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Abstract

Volatility risk premia refers to the fact that on average implied volatility in many asset classes

is above realized volatility. This phenomenon can be consistently modeled withing incomplete

markets framework, for example jump-di↵usion or stochastic volatility models. The situation is

particularly clear in the equities space, where the risk premia harvested in “normal” times, via,

say selling a portfolio of Delta-hedged options (e.g. in [Bakshi and Kapadia, 2015]), is partially

paid back in the stressed regimes during which the Delta-hedged options portfolio, which is short

Gamma, su↵ers losses. In this project, we do simulations on harvesting volatility risk premia

by short selling delta hedged options under di↵erent model assumptions and compare with the

theoretical gains by theoretical derivation. We found that both stochastic volatility and jumps will

cause loss in our delta hedged option portfolio and there could be extremely large potential loss

due to jumps. Finally, we also tests when volatility risk premia are harvested via volatility swap,

how the delta hedged option’s value will change with di↵erent parameters.
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Chapter 1

Introduction

1.1 Introduction to volatility risk premium

The volatility risk premium (VRP) refers to the phenomenon that option-implied volatility

tends to exceed realized volatility of the same underlying asset over time. This creates a profit

opportunity for volatility sellers. This di↵erence is most apparent in broad market equity indices

such as the SP 500 Index. Very limited disclosure in the industry can be found on harvesting VRP.

Ge [Ge, 2016] listed three ways of harvesting VRP.

The first one is based on option strategies, i.e. by selling index options and delta hedging

with index. This method is usually applied in production portfolios and empirical research has

been conducted by industrial traders in Ge [Ge, 2016] and Gmbh [GMBH, 2017]. However, a

very limited disadvantage of this strategy is the vulnerability to financial crisis. The hedged

portfolio will be highly likely to have very large negative loss when there are sudden jumps in

the underlying stock price. Studies show that using options to collect equity VRP was profitable

in most historical periods in Bakshi and Kapadia[Bakshi and Kapadia, 2015], Ge and Bouchey

[Wei and Bouchey, 2015])

Another strategy used in practice is through another financial instrument variance swap. A

variance swap is di↵erent from a traditional swap in many ways. It does not have the periodic

cash exchanges, and it is a structured contract that stipulates a strike level at the initiation date

and pays out only at the expiration date, based on the di↵erence between the realized variance

(volatility squared) of a given asset (usually an equity index) and the strike level which is chosen

so that the expected value of the swap contract is zero at the initiation of the contract. A variance

swap, such like a traditional swap, has a theoretical notional that is used to compute gains or

losses but is not exchanged. The notional of a variance swap, however, can be tricky to compute

or understand. It is derived from another theoretical value called the vega notional. [Ge, 2016] In

this project, we always use unit notional for variance swap strategy. The variance swap will make

steady profits mostly when realized volatility is below the strike level. When realized volatility

surpasses variance strikes, however, losses occur and the losses have the potential to be significant.

The third way is via VIX futures. VIX Index futures are the newest class of instruments that

can be used to harvest the volatility risk premium. The CBOE introduced the VIX in 1993 as

a benchmark for equity market risk, computed from the implied volatility of near-term, at-the-

money SP 100 Index options. On the other side of the trade, shorting VIX futures may be a

straightforward way to harvest the volatility risk premium. However, construction of portfolio

including VIX futures tends to be complex due to the change of term structure in highly volatile

markets and selection of VIX futures need to be managed with care and precision in order to
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maintain a consistent and profitable trading strategy, which makes it hard to study mathematically.

Therefore, we will not cover this strategy in this project.

Since the VRP harvesting requires implied volatility to be higher than the realised volatility

of the underlying asset, in highly volatile markets, there is highly likely to be great loss in all

three strategies. This project tries to simulate such market conditions with stochastic volatility,

focusing on option strategies and variance swap strategies. Using di↵erent models will give di↵erent

results on the two strategies. We conducted research on selling delta hedged option strategy in

four di↵erent cases. The first case assumes that the stock price has simple geometric Brownian

motion followed by a modified Heston model with stochastic volatility assumption. Then we

consider Merton jump di↵usion model with constant volatility and the final case concentrates on

the stochastic volatility Merton Jump di↵usion model.

In the meantime, we also considered a combination of the first two strategies. An important

topic covered in this project is the way the delta hedged option position performs with di↵erent

parameters, keeping VRP harvested from variance swap.

1.2 Parameters and Notations

For convenience, all basic notations and parameters are introduced in this section

• N(·) is the cumulative distribution function of the standard normal distribution

• T � t is the time to maturity (expressed in years)

• St is the spot price of the underlying asset

• K is the strike price

• r is the risk free rate (annual rate, expressed in terms of continuous compounding)

• � is the volatility of returns of the underlying asset

• �̂ is the implied volatility of an option i.e. the volatility that makes theoretical value of the

option equal to its price under some model assumptions (e.g. Black Scholes).

• �v is the volatility of stochastic volatility Vt

• q is the continuously paid dividend

• n(·) is the derivative of the cumulative distribution function of the standard normal distri-

bution

• Wt and Bt are both Wiener processes or Brownian motions

• Nt is Poisson process with jump intensity �

• Pt is compound Poisson process defined by

Pt =
NtX

i=1

Ji

where Ui has lognormal distribution ln (Ji + 1) ⇠ N
�
�, �

2
�

• C(·) is the call price of European style option with payo↵ max (ST � t, 0).
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• C(·) is the Black-Scholes call price and CMJ(·) is the call price under Merton jump di↵usion

process

• �t,
@Ct
@St

and @SCt are used as sensitivity of call option price to underlying asset which is also

known as delta

• �t or
@
2
Ct

@S
2
t

are used as second order sensitivity of call option price to underlying asset which

is also known as gamma

1.3 Project structure

The project is formed of three di↵erent parts. The first one focuses on harvesting volatility

risk premium with Black Scholes models and stochastic volatility models such as Heston model.

The second part incorporates models with jumps, for example, Merton jump di↵usion model and

stochastic jump di↵usion model. The final section mainly concentrates on harvesting VRP via

variance swap. We are particularly interested in how tuning parameters to keep VRP harvested

from variance swap constant will influence the performance of short selling delta hedged options

portfolio.

1.4 Black Scholes model and delta hedging

The Black–Scholes model is a mathematical model for the dynamics of a financial market

containing derivative investment instruments. In the derivation of this model, the stock price was

assumed to be geometric Brownian motion (GBM) with SDE

dSt

St

= µdt+ �dWt. (1.4.1)

From the partial di↵erential equation in the model, known as the Black–Scholes PDE

@C

@t
+

1

2
�
2
S
2 @

2
C

@S2
+ rS

@C

@S
� rC = 0 (1.4.2)

one can deduce the Black–Scholes formula

C (S, t) = N (d1)S � e
�r(T�t)

KN (d2) (1.4.3)

where

d1 =
1

�
p
T � t


ln

✓
St

K

◆
+

✓
r +

�
2

2

◆
(T � t)

�

d2 = d1 � �

p
T � t

The price of a corresponding put option based on put-call parity is:

P (S, t) = Ke
�r(T�t) � St + C (S, t)

= e
�r(T�t)

KN (�d2)� StN (�d1) .

The key idea behind the model is to hedge the option by buying and selling the underlying

asset in just the right way and, as a consequence, to eliminate risk. This type of hedging is called
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‘continuously revised delta hedging’ and is the basis of more complicated hedging strategies such

as those engaged in by investment banks and hedge funds.

It is worth noticing the strong assumption of dynamics of underlying asset. When asset price

does not follow geometric Brownian motion, the pricing formula will not give a fair price of the

option. The main reason is due to the inaccuracy of delta hedge strategy in this case since

delta hedge under Black Scholes model only hedges the uncertainty associated with the Brownian

motion. However, it is still worth testing how Black Scholes formula performs under di↵erent

model assumptions.

