising since
intuitively, the higher is a volatility parameter the less should the investor take risk
and invest in the risky asset. The parameter σ can be interpreted as the limit of the
volatility of the asset prices as y→∞.

Effect of the discounting rate of past information parameter λ:

Figure 13: Effect of varying λ on
the optimal consumption proportion
of wealth c∗ evaluated at y = 1

Figure 14: Effect of varying λ on
the optimal investment proportion of
wealth π∗ evaluated at y = 1

As λ increases, the investor relies more on the past stock prices. The optimal
proportions of the figures 13 and 14 suggest that the investor should consume and
invest more in the risky asset, this result might be surprising at first sight since the
investor won’t be relying on recent information; but at the same time, this might
be expected as for such stochastic volatility model, the investor believes that the
volatility is persistent and clustered. Thus, there is a trade-off between relying on
recent information and taking historic past values into account. We can therefore
expect these plots to be increasing for small values of λ and then decreasing for very
high values.
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6 Stochastic interest rate

In the classical Merton’s problem, the agent invests in a risky asset and a risk-free
asset assuming a deterministic fixed interest rate r. In this section, we relax this
assumption and consider the following stochastic differential equation for interest
rate :

drt = µ(t, rt)dt + σ (t, rt)dWt

where Wt is a standard Brownian Motion.

The choice of µ(t, rt) and σ (t, rt) differs from a model to another. The main
interest rate models [8] are:

- Vasicek (1977) [54]:

drt = k (θ − rt)dt + σdWt, α = (k,θ,σ )

- Cox-Ingersoll-Ross (CIR, 1985) [16]:

drt = k (θ − rt)dt + σ
√
rtdWt, α = (k,θ,σ ), 2kθ > σ2

- Dothan / Rendleman and Bartter [47]:

drt = artdt + σrtdWt,
(
rt = x0e(

a− 1
2σ

2)t+σWt ,α = (a,σ )
)

- Exponential Vasicek:

rt = exp(zt) , dzt = k (θ − zt)dt + σdWt, α = (k,θ,σ )

Each model has its advantages and drawbacks.

The Vasicek model assumes a linear equation that can be solved explicitly
which makes it tractable. The expectation of rt converges to θ when t→∞, which
means that the process rt is mean reverting. However, this model allows rt to take
negative values with positive probability. This assumption used to be a drawback
before the financial crisis of 2008, but is legitimate since then.

The CIR model assumes a mean reverting non negative process rt and is usu-
ally closer to market implied distributions than Vasicek model, but rt follows a Chi-
squared distribution under this model and thus it is less tractable.

The third one is a Black and Scholes equation. Although rt has a log-normal
distribution and is tractable, this model is not mean reverting; in fact, the expecta-
tion of rt can converge to ∞ if a > 0 which is not realistic since interest rates are
controlled by the Central Bank.
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Finally, the fourth equation models a log-normal, non negative and mean re-
verting process but is not tractable.

We will assume a Vasicek model for interest rate rt to derive the formulas. In
this model, the parameter θ can be interpreted as the long term mean, k as the speed
of convergence to the long term mean and σ is the volatility. The variance var(rt)

converges to
σ2

2k
as t 7→ ∞, which means that increasing the speed k or decreasing

the volatility σ leads to decrease the uncertainty and hinders the variance to explode.

6.1 Problem formulation

• State process:

The model is driven by two differential equations:

dωt = rtωt dt +θt (σ dWt + (µ− rt)dt)− ct dt,

drt = β (r̄ − rt)dt + σr dBt,

d〈W,B〉t = η dt,

(26)

where µ,σ ,β, r̄,σr are constants and the correlation parameter η lies in [−1,1].

We set the state process to be the vector Zt :=
[
ωt
rt

]
. It is the unique solution of

the following equation:

dZt =
[
rtωt +θt (µ− rt)− ct

β (r̄ − rt)

]
dt +

[
σθt 0
σrη σr

√
1− η2

][
dB1t
dB2t

]
(27)

where
(
B1t ,B

2
t

)
is a two-dimensional standard Brownian motion.

Thus, (Zt) is a diffusion process with drift and volatility matrix:

µ(ω,r,θ,c) :=
[
ωr +θ (µ− r)− c

β (r̄ − r)

]
and σ (ω,r,θ,c) :=

[
σθ 0
σrη σr

√
1− η2

]
respectively.

