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Abstract

Statistical arbitrage (StatArb) has taken off ever since its advent in the 1980’s and is being

increasingly used by hedge funds and investment banks to produce profitable, quantitative trading

strategies. With financial firms pushing for a larger amount of automation, we are driven to inves-

tigate trading methods that decide optimally on our behalf. At the core of StatArb strategies lies

mean-reverting pairs trading models that work by exploiting market pricing discrepancies.

This thesis is devoted to the study of an optimal double-stopping problem characterised by the

optimal entry and exit times. We consider a model for both a long and short trading position and

then combine both strategies into one joint optimal stopping problem. The theory is idealised for

the Ornstein-Uhlenbeck process but has been framed in a general way to open the methodology to

other pricing processes. Analysis is given on finding the optimal execution levels, optimal strategy

timing and a case study of the Ornstein-Uhlenbeck process concludes the study.
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Chapter 1

Introduction

In all walks of life, optimisation of a task is a challenge that everyone will have faced. For a trader,
this will mean executing an order at the perfect time to realise the maximum profit per transaction.
Stochastic control theory encapsulates optimal trading problems like this, providing a quantitative
solution to the control problem. One of the main pillars of research within this area is algorithmic
trading; we will delve into optimal liquidation and order placement control problems. Assume a
trader is considering a basket of assets which can be bought or sold at any time. The issue they
face is the following question: when is it best to enter a position on this collection of securities and
what position should I take?

StatArb strategies dominate a lot of the algorithmic trading that occurs within hedge funds and
investment banks. This class of trading strategies emerged from the basic pairs trading model; a
market neutral strategy that involves going long in one asset and short in another that are highly
correlated. A classic example is a pair trade on Coca-Cola (KO) and Pepsi (PEP). Both companies
produce almost identical fizzy drinks products so a pairs trade on these two companies should be
feasible. If one out of the pair of stocks is under-performing it is bought; the other stock is short
sold at a premium price. The strategy works by the logic that both companies should be equally
valued given that they produce similar products, so the stock prices should eventually converge.
However, this strategy is not risk-free as it heavily relies on the assumption that the pair of assets
will return to its historical mean, which need not be the case. An extreme example of a pairs
trading failure was seen by the hedge fund Long-Term Capital Management, who accrued losses of
$286 million in traded equity. Furthermore, an important rule of the markets is that past behaviour
is not indicative of future activity so one must be careful in implementing such a strategy.

This thesis begins by introducing many mathematical constructs in Chapter 2, most notably results
such as Kolmogorov’s backward equation, Dirichlet’s problem and the Laplace transform. The
theory is deliberately poised towards studying Itô diffusions as these processes have nice features
that we can make use of. The most popular stochastic processes used in finance are often diffusion
processes as well. Chapter 3 is where the optimal double-stopping problem is described. The first
stage characterises an exit performance criterion and the second represents the entry performance
criterion in terms of the exit problem. We solve these problems to obtain the optimal liquidation
intervals and times at which to execute entry or exit orders for both the long and short problems.
These two individual problems are then combined into one joint problem to reflect most realistic
problem a trader would encounter. Lastly, Chapter 4 applies the results to the Ornstein-Uhlenbeck
process to have a running example of the work.

Another aim in this thesis is to extend the theory already available for the double-stopping problems
in Chapter 3 to any diffusion process. The upshot of doing this is that it allows the reader to
evaluate the optimal stopping problems for a more general price process and collection of assets.
To do so, we have proposed assumptions on the properties needed which can be found dotted within
the chapter. The appendix also contains useful information on the minimal assumptions required
to generalise the theory. Surprisingly, we show that the assumptions made can be verified for the
arithmetic and geometric Brownian motion processes and consider the extension worthwhile for
this reason.
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Chapter 2

Diffusion Processes: Preliminary
Definitions and Results

This chapter forms the foundations of the thesis. It will introduce and propose properties of
diffusion processes in preparation for Chapter 4, where the Ornstein-Uhlenbeck process will be
studied closely. The notion of stationarity will be explored along with what it means for a pro-
cess to be Markov. Intuitively, a process is stationary if it looks the same at any point in time.
It is Markov if the probabilistic structure given its history is the same as conditioning on the
most recent piece of information. We then discuss transition functions for diffusion processes and
construct the framework needed to obtain Kolmogorov’s backward equation, which is expressed
in terms of the infinitesimal generator. The solution to this partial differential equation can be
conveniently expressed as a conditional expectation, which is extremely useful in many financial
applications. This relationship between conditional expectation and differential equation is at-
tractive as it opens up new avenues to computing expectations and gives a different method to
solve PDEs. The extensive result of Feynman-Kac’s theorem is also alluded to to show the wide
scope of the theory. The remaining sections introduce the idea of a hitting time considering both
one-sided and two-sided barriers, time-independent PDEs falling under the class of Sturm-Liouville
boundary value problems and the concept of Laplace transformations. The last idea is widely used
as a mathematical tool which we explain, along with the parallel relationship shared by Laplace
transforms and solutions to the Dirichlet problem.

Our theory is built over the real line; however it can easily be extended to higher dimensions with
the appropriate generalisations. We avoid this extension here for clarity of exposition and for the
pure fact that we don’t need it.