We can consider the scenario of selling at time 0 an European call option at implied volatility

�̂, i.e. for the price p = C (T, S0,K, r, �̂) and then following a Black-Scholes delta-hedging trading

strategy based on constant volatility �̂ until the option expires at time T . We denote C(t, s) =

C(T � t, s,K, r, �̂), so that the hedged portfolio, with value process ⇧t, is constructed by holding

�t := @SC (t, St�) units of the risky asset S, and the remainder �t :=
1
Bt

(⇧t ��tSt) units in the

risk free asset B (a unit notional zero coupon bond with YTM r). This portfolio, initially funded

by the option sale (⇧0 = p) defines a self-financing trading strategy. Hence the portfolio value

process ⇧ satisfies the SDE

⇧t =p+

Z
t

0
@SC (u, Su) dSu +

Z
t

0
r (⇧u � @SC (u, Su�)Su) du (1.4.4)

or equivalently, [Bakshi and Kapadia, 2015] defines ⇧t,t+⌧ as the hedging error between time t and

t+ ⌧

⇧t,t+⌧ = Ct+⌧ � Ct +

Z
t+⌧

t

�udSu +

Z
t+⌧

t

r (Cu ��uSu) du (1.4.5)

Note that 1.4.4 and 1.4.5 are not only valid when Black Scholes (1.4.1) PDE holds. The

equivalence between these two definitions should be clear with Ito’s formula on Ct. In this project,

we will use either of the two definition depending on the situation.

However, delta hedging does not work well for jump di↵usion processes and will give a relatively

big loss when jumps occur. However, jumps will create value for variance swap. In this project,

we also compare the e↵ectiveness of VRP harvesting using both variance swap and delta hedged

options.

1.5 Change of measure

VRP appears when implied volatility is greater than realised volatility. The concept can also

be interpreted as when risk neutral volatility is greater than realised volatility. Therefore, in order

to find opportunities to harvest VRP we shall use Girsanov theorem to change to risk neutral

probability measure.

Theorem 1.5.1 (Girsanov Theorem). Let {Wt} be a Wiener process on the Wiener probability

space {⌦,F , P}. Let {Xt} be a measurable process adapted to the natural filtration of the Wiener

process
�
FW

t

 
with X0 = 0. Define the Doléans-Dade exponential E(X)t of X with respect to W

E(X)t = exp

✓
Xt �

1

2
[X]t

◆

where [X]t is the quadratic variation of Xt. If E(X)t is a strictly positive martingale, a probability
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measure Q can be defined on {⌦,F} such that we have Radon-Nikodym derivative

dQ
dP

����
Ft

= E(X)t

Then for each t the measure Q restricted to the unaugmented sigma fields FW

t
is equivalent to P

restricted to FW

t
. Furthermore, if Y is a local martingale under P , then the process

Ỹt = Yt � [Y,X]t

is a Q local martingale on the filtered probability space
�
⌦,F ,Q,

�
FW

t

  
.

Girsanov Theorem provides a convenient way of finding the equivalent martingale. As a simple

example, we can find risk neutral measure Q which is done in Black-Scholes model via Radon-

Nkodym derivative:
dQ

dP
= E

✓Z
t

0

r � µ

�
dWs

◆

where r denotes the instantaneous risk free rate, µ the asset drift and � volatility. Then we can

say that under risk neutral measure Q

dS
⇤
t
= �S

⇤
t
dW

⇤
t

where W
⇤
t

= Wt � r�µ

�
t. By Girsanov’s Theorem, (W ⇤

t
)0tT⇤ is a standard Brownian motion

with respect to Q and hence d logS⇤
t
is a martingale under Q.
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Chapter 2

Delta hedged options under Black

Scholes based models

2.1 No dividend paying geometric Brownian motion

In this section, we use simplest delta hedging strategy with call option price obtained from

Black Scholes option pricing formula as 2.2.2 and delta being defined as Black-Scholes delta

�BS(t, St) = N
0(d1)

where N
0(·) is the first order derivative of standard normal distribution CDF and d1 is defined

as in Section 1.4. We will give both theoretical derivation and simulation results to demonstrate

the e↵ectiveness of Black Scholes delta hedging strategy in di↵erent models and make comparison

between di↵erent models.

2.1.1 VRP harvesting via delta hedged option

In this section, we stick to the geometric Brownian motion assumption where stock price follows

SDE in 2.2.1. Further, it can be easily proved by Ito’s formula, and we obtain

Ct =C0 +

Z
t

0
�udSu +

Z
t

0

✓
@Cu

@u
+

1

2
�
2
S
2
u

@
2
Cu

@S2
u

◆
du (2.1.1)

=C0 +

Z
t

0
�udSu +

Z
t

0
r (Cu ��uSu) du (2.1.2)

which is the statement that the call option can be replicated by trading a stock and a bond.

Combining equation 2.1.2 with the definition of delta-hedged gains in equation 1.4.5, it is apparent

that, with continuous trading, ⇧t,t+⌧ = 0 over every horizon ⌧ for any starting time t. More

generally, it can verified that ⇧t,t+⌧ = 0 is a property common to all one-dimensional Markov Ito

price processes:
dSt

St

= µt [St] dt+ �t [St] dW
1
t

for any deterministic finite di↵erence process µt[St] and �t[St].

Theoretically, it is impossible to do continuous delta hedging in real world. Therefore, one

needs to rebalance hedging positions discretely, in which case ⇧t,t+⌧ will not necessarily be zero.

Over the life of the option, where the hedge is rebalanced at each of the dates tn, n = 0, 1, . . . N �1

(where we define t0 = t, tN = t+ ⌧ ) and tn+1 � tn = ⌧/N . Define the discrete delta-hedged gains

11



⇡t,t+⌧ as

⇡t,t+⌧ ⌘ Ct+⌧ � Ct �
N�1X

n=0

�tn

�
Stn+1 � Stn

�
�

N�1X

n=0

r (Ct ��tnStn)
⌧

N

In research conducted in [Bertsimas et al., 1997] as well as those in [Figlewski, 1989], the

asymptotic distribution of the discretely hedged option portfolio has a mean of zero, and is sym-

metric and it is influenced by a variety of parameters. Simulation results also show a conver-

gence to Dirac delta function with steps being smaller. From Bertsimas, Kogan and Lo(2000),p
N⇡ ) 1p

2

R
t+⌧

t
�
2
S
2
u

@
2
Cu

@S2
u
dWu where Wu is a Wiener process, independent of W 1

u
. Thus, the

asymptotic distribution of the discretely hedged option portfolio has a mean of zero, and is sym-

metric. Simulation results can also verify such convergence.

Here we are more interested in how selling options with di↵erent implied volatility will influence

the hedging error. In this case, Black Scholes PDE becomes

@C

@t
+

1

2
�̂
2
S
2 @

2
C

@S2
+ rS

@C

@S
� rC = 0.

Substituting the new PDE to 1.4.5 and applying Ito’s formula give us the volatility risk premium

we can harvest

VRPt =
1

2

Z
t

0
� (u, Su�)S

2
u

�
�̂
2 � �

2
�
du.

This formula shows that the nature of VRP harvesting via delta hedged options is by a short

position of gamma which is positive almost surely in Black Scholes model.

2.1.2 Simulation results

We use the following parameters throughout simulations in this section: T = 1, µ = 0.2, r = 0.05

and � = 0.3. The simulations are based on 252 trading days every year and daily steps refers

to how many simulations we will do for each day. The more steps for each day, the closer our

simulation is to continuous trading. We can indeed see the convergence clearly from the simulation

results. See appendix for convergence of delta hedged option as number of steps increases. The

following plots show when we can harvest VRP via selling delta hedged options with higher implied

volatility than realised volatility, the distribution of the gains we can obtain.

