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Abstract

In this thesis we will study the stochastic linear quadratic (SLQ) control problem in the stock
market with finite continuous time horizon. We first focus on the unconstrained problem and
solve it using both Hamiltonian-Jacobi-Bellman (HJB) equation method and Forward Backward
Stochastic Differential Equation (FBSDE) method directly and through its dual problem, and we
will discuss the relations among the 4 methods. We also plot the graphs to show the consistency of
the methods numerically by Python and compare the differences among the methods. To consider
more realistic situations we also introduce convex constrained condition and random drift to the
SLQ control problem.
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Introduction

In this thesis we will discuss 4 methods to solve the unconstrained stochastic linear quadratic
control problem in the stock market in finite time horizon in Chapter 1. We are going to minimize
the functional that consists of a utility function, quadratic in the associated cash process, and an
integral of the convex cost function which is quadratic in terms of the time-dependent portfolio
strategy and the cash process.

In the 1950s, Bellman discovered the dynamic programming principle (DPP). We can derive a
second order non-linear PDE, Hamilton–Jacobi–Bellman (HJB) equation which is also known as
dynamic programming equation (DPE) from DPP. Plenty of literature and books have discussed
the HJB equation, see [Bertsekas et al., 1995], [Pham, 2009a] and [Yong and Zhou, 1999]. We will
state the DPP and HJB equation specifically in Section 1.1.1. If the PDE can be solve analyt-
ically, we can apply the verification theorem to validate the solution of the HJB equation, see
[Soner, 2004]. However, we will not go further into this point since the problem we discussed can-
not be solved explicitly by the commonly used methods like stochastic Riccati equation (SRE),
instead we would solve the PDE using Runge-Kutta Method, see [Ascher and Petzold, 1998]. The
main drawback of HJB equation is to assume the existence of a regular solution to the HJB equa-
tion, which is not true in some situations, see a specific example in [Pham, 2009b].

In the 1980s, in the papers [Karatzas et al., 1987] and [Cox and Huang, 1989], Karatzas, Lehoczky
& Shreve and Cox & Huang found that the duality methods provides powerful insights into the
solutions for the optimal investment problem. For our convex SLQ problems, we are going to
use the convex duality method in [Labbé and Heunis, 2007] to formulate an associated dual opti-
mization problem by deriving the dual process of the cash process. Assuming the product of the
cash process and its dual one is a supermartingale, we define the convex conjugate of the cost and
duality functions, and we can then construct the optimal portfolio strategy from the solution of
the dual problem. In our case, the cost function is quadratic in the primal control process, i.e. the
portfolio strategy, which means that we still need to find the dual control which is conjugate of
the portfolio strategy. If the cost function is independent of the primal control process, we can see
that it is much easier to get the value function by solving the dual problem rather than the primal
problem, since the convex conjugate of the primal control would be 0. we We would discuss this
specifically in Section 1.1.2 and 1.1.3.

In the 1990s Pardoux & Peng [Pardoux and Peng, 1990] introduced the backward stochastic dif-
ferential equations (BSDEs) which is now extensively used in mathematical finance due to its
connection with the stochastic control problem and partial differential equation. Combining the
BSDE derived from our stochastic control problem with the forward dynamic of the associated
cash process, we have the forward backward stochastic differential equation (FBSDE) system. By
solving the FBSDE system we find the value function to the problem, this will be discussed specif-
ically in Section 1.2.1. We also apply the FBSDE method to the dual control problem we derived
in Section 1.2.2, and we will study the relations between the results from the primal FBSDE and
dual FBSDE in Section 1.2.3.

Considering sometimes we will have some subjective judgement to the investment, we will also
introduce constrained conditions which make the second entry of the portfolio process to be 0,
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which is kind of special convex cone. In this case, the primal problem would be even easier to
formulate as it degenerate from 2-dimensional case to a 1-dimensional case, we can see this clearly
in Section 2.1.1. But the dual problem with the constrained condition becomes more complicated
as we cannot directly say that the second entry of the dual process of the portfolio strategy is
also 0 which is actually not 0. We need to recalculate the convex conjugate of the cost function
under the given condition. Even if the cost function is independent of the primal control process,
we cannot directly treat the dual control as 0 as we are formulating the problem in a constrained
space. We will discuss this further in Section 2.1.2. The FBSDE method does not show much
difference compare with Chapter 1 but the calculation is much more complicated, see Section 2.2.

In Chapter 3 we consider a more realistic case which assumes the appreciation rate of a stock
to be a random process. We simply regard it as an Ornstein–Uhlenbeck (OU) process which is
also known as the Vasicek model in mathematical finance. In this situation, we can still apply
the HJB method and FBSDE methods on both primal and dual problem as we mentioned above.
However, we cannot get the linear PDE using HJB method, so we are going to introduce the BSDE
representation and non-linear Feynman-Kac theorem to solve the semi-linear PDE [Pham, 2009b].
We will discuss this further in Section 3.2.1 and 3.2.2. In the FBSDE systems we assume that
the correlation between the Brownian motion in the OU-process and the one in the associated
cash process is 1 to ensure the consistency of the measure. Even we add constrained condition to
the correlation, the FBSDE system cannot be analytically solved using ansatz. We need to apply
reinforcement learning to the system, but we will not going further into this point in this thesis.
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Chapter 1

Unconstrained Problem

Following the problem settings of [Li and Zheng, 2018]. We are considering the market model
on the finite time horizon [0, T ], where T > 0 is a fixed terminal time,let {W (t), t ∈ [0, T ]} an
R2-valued standard Brownian motion on a complete probability space (Ω,F ,P), by {Ft} the P-
augmentation of the filtration FWt = σ(W (s), 0 ≤ s ≤ t) generated by W, by P

(
0, T ;R2

)
the set of

all R2 -valued progressively measurable processes on [0, T ]×Ω, by H2
(
0, T ;R2

)
the set of processes

x in P
(
0, T ;R2

)
satisfying E

[∫ T
0
|x(t)|2dt

]
< ∞, and by S2

(
0, T ;R2

)
the set of processes x in

P
(
0, T ;R2

)
satisfying E

[
sup0≤t≤T

∣∣x2t ∣∣] <∞.
Suppose the market consists of a bank account with price {S0(t)} given by

dS0(t) = r(t)S0(t)dt, 0 ≤ t ≤ T, S0(0) = 1

and 2 stocks with prices {Sn(t)} , n = 1, 2 given by

dSn(t) = Sn(t)

[
bn(t)dt+

2∑
m=1

σnm(t)dWm(t)

]
, 0 ≤ t ≤ T, Sn(0) > 0

r ∈ P(0, T ;R) is the scalar interest rate of the market at time t, b ∈ P
(
0, T ;R2

)
is the vector of

appreciation rate at time t and σ ∈ P
(
0, T ;R2×2) is the volatility matrix are uniformly bounded,

we also assume that σ(t) and σ′(t) are invertible for t ∈ [0, T ], which means that there exist a
constant k ∈ R+ such that

x′σ(t)σ′(t)x ≥ k|x|2

for all (x, ω, t) ∈ RN × Ω× [0, T ], where x′ means the transpose of x.

Define the set of admissible investing process to be

A :=
{
π ∈ H2

(
0, T ;R2

)
: π(t) ∈ K for t ∈ [0, T ] a.e.

}
,

Here we simply set K = R2.

For a given π ∈ A, the wealth process is

dXπ(t) = [r(t)Xπ(t) + π′(t)σ(t)θ(t)] dt+ π′(t)σ(t)dW (t), 0 ≤ t ≤ T, Xπ(0) = x0

where θ(t) := σ−1(t)[b(t)− r(t)I] is the market price of risk at time t which is uniformly bounded
and I ∈ R2 is the vector with all the entry equal to 1.

Define the functional J : A → R such that

J(π) := E

[∫ T

0

f (t,Xπ(t), π(t)) dt+ g (Xπ(T ))
∣∣∣Xπ(0) = x0

]
(1.0.1)
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where f : Ω× [0, T ]× R× R2 → R and g : Ω× R→ R has form
f(ω, t, x, π) :=

1

2

[
Q(t)x2 + π′R(t)π

]
g(ω, x) :=

1

2

[
ax2 + 2cx

]
here we simply assume that a, c ∈ R are deterministic constants, and the processesQ ∈ P(0, T ;R), R ∈
P
(
0, T ;R2×2) are uniformly bounded, R(t) is a symmetric matrix, and the combined matrix(

Q(t) 0′

0 R(t)

)

is semi-positive definite for all (ω, t) ∈ Ω× [0, T ], where 0 represents the 2× 1 matrix with all the
entries are 0, these assumptions lead J(π) to be a convex functional of π.

Now we are considering to minimize J(π) subject to some admissible (X,π), thus we set the
value function.