2.1 Existence, Uniqueness, Stationarity and Markovity

We now sketch the properties of diffusion processes which are necessary for the mathematical
constructs we wish to use further on. We start by describing a general class of stochastic processes
named after Itô. It is assumed throughout that all processes take values in the measurable space
(R,B(R)), unless specified otherwise.

Take the probability space (Ω,F ,P), under which (Bt)t≥0 is a Brownian motion under the measure
P. We consider a stochastic process X = (Xt : Ω→ R)t≥0 defined via the SDE

dXt = b(t,Xt) dt+ σ(t,Xt) dBt, (2.1.1)

with F ≡ {Ft : t ≥ 0, Ft ⊆ F} the collection of increasing σ-fields generated by X. A process
that satisfies this SDE is called an Itô process. The term b is called the drift coefficient and σ the
diffusion coefficient.

Theorem 2.1.1 (Existence and uniqueness). An Itô process X = (Xt)0≤t≤T satisfying SDE

dXt = b(t,Xt) dt+σ(t,Xt) dBt, X0 = Z,

2



with T > 0, where Z is independent of the Brownian motion and E|Z|2 <∞ and

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|),
|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|, x, y ∈ R,

(2.1.2)

for positive real-valued constants C and D has a unique strong solution with continuous paths
almost surely.

Proof. See [Øksendal, 2013, page 66] for ideas on proving this theorem. The proof of existence is
similar to the argument used to prove existence of a solution for ODEs. Uniqueness follows by an
application of Gronwall’s inequality.

The two conditions in (2.1.2) ensure the stochastic process has global linear growth and global
Lipschitz continuity (Appendix Definition B.1.2) respectively. This ensures that any solution does
not disproportionately blow up. The class of stochastic processes with time-independent drift and
diffusion coefficients, ie. b(t, x) ≡ b(x) and σ(t, x) ≡ σ(x) for all t, are called Itô diffusions if a
unique strong solution exists.

Definition 2.1.2 (Itô diffusion). Consider a stochastic process X = (Xt)t≥0 satisfying SDE

dXt = b(Xt) dt+ σ(Xt) dBt. (2.1.3)

For the solution to uniquely exist for all t ∈ [0,∞), its coefficients must satisfy the conditions of
Theorem 2.1.1 which reduces to the single condition of Lipschitz continuity:

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|, x, y ∈ R. (2.1.4)

We will interchangeably call a process satisfying both SDE (2.1.3) and condition (2.1.4) an Itô
diffusion or more simply, a diffusion process.

The difference between an Itô process and an Itô diffusion process concerns the form of their drift
and diffusion coefficients; the former has an explicit time structure in its coefficients whilst the
latter has time-independent coefficients. In what follows, we consider strongly stationary diffusion
processes, which will also be referred to as homogeneous (in time) or temporally homogeneous
diffusions.

Definition 2.1.3 (Stationarity). A process X = (Xt)t≥0 is strongly stationary if for any integer
n ≥ 1, for any t1, t2, . . . , tn ≥ 0 and for any τ ≥ 0, the joint distribution of (Xt1 , Xt2 , . . . , Xtn)
is equal to that of (Xt1+τ , Xt2+τ , . . . , Xtn+τ ). One way of characterising this is via their joint
distribution functions, namely that

Ft1,t2,...,tn(x) = Ft1+τ,t2+τ,...,tn+τ (x), x ∈ Rn,

where Fi1,i2,...,in is the cumulative distribution function for (Xi1 , Xi2 , . . . , Xin).

Proposition 2.1.4 (Time homogeneity). Itô diffusions are time homogeneous processes.

Proof. [Øksendal, 2013, page 108] showed that Itô diffusions are strongly stationary, so we follow
their proof.

Fix s ≥ 0. Let
(
X0,x
t

)
t≥0 and

(
Xs,x
s+t

)
t≥0 be two stochastic processes, where Xs,x

t means the process

Xt started at Xs = x for s ≤ t. Suppose they are both Itô diffusions satisfying SDE

dXt = b(Xt) dt+ σ(Xt) dBt. (2.1.5)

For each respective process, we can integrate to get

X0,x
t = x+

∫ t

0

b(X0,x
u ) du+

∫ t

0

σ(X0,x
u ) dBu,

3



for the first diffusion and

Xs,x
s+t = x+

∫ s+t

s

b(Xs,x
u ) du+

∫ s+t

s

σ(Xs,x
u ) dBu,

= x+

∫ t

0

b(Xs,x
s+v) dv +

∫ t

0

σ(Xs,x
s+v) dB̃v, (u = s+ v),

for the second diffusion, where B̃v := Bs+v −Bs is a Brownian motion by Levy’s characterisation
for Brownian motions [Gan et al., 2014, Theorem 37.2, page 504]. The last line means equality in

distribution, using the idea that the integrators dBs+v = dB̃v are loosely equal. As both (X0,x
t )t≥0

and (Xs,x
s+t)t≥0 are solutions to SDE (2.1.5), it follows from the definition of a weak solution

[Klebaner, 2005, Definition 5.8, page 136] that both processes are equal in distribution. Thus, we
have time homogeneity.

Definition 2.1.5 (Markov property). A process X = (Xt)t≥0 has the Markov property if for any
f : R→ R, bounded and measurable,

E
[
f(Xt) | Fs

]
= E

[
f(Xt) |Xs

]
, 0 ≤ s ≤ t.