(a) ITM, K = 60 (b) ITM, K = 80

12



(c) ATM, K = 100 (d) OTM, K = 120

(e) OTM, K = 140 (f) OTM, K = 160

Figure 2.1: BS Delta Hedging Error under GBM without Dividend

Here is also a table that summarises the mean, variance and skewness of gains distribution with

di↵erent strikes.

K mean variance skewness

60 -1.5572 0.7829 0.7829
80 0.2179 2.6304 0.3955
90 3.0582 1.5552 0.2579
100 2.1476 2.9574 -0.3302
110 4.2569 1.9409 0.02627
120 4.3844 2.5021 -0.08733
130 4.3383 3.4840 0.006903
140 4.0577 4.3520 0.2259
160 3.2332 5.3100 0.7968

Table 2.1: Distribution of VRP harvested from selling options with higher implied volatility under
BS model without dividends

We can see that it is the most profitable to see options that are out of the money. Selling in the

money options are in general not as profitable as out of the money options. However, if the option

is deep out of money, it is not very likely to be exercised so the initial price of selling such option

is very low which lowers the final profit of our strategy. However, when the strike price increases,

the variance is increasing as K rises, which exerts uncertainty on our short selling option strategy.

13



2.2 Dividend paying geometric Brownian motion

In this section, we add continuously paid dividends to GBM in the simulation of underlying

share price which gives the SDE that describes the dynamics of S as

dSt

St

= (µ+ q)dt+ �dWt. (2.2.1)

In the mean time, the pricing formula becomes

C (S, t) = e
�q(T�t)

N (d1)S � e
�r(T�t)

KN (d2) , (2.2.2)

where

d1 =
1

�
p
T � t


ln

✓
St

K

◆
+

✓
r � q +

�
2

2

◆
(T � t)

�

d2 = d1 � �

p
T � t.

In the meantime, it can be easily proved that the Black Scholes PDE extends to

@V

@t
+

1

2
�
2
S
2 @

2
V

@S2
+ (r � q)S

@V

@S
� rV = 0 (2.2.3)

Also, delta could be obtained easily by taking derivative of C with respect to S

�t = e
�q(T�t)

N
0(d1)

2.2.1 VRP harvesting with delta hedged option

We would like to consider a simple extension of Black Scholes model by adding continuously paid

dividends to the model. Under this model, by Ito’s formula, we get

Ct =C0 +

Z
t

0
�udSu +

Z
t

0

✓
@Cu

@u
+

1

2
�
2
S
2
u

@
2
Cu

@S2
u

◆
du (2.2.4)

=C0 +

Z
t

0
�udSu +

Z
t

0
(rCu � (r � q)�uSu) du. (2.2.5)

Combining 2.2.5 with formula 1.4.5, one can obtain the theoretical delta hedge error when a

unit of option at market volatility is sold.

⇧t,t+⌧ = �
Z

t+⌧

t

q�(u, Su)Sudu (2.2.6)

Thus, in dividend paying case, without discrete hedging error, the simple delta hedging strategy

already gives a natural hedging loss. This will give potential loss for simple delta hedging strategy

even after we adjust the delta hedging strategy. Theoretical VRP that we can harvest in this case

is

VRPt =

Z
t

0

✓
1

2
� (u, Su)S

2
u

�
�̂
2 � �

2
�
� q�(u, Su)Su

◆
du (2.2.7)

2.2.2 Simulation results

We use the following parameters throughout simulations in this section: T = 1, µ = 0.2, r = 0.05,

� = 0.3 and q = 0.02. The number of simulations is set to be 10000. The simulations are based
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on 252 trading days and we set the steps on each day to be 12, which means that the total steps

is 3024. Also, when harvesting VRP, the implied volatility is set �̂ = 0.4.

(a) ITM, K = 60 (b) ITM, K = 80

(c) ATM, K = 100 (d) OTM, K = 120

(e) OTM, K = 140 (f) OTM, K = 160

Figure 2.2: BS Delta Hedging Error under GBM with Dividend

From figures, we can see that due to the negative term associated with dividends in 2.2.6, VRP

will be significantly influenced by this term because of the high delta of an in-the-money option.

However, we can see that when selling deep out-of-money options, due to the very low delta which

eliminates the negative element in 2.2.7, we may be able to make considerable profits.

Here is also a table that summarises the distribution of delta hedged gains at di↵erent strikes.
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K mean variance skewness

60 0.6223 0.28817 2.3510
80 0.2179 2.6303 0.3955
90 1.2883 3.0695 -0.04439
100 2.1476 2.9574 -0.3301
110 2.8502 2.6910 0.02627
120 3.2458 2.5769 -0.1936
140 3.3066 3.1681 0.2931
150 3.0738 3.5765 0.5249
160 2.7930 3.9680 0.7819

Table 2.2: Distribution of VRP harvested from selling options with higher implied volatility under
BS model with continuous dividends

2.3 Stochastic volatility model without dividend

In this section, we will explore the e↵ect of stochastic volatility on the hedging error of delta

hedged options. We use the following model assumption that is consistent with [Bakshi and Kapadia, 2015].

dSt

St

= µt [St,�t] dt+ �tdW
1
t

(2.3.1)

d�t = ✓t [�t] dt+ ⌘t [�t] dW
2
t

(2.3.2)

where the correlation between the two Weiner processes, W
1
t

and W
2
t
, is ⇢. It may be noted

that volatility, �t, follows an autonomous stochastic process; the drift coe�cient, ✓t [�t],and the

di↵usion coe�cient, ⌘t [�t], are functionally independent of St. In particular, here we only focus

on the Heston model whose SDE is

dSt =µStdt+
p

VtStdWt (2.3.3)

dVt = (✓ � Vt) dt+ ⌫

p
VtdBt (2.3.4)

where the correlation between the two Weiner processes, Wt and Bt, is ⇢.

Theorem 2.3.1 (Theoretical solution to Heston model). With Heston model defined by 2.3.3 and

2.3.4, The theoretical solution to this model can be written as

C
H(S, v, t) = SP1 �KP (t, T )P2

where

Pj(x, v, T ; ln[K]) =
1

2
+

1

⇡

Z 1

0
Re


e
�i� logK

f(x, v, T ;�)

i�

�
d�

with

ff (x, v, t;�) = e
c(T�ri�)+D(T�ti�)v+Hx

where

C(⌧ ;�) = n�i⌧ + a

�2

n
(bj � ⇢��i+ d) ⌧ � 2 ln

h
1�ge

dr

1�g

io

D(⌧ ;�) = bj�⇢��i+d

�2

h
1�e

!r

1�gedt

i

and

g =
bj � ⇢��i+ d

bj � ⇢��i� d

d =
q
(⇢��i� bj)

2 � �2 (2uj�i� �2)

16



For detailed proof of the theoretical solution, see [Heston, 1993].

We can see that the theoretical solution to Heston model is very complicated and requires Fast

Fourier Transform method while finding the solutions. Hence, it is not convenient to simulate the

delta hedging strategy with its own delta. Therefore, due to the time limit of this project, we will

only perform delta hedging based on Black Scholes delta. The simulation of stochastic volatility

model can be a future direction of research.

Though Monte Carlo simulation is not very doable for delta hedging in Heston model, theoret-

ical expression of hedging error can still be obtained as shown in the following proposition.