V (0, x0) = inf
π∈A

J(π)

1.1 HJB Method

From [Soner, 2004] we have the following theorems of DPP and HJB equation

Theorem 1.1.1. (Dynamic Programming Principle) Let the dynamic of the state variable
Xπ(t) on Rn be

dX = b(t,Xπ(t), π(t))dt+ σ(t,Xπ(t), π(t))dW (t)

where W (t) is a d-dimensional Brownian motion

Let A be the admissible control set, define the functional as

J(t, x, π) = E

[∫ T

t

f (s,Xπ(s), π(s)) ds+ g (Xπ(s)) | Ft

]

V (t, x) := inf
π∈At,x

J(t, x, π)

Then for any stopping time τ > t, we have

v(t, x) = inf
π∈At,x

E

[∫ τ

t

f (s,Xπ(s), π(s)) ds+ g
(
Xπ
t,x(τ)

)
| Ft

]
Theorem 1.1.2. (HJB equation)
Assume DPP holds, then the value function V (t, x) satisfies the equation

∂tV + inf
π∈At,x

[LπV (s,Xπ(s)) + f (s,Xπ(s), π(s))] = 0

where LπV = b(t, x, π) · ∇V + 1
2 tr a(t, x, π)D2V is the infinitesimal generator of process Xπ(s)

with terminal condition

V (T,Xπ(T )) = g (Xπ(t))
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1.1.1 Primal Problem

In our case, we can write the HJB equation as

Vt +
1

2
Q(t)Xπ(t)2 + r(t)Xπ(t)Vx + inf

π∈K
Lv(t) = 0

with terminal condition

V (T,Xπ(T )) =
a

2
x2 + cx (1.1.1)

where

Lv(t, π) = π′(t)σ(t)θ(t)Vx +
1

2
π′(t)

(
σ(t)σ′(t)Vxx +R(t)

)
π(t)

To optimize Lv(t, π) we take the partial derivative of Lv respect to π , according to the first order
condition we have the feedback form of the control process

π̂(t) = −
(
σ(t)σ′(t)Vxx +R(t)

)−1
σ(t)θ(t)Vx (1.1.2)

Substituting (1.1.2) back into the HJB equation we can get the PDE

Vt +
1

2
Q(t)x2 + r(t)xVx −

1

2
θ′(t)σ′(t)

(
σ(t)σ′(t)Vxx +R(t)

)−1
σ(t)θ(t)V 2

x = 0 (1.1.3)

Through observing the terminal condition (1.1.1) we can make the ansatz

V (t, x) = x2g1(t) + xg2(t) + g3(t). (1.1.4)

which is inspired by [Cartea et al., 2015]

Substitute our ansatz (1.1.4) into the PDE (1.1.3) we can get a the updated PDE where the
time t and state x are separated

x2ġ1 + xġ2 + ġ3 +
1

2
Q(t)x2 + r(t)x

(
2xg1 + g2

)
−

1

2
θ′(t)σ′(t)

(
2σ(t)σ′(t)g1 +R(t)

)−1
σ(t)θ(t)

(
4x2g21 + 4xg1g2 + g22

)
= 0

By summing the terms in the power of x we can get the series of ODEs
ġ1 − 2θ′(t)σ′(t)

(
2σ(t)σ′(t)g1 +R(t)

)−1
σ(t)θ(t)g21 + 2r(t)g1 +

1

2
Q(t) = 0

ġ2 +
(
r(t)− 2θ′(t)σ′(t)

(
2σ(t)σ′(t)g1 +R(t)

)−1
σ(t)θ(t)g1

)
g2 = 0

ġ3 −
1

2
θ′(t)σ′(t)

(
2σ(t)σ′(t)g1 +R(t)

)−1
σ(t)θ(t)g22 = 0

with terminal condition 
g1(T ) =

a

2
g2(T ) = c
g3(T ) = 0

1.1.2 Dual Problem

Sometimes the primal problem maybe hard to solve and difficult to ensure the existence of the
regular solution, thus we can use the convex duality method to find the value function.
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Following the method in [Labbé and Heunis, 2007], we define

B := R×H2(0, T ;R)×H2
(
0, T ;R2

)
and X ∈ B if and only if

X(t) = x0 +

∫ t

0

Ẋ(s)ds+

∫ t

0

Λ′X(s)dW (s), 0 ≤ t ≤ T

for some
(
x0, Ẋ,ΛX

)
∈ B, to formulate the dual problem over B we define that for any X ∈ B

U(X) := {π ∈ A such that Ẋ(t) = r(t)X(t) + π′(t)σ(t)θ(t)

and ΛX(t) = σ′(t)π(t) for ∀t ∈ [0, T ], P-a.e. }
(1.1.5)

We can see that U contains all the admissible control π ∈ A and U(X) 6= ∅ if and only if
(X(t),ΛX(t)) ∈ S(t,X(t)) where S(ω, t, x) is the set-valued function

S(ω, t, x) :=
{

(v, ξ) : v = r(t)x+ ξ′θ(t) and [σ′]
−1

(t)ξ ∈ K
}

Define the penalty function L : Ω× [0, T ]× R× R× R2 → [0,∞] as

L(ω, t, x, v, ξ) = f
(
ω, t, x, [σ′]

−1
(t)ξ

)
+ ΨS(ω,t,x)(v, ξ)

ΨU (u) = 0 if u ∈ U and +∞ otherwise.

Let

Φ(X) := l0 (x0) + E[g(X(T ))] + E

[∫ T

0

L
(
s,X(s), Ẋ(s),ΛX(s)

)
ds

]
(1.1.6)

where
l0(x) = Ψ{x0}(x),

We can see that minimizing Φ(X) is equivalent to minimize (2.0.1)

The following definition is taken from [Phelps, 2009]

Definition 1.1.3. (Convex Conjugate) Suppose f : X → R is a convex function defined on a
convex set X ⊂ Rn, then its convex conjugate g : Y → R is defined by

g (y) := sup
x∈X

(〈x, y〉 − f(x)) , y ∈ Y

with its domain

Y =

{
y ∈ Rn : sup

x∈X
(〈x, y〉 − f(x)) <∞

}
where 〈x, y〉 denotes the dot product of x and y.

Note that the convex conjugate is always well-defined if f is a convex function.

Now by taking the convex conjugate of (1.1.6) we can establish the dual problem i.e. minimize

Ψ̃(y, α, β) := m0(y) + E [mT (Y (T ))] + E

[∫ T

0

φ(s, α(s), β(s))ds

]
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for Y ≡
(
y, Ẏ ,ΛY

)
∈ B where

m0(y) := sup
x∈R

{
xy −Ψ{x0}(x)

}
= x0y

mT (ω, y) := sup
x∈R
{−xy − g(ω, x)} =

(y + c)2

2a

φ(ω, t, α, β) : = sup
x∈R,π∈K

{xα+ π′β − f(ω, t, x, π)}

=
1

2

[
α2

Q
+ β′R−1β

]
and Y has the dynamic{

dY (t) = [α(t)− r(t)Y (t)]dt+
[
σ−1(t)β(t)− θ(t)Y (t)

]′
dW (t)

Y (0) = y

Regard y as a constant, then we need to solve the control problem with

J̃(α, β) := E

[∫ T

0

φ(t, α(t), β(t))dt+mT (y)
∣∣∣Y (0) = y

]
The value function is

W (0, y) = inf
(α,β)∈A

J̃(α, β)

According to DPP we can write the HJB equation as

Wt − r(t)yWy + inf
(α,β)∈B

Lw(t) = 0 (1.1.7)

with terminal condition

W (T, Y (y,α,β)(T )) =
1

2a
y2 +

c

a
y +

c2

2a

where

Lw(t, α, β) = α(t)Wy +
1

2

∣∣σ(t)−1β(t)− θ(t)y
∣∣2Wyy + φ(t, α(t), β(t))

To optimize Lw(t, α, β) we need to take the partial derivatives respect to α(t) and β(t). According
to the first order condition we have the feedback form of the control processes

α̂(t) = −Q(t)Wy

β̂(t) =

(
σ(t)−1 +

σ′(t)R(t)−1

Wyy

)−1
θ(t)y

(1.1.8)

substitute back to the HJB equation (1.1.7), we can get

Wt −
1

2
Q(t)W 2

y − r(t)yWy +
1

2

∣∣∣∣∣
(
I +

K(t)

Wyy

)−1
θ(t)− θ(t)

∣∣∣∣∣
2

y2Wyy +
1

2

∣∣∣∣∣
(
I +

K(t)

Wyy

)−1
θ(t)

∣∣∣∣∣
2

K(t)

y2 = 0

(1.1.9)

where K(t) = σ′(t)R(t)−1σ(t), I refers to the identity matrix, |x|2A = x′Ax.
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This PDE is difficult to solve so we make the ansatz according to the terminal condition

W (t, y) = y2h1(t) + yh2(t) + h3(t) (1.1.10)

Substitute the ansatz (1.1.10) into (1.1.9) we can change the PDE to

y2ḣ1 + yḣ2 + ḣ3 − 2Qh21y
2 − 2Qh1h2y −

1

2
Qh22 − 2rh1y

2 − rh2y

+

∣∣∣∣∣
(
I +

K

2h1

)−1
θ − θ

∣∣∣∣∣
2

h1y
2 +

1

2

∣∣∣∣∣
(
I +

K

2h1

)−1
θ

∣∣∣∣∣
2

K

y2 = 0

Summing the terms in the power of y, we have

ḣ1 − 2Q(t)h21 − 2r(t)h1 +

∣∣∣∣∣∣
(
I +

K(t)

2h1

)−1
θ(t)− θ(t)

∣∣∣∣∣∣
2

h1+

1

2

∣∣∣∣∣∣
(
I +

K(t)

2h1

)−1
θ(t)

∣∣∣∣∣∣
2

K(t)

= 0

ḣ2 − (2Q(t)h1 + r(t))h2 = 0

ḣ3 −
1

2
Q(t)h22 = 0

with terminal condition 
h1(T ) =

1

2a

h2(T ) =
c

a

h3(T ) =
c2

2a

Substitute W (0, y) back to Ψ̃(Y (t), α(t), β(t)) and minimize Ψ̃(y, α̂(0), β̂(0)) respect to y, we can
get

ŷ = −
h2(0) + x0

2h1(0)

and

V (0, x0) = −Ψ̃(ŷ, α̂, β̂)

= −x0ŷ − ŷ2h1(0)− ŷh2(0)− h3(0)

=
1

4h1(0)
x20 +

h2(0)

2h1(0)
x0 +

h22(0)

4h1(0)
− h3(0)

Compared with the ansatz V (t,Xπ(t)) = x2g1(t) + xg2(t) + g3(t), we can get the dual relation
between the primal ansatz and dual ansatz

g1(t) =
1

4h1(t)

g2(t) =
h2(t)

2h1(t)

g3(t) =
h22(t)

4h1(t)
− h3(t)

Following [Li and Zheng, 2018] we can also derive the dual problem in the following way .
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To find the dual process, we need to construct the process Y (t) such that Xπ(t)Y (t) is a su-
permartingale for all admissible control π. Suppose

dY (t) = α1(t)dt+ β1(t)dW (t)

we have

d (Xπ(t)Y (t)) = (Xπ(t)α(t) + π′(t)β(t)) dt+ local martingale

where {
α(t) = α1(t) + r(t)Y (t)
β(t) = σ(t) (β1(t) + θ(t)Y (t))

Thus we have

dY (y,α,β)(t) = [α(t)− r(t)Y (y,α,β)(t)]dt+
[
σ−1(t)β(t)− θ(t)Y (y,α,β)(t)

]′
dW (t), Y (y,α,β)(0) = y

we can see that Xπ(t)Y y,α,β(t)−
∫ t
0

(Xπ(s)α(s) + π′(s)β(s)) ds is a super-martingale if we assume
that it is bounded below, i.e.