More formally, we should write this as

Ex
[
f(Xt) | Fs

]
= E

[
f
(
X0,x
t

)
| Fs

] Markov
= E

[
f
(
X0,x
t

)
|Xs

]
= Ex

[
f
(
Xt

)
|Xs

]
.

Equality means equal almost surely in this instance. Here, Ex[ · ] represents the expectation with
respect to the measure conditional on the process starting at X0 = x, call it Px. For example,
we write Ex[Xt] as an expectation with respect to Px. This is the same as E[X0,x

t ], where E[ · ]
is the expectation with respect to the underlying measure P. One must be careful not to confuse
E
[
Xs,Xs
t

]
6= EXs [Xt] = E

[
X0,Xs
t

]
as they are in general not equal. It is also common to write

Ex
[
f
(
Xt

)
|Xs

]
= E

[
f
(
Xs,Xs
t

)]
, (2.1.6)

which can be formally proved with the properties of conditional expectation, see [Øksendal, 2013,
page 110]. We now state some results on Markov processes.

Lemma 2.1.6. Let X = (Xt)t≥0 be a time homogeneous Markov process started at X0 = x. Then
the Markov property can be expressed as

Ex
[
f(Xs+t) | Fs

]
= EXs

[
f(Xt)

]
, 0 ≤ s ≤ t.

Proof. As X is a stationary process, it should look the same after applying a time-shift. Therefore,
it must be that X0,Xs

t and Xs,Xs
s+t are equal in distribution for all times t. The proof then follows

naturally. By definition of the Markov property in equation (2.1.6),

Ex
[
f(Xs+t) | Fs

]
= Ex

[
f(Xs+t) |Xs

]
= E

[
f
(
Xs,Xs
s+t

)]
= E

[
f
(
X0,Xs
t

)]
= EXs

[
f
(
Xt

)]
where the third line makes use of homogeneity.

Corollary 2.1.7. A process X = (Xt)t≥0 has the Markov property if and only if for any A ∈ B(R),

P(Xt ∈ A | Fs) = P(Xt ∈ A |Xs), 0 ≤ s ≤ t.

Proof. To show the equivalence of definitions, we use for arbitrary σ-field G that

E
[

11A(Xt) | G
]

= P
(
Xt ∈ A | G

)
.

The only if direction can be derived by choosing f = 11A for any A ∈ B(R). The converse direc-
tion can be proved by finding a sequence of simple functions fn → f , applying the dominated
convergence theorem to interchange limit and expectation.
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Corollary 2.1.8. Suppose X = (Xt)t≥0 is a Markov process. Let n ≥ 1 be an integer and take
0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ s ≤ t to be a sequence of non-decreasing times. Then, for any A ∈ B(R).

P(Xt ∈ A |Xt1 , Xt2 , . . . , Xtn , Xs) = P(Xt ∈ A |Xs).

Proof. As σ(Xt1 , Xt2 , . . . , Xtn , Xs) ⊆ Fs, it follows by the law of total expectation (tower rule)
that,

E
[
Xt |Xt1 , Xt2 , . . . , Xtn , Xs

]
= E

[
E
[
Xt | Fs

] | Xt1 , Xt2 , . . . , Xtn , Xs

]
= E

[
E
[
Xt |Xs

] | Xt1 , Xt2 , . . . , Xtn , Xs

]
= E

[
Xt |Xs

]
where the final two lines follow by the Markov property from Definition 2.1.5 and by conditional
expectation being σ(Xs)-measurable. Applying the same idea to 11A(Xt) produces the desired
identity.

We call a process which satisfies the Markov property a Markov process. Definition 2.1.5 is a
popular formulation of the Markov property, however, we shall also be interested in using the
auxiliary formulation in Corollary 2.1.8. This frames the definition of a process being Markov as
not caring about the past. So far we have discussed that Itô processes have solutions and that
they are time homogeneous. Another remarkable feature is that they are Markovian.

Theorem 2.1.9. Itô diffusions have the Markov property.

Proof. See [Øksendal, 2013, Thereom 7.1.2, page 109] for the proof; a basic outline is given now.
Recall from the proof of homogeneity that

Xs,Xs
s+t = Xs +

∫ s+t

s

b(Xs,Xs
u ) du+

∫ s+t

s

σ(Xs,Xs
u ) dBu

= Xs +

∫ t

0

b(Xs,Xs
s+v ) dv +

∫ t

0

σ(Xs,Xs
s+v ) d(Bs+v −Bs).

This suggests that we can write Xs,Xs
s+t = F (t,Xs, (Bs+v − Bs)0≤v≤t) as a function of three com-

ponents. Then, for f bounded and measurable,

E
[
f(Xs,Xs

s+t ) | Fs
]

= E
[
f
(
F
(
t,Xs, (Bs+v −Bs)0≤v≤t

))
| Fs

]
= g(Xs)

where

g(y) = E
[
f
(
F
(
t, y, (Bs+v −Bs)0≤v≤t

))]
by an application of the independence lemma (Appendix Lemma B.1.5). Here, Xs is Fs-measurable
and the BM increments (Bs+v−Bs)0≤v≤t are independent of Fs. By uniqueness of solution to the
SDE (2.1.3), we have a.s.

X0,x
s+t ≡ X

s,Xs
s+t , t ≥ 0,

and so
Ex
[
f(Xs+t) | Fs

]
= E

[
f(Xs,Xs

s+t ) | Fs
]

= g(Xs).