• Control process:

The control processes are the same as in Merton’s problem: the consumption
process ct and θt representing the value of the holding asset, ν is thus set to be

the vector νt :=
[
ct
θt

]
.
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6 STOCHASTIC INTEREST RATE 6.2 HJB equation

• Objective functional:

The objective functional is the expected discounted utility derived from con-
sumption:

J(Z(·),ν(·)) = E
[∫ ∞

0
e−ρtU (c(t))dt |ω(0) = ω,r(0) = r

]

where the utility function is the CRRA function U (ω) :=
ω1−R

1−R
.

Our goal is to find the supremum of the above functional at every time t:

V (t,ω,r) = sup
(θ,c)∈A(t,ω,r)

E

[∫ ∞
t
e−ρsU (cs)ds |ω(t) = ω,r(t) = r

]

Again the scaling property gives the following decomposition of the value function:

V (t,ω,r) = e−ρtU (ω)f (r)

6.2 HJB equation

The associated HJB equation for this infinite horizon problem is given by:

ρV (ω,r)−H(ω,r,∇V (ω,r),D2V (ω,r)) = 0, ω,r ∈R (28)

where:

H(ω,r,∇V (ω,r),D2V (ω,r)) := sup
θ≥0,c≥0

[
µ(ω,r,θ,c)∇V (ω,r) +

1
2

tr(σσT (ω,r,θ,c)D2V (ω,r)) +U (c)
]

(29)

First, we compute the quantities:

µ(ω,r,k,c)T∇V (ω,r) =
[
ωr +θ (µ− r)− c

β (r̄ − r)

]T [
Vω
Vr

]
= (ωr +θ (µ− r)− c)Vω + β (r̄ − r)Vr

and
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tr
(
σσT (ω,r,θ,c)D2V (ω,r)

)
= tr

[σθ 0
σrη σr

√
1− η2

][
σθ 0
σrη σr

√
1− η2

]T [
Vωω Vωr
Vωr Vrr

]
= σ2θ2Vωω +2σσrηθVωr + σ2

r Vrr

By substituting these expressions in the equation (6.2), we obtain:

H(ω,r,∇V (ω,r),D2V (ω,r)) = supθ≥0,c≥0[(ωr +θ (µ− r)− c)Vω + β (r̄ − r)Vr+

+1
2σ

2θ2Vωω + σσrηθVωr +
1
2σ

2
r Vrr +U (c)]

= ωrVω + β (r̄ − r)Vr + 1
2σ

2
r Vrr + supc≥0 [−cVω +U (c)]

+supθ≥0
[
θ (µ− r)Vω + 1

2σ
2θ2Vωω + σσrηθVωr

]
(30)

where:

V (ω,r) =U (ω)f (r) =
ω1−R

1−R
f (r)

6.3 Optimal control parameters

Here we derive the optimal values of consumption and the wealth invested in the
stock by solving the optimisation problems:

sup
c≥0

[−cVω +U (c)] and sup
θ≥0

[
θ (µ− r)Vω +

1
2
σ2θ2Vωω + σσrηθVωr

]
- Optimal c∗:

Since R > 0, the function c 7→ −cVω +
c1−R

1−R
is concave and thus it admits a

supremum.
The first order condition can be written as:

∂c(−cVω +U (c)) = −ω−Rf (r) + c−R = 0

i.e. the optimal proportion of wealth consumed is:

q∗ =
c∗

ω
= (f (r))−

1
R
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- Optimal θ∗:

The function ω 7→ θ (µ− r)Vω+ 1
2σ

2θ2Vωω+σσrηθVωr is polynomial of second
degree. Assuming Vωω < 0, we can deduce that it has a maximum attained at:

θ∗ =
σσrηω

−Rf ′(r) + (µ− r)f (r)ω−R

Rσ2f (r)ω−R−1

And the optimal proportion of wealth invested in the risky asset is:

s∗ =
θ∗

ω
=
σσrηf

′(r) + (µ− r)f (r)
Rσ2f (r)

By substituting c∗ and θ∗ in (30), we obtain the second order ODE:

Rf 1−1/R − ρf + r(1−R)f + (1−R)
{
(µ− r)f + σσrηf ′

}2
2σ2Rf

+
1
2
σ2
r f
′′ + β(r̄ − r)f ′ = 0 (31)

6.4 Solving the ODE

The ODE (31) doesn’t admit a closed-form solution.