E

[
Xπ(T )Y (y,α,β)(T )−

∫ T

0

(Xπ(s)α(s) + π′(s)β(s)) ds

]
≤ x0y (1.1.11)

The primal optimization problem can be written as

max
π

E

[∫ T

0

(−f (t,Xπ(t), π(t))−ΨK(π(t))) dt− g (Xπ(T ))

]

and the dual functions are given by{
φ(t, α, β) = supx,π {−f(t, x, π)−ΨK(π) + xα+ π′β}
mT (y) = supx(−g(x)− xy)

By the dual functions above and (1.1.11) we can see that

maxπ E
[∫ T

0
(−f (t,Xπ(t), π(t))−ΨK(π(t))) dt− g (Xπ(T ))

]
≤ miny,α,β

{
x0y + E

[∫ T
0
φ(t, α(t), β(t))dt+mT (Y (y,α,β)(T ))

]}
i.e.−J(π̂) ≤ Ψ̃(ŷ, α̂, β̂)

1.1.3 Special Case

If we further assume that the admissible control is the whole Euclidean space and R(t) = 0, we
can see that the dual control set is 0 which means β = 0. Thus we can find a more simpler HJB
for the dual control problem i.e.

Wt + inf
(α,β)∈A

[
(α(t)− r(t)y)Wy +

1

2

∣∣σ(t)−1β(t)− θ(t)y
∣∣2Wyy +

α2(t)

2Q(t)

]
= 0

Using the same ansatz as the Section 1.1.2 we can see that
ḣ1 − 2Q(t)h21 +

(
|θ(t)|2 − 2r(t)

)
h1 = 0

ḣ2 − (2Q(t)h1 + r(t))h2 = 0

ḣ3 −
1

2
Q(t)h22 = 0

12



with the same terminal conditions as before, but this time we can see that the first equation is a
Riccati equation which is decoupled, thus we can solve the system of ODEs analytically:

h1(t) = −
exp

(∫
2r(t)− |θ(t)|2dt

)
2

∫
Q(t) exp

(∫
2r(t)− |θ(t)|2dt

)
dt+A

h2(t) = B exp

(∫
2Q(t)h1(t) + r(t)dt

)
h3(t) =

1

2

∫
Q(t)h22(t)dt+ C

where A, B and C are constants determined by the terminal conditions.

1.2 FBSDE Method

The theory of backward stochastic differential equation (BSDE) is popular nowadays because of
its connection to stochastic control and partial differential equations. In this section we will derive
the BSDE to get the forward backward stochastic differential equation (FBSDE) system of the
unconstrained stochastic control problem on the finite time horizon. BSDE can also provide a
probabilistic representation of nonlinear PDEs, which extends the Feynman-Kac formula to non-
linear PDEs. We will discuss this further in Chapter 3.

The following definition and theorem are taken from [Pham, 2009b]. We consider the framework
of a stochastic control problem on a finite horizon as defined in Theorem 1.1.2, let the associated
process Xπ(t) on Rn be

dX = b(t,Xπ(t), π(t))dt+ σ(t,Xπ(t), π(t)))dW (t)

where W (t) is a d-dimensional Brownian process and π(t) ∈ A, we are going to minimize the
functional

J(t, x, π) = E

[∫ T

t

f (s,Xπ(s), π(s)) ds+ g (Xπ(s))
∣∣∣Ft]

Definition 1.2.1. (Hamiltonian and associated BSDE)

For the state process and objective functional we stated above, we define Hamiltonian H : [0, T ]×
Rn ×A× Rn × Rn×d → R as

H(t, x, π, p, q) := b(t, x, π) · p+ tr (σ′(t, x, π)q)− f(t, x, π)

also we assume that H is differentiable in x, for each π ∈ A, we can write the adjoint BSDE{
−dp(t) = DxH (t,Xπ(t), πt, p(t), q(t)) dt− q(t)dW (t)
p(T ) = −Dxg (Xπ(T ))

Theorem 1.2.2. (Stochastic maximum principle) Let π̂ ∈ A and Xπ the associated controlled
diffusion. Suppose that there exists a solution (p̂, q̂) to the associated BSDE such that

H
(
t,X π̂(t), π̂(t), p̂(t), q̂(t)

)
= min

π∈A
H (t,Xπ(t), π(t), p̂(t), q̂(t)) , 0 ≤ t ≤ T, a.s.

and (x, π)→ H (t, x, π, p̂(t), q̂(t)) is a concave function for all t ∈ [0, T ].

Then π̂ is an optimal control, i.e.
J(π̂) = inf

π∈A
J(π)

13



1.2.1 FBSDE Primal Problem

According to the dynamic of X and the correlated value function V we can get the Hamiltonian

H1(t, x, π, p1, q1) = (r(t)x+ π′σ(t)θ(t)) p1 + q′1σ
′(t)π −

1

2
Q(t)x2 −

1

2
π′R(t)π

where p1 ∈ S2(0, T ;R) and q1 ∈ H2
(
0, t;R2

)
Thus we have the BSDE{

dp1(t) = [−r(t)p1(t) +Q(t)Xπ(t)] dt+ q′1(t)dW (t)
p1(T ) = −aXπ(T )− c

Theorem 1.2.3. Let π̂ ∈ A, then π̂ is the optimal control of the primal problem if and only if the
solution

(
X π̂, p̂1, q̂1

)
of the FBSDE
dX π̂(t) =

[
r(t)X π̂(t) + π̂′(t)σ(t)θ(t)

]
dt+ π̂′(t)σ(t)dW (t)

X π̂(0) = x0
dp̂1(t) =

[
−r(t)p̂1(t) +Q(t)X π̂(t)

]
dt+ q̂′1(t)dW (t)

p̂1(T ) = −aX π̂(T )− c

(1.2.1)

satisfies

p̂1(t)σ(t)θ(t) + σ(t)q̂1(t)−R(t)π̂(t) = 0 (1.2.2)

for (P⊗ Leb)−a.e.(ω, t) ∈ Ω× [0, T ] and π ∈ R2

The condition (1.2.2) can be derived from the stochastic maximum principle. By the condition we
can get

π̂ = R−1(t)σ(t)
(
p1(t)θ(t) + q1(t)

)
(1.2.3)

From the terminal condition we can make the ansatz that

p̂1(t) = φ1(t)X π̂(t) + ψ1(t) (1.2.4)

substitute the dynamic of Xπ(t) into dp1(t) then we can get the dynamic of p1(t)

dp̂1(t) =
[
φ̇1(t)Xt + φ1(t)

(
r(t)Xt + π′(t)σ(t)θ(t)

)
+ ψ̇1(t)

]
dt+ φ1(t)π′(t)σ(t)dW (t)

compare the drift and local martingale part with the dynamic of p̂1(t) we stated in Theorem 1.2.3
we can get{

−r(t)p̂1(t) +Q(t)X π̂(t) = φ̇1(t)Xt + φ1(t)
(
r(t)Xt + π′(t)σ(t)θ(t)

)
+ ψ̇1(t)

q̂1(t) = φ1(t)σ′(t)π̂(t)
(1.2.5)

By (1.2.3) and the second equation of (1.2.5) we can see that

π̂(t) = p̂1(t)
(
σ−1(t)R(t)− φ1(t)σ′(t)

)−1
θ(t)

= φ1(t)
(
σ−1(t)R(t)− φ1(t)σ′(t)

)−1
θ(t)Xt + ψ1(t)

(
σ−1(t)R(t)− φ1(t)σ′(t)

)−1
θ(t)

Compare with π̂ with (1.1.2) we can see that{
φ1(t) = −Vxx
φ1(t)X̂t + ψ1(t) = −Vx
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Thus we can conclude that
g1(t) = −

φ1(t)

2
g2(t) = −ψ1(t)

g3(t) =
1

2

∫
θ′(t)σ′(t)

(
− σ(t)σ′(t)φ1(t) +R(t)

)−1
σ(t)θ(t)ψ1(t)dt+ C1

where constant C1 can be determined by g3(T ) = 0.