The conditional expectation is equal to a function of Xs, which happens to be an alternative
formulation of Markovity by Appendix Lemma B.2.2. This is enough to prove that Itô diffusions
are Markov.

The upshot of this theorem is that Lemma 2.1.6, Corollary 2.1.7 and Corollary 2.1.8 all apply for
Itô diffusions. The Markov property as we have stated it is for continuous time and continuous
state space processes, however, the appearance of this definition varies depending on whether we
are in a continuous or discrete state and time space. There are numerous ways to devise the
definition of a process being Markov and another useful variant of the definition is called the
strong Markov property; it is an extension that applies the Markov property to stopping times. A
precise formulation can be found in Appendix Definition B.2.3.
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2.2 Transition Probabilities, Generators and Kolmogorov’s
Equations

Itô diffusions are a class of stochastic process that contain many imperative stochastic processes,
such as the arithmetic and geometric Brownian motion, the Ornstein-Uhlenbeck process and the
Cox-Ingersoll–Ross process. In light of the Markov property, one natural way to study these
processes is via their transition probabilities. The theory is covered in much greater generality
in, for example, [Rogers and Williams, 2000, Chapter III.1] or [Ethier and Kurtz, 2009, Chapter
4]. This section aims to build a rigorous and methodical derivation of the Kolmogorov backward
equation through means of transition probabilities and the infinitesimal generator. We establish
explicit expressions for the generator and give an extensive treatment to the KBE, talking about
its different representations in literature.

Definition 2.2.1 (Transition functions). A function P (x, t | y, u) is called a transition function
provided that for x, y ∈ R and 0 ≤ t ≤ s ≤ u,

1. P (x, 0 | · , 0) = δx(·) is a Dirac delta function,

2. P (x, t | · , u) is a probability measure,

3. P ( · , t | y, u) is a measurable function,

4. P (x, t | y, u) =
∫
R P (z, s | y, u) dzP (x, t | z, s).

A transition function P (x | y, t) is a temporally homogeneous transition function if the structure is
time invariant, ie.

P (x | y, t) := P (x, s | y, s+ t) = P (x, 0 | y, t), x, y ∈ R, s, t ≥ 0.

As we are interested in studying stationary processes, we will examine temporally homogeneous
transition functions and from this point onward will consider stochastic processes which are sta-
tionary Markov processes. Bearing this in mind, property 4 of Definition 2.2.1 can be rewritten
for stationary processes as

P (x | y, s+ t) =

∫
R
P (z | y, s) dzP (x | z, t), x, y ∈ R, s, t ≥ 0.

(2.2.1)

This equation is known as the Chapman-Kolmogorov equation. A transition function is a time
homogeneous transition function for a stationary Markov process X if for any s ≥ 0,

P (x | y, t) = P(Xt+s < y |Xs = x), x, y ∈ R , t ≥ 0,

with homogeneity coming as a consequence of the homogeneity of X. It now makes sense to
interchange between calling P the transition probability or transition function for X. We also
assume the existence of a transition density defined as

p(x | y, t) =
∂

∂y
P (x | y, t), x, y ∈ R , t ≥ 0. (2.2.2)

Notice that the transition function P has no dependence on the time variable s. The variable x
represents the initial state of the system; the second pair of variables (y, t) describe the final state
of the process. These three parameters describe the probability of finding a future state of the
process X inside the interval (−∞, y) after time t has elapsed, given that the process is currently
at position x.

Since transition functions can naturally be associated to transition probabilities, the assumptions
made in Definition 2.2.1 should appear to be somewhat rational. The requirement of property 4
can be justified with the following argument:

P (x | y, s+ t︸︷︷︸
:=τ

) = P(Xτ+u < y |Xu = x)

= P(Xτ < y |X0 = x)

=

∫
R
P(Xτ < y, Xt = z |X0 = x) dz
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=

∫
R
P(Xτ < y, |Xt = z ,X0 = x)P(Xt = z |X0 = x) dz

=

∫
R
P(Xτ < y, |Xt = z)P(Xt = z |X0 = x) dz

=

∫
R
P (z | y, s) dzP (x | z, t)

where we make use of time homogeneity and the Markov property as in Corollary 2.1.8. To ease the
notation but keep clarity, we have written what should be the density of Xt as a probability.

A further construct we require is the infinitesimal generator, which is like a generalisation of the
derivative. The generator appears when formulating PDEs in (x, t) 7→ P (x | y, t), which when
solved, will produce expressions for the transition probabilities. It also acts as the connection
between transition probabilities and Markov processes in the following sense: we have sketched
how to construct transition functions given a Markov process; [Ethier and Kurtz, 2009, Theorem
1.1, page 157] show the converse, that we can construct a Markov process given a transition function
and an initial distribution for the process. This presents a convenient coupling of concepts.

Definition 2.2.2 (Generator). For Itô diffusion X = (Xt)t≥0, the infinitesimal generator A acting
on function f : R→ R is defined as

Af(x) = lim
t↓0

Ex[f(Xt)]− f(x)

t
, x ∈ R,

for suitable functions f such that the limit exists.

Here, defining what ‘suitable’ means is to a certain degree laborious. In many pieces of literature,
the class of C2

0 (R) functions (twice differentiable functions with continuous second derivative and
compact support) is taken to guarantee existence of the generator.