Proposition 2.3.2. Let the stock price process follow the dynamics given in equations 2.3.3

and 2.3.4. Moreover, suppose the volatility risk premium is of the general form where �
v

t
[�t] ⌘

�Covt
⇣

dSt
St

, dt

⌘
. Then,

1. The delta-hedged gains with Black Scholes call option delta formula at implied volatility �̂,

⇧BS

t,t+⌧
, is given by

⇧BS

t,t+⌧
=

Z
t+⌧

t

@Cu

@Vu

dVu +

Z
t+⌧

t

b(�̂)du

where

b(�̂) =
1

2
(�̂2 � Vu)S

2
u

@
2
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@S2
u

+
1

2
⌫
2
Vu

@
2
Cu

@V 2
u

+ ⇢⌫

p
Vu�uSu

@
2
Cu

@Su@Vu

2. The delta hedged error with its intrinsic delta formula ⇧t,t+⌧

⇧t,t+⌧ =

Z
t+⌧

t

�
v

u
[�u]

@Cu

@�u
du+

Z
t+⌧

t

⌫

p
Vt

@Cu

@�u
dBu

Proof. For 1, we use Ito’s formula to get

Ct+⌧ = Ct +

Z
t+⌧

t

@Cu

@Su

dSu +

Z
t+⌧

t

@Cu

@Vu

dVu +

Z
t+⌧

t

budu (2.3.5)

where bu ⌘ @Cu
@u

+ 1
2V

2
u
S
2
u

@
2
Cu

@S2
u

+ 1
2⌫

2
Vu

@
2
Cu

@V 2
u

+ ⇢⌫
p
Vu�uSu

@
2
Cu

@Su@Vu
. Then we substitute 2.3.5 into

1.4.5 and wrap up to get

⇧BS

t,t+⌧
=

Z
t+⌧

t

@Cu

@Vu

dVu +

Z
t+⌧

t

budu+

Z
t+⌧

t

r (Cu ��uSu) du (2.3.6)

Then substitute Black Scholes PDE into 2.3.6 to get

⇧BS

t,t+⌧
=

Z
t+⌧

t

@Cu

@Vu

dVu +

Z
t+⌧

t

1

2
(�̂2 � Vu)S
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u

@
2
Cu

@S2
u

+
1

2
⌫
2
Vu

@
2
Cu

@V 2
u

+ ⇢⌫

p
Vu�uSu

@
2
Cu

@Su@Vu

du

(2.3.7)

For 2, See [Bakshi and Kapadia, 2015]

Theoretical results in Proposition 2.3.2 indicate that using Black Scholes delta to hedge the

stochastic volatility will give relatively large error in Heston model. Theoretical solution to He-

ston model is very complicated, so it is very di�cult to apply delta hedging with Heston model.

In stochastic volatility model, harvesting VRP via variance swaps tends to be a better choice.

However, it is still possible to harvest VRP through Black Scholes delta hedging strategy.
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2.3.1 Simulation results

We use the following parameters throughout simulations in this section: T = 1, µ = 0.2, r = 0.05,

V0 = 0.3,  = 0.2, ✓ = 0.2, ⌫ = 0.2. The number of simulations is set to be 10000. The simulations

are based on 252 trading days and we set the steps on each day to be 12, which means that the

total steps is 3024. Also, when harvesting VRP, the implied volatility is set �̂ = 0.4.

(a) ITM, K = 80 (b) ATM, K = 100

(c) OTM, K = 110 (d) OTM, K = 120

(e) OTM, K = 130 (f) OTM, K = 140

Figure 2.3: BS Delta Hedging Error under GBM with Dividend

Also, statistical data on delta hedged option portfolio with di↵erent strikes is shown below

It is worth noticing that compared with previous results the variance is not decreasing as the

option goes deep out of money. This is partly because as option goes deep out of money, the

stochastic volatility will have very little influence on our delta hedged option portfolio.
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K mean variance skewness

80 -0.7054 5.0996 0.6992
100 1.2137 8.2229 0.1939
110 1.7726 8.7551 0.08096
120 2.0226 8.6247 0.05738
130 2.0421 8.1509 0.08784
140 1.8943 7.4413 0.1692
150 1.7097 6.6926 0.1915

Table 2.3: Distribution of VRP harvested from selling options with higher implied volatility under
BS model with continuous dividends
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Chapter 3

Delta hedged options under

models with jumps

3.1 Merton jump di↵usion model

3.1.1 Model specification

In Merton jump di↵usion model, changes in the asset price consist of normal (continuous di↵usion)

component that is modeled by a Brownian motion with drift process and abnormal (discontinuous,

i.e. jump) component that is modeled by a compound Poisson process. Asset price jumps are

assumed to occur independently and identically. The probability that an asset price jumps during

a small time interval dt can be written using a Poisson process dNt as

dSt

St�
= (↵� �µJ)dt+ �dWt + (Jt � 1) dNt. (3.1.1)

Equivalently, the model can also be written in form of compound Poisson process.

dSt/St� = (↵� �µJ)dt+ �dWt + dP̃t (3.1.2)

Under this model, the analytical solution to the stochastic di↵erential equation can be written

as

St = S0 exp

"✓
↵� �

2

2
� �k

◆
t+ �Bt +

NhX

k=1

Yk

#
(3.1.3)

MJD model is an example of an incomplete model because there are many equivalent martingale

risk-neutral measures Q ⇠ P under which the discounted asset price process {e�rt
Si; 0  t  T}

becomes a martingale. Merton finds his equivalent martingale risk-neutral measure QM ⇠ P by

changing the drift of the Brownian motion process while keeping the other parts (most important

is the jump measure, i.e. the distribution of jump times and jump sizes) unchanged:

St = S0 exp

"✓
r � �

2

2
� �k

◆
t+ �W

Qu
t

+
NtX

k=1

Yk

#
under QM

Note thatWQM
t

is a standard Brownian motion process on (⌦,F ,QM ) and the process {e�rt
St; 0  t  T}

is a martingale under QM . Then, a European option price CMJ (t, St) with payo↵ function H (ST )
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is calculated as:

CMJ (t, St) = e
�r(T�t)

E
Q4 [H (ST ) | Ft]

After complicated calculations, the analytical solution to the option value under MJD model

can be expressed as two equivalent forms in [Matsuda, 2004]

CMJ (t, St) = e
�rr

X
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e
��r(�⌧)i

i!
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Qu


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⇢
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(3.1.4)
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2
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(3.1.5)

3.1.2 Black Scholes delta hedging error

Under MJD frame, we can test how Black Scholes hedging strategy performs when jumps occur. We

can derive the hedging error with Black Scholes delta under this model according to the derivation

in [Davis, 2010]. With portfolio construction process described in Section 1.4, the portfolio value

process X satisfies the SDE

Xt =p+

Z
t

0
@SC (u, Su�)µSu�du+

Z
t

0
@SC (u, Su�)�Su�dWu

+

Z
t

0
@SC (u, Su�)Su�(z)Judu+

Z
t

0
(Xu � @SC (u, Su�)Su) rdu

Now define Yt = C (t, St) , so that in particular Y0 = p. Applying the Itô formula gives

Yt =p+

Z
t

0
@tC (u, Su�) du+

Z
t

0
@SC (u, Su�)µSu�du

+

Z
t

0
@SC (u, Su�)�Su�dWu +

1

2

Z
t

0
@
2
SS

C (u, Su�)�
2
S
2
u�du

+

Z
t

0
(C (u, Su� (1 + Ju))� C (u, Su�)) dt

Note that this expression is independent of Vt since it is Black Scholes Option pricing formula.

Thus the ’hedging error’ process defined by Zt := Xt � Yt satisfies the SDE

Zt =

Z
t

0
rXudu�

Z
t

0

⇣
rSu�@SC (u, Su�) + @tC (u, Su�) +

1

2
�
2
S
2
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2
SS

C (u, Su�) du

�
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t

0
(C (u, Su� (1 + Ju(z)))� C (u, Su�)� @SC (u, Su�)Su�Ju(z)) du (3.1.6)

Since in this expression, we use the Black Scholes Option Price. We would need to substitute

Black Scholes PDE
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+ rS
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@S
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2
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@
2
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@S2
� rC = 0

Therefore, with implied volatility �̂, the payo↵ of selling a delta hedged option would be

Zt =

Z
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0
rZudu+
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�
Z

t

0
(C (u, Su� (1 + Ju(z)))� C (u, Su�)� @SC (u, Su�)Su�Ju(z)) du (3.1.7)

From 3.1.7, it can be seen that apart from the first two terms, the final term is the e↵ect of

jumps. However, we are unable to hedge this part of the jumps. This jump part tends to give a

relatively large hedging error in extreme cases.