And finally we can get

V (t, x) =−
φ1(t)

2
x2 − ψ1(t)x−

1

2

∫
θ′(t)σ′(t)(

− σ(t)σ′(t)φ1(t) +R(t)
)−1

σ(t)θ(t)ψ1(t)dt+ C1

So to solve the value function of the primal problem we only need to solve φ1(t) and ψ1(t)

From the first equation of (1.2.5) we can see that(
φ̇1(t) + 2r(t)φ1(t)−Q(t)

)
X π̂(t) + ψ̇1(t) + r(t)ψ1(t) + φ1(t)π̂′(t)σ(t)θ(t) = 0 (1.2.6)

Thus we have
φ̇1(t) + θ′(t)

(
K−1(t)− φ1(t)

)−1
θ(t)φ21(t) + 2r(t)φ1(t)−Q(t) = 0

ψ̇1(t) +

(
r(t) + θ′(t)

(
K−1(t)− φ1(t)

)−1
θ(t)φ1(t)

)
ψ1(t) = 0

with terminal condition {
φ1(T ) = −a
ψ1(T ) = −c

1.2.2 FBSDE Dual Problem

According to the dynamic of the dual process Y and the dual value function W we can get the
Hamiltonian

H2(t, y, α, β, p2, q2) = (α− r(t)y) p2 + q′2
(
σ−1(t)β − θ(t)y

)
− 1

2

(
α2

Q(t)
+ β′R−1(t)β

)
where p2 ∈ S2(0, T ;R) and q2 ∈ H2

(
0, t;R2

)
Thus we have the BSDE dp2(t) = [r(t)p2(t) + q′2(t)θ(t)] dt+ q′2(t)dW (t)

p2(T ) = −
Y (y,α,β)(T ) + c

a

Theorem 1.2.4. Suppose Q(t) and R(t) are positive definite and their inverse are uniformly

bounded, then (ŷ, α̂, β̂) is the optimal of the dual problem if and only if the solution
(
Y (ŷ,α̂,β̂), p̂2, q̂2

)
of the FBSDE

dY (ŷ,α̂,β̂)(t) =
[
α̂(t)− r(t)Y (ŷ,α̂,β̂)(t)

]
dt+

[
σ−1(t)β̂(t)− θ(t)Y (ŷ,α̂,β̂)(t)

]′
dW (t)

Y (ŷ,α̂,β̂)(0) = ŷ
dp̂2(t) = [r(t)p̂2(t) + q̂′2(t)θ(t)] dt+ q̂′2(t)dWt

p̂2(T ) = −
Y (ŷ,α̂β̂)(T ) + c

a

(1.2.7)
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satisfies {
p̂2(0) = x0(
p̂2(t), [σ′]

−1
(t)q̂2(t)

)
∈ ∂φ(α̂(t), β̂(t))

(1.2.8)

for (P⊗ Leb)−a.e.(ω, t) ∈ Ω× [0, T ]

Similar to the primal problem, we can use the second condition of (1.2.8) to find the optimal control
α and β, since

∂φ(α̂(t), β̂(t)) =

(
ˆα(t)

Q(t)
, R−1(t)β̂(t)

)
we can get {

α̂ = p̂2(t)Q(t)

β̂ = R(t)[σ′]−1(t)q̂2(t)
(1.2.9)

Comparing with the terminal condition of p2 we can make the ansatz

p2(t) = φ2(t)Y (y,α,β)(t) + ψ2(t) (1.2.10)

Substitute the dynamic of Y (y,,β)(t) into dp2(t) as we assumed as (1.2.10), we can get the dynamic
of p2(t)

dp2(t) =
(
φ̇2(t)Ŷ (t) + φ2(t)

(
α̂(t)− r(t)Ŷ (t)

)
+ ψ̇2(t)

)
dt+ φ2(t)

(
σ−1(t)β̂(t)− θ(t)Ŷ (t)

)′
dW (t)

Compare the dt and dW (t) terms with the dynamic of p2(t) we stated in Theorem 1.2.4 we can
get  r(t)p̂2(t) + q̂′2(t)θ(t) = φ̇2(t)Ŷ (t) + φ2(t)

(
α̂(t)− r(t)Ŷ (t)

)
+ ψ̇2(t)

q̂2(t) = φ2(t)
(
σ−1(t)β̂(t)− θ(t)Ŷ (t)

) (1.2.11)

From the second equation of (1.2.11) and the optimized β in (1.2.9) we have

q̂2(t) =

(
K−1(t)− I

φ2(t)

)−1
θ(t)Ŷt (1.2.12)

and

β̂(t) =

(
σ−1(t)−

σ′(t)R−1(t)

φ2(t)

)−1
θ(t)Ŷt (1.2.13)

Also by our ansatz we can write

α̂(t) = Q(t)
(
φ2(t)Ŷt + ψ2(t)

)
(1.2.14)

Compare the β̂ and α̂ with (1.1.8), we can see that{
φ2(t) = −Wyy

φ2(t)Ŷt + ψ2(t) = −Wy

Thus we can conclude that 
h1(t) = −

φ2(t)

2
h2(t) = −ψ2(t)

h3(t) =
1

2

∫
Q(t)ψ2

2(t)dt+ C2
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where constant C2 is determined by h3(T ) =
c2

2a
And finally we can have

W (y, t) = −
φ2(t)

2
y2 − ψ2(t)y +

1

2

∫
Q(t)ψ2

2(t)dt+ C

so to get the value function of the dual problem we only need to solve φ2(t) and ψ2(t)

Substitute α̂(t) and (1.2.12) into the first equation of (1.2.11) we haveφ̇2(t) +Q(t)φ22(t)− 2r(t)φ2(t)− θ′(t)

(
K−1(t)−

I

φ2(t)

)−1
θ(t)

 Ŷt

+ ψ̇2(t) +
(
φ2(t)Q(t)− r(t)

)
ψ2(t) = 0

(1.2.15)

Summing the terms in the power of Ŷt we have
φ̇2(t) +Q(t)φ22(t)− 2r(t)φ2(t)− θ′(t)

(
K−1(t)−

I

φ2(t)

)−1
θ(t) = 0

ψ̇2(t) +
(
φ2(t)Q(t)− r(t)

)
ψ2(t) = 0

with terminal condition 
φ2(T ) = −

1

a

ψ2(T ) = −
c

a

1.2.3 Relations Between FBSDE Primal and Dual Problem

Actually we can derive the primal optimal control process and its associated process by solving
the dual FBSDE, the following theorems are taking from [Li and Zheng, 2018]

Theorem 1.2.5. Suppose (ŷ, α̂, β̂) is the optimal control process for the dual problem and
(
Y (ŷ,α̂,β), p̂2, q̂2

)
be the associated process which is the solution to FBSDE (1.2.7), then

π̂(t) := [σ′]
−1

(t)q̂2(t) (1.2.16)

is the optimal control of the primal problem and the associated process satisfies
X π̂(t) = p̂2(t)

p̂1(t) = Y (ŷ,α̂,β̂)(t)

q̂1(t) = σ−1(t)β̂(t)− θ(t)Y (ŷ,α̂,β̂)(t)

(1.2.17)

This is easy to proof. Suppose that (ŷ, α̂, β̂) ∈ B is the optimal control to the dual control problem,

we can see that the process
(
Y (ŷ,α̂,β̂)(t), p̂2(t), q̂2(t)

)
solves FBSDE (1.2.7) satisfies the conditions

(1.2.8) by Theorem 1.2.3.

Define π̂(t) and
(
X π̂(t), p̂1(t), q̂1(t)

)
in the form of (1.2.16) and (1.2.17). Again by Theorem 1.2.3

we can see that (
X π̂(t), π̂(t)

)
∈ ∂φ(α̂(t), β̂(t))

Since φ(ω, t, α, β) is the convex conjugate of f(ω, t, x, π) we can see that

(α̂(t), β̂(t)) ∈ ∂f
(
X π̂(t), π̂(t)

)
17



which leads to
α̂(t) = Q(t)X π̂(t) (1.2.18)

β̂(t) = R(t)π̂(t) (1.2.19)

for (P⊗ Leb) -a.e. (ω, t) ∈ Ω× [0, T ].

Using (1.2.16) , (1.2.17) and (1.2.18) we can solve the FBSDE of the primal problem and also
by applying (1.2.17) and (1.2.19) we can derive the condition of the primal FBSDE (1.2.2).

Also we can derive the dual control process and its associated process inversely from the primal
stuffs using the following theorem

Theorem 1.2.6. Suppose π̂ is the optimal control process for the dual problem and
(
X π̂, p̂1, q̂1

)
be the associated process which is the solution to FBSDE (1.2.1), then

ŷ = p̂1(0)
α̂(t) = Q(t)X π̂(t)

β̂(t) = σ(t) [q̂1(t) + θ(t)p̂1(t)]

(1.2.20)

are the optimal control process of the dual control problem and the associated process satisfies Y (ŷ,α̂,β̂)(t) = p̂1(t)
p̂2(t) = Xπ(t)
q̂2(t) = σ′(t)π̂(t)

The proof is similar to Theorem 2.3

From (1.2.3) and the third equation in (1.2.20) we can see that actually

π̂(t) = R−1(t)β̂(t)

Since we have 
X π̂(t) = p̂2(t)

Y ŷ,α̂,β̂(t) = p̂1(t)
p̂1(t) = φ1(t)X π̂(t) + ψ1(t)

p̂2(t) = φ2(t)Y ŷ,α̂,β̂(t) + ψ2(t)

We can easily find the relation 
φ1(t) =

1

φ2(t)

ψ1(t) = −
ψ2(t)

φ2(t)

which means that is we can solve φ2(t) and ψ2(t) for the dual problem, we can directly solve φ1(t)
and ψ1(t) to derive the value function of the primal problem.

1.3 Comparison

To compare the result of the 4 methods, we need to plot the graphs of the value functions not only
for the initial time 0 but the whole time horizon [0, T ], since there is no analytical solution to our
ODEs systems derived from all the 4 methods, we need to use some numerical analysing methods.

To ensure the accuracy of the numerical solution, we would introduce the Runge-Kutta meth-
ods instead of the classical Euler method, see [Ascher and Petzold, 1998].
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Runge-Kutta method: Suppose that we are solving the ordinary differential equation
dy

dt
=

f(t, y), y (t0) = y0 where y(t) is a differentiable function of t, then we can take step-size h to
approximate y(t) in the following way. For n = 0, 1, 2, ... define:

k1 = f (tn, yn)

k2 = f

(
tn +

h

2
, yn + h

k1
2

)
k3 = f

(
tn +

h

2
, yn + h

k2
2

)
k4 = f (tn + h, yn + hk3)

and iterated by

yn+1 = yn +
1

6
h (k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

Here yn+1 is the Runge-Kutta approximation of y (tn+1) , we can see that yn+1 is given by yn plus
the weighted average of k1, k2, k3 and k4 where they are actually the slope at different points on the
interval [tn, tn+1] and it gives larger weight to the slope at the mid-point of the interval, if we only
average on k1 the Runge-Kutta method is indeed the Euler method

We can see that the local truncation error of Runge-Kutta method is of order O
(
h5
)

where Euler

method is of order O
(
h3
)
, which means Runge-Kutta method is much more accurate than the Euler

method

Assuming we are using parameters a = 1, c = 3 with Runge-Kutta step-size h = T
n , where T

is the upper-bound of time t, n is the number of intervals we divided in the interval [0, T ], to
ensure the accuracy of calculation we choose n = 1000 and we also simply assume that

Q(t) = t+ 1

R(t) =

 t+ 1 1

1 t+
1

2


σ(t) =

(
t+ 1 1

0 t+ 2

)

b′(t) =

(
t+ 1

100
,
t+ 2

100

)

r(t) =
t

100

The following figure 1.1 shows the differences between the results simulated by python, with t ∈
[0, 1], starting from different initial values x0 = 0.1, 0.3, 0.5, 1 and using HJB and FBSDE methods
on both primal and dual problems

19



Figure 1.1: Comparison of V (t,X π̂(t)) with fixed x0

It seems that there is only little difference between different methods which may be caused by the
truncated error from the Runge-Kutta method, which suggests that the 4 methods can indeed get
the same result. We can see that as the initial value x0 gets larger, the value function tends to be
”smoother”, this might be the case that x0 outweighs the stochastic variations in our case.