Proposition 2.2.3. Let X be an Itô diffusion starting at x and f : R → R. If f ∈ C2
0 (R), then

the infinitesimal generator A applied to f exists and takes the form

Af(x) = b(x)
∂f(x)

∂x
+

1

2
σ2(x)

∂2f(x)

∂x2
, x ∈ R.

Proof. By Itô’s lemma, we have

df(Xt) =
∂f(Xt)

∂x
dXt +

1

2

∂2f(Xt)

∂x2
(dXt)

2

=

{
b(Xt)

∂f(Xt)

∂x
+

1

2
σ2(Xt)

∂2f(Xt)

∂x2

}
dt+ σ(Xt)

∂f(Xt)

∂x
dBt.

Integrating the SDE and taking the conditional expectation gives

Ex[f(Xt)]− f(X0) =Ex
[∫ t

0

{
b(Xs)

∂f(Xs)

∂x
+

1

2
σ2(Xs)

∂2f(Xs)

∂x2

}
ds

]
+Ex

[∫ t

0

σ(Xs)
∂f(Xs)

∂x
dBs

]
.

As f has continuous derivative and acts on a compact support, the derivative of f must be bounded.
Furthermore, σ(x) has at most linear growth. By properties of the stochastic integral [Cohen, 2015,

Lemma 12.1.4, page 260], as σ(Xt)
∂f(Xt)

∂x
is square-integrable, the final term is martingale. Taking

the initial condition X0 = x,

lim
t→0+

Ex[f(Xt)]− f(x)

t
= lim
t→0+

1

t
Ex
[∫ t

0

{
b(Xs)

∂f(Xs)

∂x
+

1

2
σ2(Xs)

∂2f(Xs)

∂x2

}
ds

]

= Ex
[

lim
t→0+

1

t

∫ t

0

{
b(Xs)

∂f(Xs)

∂x
+

1

2
σ2(Xs)

∂2f(Xs)

∂x2

}
ds

]

= b(x)
∂f(x)

∂x
+

1

2
σ2(x)

∂2f(x)

∂x2
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where the penultimate line follows by an application of Fubini’s theorem and the final line by the
fundamental theorem of calculus.

The following theorem introduces a handy link between solving a PDE and calculating a conditional
expectation. It provides two vastly different methods to attack the same problem, which is rather
remarkable. Just as with the Markov property, there are multiple configurations of this concept
which we will detail in time. We call the differential equation in (2.2.3) the Kolmogorov backward
equation.

Theorem 2.2.4 (Kolmogorov’s backward equation). Let f : R → R be a suitable function with
f ∈ C2

0 (R). Define u(t, x) = Ex[f(Xt)] for an Itô diffusion X. Then the function u(t, x), with
infinitesimal generator A applied to the map x 7→ u(t, ·)(x) = u(t, x), satisfies

∂u

∂t
(t, x) = Au(t, x), x ∈ R, t ≥ 0,

u(0, x) = f(x), x ∈ R.
(2.2.3)

Furthermore, if v(t, x) satisfies (2.2.3), then the solution is unique and v(t, x) ≡ u(t, x) must hold,
where u(t, x) = Ex[f(Xt)].

Proof. Our proof of existence and uniqueness follows the lines of [Øksendal, 2013, page 131]. To
prove that u(t, x) is a solution, define w(x) = u(t, x). By the Markov property in Lemma 2.1.6,

Ex[g(Xs)]− g(x)

s
=

1

s
Ex
[
EXs

[
f(Xt)

]
− Ex

[
f(Xt)

]]
=

1

s
Ex
[
Ex
[
f(Xs+t) | Fs

]
− Ex

[
f(Xt) | Fs

]]
=

1

s
Ex
[
f(Xs+t)− f(Xt)

]
=
u(s+ t, x)− u(t, x)

s

where differentiability with respect to t follows by Dynkin’s formula (Appendix Proposition B.2.5)
choosing τ = t. Finally, taking the limit,

Au(t, x) = lim
t↓0

Ex[g(Xs)]− g(x)

s
= lim

t↓0

u(s+ t, x)− u(t, x)

s
=
∂u

∂t

and so u(t, x) satisfies the PDE. To show uniqueness, suppose that v(t, x) is a solution to system
(2.2.3). For 0 ≤ s ≤ t, define w(s, x) = v(t− s, x). Then

0 = −∂v
∂s

(t− s, x) +Av(t− s, x) =
∂w

∂s
(s, x) +Aw(s, x) (2.2.4)

and the initial condition converts to the terminal condition w(t, x) = v(0, x) = f(x). An application
of Itô’s formula gives

w(t,Xt)− w(0, X0) =

∫ t

0

{
∂w(s,Xs)

∂s
+ b(Xs)

∂w(s,Xs)

∂x
+

1

2
σ2(Xs)

∂2w(s,Xs)

∂x2

}
ds

+

∫ t

0

σ(Xs)
∂w(s,Xs)

∂x
dBs

=

∫ t

0

σ(Xs)
∂w(s,Xs)

∂x
dBs

using (2.2.4). Since f ∈ C2
0 (R), the partial derivative of f is bounded. As the final term is square-

integrable, by properties of the stochastic integral the final term is a true martingale. Taking the
conditional expectation, we get

v(t, x) = w(0, x) = Ex[w(0, X0)] = Ex[w(t,Xt)] = Ex[f(Xs)].
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The above proof gives an alternative formulation of the KBE for free. Define the time-shifted or
time-reversed solution

v(t, x) := u(T − t, x) = Ex[f(XT−t)].

for 0 ≤ t ≤ T . Then v(t, x) is the unique solution to the PDE system

∂v

∂t
(t, x) +Av(t, x) = 0, x ∈ R, t ≥ 0,

v(T, x) = f(x), x ∈ R,
(2.2.5)

upon an application of the chain rule, using that ∂
∂(T−t) (t) = −1. Comparing partial differential

equation systems (2.2.3) and (2.2.5), the former is the initial condition formulation of the KBE
and the latter is the terminal condition formulation.