3.1.3 Merton delta hedging error

Instead of using Black Scholes delta hedging strategy, since theoretical value of the option delta

can be obtained from the theoretical expression of option pricing formula of MJD model, we can

use a more accurate way of hedging especially to reduce the theoretical hedging error especially at

jumps. First of all, we need to introduce the PDE derived from MJD model

@V

@t
+
�
2
S
2
t

2

@
2
V

@S
2
t

+ rSt

@V

@St

� rV + �E [V ((1 + Jt)St, t)� V (St, t)]� �St

@V

@St

µJ = 0 (3.1.8)

Hence, we substitute 3.1.8 (with � replaced by �̂) into 3.1.6 to get the hedging error by Merton

delta

Zt =

Z
t

0
rZudu+

1

2

Z
t

0
� (u, Su�)S

2
u�
�
�̂
2 � �

2
�
du�

Z
t

0
@SC (u, Su�)Su�Judu (3.1.9)

We can see that, continuously, Merton delta hedging can hedge the jumps to some extent under

continuous trading assumptions, which, in practice, is impossible. This is because we are unable

to know when jumps will happen and adjust our delta instantaneously based on the occurrence of

jumps under discrete hedging settings.

Moreover, in practical simulations, we can also spot that the Merton delta hedging strategy is

sometimes an over-hedged strategy which means that there will be positive gains when tradings

trades are not frequent enough. This gives us a clue to guess that Merton delta gives us a com-

pensation for the potential loss at the occurrence of jumps. However, for both Black Scholes delta

and Merton delta, the model is unable to converge to Dirac delta function as shown in Appendix

A.1.2.

3.1.4 Simulation results

In this section, We use the following parameters throughout simulations in this section: T = 1,

µ = 0.2, r = 0.05, � = 0.25. The jump size parameters are set as � = 0 and � = 0.2. The number

of simulations is set to be 10000. The simulations are based on 252 trading days and we set the

steps on each day to be 12, which means that the total steps is 3024. Also, when harvesting VRP,

the implied volatility is set �̂ = 0.4.

Black Scholes delta VRP harvesting

First of all, we will test how Black Scholes delta performs in this case. Due to the unpredictability

of jumps in MJD model, we are unable to hedge the jumps which will give big loss due to jump

e↵ect as shown in 3.1.7. Simulation results are shown in Fig 3.1.

We can see from the plots that there is highly likely to be a huge jump loss for delta hedged

options at all strikes although the majority of cases yield a profit for the portfolio. In order to

better monitor the risk, we also look at 95% Value at Risk (VaR) of the portfolio with di↵erent

strikes as shown in Table 3.1.

From the table, although the most profitable choice is to sell out of the money option with
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(a) ITM, K = 60 (b) ATM, K = 100

(c) OTM, K = 140 (d) OTM, K = 160

Figure 3.1: BS Delta Hedging Error under Merton Jump Di↵usion Model without Dividend

K mean variance skewness 95% VaR

60 0.8851 0.9028 -1.8275 0.08344
80 2.5305 3.6000 -3.2656 0.0053
100 3.7544 7.4331 -5.9030 -0.1836
120 3.9093 8.9042 -3.9253 -0.0912
140 3.2544 9.7621 -3.8346 0.2594
160 2.4693 7.8993 -3.2053 0.2082

Table 3.1: Distribution of VRP harvested from selling options with higher implied volatility under
BS model with continuous dividends

strike between 120 and 140, the 95% VaR will be negative in some cases, which means that there

could potentially be significant loss in the portfolio and the variance in this interval is also the

biggest. Extra attention needs to be paid on extreme loss

Merton delta VRP harvesting

More precise hedging requires delta hedging for Merton delta. Delta hedging strategy will not give

a convergent histogram to Dirac delta function. This is mainly because of discrete adjustments

of the trading position. In continuous trading assumptions, there will be a sudden change in

delta, which makes it possible to adjust the position immediately before jumps. However, this is

impossible for discrete hedging adjustments. For convergence plots, check Appendix A for details.

We would like to test VRP harvesting by Merton delta as well. The simulation results are

shown in Fig 3.1 and Table 3.2 shows the distribution of delta hedged option portfolio’s pnl.

Compared with Black Scholes delta hedging strategy, Merton delta gives relatively smaller mean

profit. However, the variance and 95%VaR are lower than Black Scholes strategy, which, from the
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(a) ITM, K = 60 (b) ATM, K = 100

(c) OTM, K = 140 (d) OTM, K = 160

Figure 3.1: Merton Delta Hedging Error under Merton Jump Di↵usion Model without Dividend

K mean variance skewness 95%VaR

60 0.7210 0.8040 -4.6063 0.1584
80 2.1785 3.2375 -2.9949 0.4047
100 3.2691 6.3111 -4.0654 0.3213
120 3.3930 8.1484 -3.7174 0.5651
140 2.8469 8.6138 -3.9091 0.5051
160 2.0364 8.5434 -7.8268 0.3812

Table 3.2: Distribution of VRP harvested from selling options with higher implied volatility under
BS model with continuous dividends

perspective of risk management, gives a more steady VRP than BS delta hedging.

3.2 Stochastic volatility jump di↵usion model

3.2.1 Model specification

This is the most complicated model that we are considering. It is a combination of Merton jump

di↵usion model and stochastic volatility model. The full model is consistent with the model in

asset price is assumed to follow a jump-di↵usion model and the asset volatility is allowed to be

stochastic. Specifically, the dynamics under the physical probability measure P are

d lnSt =


r � q + �sVt +

Vt

2

�
dt+

p
VtdWt + JtdNt � �µJdt (3.2.1)

dVt =  (✓ � Vt) dt+ �vV
⌫

t
dBt (3.2.2)
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where Wt and Bt are two correlated Wiener processes with the correlation coe�cient equal to ⇢.

Denote the mean and variance of Jt by µJ and �J . Note that dWt and JtdNt have respective

variances equal to dt and �
�
µ
2
j
+ �

2
j

�
dt. Thus, Vt + �

�
µ
2
j
+ �

2
j

�
is the variance rate of the asset

price process. As in price and volatility processes are dependent through two correlated di↵usive

terms Wt and Bt.

3.2.2 Change of Measure for compound Poisson process

Due to the compound Poisson process in the model, the risk neutral measure is not unique. We

need to adapt Girsanov theorem to a version for Poisson process as in [Privault, 09].

Theorem 3.2.1 (Change of measure for Poisson process). Let (Nt)t>0 be a compound Poisson

process with intensity � > 0 and jump size distribution ⌫(dx). In our case, the jump size is log-

normally distributed with mean e
� � 1. Consider another intensity parameter �̃ > 0 and jump size

distribution ⌫̃(dx), and let

 (x) :=
�̃

�

⌫̃(dx)

⌫(dx)
� 1, x 2 R

Then, under the probability measureeP
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the process

Yt :=
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Zk, t 2 R+

is a compound Poisson process with modified intensity �̃ > 0, and modified jump size distribution

⌫̃(dx)

For detailed proof of Theorem 3.2.1, check [Privault, 09].

Corollary 3.2.2 (Girsanov theorem for compound Poisson process). The compensated process

Yt � �̃tE⌫̃ [Z]

is a martingale under the probability measure eP
�̃,⌫̃

defined by the RadonNikodym density

deP
�̃,⌫̃
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= e�(�̃��)T
NTY

k=1

(1 +  (Zk))

Proof of this corollary follows from Proposition 3.2.1 and by applying Ito’s formula for com-

pound Poisson process. Check [Privault, 09].