Also we can set different initial values, x0 and plot the value function at time t = 0. The following
Figure 1.2 illustrate the differences among the curves of V (0, X π̂(0)) plotted using 4 methods with
x0 ∈ [1, 10] at different time t, this time we only separated the interval of x0 into 100 subintervals,
since it needs much more calculation to generated 1000 paths at the same time.
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Figure 1.2: Comparison of V (0, X π̂(0)) at different t

Although there is still only little difference between the lines we can still find the equivalences of
the 4 methods to some extent. Also we can figure out that for all t ∈ [0, T ], the value function
V (0, X π̂(0)) is of a quadratic form which is consistent with our ansatz V (t, x) = x2g1(t) +xg2(t) +
g3(t) which is also a quadratic function.

To observe the differences between the control processes and associated state processes calculated
by HJB and FBSDE method we have the following figures.
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Figure 1.3: Comparison of associated processes and controls

There is still little difference between different curves. In the bottom-right subgraph, the dual
control β(t) seems to be 0, but it is not strictly 0 for both entry. This is because α(t) = Q(t)Xπ(t)
is largely influenced by the associated process Xπ(t) thus influenced by the initial value x0, here
the chosen x0 = 1 might be relatively large and enlarged the scale of the plot, to show this is we
can zoom in the plot of β(t).

Figure 1.4: β in the unconstrained problem

We can also plot the functions that only depends on t in the 4 methods, i.e. hn(t), gn(t) for
n = 1, 2, 3, φ1(t), ψ1(t) and φ2(t), ψ2(t).
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Figure 1.5: Functions depend on t in Value functions

Similar to the dual control β(t) in figure 1.3, although the functions g2(t), g3(t) and ψ1(t) seem
to be constant, there does exist changes. This might be due to the changes from the stochastic
variation are relatively small compare with the influence of the large terminal values. We plot the
functions of the same system to show that the change of g1(t) has larger influence to the value
function compared with g2(t) and g3(t) on the value function, and similar for the φ1(t) compared

with ψ1(t), this can be expected since we have deduced that g1(t) = −
φ1(t)

2
. We also plot g2(t),

g3(t) and ψ1(t) to show its own trend.

Figure 1.6: g1(t), g2(t) and ψ1(t)
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Chapter 2

Constrained Problem

In this section we would still consider the previous optimization problem in Chapter 1, i.e. minimize
J : A → R such that

J(π) := E

[∫ T

0

f (t,Xπ(t), π(t)) dt+ g (Xπ(T ))
∣∣∣Xπ(0) = x0

]
(2.0.1)

But this time we would add constraint conditions to the admissible control set, the second entry
of the optimal control π(t) is set to be 0, i.e.

A :=
{
π ∈ H2

(
0, T ;R2

)
: π(t) ∈ K for t ∈ [0, T ] a.e.

}
,

where K = R× {0} which is not the whole space anymore.

2.1 HJB method

For the HJB method, the primal problem is easier to solve compared with the unconstrained
problem, it can be regarded as degenerating to a 1-dimensional optimization problem, but the dual
problem is more complicated since we need to recalculate the dual system under the constrained
condition.

2.1.1 Primal problem

We have the same HJB equation as before i.e.

Vt +
1

2
Q(t)Xπ(t)2 + r(t)Xπ(t)Vx + inf

π∈K
Lv(t) = 0

with terminal condition

V (T,Xπ(T )) =
a

2
x2 + cx

but this time we need to minimize

Lv(t, π1) = π1(t) [σ11(t)θ1(t) + σ12(t)θ2(t)]Vx +
1

2
π2
1(t)

[(
σ2
11(t) + σ2

12(t)
)
Vxx +R11(t)

]
which is a much simpler compared with the unconstrained primal problem.

By the first order condition we have

π̂1 = −
[σ11(t)θ1(t) + σ12(t)θ2(t)]Vx

(σ2
11(t) + σ2

12(t))Vxx +R11(t)
(2.1.1)

24



According to the constrained condition we have the optimal control π̂ = (π̂1, 0)

Consider the terminal condition is unchanged, We still make the ansatz

V (t, x) = x2g1(t) + xg2(t) + g3(t).

Substitute π̂(t) and our ansatz into the HJB equation and sum up each term in terms of the power
of X we can get the system of ODEs

ġ1 −
2 [σ11(t)θ1(t) + σ12(t)θ2(t)]

2

2 (σ2
11(t) + σ2

12(t)) g1 +R11(t)
g21 + 2r(t)g1 +

1

2
Q(t) = 0

ġ2 +

(
r(t)−

2 [σ11(t)θ1(t) + σ12(t)θ2(t)]
2

2 (σ2
11(t) + σ2

12(t)) g1 +R11(t)
g1

)
g2 = 0

ġ3 −
[σ11(t)θ1(t) + σ12(t)θ2(t)]

2

4 (σ2
11(t) + σ2

12(t)) g1 + 2R11(t)
g22 = 0

with terminal condition 
g1(T ) =

a

2
g2(T ) = c
g3(T ) = 0

2.1.2 Dual Problem

As the previous Section 1.1.2, we can do the same dual method, we still set

m0(y) := sup
x∈R

{
xy −Ψ{x0}(x)

}
= x0y

mT (ω, y) := sup
x∈R
{−xy − g(ω, x)} =

(y + c)2

2a

φ(ω, t, α, β) := sup
x∈R,π∈K

{xα+ π′β − f(ω, t, x, π)}

where

f(ω, t, x, π) :=
1

2

[
Q(t)x2 + π′R(t)π

]
The only difference is that K = R× {0} but not R2 anymore. Thus we have

φ(ω, t, α, β) : = sup
x∈R,π1∈R

{
xα+ π1β1 −

1

2

[
Q(t)x2 + π2

1R11(t)
]}

=
1

2

[
α2(t)

Q(t)
+ β′(t)A(t)β(t)

]

Where A(t) is the matrix  1

R11(t)
0

0 0


Thus we have the HJB equation

Wt − r(t)Y y,α,β(t)Wy + inf
(α,β)∈B

Lw(t) = 0

with the terminal condition

W (T, Y (y,α,β)(T )) =
1

2a
y2 +

c

a
y +

c2

2a
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where

Lw(t, α, β) = α(t)Wy +
1

2

∣∣σ(t)−1β(t)− θ(t)Y y,α,β(t)
∣∣2Wyy +

1

2

[
α2(t)

Q(t)
+ β′(t)A(t)β(t)

]

Assuming that the matrix σ(t)−1+
σ′(t)A(t)

Wyy
is invertible. Take the partial derivative of Lw(t, α, β)

respect to α and β, by the first order condition we have
α̂(t) = −Q(t)Wy

β̂(t) =

(
σ(t)−1 +

σ′(t)A(t)

Wyy

)−1
θ(t)y

According to the terminal condition we can make the same ansatz as the unconstrained dual
problem we discussed in Section 1.1.2, i.e.

W (t, y) = y2h1(t) + yh2(t) + h3(t)

Substitute α̂(t), β̂(t) and our ansatz into the HJB equation we would get the system of ODEs

ḣ1 − 2Q(t)h21 − 2r(t)h1 +

∣∣∣∣∣∣
(
I +

KA(t)

2h1

)−1
θ(t)− θ(t)

∣∣∣∣∣∣
2

h1+

1

2

∣∣∣∣∣∣
(
I +

KA(t)

2h1

)−1
θ(t)

∣∣∣∣∣∣
2

KA(t)

= 0

ḣ2 − (2Q(t)h1 + r(t))h2 = 0

ḣ3 −
1

2
Q(t)h22 = 0

with terminal condition 
h1(T ) =

1

2a

h2(T ) =
c

a

h3(T ) =
c2

2a

where KA(t) = σ′(t)A(t)σ(t)

Minimize the function Ψ̃(y, α̂(0), β̂(0)) = x0y +W (y, α̂(0), β̂(0)) according to y, we can get

ŷ = −
h2(0) + x0

2h1(0)

which is still unchanged compared with the unconstrained dual problem. Thus by comparing the
ansatz of the primal problem and dual problem we still have

g1(t) =
1

4h1(t)

g2(t) =
h2(t)

2h1(t)

g3(t) =
h22(t)

4h1(t)
− h3(t)
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2.2 FBSDE Method

Similar to the HJB method, since now we are considering the constrained control space with π2 = 0,
we can just consider the first entry of the optimal control in the primal problem, but this does
mean that the second entry of the dual control β also equal to 0, we need to do more derivation
to figure out β in dual problem.

2.2.1 Primal Problem

Using the same method as the previous Section 1.2.1, we can get the Hamiltonian of the primal
problem, i.e.