Remark 2.2.5. A legitimate question to ask is whether we can extend the time-reversed sys-
tem (2.2.5) to a second-order linear PDE that is non-homogeneous. The Feynman-Kac theorem
(Appendix Theorem B.3.2) does this, giving a stochastic representation of the solution to the
parabolic PDE. There also exists an analogue to the backward equation for transition densities
called the Kolmogorov forward equation or Fokker-Planck equation, which is the adjoint of Kol-
mogorov’s backward equation. Together, these two equations are known as Kolmogorov equations
(see Appendix Theorem B.3.1).

It is tempting to write that if we chose f(x) = 11B(x) for all x, with B = (−∞, y) ⊂ R, then we
realise a PDE for transition probabilities. Indeed, it would appear that

u(t, x) = Ex[f(Xt)] = Ex
[

11B(Xt)
]

= P(Xt ∈ B |X0 = x) = P(Xt < y |X0 = x) = P (x | y, t),

and similarly for v. But Theorem 2.2.4 is only for f ∈ C2
0 (R) (as we know the generator definitely

exists for such functions), thus the argument is incorrect. Nevertheless, we can still realise a PDE
for transition densities as follows: assuming continuity of the transition density and its derivatives
in x and t, we can exchange the order of differentiation and integration (Leibniz’s rule) in (2.2.3)
to give ∫

R
f(y)

{
− ∂p

∂t
(x | y, t) +Ap(x | y, t)

}
dy = 0.

Furthermore, the initial density must be a Dirac delta function as it needs to satisfy

f(x) = u(0, x) =

∫
R
f(y) p(x | y, 0) dy.

By arbitrariness of f ∈ C2
0 (R), it follows that

∂p

∂t
(x | y, t) = Ap(x | y, t), x, y ∈ R, t ≥ 0,

p(x | y, 0) = δy(x), x, y ∈ R.
(2.2.6)

This is Kolmogorov’s backwards equation in terms of the transition density functions. The etymol-
ogy behind the term ‘backward equation’ comes from the fact that the derivatives in the generator
are with respect to the initial variable x. Conversely, the Fokker-Planck equation features deriva-
tives of the future variable y and is dubbed the ‘forward equation’.

Remark 2.2.6. Assuming continuity of the density function in y, we can integrate equation (2.2.6)
and use Leibniz’s rule again to realise a PDE in the transition probabilities. So given the transition
density functions are sufficiently smooth, it is still possible to superficially pick f = 11B and also get
the KBE in terms of transition probabilities. This suggests the KBE is defined for a wider class
of functions than we have postulated. The theory of Markov processes defines the infinitesimal
generator more generally for functions f that are bounded and measurable. For such functions,
the linear operator Pt acting on f is defined as

Ptf(x) :=

∫
R
f(y)p(x | t, dy) = Ex[f(Xt)] = u(t, x).

With this, one can define the KBE for f bounded and measurable, assuming the generator A
applied to u exists. Note that this does not guarantee existence of the generator applied to f , but
only for u.
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2.3 First Passage Times, Laplace Transforms and the
Dirichlet Problem

This section continues the theme of using Itô diffusions X = (Xt)t≥0. We start by introducing the
definition of a two-sided hitting time to set up the probabilistic framework involving first passage
times for Section 2.4, motivated by the analysis in [Darling et al., 1953]. After this, we introduce
two important mathematical constructs; an integral transform called the Laplace transform and the
theory of Sturm-Liouville second-order linear differential equations. Within these PDE problems,
there exists a classification based on the type of initial conditions; either Dirichlet, Neumann
or Cauchy. We will study Dirichlet type problems with boundary value conditions. The study
of this PDE system should appear familiar and one should notice the similarities of the results
from discussing Kolmogorov’s backward equation. This similarity is no coincidence, as we explain
towards the end of the section.

We commence by talking about a stopping time, which is a random variable that captures the
(random) time at which an action is done by the stochastic process it models. These constructs
are a good way of creating time variables that are both F-measurable and random. We then
introduce hitting times that characterise the first time a process exits a domain D ⊆ R. For this
reason, hitting times are regularly referred to as first exit or entry times, or first passage times.
Note that a hitting time is simply a special case of a stopping time, as shown in [Øksendal, 2013,
Example 7.2.2, page 111].

Definition 2.3.1 (Stopping time). Let G = {Gt}t≥0 be a family of increasing σ-fields. A function
τ : Ω→ [0,∞] is called a stopping time with respect to G if

{ω : τ(ω) ≤ t} ∈ Gt, t ≥ 0.

Lemma 2.3.2. For two stopping times τ and ς, denote the minimum of these two random variables
by τ ∧ ς. Then the minimum is a stopping time itself.