However, we can notice that this ODE looks like the ODE (21). The main differ-
ence is the term of σσrηf ′. In fact, in the previous problem, we managed to linearise
the ODE and write the solution as an expectation using Feynman Kac theorem. We
can have the same shape of ODE if we take η = 1 and σ = σr , which means that the
interest rate and the stock prices are driven by the same source of randomness and
they also have the same volatility. These assumptions don’t reflect the real dynamics
of stock prices and interest rates.

If η = 0, i.e the stock prices and interest rates are driven by independent Brow-
nian motions, then the ODE becomes:

Rf 1−1/R − ρf + r(1−R)f + (1−R)
(µ− r)2

2σ2R
f +

1
2
σ2
r f
′′ + β(r̄ − r)f ′ = 0

Subsolution and supersolution method:

By considering
Z(r) := lnf (r)

Flemming and Pang [24], [45] showed under some conditions the existence of a
subsolution Z and supersolution Z̄ such that:

Z(r) 6 Z(r) 6 Z̄(r), ∀r ∈ R
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We state their findings adapted to our framework as the following:

Theorem 5 (Case R > 1 [24])
Define

a1 :=
−2(1−R)
3σ2R2 , a2 := µ− σ2R

Then there exists a constant ā3 > 0 such that for any a3 ≥ ā3

Z(r) := −R ln
(
a1 (r − a2)2 + a3

)
is a subsolution.

Define

b1 :=
R− 1
2σ2R2 , b2 := µ− σ2R

b3 := b1
2σ2

r

[
3
2 − (1−R) + (1−R)η2

]
− 2ησ3σrR(1−R) +

∣∣∣β (r̄ − b2)∣∣∣
2β +

∣∣∣β (r̄ − b2)∣∣∣
If

ρ ≥ µ(1−R) +R
[
2β

∣∣∣β (r̄ − b2)∣∣∣− σ2(1−R)
2

]
+

−
2(1−R)σ2

r

[
3
2 − (1−R) + (1−R)η2

]
− 2ησ3σr(1−R)2R+ (1−R)

∣∣∣β (r̄ − b2)∣∣∣
2σ2R

[
2β +

∣∣∣β (r̄ − b2)∣∣∣]
Then

Z(r) := log
[(
b1 (r − b2)2 + b2

)−R]
is a supersolution .

Theorem 6 (Case R < 1 [24])
Assume

ρ > (1−R)µ− σ
2

2
R(1−R)

Define K1 as
K1 := log K̃1

where

K̃
− 1
R

1 =
1
R

[
ρ −µ(1−R) + σ

2

2
R(1−R)

]
Then, for any K2 ≤ K1, K2 is a subsolution.
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6 STOCHASTIC INTEREST RATE 6.5 Numerical example

Define:

R1 :=
σ2
r − 2βησσr

σ2β2 + σ2
r − 2βησσr

If
max {1,R1} < R < 1

In addition, define

µ1 := −2σ2
[
1+

γη2

R

]
µ2 := 2β +

2(1−R)ησr
σR

µ3 := −
1−R
2σ2R

Let a+, a− be the real roots of µ1a2 +µ2a+µ3 = 0, 0 < a− < a+.

Then for any a1 ∈ (a−, a+) , there exist constants a2 > K1 and C1 (a1) , where C1(·)
is given by:

C1 (a1) :=
4λ1 (a1)λ3 (a1)−λ22 (a1)

4λ1 (a1)

λ1 (a1) := µ1a
2
1 +µ2a1 +µ3

λ2 (a1) := −
[
2βr̄ +

2(1−R)ησr
σR

]
a1 +

µ(1−R)
σ2
1R)

− (1−R)

λ3 (a1) := −a1σ2
r −

(1−R)µ2

2σ2R

such that
Z̄(r) ≡ a1r2 + a2

is a supersolution if β > −C1 (a1).

6.5 Numerical example

For this numerical part, we will consider the following parameters:

Parameter Value
µ 0.15
r̄ 0.04828
R 2
η 0.45
ρ 0.02
σ 0.35
σr 0.01
β 0.2

Table 4: Parameter values of the numerical solution of stochastic interest rate model
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In this case R > 1, the supersolution and subsolution are given by theorem (5).