H1 (t, x, π1, p1, q1) = [r(t)x+ π1 (σ11(t)θ1(t) + σ12(t)θ2(t))] p1

+ π1 [q11σ11(t) + q12σ12(t)]−
1

2
Q(t)x2 −

1

2
π2
1R11(t)

thus we have the BSDE{
dp1(t) = [−r(t)p1(t) +Q(t)Xπ(t)] dt+ q′1(t)dW (t)
p1(T ) = −aXπ(T )− c

As the previous equation, we can have the following theorem

Theorem 2.2.1. Let π̂ ∈ A, then π̂ is the optimal control of the primal problem if and only if the
solution

(
X π̂, p̂1, q̂1

)
of the FBSDE
dX π̂(t) =

[
r(t)X π̂(t) + π̂′(t)σ(t)θ(t)

]
dt+ π̂′(t)σ(t)dW (t)

X π̂(0) = x0
dp̂1(t) =

[
−r(t)p̂1(t) +Q(t)X π̂(t)

]
dt+ q̂′1(t)dW (t)

p̂1(T ) = −aX π̂(T )− c

(2.2.1)

satisfies
[π̂′ − π′] [p̂1(t)σ(t)θ(t) + σ(t)q̂1(t)−R(t)π̂(t)] ≥ 0 (2.2.2)

for (P⊗ Leb)−a.e.(ω, t) ∈ Ω× [0, T ] and π ∈ K

The condition is different from Theorem 1.2.3 since now K = R × {0}, actually K can be any
closed convex set containing 0 in this theorem.

Since the second entry of π equal to 0, from condition (2.2.2) we can get

(σ11(t)θ1(t) + σ12(t)θ2(t)) p1(t) + q11(t)σ11(t) + q12(t)σ12(t)−R11(t)π1(t)− π̂1(t)R11(t) = 0

i.e.

π̂1 =
[σ11(t)θ1(t) + σ12(t)θ2(t)] p1(t) + q11(t)σ11(t) + q12(t)σ12(t)

R11(t)
(2.2.3)

Using the same ansatz as (1.2.4), i.e. p1(t) = φ1(t)Xt + ψ1(t), we can get{
−r(t)p̂1(t) +Q(t)X π̂(t) = φ̇1(t)Xt + φ1(t)

[
r(t)Xt + π̂1(t) (σ11(t)θ1(t) + σ12(t)θ2(t))

]
+ ψ̇1(t)

q̂1(t) = φ1(t)π̂1(t)σ1(t)
(2.2.4)

where σ1 = (σ11, σ12)′

By (2.2.3) and the second equation of (2.2.4) we can see that

π̂1 =
σ11(t)θ1(t) + σ12(t)θ2(t)

R11(t)− φ1(t) [σ2
11(t) + σ2

12(t)]

(
φ1(t)Xt + ψ1(t)

)
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Compared with (2.1.1) we can conclude that{
φ1(t) = −Vxx
φ1(t)X̂t + ψ1(t) = −Vx

Thus we have 
g1(t) = −

φ1(t)

2
g2(t) = −ψ1(t)

g3(t) =
1

2

∫
[σ11(t)θ1(t) + σ12(t)θ2(t)]

2

− (σ2
11(t) + σ2

12(t))φ1 +R11(t)
ψ2
1dt+ C1

where constant C1 can be determined by g3(T ) = 0.

Substitute π̂ into the first equation of (2.2.4) and summing the terms in the power of X π̂(t)
we can get 

φ̇1(t) +
[σ11(t)θ1(t) + σ12(t)θ2(t)]

2

R11(t)− φ1(t) [σ2
11(t) + σ2

12(t)]
φ21(t) + 2r(t)φ1(t)−Q(t) = 0

ψ̇1(t) +

(
r(t) +

[σ11(t)θ1(t) + σ12(t)θ2(t)]
2

R11(t)− φ1(t) [σ2
11(t) + σ2

12(t)]
φ1(t)

)
ψ1(t) = 0

where {
φ1(T ) = −a
ψ1(T ) = −c

2.2.2 Dual Problem

The Hamiltonian of the dual problem is

H2 (t, y, α, β, p2, q2) = (α− r(t)y)p2 + q′2
(
σ−1(t)β − θ(t)y

)
− 1

2

(
α2

Q(t)
+ β′A(t)β

)
where p2 ∈ S2(0, T ;R) and q2 ∈ H2

(
0, t;R2

)
Thus we have the following theorem

Theorem 2.2.2. Suppose Q(t) and R(t) are positive definite and their inverse are uniformly

bounded, then (ŷ, α̂, β̂) is the optimal of the dual problem if and only if the solution
(
Y (ŷ,α̂,β̂), p̂2, q̂2

)
of the FBSDE

dY (ŷ,α̂,β̂)(t) =
[
α̂(t)− r(t)Y (ŷ,α̂,β̂)(t)

]
dt+

[
σ−1(t)β̂(t)− θ(t)Y (ŷ,α̂,β̂)(t)

]′
dW (t)

Y (ŷ,α̂,β̂)(0) = ŷ
dp̂2(t) = [r(t)p̂2(t) + q̂′2(t)θ(t)] dt+ q̂′2(t)dWt

p̂2(T ) = −
Y (ŷ,α̂β̂)(T ) + c

a

(2.2.5)

satisfies 
p̂2(0) = x0
[σ′]
−1

(t)q̂2(t) ∈ K(
p̂2(t), [σ′]

−1
(t)q̂2(t)

)
∈ ∂φ(α̂(t), β̂(t))

(2.2.6)

for (P⊗ Leb)−a.e.(ω, t) ∈ Ω× [0, T ]
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Compared with Theorem 1.2.4, we add a new condition i.e. [σ′]
−1

(t)q̂2(t) ∈ K, where K = R×{0}
in this case, but actually K can be any subspace of R2 contains 0. By this condition we simplify
H2 to

H2 (t, y, α, β, p2, q2) = [α− r(t)y] p2 +
1

d(t)
[σ22(t)q21 − σ21(t)q22]β1− q′2θ(t)y−

1

2

[
α2

Q(t)
+

β2
1

R11(t)

]
where d(t) = det(σ(t)) is the determinant of matrix σ(t)

Since

∂φ(α̂(t), β̂(t)) =

(
α̂(t)

Q(t)
,
β̂1(t)

R11(t)

)

Using the third condition of (2.2.6) we can get α̂(t) = p̂2(t)Q(t)

β̂1(t) =
R11(t)

d
[σ22(t)q21(t)− σ21(t)q22(t)]

(2.2.7)

Since σ11q22 − σ12q21 = 0, we have

q22 =
σ12

σ11
q21

By the second equation of (2.2.7) we can get

β̂1 =
R11(t)

σ11(t)
q21(t) (2.2.8)

and

q2 = q21

(
1,
σ12

σ11

)′
Make the same ansatz as the previous Section 1.2.2, i.e. p2(t) = φ2(t)Y (t) + ψ2(t) we can get r(t)p̂2(t) + q̂′2(t)θ(t) = φ̇2(t)Ŷ (t) + φ2(t)

(
α̂(t)− r(t)Ŷ (t)

)
+ ψ̇2(t)

q̂2(t) = φ2(t)
(
σ−1(t)β̂(t)− θ(t)Ŷ (t)

) (2.2.9)

By the second equation of (2.2.9) we can see that

β̂1 =
1

φ2(t)

[
σ11(t) +

σ2
12(t)

σ11(t)

]
q21(t) + [σ11(t)θ1(t) + σ12(t)θ2(t)]Y (t)

Combined with (2.2.8) we can get
q2 = B(t)Y (t) (2.2.10)

where

B(t) =
σ11(t) [σ11(t)θ1(t) + σ12(t)θ2(t)]

R11(t)−
1

φ2(t)
[σ2

11(t) + σ2
12(t)]

(
1,
σ12

σ11

)′

where C2 is determined by the terminal condition h3(T ) =
c2

2a

Similarly as previous Section 1.2.2 we can also conclude that
h1(t) = −

φ2(t)

2
h2(t) = −ψ2(t)

h3(t) =
1

2

∫
Q(t)ψ2

2(t)dt+ C2
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Substitute our ansatz p2 and q2 into the first equation of (2.2.9) and summing in the power of Y
we can get the system of ODEs{

φ̇2(t) +Q(t)φ22(t)− 2r(t)φ2(t)−B′θ(t) = 0

ψ̇2(t) +
(
φ2(t)Q(t)− r(t)

)
ψ2(t) = 0

where 
φ2(T ) = −

1

a

ψ2(T ) = −
c

a

2.2.3 Relations Between FBSDE Primal and Dual Problem

Although we have added constrained condition π2 = 0 to the optimization problem, we still have
π̂(t) := [σ′]

−1
(t)q̂2(t)

X π̂(t) = p̂2(t)

p̂1(t) = Y (ŷ,α̂,β̂)(t)

q̂1(t) = σ−1(t)β̂(t)− θ(t)Y (ŷ,α̂,β̂)(t)

and 

ŷ = p̂1(0)
α̂(t) = Q(t)X π̂(t)

β̂(t) = σ(t) [q̂1(t) + θ(t)p̂1(t)]

Y (ŷ,α̂,β̂)(t) = p̂1(t)
p̂2(t) = Xπ(t)
q̂2(t) = σ′(t)π̂(t)

The proof is the same to the previous Section 1.2.3.

2.3 Comparison

Similar to the previous Section 1.3, we plot Figure 2.1 to show the differences between the results
simulated by Python using the same functions and random seeds as the ones in the unconstrained
problem, with t ∈ [0, 1] and different initial values x0 = 0.1, 0.3, 0.5, 1 with Runge-Kutta step-size
h = 1

1000 and using HJB and FBSDE methods on both primal and dual problem.
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Figure 2.1: Comparison of V (t,X π̂(t)) with fixed x0

There is only little difference between different methods which may caused by truncation error,
which suggests that our calculations are indeed correct. We can see the value functions of the con-
strained problem and unconstrained problem for large x0 show a similar trend, this might be that
the correlation between the stocks we assumed are relatively high. We can still figure out that the
value functions get ”smoother” as x0 gets larger, which is also present in the unconstrained problem.

We also set different x0 again and present the value function at t = 0. The following Figure
2.2 shows the difference between the lines of V (0, X π̂(0)) plotted using 4 methods with x0 ∈ [1, 10]
at different time t on the constrained problem.
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Figure 2.2: Comparison of V (0, X π̂(0)) at fixed t

Although there is still only little difference between the lines we can still find the equivalence of
the 4 method in some extend. Also we can figure out that for all t ∈ [0, T ], the value function
V (0, X π̂(0)) shows a quadratic since we still make the same ansatz V (t, x) = x2g1(t)+xg2(t)+g3(t)
as we did in the unconstrained problem which is a quadratic function.