Lemma 3.2.3 (Risk neutral price dynamics). Under a chosen risk neutral measure Q with stock

price being described as

d logSt = [r � q] dt+
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t
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where dBQ

t
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t
= ⇢dt, define density
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where "(·) denotes the stochastic exponential, and where ⇣ are the market prices of the Brownian

shocks in the price and volatility defined by
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Then ⇡t exp(rt) and ⇡t exp(qt)St are both local martingale

To prove Lemma 3.2.3, Appendix A of [Pan, 2002] has detailed explanations. This gives us

a bases for theoretical option pricing under this model and also showed that a valid risk neutral

measure does exist. In the meantime, we can also find the pricing PDE that the process follows.

Proposition 3.2.4 (Option pricing PDE of stochastic jump di↵usion model). Assume Ct is the

solution to the call price under stochastic jump di↵usion model, then Ct satisfies the following PDE
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where J
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is the jump size under risk neutral measure Q

Proof. Apply Ito’s formula on exp(�rt)Ct
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By Corollary 3.2.3, due to the local martingale property of ⇡t and hence exp(�rt)Ct, forcing the

drift to be 0 gives the PDE.

3.2.3 Delta hedging error

Black Scholes delta

With portfolio constructed as in Section 1.4, we derive the expression of portfolio value as before
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Hence we can get the dynamics of call option’s value by Ito’s formula

Ct =C0 +

Z
t

0
@tC (u, Su�) du+

Z
t

0
(r � q � µ

⇤
J
�
⇤
Vt) @SC (u, Su�)µuSu� + (✓ � Vt)@V C (u, Su�)du

+

Z
t

0
@SC (u, Su�)

p
VuSu�dWu +

1

2

Z
t

0
@
2
SS

C (u, Su�)VuS
2
u�du

+

Z
t

0
@V C (u, Su�)�V

⌫

t
dBt +

1

2

Z
t

0
@
2
V V

C (u, Su�)�
2
V

2⌫
t

du+

Z
t

0
⇢�vV

⌫+1/2
u

@
2
SV

C(u, Su�)du

+

Z
t

0
(C (u, Su� (1 + Ju))� C (u, Su�)) du

Therefore, under stochastic volatility jump di↵usion model, with Black Scholes PDE substituted

in to Zt = Xt � Ct the final hedging error with Black Scholes delta with implied volatility �̂ is
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Z
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Since the Black Scholes delta only hedges the uncertainty associated with Wt and could not hedge

stochastic volatility and jumps, the error follows a complicated stochastic di↵erential equation. It is

di�cult to see whether there is still any opportunity to harvest volatility risk premium. Therefore,

we will simulate how this delta hedge performs.

Stochastic volatility jump di↵usion delta

As before, we are interested in the delta hedging portfolio perform in stochastic volatility jump

di↵usion model.
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where Ju is the jump under phisical measure P.

Then substituting the PDE in 3.2.4 and Ct+⌧ � Ct into the definition of ⇧(t, t+ ⌧) as in 1.4.5
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Then we can also find the expectation of this gain by
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3.2.4 VRP harvesting via Black Scholes and Merton delta

In this section, We use the following parameters throughout simulations: T = 1, µ = 0.2, r = 0.05,

� = 0.25, v0 = 0.09, �v = 0.3 and ⌫ = 0.5. The jump size parameters are set as � = 0 and � = 0.2.

The number of simulations is set to be 10000. The simulations are based on 252 trading days

and we set the steps on each day to be 12, which means that the total steps is 3024. Also, when

harvesting VRP, the implied volatility for Black Scholes and Merton option pricing is set �̂ = 0.4.

First of all, we try to harvest VRP via selling Black Scholes delta hedged option as before.

Simulation results are shown in Fig 3.2 and Table 3.3.

(a) ITM, K = 80 (b) ATM, K = 100

(c) OTM, K = 120 (d) OTM, K = 140

Figure 3.2: BS Delta Hedging Error under Stochastic Volatility Jump Di↵usion Model with Divi-
dend

K mean variance skewness

80 -1.6358 3.2375 -2.9949
100 -2.3239 6.3111 -4.0654
120 -2.6802 6.3111 -4.0654
140 -2.7324 8.1484 -3.7174

Table 3.3: Distribution of VRP harvested from selling options with higher implied volatility under
BS model with continuous dividends

However, it is not profitable to sell option with higher implied volatility in this case although

we take higher risk. This is because the e↵ect of stochastic volatility and jumps accumulates and

causes more loss than simple Heston model and MJD model.

With the failure of Black Scholes delta, we try to sell delta hedged options via Merton delta
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defined by
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By hedging with Merton delta, we will get the following results as shown in Fig 3.3 and Table

3.4.

(a) ITM, K = 80 (b) ATM, K = 100

(c) OTM, K = 120 (d) OTM, K = 140

Figure 3.3: Merton Delta Hedging Error under Stochastic Volatility Jump Di↵usion Model with
Dividend

K mean variance skewness

80 -0.9010 11.0551 -2.4789
100 -1.3416 18.6023 -2.85350
120 -1.6156 25.7214 -4.5929
140 -1.6977 26.6449 -3.8480

Table 3.4: Distribution of VRP harvested from selling options with higher implied volatility under
BS model with continuous dividends

It can be seen that although it is better to use Merton delta to hedge, it is still not profitable

to see delta hedged options in this model. Therefore, we should not use delta hedged option
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Chapter 4

Variance swaps and delta hedged

options

4.1 Variance swaps under di↵erent models

a variance swap is a forward contract on future realized price variance, variance being the square

of volatility. At expiry the receiver of the “floating leg” pays (or owes) the di↵erence between the

realized variance (or volatility) and the agreed upon strike. At inception the strike K is generally

chosen such that the fair value of the swap is zero. This strike is referred to as fair variance (or fair

volatility). Like other swaps, the payo↵ is determined based on a notional amount that is never

exchanged. However, in the case of a variance swap, the notional amount is specified in terms of

vega, which is normally called vega notional. The payo↵ of a variance swap is given as follows:

Nvega

2K

�
�
2
realised �K

2
�

where Nvar is vega notional, �2
realised is annualised realised variance, and K is variance strike.

Variance swaps will have di↵erent forms of payo↵ in di↵erent models. The most commonly

used model is stochastic volatility model and jump di↵usion.

4.1.1 Black Scholes and Heston model

Black Scholes model

Mathematically, assuming stock price to be geometric Brownian motion with constant volatility

and apply Black Scholes model for option pricing will not result in any value for variance swap as

the implied volatility can be calculated and there is no meanings to use variance swap. However,

in practice, volatility skew is often spotted, which is the di↵erence in implied volatility between

out-of-the-money options, at-the-money options, and in-the-money options. Therefore, variance

swaps can also be used to capture the di↵erence between implied volatility and realised volatility.

We can relate the payo↵ of a variance swap and underlying stock price using lto’s Lemma. We

first assume that the underlying stock is described by geometric Brownian motion:

dSt

St

= µdt+ �dZt

Applying Ito’s formula, we get:

d (logSt) =

✓
µ� �

2

2

◆
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� d (logSt) =
�
2
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Taking integrals, the total variance is:
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Therefore, an estimate of the variance is
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The fair strike can be found in [Tsoukalas and Zeng, 2009]
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#

where P0 and C0 are put option price and call option price at time t = 0

Heston model

With model defined in 2.3.3 and 2.3.4, the fair value (strike) of this contract is obtained as expec-

tation under the risk-neutral measure Q of the variance process,
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(4.1.1)

With
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Therefore positive ”implied minus realized” spread corresponds to negative value of the market

price of volatility risk.