Figure 15: Supersolution f̄ (r) and
subsolution f (r) of the function f

Figure 16: Supersolution q̄∗(r) and
subsolution q∗(r) of the consumption
proportion q∗(r)

The figure 15 shows the evolution of the supersolution and subsolution of the
function f . The function f is comprised between these two functions. As the con-
sumption proportion in this model is q∗ = (f (r))−

1
R , we can find upper and lower

bounds for the optimal consumption proportion given by the figure 16.

Figure 17: Effect of varying the risk
aversion rate R on the supersolution
f̄ (r) of the function f

Figure 18: Effect of varying the risk
aversion rate R on the subsolution
q∗(r) of the consumption proportion
q∗(r)

The figure 17 shows the effect of varying the parameter R on the supersolution
and subsolution. We can notice that the the supersolution attains a supremum value
that goes to ∞ when R is increasing. This results in a big upper bound and gives
poor information about the optimal value. As for the figure 18, it shows that the
shape of the consumption proportion is steadier. The other parameters r̄, β, η and ρ
don’t have a big effect on the shape of the supersolution/subsolution.

The drawback of this method is that we don’t have any information about the
investment proportion π∗.
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7 Conclusion

In this thesis, we studied utility maximisation problems. First, we assumed a discrete-
time single period model. This mathematically simple setting is an unrealistic rep-
resentation of the financial market, but is an important milestone in the theory of
finance.

We tackled after that the consumption-investment problem under a continuous
time model, where we considered a financial market consisting of a risk-free asset
and risky assets and the objective is to maximize the expected Constant-Relative-
Risk-Aversion utility of consumption under an infinite time horizon. The Dynamic
Programming Principle and the HJB equation were used to derive a colsed-form so-
lution of Merton’s problem: The investor should allocate constant proportions of
wealth to the risky assets and each fraction should be proportional to the Sharpe
Ratio of the asset which is equal to the expected excess return over interest rate ad-
justed by the volatility.

In Merton’s problem, several assumptions are made, for instance the stock
prices volatilities and interest rates are deterministic. We investigated the consis-
tency of these assumptions with the market implied distributions, then we modified
the model to take into account the randomness of these two parameters.

First, we assumed a stochastic volatility model where the dynamics of stock
price volatilities are described by Hobson and Rogers stochastic volatility expressed
as an exponentially-weighted mean of historic log-prices. This model captures the
volatility clustering and persistence and the Leverage Effect observed in the market
and is consistent with the volatility smile and skewness.

Writing down the HJB equation leads to a non linear ODE. Using a change of
variable, the equation is reduced to a linear ODE that can be solved using Feynman-
Kac theorem and expressed as an expectation of an Ito Process. Using MC simula-
tions, we simulated the process paths and computed an estimation of the expectation
and the optimal investment and consumption proportions. This numerical method
is powerful and gives high-standard approximations.

We found some similarities with Merton’s problem: the investor consumes and
invests less in stocks when the offset is high. We have also found that the more the
investor is risk-averse the less should be the consumption and investment propor-
tions. Furthermore, the greater is the discounting rate of past information λ (but
not too large at the same time), the more the investor is comfortable to consume
and invest.

We considered then a model where the interest rate follows a Vasicek model.
There is no closed-form formula of the optimums under the infinite time horizon.
We used the subsolution-supersolution method discussed by Fleming and Pang to
find upper and lower bounds of the solution. This method doesn’t provide a charac-
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terization of the optimal investment proportion, but gives an idea about the range
of the value function and the consumption fraction.

Rogers discussed a numerical method in his book [48] to solve this problem.
He used the policy improvement method to approximate the value function. This
method results in a non-steady algorithm that doesn’t converge for several values of
parameters. Furthermore, this approach doesn’t have a probabilistic interpretation.

Finally, in this thesis we relaxed only two of the non realistic assumptions in
Merton’s problem. We didn’t take into account neither transaction costs nor taxes
nor different utility functions. We also assumed a continuous trading and didn’t
impose any consumption constraints. For a more realistic and accurate portfolio
optimisation, one can use the Reinforcement Learning approach where an agent
is trained and is learning from a dynamic environment and aims to maximize its
reward.
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