To observe the differences between the control processes and associated processes calculated by
HJB and FBSDE methods we have the following figures.
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Figure 2.3: Comparison of associated processes and controls

There is still only little difference between different lines, the graphs suggest that different meth-
ods do give the same result at least numerically under the constrained condition. Similar to the
unconstrained problem, in the subgraph on the bottom right, the dual control β(t) seems to be 0
but is actually not. To show this is we can zoom in the plot of β(t).

Figure 2.4: β in the constrained problem

We can see that although we have the constraint on π(t) such that π2(t) = 0, both entries of the
dual control β(t) are not equal to 0.

We also plot the functions in which only t varies in the 4 methods, i.e. hn(t), gn(t) for n = 1, 2, 3,
φ1(t), ψ1(t) and φ2(t), ψ2(t).
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Figure 2.5: Parameter functions of Value functions

Similar to the unconstrained problem. We plot the functions of the same system to show that the
change of g1(t) has larger influence to the value function compared with g2(t) and g3(t) on the
value function, and similar for the φ1(t) compared with ψ1(t). We also plot g2(t), g3(t) and ψ1(t)
to show its own trend.

Figure 2.6: g1(t), g2(t) and ψ1(t)

We can see that the functions in which only t varies in Chapter 1 and Chapter 2 seems to have
the same behaviour, this might be caused by the choice of functions, but we can still see that the
value function and control processes show different trends.
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Chapter 3

Random Drift Case

In this section we will consider the one-dimensional case i.e. K = R on the same optimization
problem as the unconstrained problem, but this time we introduce the random drift which we set
to be an Ornstein-Uhlenbeck process into the stock process.

Following [Doob, 1942] we have the definition

Definition 3.0.1. (Ornstein–Uhlenbeck process)

The Ornstein-Uhlenbeck process (OU process) X(t) is defined by the following stochastic dif-
ferential equation:

dX(t) = k (µ−X(t)) dt+ σ(t)dW (t)

where W (t) denotes the Brownian motion, k and µ are deterministic constants

We still have the bank account process {S0}, where

dS0(t) = r(t)S0(t)dt, 0 ≤ t ≤ T, S0(0) = 1

but the stock price process become

dS(t) = S(t)H(t)dt+ S(t)σ(t)dW (t), 0 ≤ t ≤ T, S(0) > 0

where H(t) is an OU-process{
dH(t) = k [µ−H(t)] dt+ σH(t)dWH(t)
H(0) = H0

and dW (t)dWH(t) = ρdt

Now we can rewrite the wealth process Xπ(t) as{
dXπ(t) =

[
r(t)Xπ(t) + π(t)

(
H(t)− r(t)

)]
dt+ π(t)σ(t)dW (t), 0 ≤ t ≤ T

Xπ(0) = x0

3.1 HJB method

Under the case with random drift in the stock process we need to include the infinitesimal generator
of the random drift H(t) in the HJB equation, which cause we need to include one more variable H
in the PDE that we can not separate it from t, thus we will introduce the Feynman-Kac theorem
and its nonlinear version
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3.1.1 Primal problem

Applying DPP we can get the HJB equation

Vt +
1

2
Q(t)Xπ(t)2 + r(t)Xπ(t)Vx + LHV + inf

π∈K
Lv(t) = 0

with terminal condition

V (T,H(T ), Xπ(T )) =
a

2
x2 + cx (3.1.1)

where

Lv(t) = π(t)
[ (

H − r(t)
)
VX + ρσ(t)σH(t)VXH

]
+

1

2
π2(t)

[
σ2(t)VXX +R(t)

]
and LH is the infinitesimal generator of the OU process H(t). Thus by optimizing Lv we have

π̂(t) = −
[H − r(t)]VX + ρσ(t)σH(t)VXH

σ2(t)VXX +R(t)

Substitute (3.1.1) into the HJB we can get the PDE

Vt +
1

2
Q(t)Xπ(t)2 + r(t)Xπ(t)Vx + LHV −

[ (
H − r(t)

)
Vx + ρσ(t)σH(t)VXH

]2
2 [σ2(t)Vxx +R(t)]

= 0 (3.1.2)

Make the ansatz

V (t, x,H) = g1(t,H)x2 + g2(t,H)x+ g3(t,H)

and substitute into PDE (3.1.2) we have

∂tg1 + 2g1r(t) + LHg1 +
1

2
Q(t)−

2 [g1 (H − r(t)) + ρσ(t)σH(t)∂Hg1]
2

2σ2(t)g1 +R(t)
= 0

∂tg2 + r(t)g2 + LHg2 −
2 [g1 (H − r(t)) + ρσ(t)σH(t)∂Hg1] [g2 (H − r(t)) + ρσ(t)σH(t)∂Hg2]

2σ2(t)g1 +R(t)
= 0

∂tg3 + LHg3 −
[g2 (H − r(t)) + ρσ(t)σH(t)∂Hg2]

2

4σ2(t)g1 + 2R(t)
= 0

(3.1.3)
with terminal conditions 

g1(T ) =
a

2
g2(T ) = c
g3(T ) = 0

This system of PDEs is difficult to solve thus we introduce the Feynman-Kac theorem and its
non-linear version. The following theorems are taken from [Pham, 2009b].

Theorem 3.1.1. (Feynman-Kac theorem)

Assume that v ∈ C1,2 ([0, T )× Rn) and the stochastic process Xt are well defined, we have the
linear parabolic PDE{

−∂tv − Lv − u(t, x)v(t, x)− f(t, x) = 0, (t, x) ∈ [0, T )× Rn
v(T, x) = g(x), x ∈ Rn

where L is the infinitesimal generator

Lv = b(t, x) ·Dxv +
1

2
tr
(
σ(t, x)σ′(x)D2

xxv
)
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Then the solution to this PDE is

v(t, x) = E

[∫ T

t

e
∫ s
t
u(τ,Xτ )dτf

(
s,Xt,x

s

)
ds+ e

∫ T
t
u(τ,Xτ )dτg

(
Xt,x
T

) ∣∣∣Xt = x

]
(3.1.4)

where {Xt,x
s , t ≤ s ≤ T} is the solution to the SDE

dXs = b (s,Xs) ds+ σ (s,Xs) dWs, t ≤ s ≤ T,Xt = x

Theorem 3.1.2. (Non-linear Feynman-Kac theorem)

Suppose we have the semi-linear PDE{
−∂tv − Lv − f (t, x, v, σ′Dxv) = 0, (t, x) ∈ [0, T )× Rn
v(T, x) = g(x), x ∈ Rn

we can write the BSDE representation and its associated forward SDE of the PDE as{
−dYs = f (s,Xs, Ys, Zs) ds− Zs.dWs, t ≤ s ≤ T, YT = g (XT )
dXs = b (s,Xs) ds+ σ (s,Xs) dWs

Then the solution to the PDE is
v(t, x) := Y t,xt

we can see that the first PDE only depends on g1, we can write the BSDE representation of g1



dG1(t) =

[
2 [G1(t) (H(t)− r(t)) + ρσ(t)Z1(T )]

2

2σ2(t)G1(t) +R(t)
− 2G1(t)r(t)−

1

2
Q(t)

]
dt+ Z1(t)dWH(t)

G1(T ) =
a

2
dH(t) = k [µ−H(t)] dt+ σH(t)dWH(t)
H(0) = H0

By non-linear Feynman-Kac theorem we can get

g1(t,H) = G1(t)

Substitute g1 and ∂Hg1 into the second equation of (3.1.3), we directly solve g2(t,H) by Feynman-
Kac theorem. Suppose

b1(t,H) =
2ρσ(t)σH(t) [g1 (H − r(t)) + ρσ(t)σH(t)∂Hg1]

2σ2(t)g1 +R(t)

u1(t,H) =
2 (H − r(t)) [g1 (H − r(t)) + ρσ(t)σH(t)∂Hg1]

2σ2(t)g1 +R(t)
− r(t)

We have
g2(t,H) = E

[
ce−

∫ T
0
u1(t,H(t))dt

∣∣∣H(0) = H0

]
where

dH(t) = [k (µ−H(t))− b1(t,H)] dt+ σH(t)dWH(t)

Substitute g1, g2, ∂Hg1 and ∂Hg2 into the third equation of (3.1.3), it becomes a decoupled PDE,
we can simply apply Feynman-Kac theorem to solve g3(t,H), where

g3(t,H) = −E

[∫ T

0

[g2 (H(t)− r(t)) + ρσ(t)σH(t)∂Hg2]
2

4σ2(t)g1 + 2R(t)
dt
∣∣∣H(0) = H0

]
with

dH(t) = k [µ−H(t)] dt+ σH(t)dWH(t)
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3.1.2 Dual Problem

Suppose
dY (t) = α1(t)dt+ β1(t)dW (t) + γ(t)dWH(t)

Since
dXπ(t) =

[
r(t)Xπ(t) + π(t)

(
H(t)− r(t)

)]
dt+ π(t)σ(t)dW (t)

By Ito’s formula we can get

dX(t)Y (t) = [X(t)α(t) + π(t)β(t)] dt+ local martingale

where {
α(t) = α1(t) + r(t)Y (t)
β(t) = Y (t) [H(t)− r(t)] + σ(t) [β1(t) + ργ(t)]

Thus we have 
α1(t) = α(t)− r(t)Y (t)

β1(t) =
β(t)− Y (t) [H(t)− r(t)]− ρσ(t)γ(t)

σ(t)

(3.1.5)

And we are facing the similar optimization problem as the unconstrained case in Section 1.1.2 but

φ(ω, t, α, β) =
1

2

[
α2(t)

Q(t)
+
β2(t)

R(t)

]
Thus we have the HJB equation

Wt − r(t)yWy + LHW + inf
(α,β,γ)∈B

Lw(t) = 0 (3.1.6)

with the terminal condition

W (T,H(T ), Y (y,α,β,γ)(T )) =
1

2a
y2 +

c

a
y +

c2

2a

Where

LW (t) =α(t)Wy +
[β(t)− Y (t) (H(t)− r(t))− ρσ(t)γ(t)]2

2σ2(t)
Wyy

+
γ2(t)

2
Wyy +

γ(t) [β(t)− Y (t) (H(t)− r(t))− ρσ(t)γ(t)]

σ(t)
Wyy

+
ρσH(t) [β(t)− Y (t) (H(t)− r(t))− ρσ(t)γ(t)]

σ(t)
WHy

+ σH(t)γ(t)WHy +
α2(t)

2Q(t)
+
β2(t)

2R(t)

By the first order condition we can get α̂(t) β̂(t) and γ̂(t), substitute back into (3.1.6), we can get
the PDE form of the dual HJB.