Under Heston model, we can derived the variance s Since solution to Heston stochastic volatility

equation 2.3.4 is E
P
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�t (V0 � ✓), and the solution under risk neutral measure for

equation is EQ
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4.1.2 Merton jump di↵usion model

Under MJD model in 3.1.6, we can calculate the di↵erence between realised volatility due to jump

rate,
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The di↵erence can be derived as follows:
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In order to derived the quadratic variation of jumps, we need to use the following lemma from

[Gatheral, 2006].

Lemma 4.1.1. With probability measure P and jump size is log normally distributed with where

Ji has lognormal distribution log (Ji + 1) ⇠ N
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Proof. Let Pt denote the return of a compound Poisson process so that

PT =
NTX

i

Ji

with the Ji i.i.d. with distribution density µ(dx) and NT a Poisson process with mean �T . Define

the quadratic variation as
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NTX
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Then the quadratic variation has expectation
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However, in order to find the theoretical solution to MJD model, we need to define a risk neutral

measure for MJD model. As discussed in Section 3.1, MJD is an incomplete model which means

that there are more than one risk neutral measure.

Choice 1: Keeping � and µJ both unchanged

This change of measure identity was initially proposed by Merton. [Merton, 1976]. By using an

equivalent martingale that keeps both � and µJ constant, we would be able to find dWQ

t
such

that dQ
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⇣
�
R
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0 ⇣⌧dW⌧
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for some ⇣t that can satisfy the drift change that makes e(r�q)t

St a

martingale. Merton also showed that the solution under this model is
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under Q The advantage of this model is that this model has the fewest parameters that we need

to take care of as µ⇤
J
= µJ and �⇤ = � are fixed, which will significantly simplify our calculation at

later stage. However, it also eliminates a free parameter that we can use to calibrate our model.

In this case, there will be no di↵erence between realised volatility and implied volatility. Hence
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Q
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Choice 2: Keeping � unchanged and free the jump size

This change of measure identity was from Pan’s paper [Pan, 2002]. Here we set �⇤ = � and let

the new jump size J
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has a new distribution ⌫(dx) with mean µ
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and variance �2
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where ⇣t = �

s
p
V with some constant �s. It can be proved

that this identity also makes e(r�q)t
St a martingale. This model freezes �⇤ = � and let µJ change

by changing the distribution of Jt under risk neutral measure. We then can choose µ
⇤
J
freely and

it will influence our choice of �s in order to keep the martingale condition. The solution to this

model now becomes
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In this case, the payo↵ of variance swap will be
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Choice 3: Vary � and µ under some constraints

This change of measure identity was from Duan et al.[Duan and Yeh, 2010]. In this model, we

change both µJ and �. This time we use the Randon Nikodym derivative
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We let N⇤
t
be a Poisson process with intensity �⇤ and independent of WQ

t
under Q and B

⇤
t
; J⇤

t

is an independent normal random variable under measure Q with a new mean µ
⇤
J
but its standard

deviation remains unchanged at �J . This model gives us more freedom to control the whole process.

As long as the dynamics are like described in equation (3) and (4), we would be able to ensure that

e(r�q)t
St a martingale. We would be able to see that choosing di↵erent equivalent martingale gives

di↵erent expressions on the value of derivatives such as vairance swaps and delta hedged options

that we will discuss in the following section.

RV
P
0,T � SW

Q

0,T = (�TµJ)
2 + �T�

2 � (�⇤Tµ⇤
J
)2 � �

⇤
T�

2

4.1.3 Stochastic Volatility jump di↵usion model

For stochastic volatility jump di↵usion model, we fix the risk neutral measure as in Lemma 3.2.3.

The model can be treated as a combination of Heston model and MJD model with choice 2. Thus,

the payo↵ of variance swap is

RV
P
0,T � SW

Q

0,T = ✓ +
1� e

�T

T
(v0 � ✓)�

✓
✓

� �v
+

✓
1� e

�(��v)t

(� �v)T

◆✓
v0 �

✓

� �v

◆◆
+ �

2
T

2(µ2
J
� (µ⇤

J
)2)

(4.1.4)

4.2 Variance Swap and delta hedged options

In this section, we are interested in for a fixed VRP in terms of variance swap, the distribution

of delta hedging error changes for options with varying strikes. As in Section 4.1, we will consider

to fix the variance swap under di↵erent model assumptions.

Heston model

Under Heston model defined as 2.3.3 and 2.3.4, we can change  and ✓ which can influence the

VRP harvested from variance swap as in 4.1.2. In order to fix the VRP, we let v0 = k✓

k��v
. Then

k, ✓ and �v should have the following relationship

(v0 � ✓)

✓
1� 1� e

�kT

kT

◆
= V RP

Thus, we will have

✓ = v0 � V RP

✓
1� 1� e

�kT

kT

◆�1

and �v = k

✓
1� ✓

v0

◆
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We use the following parameters throughout simulations in the Heston model section: T = 1,

µ = 0.2, r = 0.05, � = 0.3. The number of simulations is set to be 10000. The simulations are

based on 252 trading days and we set the steps on each day to be 12, which means that the total

steps is 3024. Also, when calculating delta hedged gains, the implied volatility is set �̂ = 0.3.

Under Heston model assumption, we change , ✓ and �v to keep VRP from total variance swap

unchanged. In the mean time, we adjust strike price K to see the e↵ect of di↵erent parameters for

options with di↵erent strikes

Three rounds of simulations were run based on Black Scholes delta hedging when K = 80,

K = 100 and K = 120. See Appendix A.2.1 for detailed simulation results and graphs.

From simulation results, when we increase , ✓ and �v while fixing the VRP from variance swap

unchanged, there are a few statistical property that we can spot.

1. The delta hedged gains’ distribution tends have more negative expectation value and tends to

be more negatively skewed. However, it has lower variance in the meantime.

2. The variance and skewness decrease as parameters increase.

3. Out of the money option in general gives the highest expected payo↵ for the delta hedged

portfolio and with small , ✓ and �, the expected payo↵ is even positive while for in the money

and deep out of money options, profits are hard to make.

Stochastic jump di↵usion model

The e↵ect of jumps only influence the extreme loss in MJD model. Therefore, the distribution

will not have significant change when we change the parameters. Thus, we can directly look at

the stochastic jump di↵usion model where we can adjust both the jump and stochastic volatility

parameters.

We use the following parameters throughout simulations in the stochastic jump di↵usion model

section: T = 1, µ = 0.2, r = 0.05, v0 = 0.09. The number of simulations is set to be 10000. The

simulations are based on 252 trading days and we set the steps on each day to be 8, which means

that the total steps is 2017. Also, when calculating delta hedged gains, the implied volatility is

set �̂ = 0.3. We change , ✓, �v, � and µ
⇤
J
to keep VRP from total variance swap unchanged. In

the mean time, we adjust strike price K to see the e↵ect of di↵erent parameters for options with

di↵erent strikes.

The stochastic volatility can be controlled exactly as Heston model and for the jump part, by

4.1.3, we can fix µJ and vary � and µ
⇤
J
(�⇤ in particular) by

�
⇤ = log

✓
µ
2
J
� V RP

�2T 2

◆
+

b
2

2

Three rounds of simulations were run based on Merton delta hedging when K = 80, K = 100

and K = 120. See Appendix A.2.2 for detailed simulation results and graphs.

A few observations can be made based on simulation results:

1. Compared to Heston model, for stochastic volatility jump di↵usion model, as parameters in-

crease, the expected payo↵ is less negative.

2. The variance peaks at certain parameter. 3. The large negative loss dominates the expectation,

but increasing � and
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Conclusion

By simulation and theoretical derivation, we prove and observe that there exists volatility risk

premia under Black Scholes model. Adding continuous paid dividend will lower the volatility risk

premia, but it is still profitable to sell delta hedged strategy. Also, stochastic volatility will pull

down volatility risk premia. Black Scholes delta hedged option can still make positive expected

payo↵, but by theoretical derivation the Heston model’s own delta should be more suitable for

harvesting VRP.