Proof. The stopping times are measurable with respect to the family of increasing σ-fields {Gt}t≥0,
so both

{ω : τ(ω) ≤ t} ∈ Gt and {ω : ς(ω) ≤ t} ∈ Gt.

To prove that τ ∧ ς is a stopping time, we need to show that

{ω : τ(ω) ∧ ς(ω) ≤ t} = {ω : τ(ω) ≤ t} ∪ {ω : ς(ω) ≤ t} ∈ Gt.

As σ-algebras are closed under union, the above set is contained in Gt and the proof is complete.

Definition 2.3.3 (Hitting times). The double barrier first passage time for a process X = (Xt)t≥0
starting at X0 = x ∈ (a, b) ⊆ R, is defined as the random variable

Tab(x) = inf
{
t ≥ 0 |Xt /∈ (a, b)

}
.

Wherever it is clear, we omit the dependence on the starting value x to avoid duplication of
notation. For example Ex

[
Tc
]

instead of Ex
[
Tc(x)

]
. The distribution function and density for

Tab(x) are defined as

Fab(x, t) = P(Tab(x) < t),

fab(x, t) =
∂

∂t
Fab(x, t),

where P(Tab(x) < t) ≡ Px(Tab < t).

The first passage time describes the earliest time at which the process leaves the interval (a, b),
given that it started inside this interval. We can extend the definition to attain a one-sided barrier
by either taking a = −∞ or b =∞. In that case, the one-sided hitting time is defined as

Tc(x) =

{
T−∞,c(x), x < c,

Tc,∞(x), x > c,
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and the analogous distribution and density functions as Fc(x, t) and fc(x, t). We will also need the
distribution of the double barrier hitting time given that it hits the lower barrier a or the upper
barrier b first. We define their distribution functions respectively as

F−ab(x, t) := P
(
Tab(x) < t, Tab(x) = Ta(x)

)
,

F+
ab(x, t) := P

(
Tab(x) < t, Tab(x) = Tb(x)

)
.

Their densities are correspondingly defined as f−ab(x, t) and f+ab(x, t) in the usual way. By the law
of total probability, the three distribution functions can be related via

Fab(x, t) = F−ab(x, t) + F+
ab(x, t).

Note that although f−ab and f+ab are not necessarily probability densities (as their distribution
functions may not integrate to one), fab is a true probability density function. Hence, the tag
‘probability density function’ is strictly reserved for fab whilst f−ab and f+ab are just called densi-
ties.

Definition 2.3.4 (Laplace transform). For a function f : R≥0 → R, the (unilateral) Laplace
transform is defined as

f̂(s) =

∫ ∞
0

f(t) e−st dt, s ∈ C,

whenever it exists.

The Laplace transform is an integral transform that maps a function from one space to another. It
provides a way of solving complex differential equation systems in the domain space by converting
them into simpler systems on the transformed space. Laplace transforms are more general than
Fourier transforms, as they transform over the complex domain. We usually call the transformed
space the ‘complex frequency domain’. Much work has been done on this area of mathematics
and so it is common to find tables of Laplace transforms for standard functions, for example as
in [Bateman, 1954, page 129]. One useful formula we will use is the transform of a convolution.
Let

(f ∗ g)(t) =

∫ t

0

f(u)g(t− u) du.

Then the Laplace transform of (f ∗ g) is

L
{

(f ∗ g)(t)
}

= f̂(s)ĝ(s), (2.3.1)

where L{·} represents the Laplace transform. So the Laplace transform of a convolution of two
functions is their product. Another practical identity we can identify to ensure the finiteness of
stopping times is the Laplace transform of fc(x, t). Its transform evaluated at s = 0 is

f̂c(x, 0) =

∫ ∞
0

fc(x, t) dt = P(Tc(x) <∞). (2.3.2)

So the stopping time Tc(x) is finite almost surely if and only if f̂c(x, 0) = 1. In the subsequent
chapters we will solve the transformed KBE in the complex frequency domain; to find this PDE,
we will have to take the Laplace transform of the probability transition functions p. The time
domain transform p̂ is defined as

p̂(x | y, s) =

∫ ∞
0

p(x | y, t) e−st dt.

The resulting differential equation will fall under the class of Sturm-Liouville problems, which are
generally of the form

Au(x) = r(x)u(x)

with appropriate boundary conditions. Notice the time dependence in the solution has been re-
moved: the new PDE is much simpler and can be readily solved using standard techniques.
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Remark 2.3.5. The Laplace transform of a continuous probability density function f for non-
negative random variable X is close to its moment generating function. For s ∈ C,

f̂(−s) =

∫ ∞
0

f(t) est dt = E
[
esX
]
.

Typically f̂ is called the Laplace transform of the random variable X itself, rather than the
transform of its density function f .

In mathematical finance, the expression for the Laplace transform of a random variable is regularly
encountered. When s = r ∈ R and X = τ is a random stopping time, then f̂(r) = E

[
e−rτ

]
often re-

sembles a discount factor, discounting back from time τ . More commonly, problems are posed with
the aim of calculating the discounted expectation for some payoff function f , ie. E

[
e−rτf(Xτ )

]
.

To get a closed-form expression for this, we look at the solution to an elliptic PDE system.

Theorem 2.3.6 (Dirichlet Problem). Suppose that

(i) D ⊂ R be open and bounded,

(ii) r is a non-negative Hölder continuous function on the closure D̄,

(iii) f is continuous on the boundary ∂D,

(iv) the boundary is sufficiently smooth (eg. ∂D is C2).