Since we have random drift H, we make the ansatz

W (t,H, y) = y2h1(t,H) + yh2(t,H) + h3(t,H)

Summing in the power of y we can get the system of PDE ∂th1 + LHh1 + f1(t,H, h1, σH∂Hh1) = 0
∂th2 + LHh2 + f2(t,H, h1, h2, ∂Hh1, ∂Hh2) = 0
∂th3 + LHh3 + f3(t,H, h1, h2, ∂Hh1, ∂Hh2) = 0

(3.1.7)

where

f2(t,H, h1, h2, ∂Hh1, ∂Hh2) = b2(t,H, h1, ∂Hh1)∂Hh2(t,H)+u2(t,H, h1, ∂Hh1)h2(t,H)+f̃2(t,H, h1, ∂Hh1)
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Since the functions f1, f2 and f3 are quite long functions, we are not going to give the explicit
form of them.

As Section 3.1.1 we can write the BSDE representation of the first PDE of (3.1.7)
dH1(t) = −f1(t,H(t), H1(t), Z1(t))dt+ Z1(t)dWH(t)

H1(T ) =
1

2a
dH(t) = k [µ−H(t)] dt+ σH(t)dWH(t)
H(0) = H0

By the non-linear Feynman-Kac theorem, we can get

h1(t,H) = H1(t)

Then we substitute h1 and ∂Hh1 into the second equation of (3.1.7), we can write

f2(t,H, h2, ∂Hh2) = b2(t,H)∂Hh2(t,H) + u2(t,H)h2(t,H) + f̃2(t,H)

Thus we have

h2(t,H) = E

[∫ T

0

e
∫ t
0
u2(τ,Hτ )dτ f̃2 (t,H(t)) dt+

c

a
e
∫ T
0
u2(t,H(t))dt

∣∣∣H(0) = H0

]
where

dH(t) = [k (µ−H(t)) + b2(t,H(t))] dt+ σH(t)dWH(t)

After substituting h1, h2, ∂Hh1 and ∂Hh2 into the third ODE in (3.1.7), since f3 is independent
of h3 and ∂Hh3, we can directly solve h3(t,H) by Feynman-Kac theorem

h3(t,H) = E

[∫ T

0

f3(t,H(t))dt+
c2

2a

∣∣∣H(0) = H0

]
with

dH(t) = k [µ−H(t)] dt+ σH(t)dWH(t)

Substitute W into Ψ̃(Y (t), α(t), β(t)), we have Ψ̃(y, α̂(0), β̂(0)) = x0y +W (y, α̂(0), β̂(0)), take the
minimum at time t = 0, we can get

ŷ = −
h2(0, H0) + x0

2h1(0, H0)

Through comparing the ansatz of the primal and dual problem we can conclude that

g1(t,H) =
1

4h1(t,H)

g2(t,H) =
h2(t,H)

2h1(t,H)

g3(t,H) =
h22(t,H)

4h1(t,H)
− h3(t,H)

3.2 FBSDE method

The derivation of the primal and dual problem using FBSDE method do not have many changes
compare with Section 1.2 and Section 2.2. To apply the FBSDE method under the random drift
situation, we need to assume the consistency of the measures, i,e. WH(t) = W (t) a.s., which leads
to ρ = 1

As we introduced the random drift H(t) into the stock process, it is difficult to find the ex-
plicit form in this case, and we will just derive the FBSDE system of the primal and dual problem
without going further on solving them by the reinforcement learning.
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3.2.1 Primal problem

Since we have a stochastic drift in the asset process, we have the Hamiltonian

H1(t, x, π, p1, q1) = [r(t)x+ π (H(t)− r(t))] p1 + σ(t)πq1 −
1

2
Q(t)x2 −

1

2
R(t)π2 (3.2.1)

Thus we have the BSDE{
dp1(t) =

[
−r(t)p1(t) +Q(t)X π̂(t)

]
dt+ q1(t)dW (t)

p(T ) = −aXπ(T )− c

Theorem 3.2.1. Let π̂ ∈ A, then π̂ is the optimal control of the primal problem if and only if the
solution

(
X π̂, p̂1, q̂1

)
of the FBSDE

dp̂1(t) =
[
−r(t)p̂1(t) +Q(t)X π̂(t)

]
dt+ q̂′1(t)dW (t)

p̂1(T ) = −aX π̂(T )− c
dX π̂(t) =

[
r(t)X π̂(t) + π̂(t)

(
H(t)− r(t)

)]
dt+ π̂(t)σ(t)dW (t)

X π̂(0) = x0
dH(t) = k [µ−H(t)] dt+ σH(t)dW (t)
H(0) = H0

(3.2.2)

satisfies

p̂1(t) [H(t)− r(t)] + σ(t)q̂1(t)−R(t)π̂(t) = 0 (3.2.3)

By condition (3.2.3)

π̂(t) =
1

R(t)
[p1(t) (H(t)− r(t)) + σ(t)q1(t)]

3.2.2 Dual problem

Since now we are facing the case that ρ = 1, we have the dual process dY (y,α,β)(t) = [α(t)− r(t)Y (y,α,β)(t)]dt+
β(t)− Y (y,α,β)(t) [H(t)− r(t)]

σ(t)
dW (t)

Y (0) = y

which is similar to Section 1 and Section 2 where the control γ(t) = 0

Considering the stochastic drift {H(t)} and dual cash process {Y (t)}, we can get the Hamilto-
nian for the dual FBSDE problem

H2(t, y, α, β, p2, q2) =[α− r(t)y]p2 +
1

σ(t)

[
β − y (H(t)− r(t))

]
−

α2

2Q(t)
−

β2

2R(t)

Thus we have the BSDE
dp2(t) =

[
r(t)p2(t) +

H(t)− r(t)
σ(t)

q̂21

]
dt+ q2(t)dW (t)

p2(T ) = −
Y (y,α,β)(T ) + c

a

Theorem 3.2.2. Suppose Q(t) and R(t) are positive definite and their inverse are uniformly

bounded, then (ŷ, α̂, β̂) is the optimal of the dual problem if and only if the solution
(
Y (ŷ,α̂,β̂), p̂2, q̂2

)
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of the FBSDE

dp̂2(t) =

[
r(t)p̂2(t) +

H(t)− r(t)
σ(t)

q̂21

]
dt+ q̂2(t)dW (t)

p̂2(T ) = −
Y (ŷ,α̂β̂)(T ) + c

a

dY (ŷ,α̂β̂)(t) = [α(t)− r(t)Y (ŷ,α̂β̂)(t)]dt+
β(t)− Y (ŷ,α̂β̂)(t) [H(t)− r(t)]

σ(t)
dW (t)

Y (0) = y
dH(t) = k [µ−H(t)] dt+ σH(t)dW (t)
H(0) = H0

satisfies 
p̂2(0) = x0(
p̂2(t),

q̂2(t)

σ(t)

)
∈ ∂φ(α̂(t), β̂(t))

(3.2.4)

for (P⊗ Leb)−a.e.(ω, t) ∈ Ω× [0, T ]

By the condition (3.2.4) 
α̂(t) = p̂2(t)Q(t)

β̂(t) =
R(t)q̂2(t)

σ(t)

3.2.3 Relations Between FBSDE Primal and Dual Problem

Although we cannot solve the FBSDE problem, we can still find the relations between the primal
FBSDE and dual FBSDE

Even we have introduced the random drift into the stock process we still have

π̂(t) :=
q̂2(t)

σ(t)
X π̂(t) = p̂2(t)

p̂1(t) = Y (ŷ,α̂,β̂)(t)

q̂1(t) =
β̂(t)

σ(t)
− θ(t)Y (ŷ,α̂,β̂)(t)

and 

ŷ = p̂1(0)
α̂(t) = Q(t)X π̂(t)

β̂(t) = σ(t) [q̂1(t) + θ(t)p̂1(t)]

Y (ŷ,α̂,β̂)(t) = p̂1(t)
p̂2(t) = Xπ(t)
q̂2(t) = σ(t)π̂(t)

The proof is the same to the unconstrained problem, the only difference is that the 2-dimensional
problem has been reduced to 1-dimensional
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Conclusion

In this paper, we discussed the stochastic linear quadratic control problem and used HJB equation
to solve both its primal problem and its dual problem. We also derived the FBSDE for both of the
primal and dual problem and stated the necessary and sufficient conditions for the optimal solu-
tion. We prove the relations of the optimal portfolio strategy and the associated cash processes of
the primal problem and the adjoint processes of the dual problem, and vice versa. We use the HJB
and FBSDE methods to solve the primal and dual SLQ problems under the constrained condition
where the second entry of the portfolio strategy is equal to 0. We introduced the random drift into
the stock process and still used the 4 methods to derive the optimal control and the associated
process even though we didn’t solve the FBSDE to the end even under the limited case.

There are still many unsolved problems. For example, can we solve the dual problem if the
constrained condition is not convex, more specifically when it is not a convex cone? Can we find
the explicit form of the FBSDE under the random drift case if we assume that the correlation of
the Brownian motion in the OU process and the cash process is not equal to 1?
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