Adding jumps to the model will cause the delta hedged option portfolio to have a very large

negative loss in most cases. Black Scholes delta hedged portfolio and Merton delta hedged portfolio

both give positive expected payo↵, but Merton delta will better control risks. For stochastic

volatility jump di↵usion models, it is no longer profitable to sell either Black Scholes delta hedged

option or Merton delta hedged options due to the significant loss caused by both stochastic volatility

and jumps.

In the stochastic volatility jump di↵usion model, we use another instrument variance swap to

harvest volatility risk premium. We simulated the delta hedged options as we change parameters

while keeping VRP harvested from var swap fixed. Overall, delta hedged options are highly likely

to end up with loss and losses are sometimes significant. However, as parameters become larger,

the delta hedged option will have lower loss.

Future research may include

1. Find the delta hedging error for stochastic volatility model with theoretical delta and compare

with Black Scholes delta hedging. It can be expected that with model’s own delta, the hedging

e↵ect should be much better.

2. Though pure delta hedging is not as stable as variance swap in volatility premium harvesting.

However, research has shown that for empirical S&P 500 data, volatility risk premium does exist.

It may be possible to find a model that can better estimate the index (e.g. GARCH) and make

hedging a dynamic programming problem or we can even apply reinforcement learning to harvest

VRP.

36



Appendix A

Simulation results

A.1 Convergence of Delta hedging

A.1.1 Black Scholes model

(a) daily steps = 5 (b) daily steps = 8

(c) daily steps = 12 (d) daily steps = 24

Figure A.1: Convergence of pnl of delta hedged option portfolio under Black Scholes model

A.1.2 Merton Jump di↵usion model

A.2 Change in delta hedged option’s gains with VRP from

variance swap fixed

A.2.1 Heston model
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(a) daily steps = 5 (b) daily steps = 8

(c) daily steps = 12

Figure A.2: Non-convergence of pnl of Black Scholes delta hedged option portfolio under MJD
model

(a) daily steps = 5 (b) daily steps = 8

(c) daily steps = 12

Figure A.3: Non-convergence of pnl of Merton delta hedged option portfolio under MJD model
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(a) k = 1, ✓ = 0.02408, �v = 0.8494 (b) k = 2, ✓ = 0.07074, �v = 1.08789

Figure A.4: Distribution of OTM Black Scholes delta hedged options under Heston model at K =
120

 ✓ �v mean variance skewness

1 0.02408 0.8494 -0.4569 6.6475 0.3454
1.2 0.04028 0.8978 -0.6987 5.6341 0.2672
1.4 0.05174 0.9473 -0.9712 5.1371 0.2517
1.6 0.06023 0.9976 -1.1491 4.5611 0.2069
1.8 0.06676 1.04889 -1.3653 4.0983 0.2269
2.0 0.07074 1.08789 -1.4480 3.6972 0.1585

Table A.1: Statistics of distribution of ATM BS delta hedged options with K = 100 under Heston
model

(a) k = 1, ✓ = 0.02408, �v = 0.8494 (b) k = 2, ✓ = 0.07074, �v = 1.08789

Figure A.5: Distribution of ITM Black Scholes delta hedged options under Heston model at K =
80

 ✓ �v mean variance skewness

1 0.02408 0.8494 -2.1193 3.0732 1.1100
1.2 0.04028 0.8978 -2.1935 2.7780 1.0277
1.4 0.05174 0.9473 -2.2778 2.4544 1.0543
1.6 0.06023 0.9976 -2.3808 2.2436 0.9431
1.8 0.06676 1.04889 -2.4529 2.0853 0.9172
2.0 0.07074 1.08789 -2.4811 1.9562 0.8316

Table A.2: Statistics of distribution of ITM BS delta hedged options with K = 80 under Heston
model
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(a) k = 1, ✓ = 0.02408, �v = 0.8494 (b) k = 2, ✓ = 0.07074, �v = 1.08789

Figure A.6: Distribution of OTM Black Scholes delta hedged options under Heston model at K =
120

 ✓ �v mean variance skewness

1 0.02408 0.8494 0.5129 6.8146 -0.05614
1.2 0.04028 0.8978 0.1282 5.9253 -0.2093
1.4 0.05174 0.9473 -0.1557 5.2065 -0.2107
1.6 0.06023 0.9976 -0.3680 4.67707 -0.3319
1.8 0.06676 1.04889 -0.6039 4.2707 -0.3836
2.0 0.07074 1.08789 -0.7289 3.9714 -0.4810

Table A.3: Statistics of distribution of OTM Merton delta hedged options with K = 120 under
Heston model

A.2.2 Stochastic volatility Model with Merton delta hedging

(a) k = 1, ✓ = 0.02408, �v = 0.8494 (b) k = 2, ✓ = 0.07074, �v = 1.08789

Figure A.7: Distribution of ITM Merton delta hedged options under stochastic volatility jump
di↵usion model at K = 80
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(a) k = 1, ✓ = 0.02408, �v = 0.8494 (b) k = 2, ✓ = 0.07074, �v = 1.08789

Figure A.8: Distribution of ATM Merton delta hedged options under stochastic jump di↵usion
model at K = 100

(a) k = 1, ✓ = 0.02408, �v = 0.8494 (b) k = 2, ✓ = 0.07074, �v = 1.08789

Figure A.9: Distribution of OTM Merton delta hedged options under stochastic jump di↵usion
model at K = 120
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 ✓ �v � aQ mean variance skewness

1 0.02408 0.8494 0.1 -0.2146 -6.6762 480.8092 -4.3054
1.2 0.04028 0.8978 0.18 -0.1668 -5.0400 772.8338 -3.1239
1.4 0.05174 0.9473 0.26 -0.1375 -3.1912 880.4824 -2.5114
1.6 0.06023 0.9976 0.34 -0.1157 -2.6099 904.7619 -2.2371
1.8 0.06676 1.04889 0.42 -0.09788 -1.90727 891.4981 -2.2964
2.0 0.07074 1.08789 0.46 -0.08221 -1.9788 861.5896 -2.2430

Table A.4: Statistics of distribution of ITM Merton delta hedged options at K = 80 under stochas-
tic volatility jump di↵usion model

 ✓ �v � aQ mean variance skewness

1 0.02408 0.8494 0.1 -0.2146 -5.9146 660.5863 -4.3084
1.2 0.04028 0.8978 0.18 -0.1668 -4.3507 974.9351 -3.3307
1.4 0.05174 0.9473 0.26 -0.1375 -3.1227 1063.4742 -2.8865
1.6 0.06023 0.9976 0.34 -0.1157 -2.2331 1029.1765 -2.7997
1.8 0.06676 1.04889 0.42 -0.09788 -2.4183 1087.5049 -2.8771
2.0 0.07074 1.08789 0.46 -0.08221 -1.8359 998.7658 -2.8265

Table A.5: Statistics of distribution of ATM Merton delta hedged options at K = 100 under
stochastic volatility jump di↵usion model

 ✓ �v � aQ mean variance skewness

1 0.02408 0.8494 0.1 -0.2146 -6.0048 257.4232 -5.0621
1.2 0.04028 0.8978 0.18 -0.1668 -4.8614 452.3301 -3.3307
1.4 0.05174 0.9473 0.26 -0.1375 -3.1575 639.3861 -2.6005
1.6 0.06023 0.9976 0.34 -0.1157 -2.4859 733.420 -2.0758
1.8 0.06676 1.04889 0.42 -0.09788 -2.4183 709.0029 -1.7817
2.0 0.07074 1.08789 0.46 -0.08221 -1.4416 725.5316 -2.0685

Table A.6: Statistics of distribution of OTM Merton delta hedged options at K = 120 under
stochastic volatility jump di↵usion model
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