Let τD = inf{t ≥ 0 : Xt /∈ D} be the first exit time of the process from D, where we consider
X = (Xt)t≥0 as an Itô diffusion started at X0 = x. Define

u(x) = Ex
[
exp

(
−
∫ τD

0

r(Xs) ds

)
f(XτD )

]
. (2.3.3)

Then the function u(x) satisfies

Au(x) = r(x)u(x), x ∈ D,
u(x) = f(x), x ∈ ∂D.

(2.3.4)

Furthermore, if v(x) satisfies (2.3.4), then the solution is unique and v(x) ≡ u(x) must hold.

Proof. In the theory of partial differential equations, it is known that a unique solution exists for
this problem. The existence of a solution is given in [Friedman, 1975, Theorem 2.4, page 134]. We
do not attempt to derive a proof here and take this result for granted.

To show the unique stochastic representation, we outline the steps in [Friedman, 1975, page 145].
By Itô’s formula and the product rule applied to

Yt = u(Xt) exp

(
−
∫ t

0

r(Xs) ds

)
,

we get for T > 0

u(x) = Ex
[

exp

(
−
∫ τD∧T

0

r(Xs) ds

)
f(XτD∧T )

]
.

which is well-defined as τD ∧ T is a bounded stopping time. Assuming Ex[τD] <∞ (also shown in
the aforementioned reference) implies that τD < ∞. Then we can let T → ∞ to get the desired
result.

Remark 2.3.7. By taking the function r ≥ 0 to be constant in Theorem 2.3.6, the payoff function
Ex
[
e−rτf(Xτ )

]
we aimed for is achieved.

Remark 2.3.8. As before, we can extend PDE (2.3.4) to a non-homogeneous system which is
given in Appendix Theorem B.3.3. There also exists an extension that relaxes the constraint of D
being bounded, which can be read in [Øksendal, 2013, Exercise 9.12, page 192]. Typically, we will
be interested in taking D = (a, b) ⊆ R to be an open interval and so this result will be useful when
D is unbounded. All in all, there are varying formulations of these PDE problems with different
constraints which we don’t place too much emphasis on. The conditions should not be the focus;
more the impressive stochastic representation results of the PDE solutions.
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As with many features of Markov processes, we often discover a property for non-random times
and then are able to extend it to random stopping times. It is worth realising the same has
been accomplished here. The Feynman-Kac theorem provides a means to work out discounted
payoffs for deterministic times and the extension of this to stopping times can be addressed by the
generalised Dirichlet problem, Appendix Theorem B.3.3. The reader may also detect the similarity
between the Feynman-Kac theorem and the Dirichlet problem in Theorem 2.3.6. Let us inspect
this relationship in reverse, ie. we will try to get a time-dependent version of the Feynman-Kac
theorem for free from the Dirichlet problem.

Let y = (t, x) ∈ R2. Assuming X is an Itô process starting at x as usual, define the process
Y = (Ys)s≥0 by Ys = (t+ s,Xs) ∈ R2 starting at Y0 = (t, x). Then

u(y) := u(t, x) = Et,x
[
exp

(
−
∫ τD̃

0

r̃(Ys) ds

)
f̃(YτD̃ )

]
is the unique solution to the PDE system

Ãu(y) = r̃(y)u(y), y ∈ D̃,
u(y) = f̃(y), y ∈ ∂D̃,

(2.3.5)

for the appropriate two-dimensional version of problem (2.3.4). Here, Ã is the generator applied to
u ∈ R2 and D̃ ⊆ R2 is the augmented two-dimensional space to D. If we take D̃ to be the region
[0, T )× R ⊂ R2, then τD̃ describes the first exit time of Ys from the time interval [0, T ).

Writing Y in differential form gives

dYs =

[
dYs,1
dYs,2

]
=

[
1

b(Xs)

]
ds+

[
0

σ(Xs)

]
dBs, Y0 =

[
t
x

]
.

The infinitesimal generator for u can be written as

Ãu(y) =
∂u

∂t
(t, x) + b(x)

∂u

∂x
(t, x) +

1

2
σ2(x)

∂2u

∂x2
(t, x)

=
∂u

∂t
(t, x) +Au(t, x),

where A is the generator applied to the map x 7→ u(t, ·)(x) = u(t, x). We also assume that
r̃(t, x) ≡ r(x) is homogeneous in time. With these three additions, system (2.3.5) becomes

∂u

∂t
(t, x) +Au(t, x)− r(x)u(t, x) = 0, (t, x) ∈ D̃,

u(T, x) = f̃(T, x) =: f(x), (T, x) ∈ ∂D̃.
(2.3.6)

The stochastic representation of the solution to this PDE system is

u(t, x) = Et,x
[

exp

(
−
∫ T−t

0

r(Xs) ds

)
f(XT−t)

]
,

as τD̃ = T − t on the boundary and f̃(YT−t) = f̃(T,XT−t) = f(XT−t). Here, Et,x[ · ] means
conditional on Y0 = (Y0,1, Y0,2) = y = (t, x). By homogeneity of X, we can apply a time-shift to
see that

u(t, x) = E

[
exp

(
−
∫ T−t

0

r(Xs+t) ds

)
f(XT )

∣∣∣∣Xt = x

]

= E

[
exp

(
−
∫ T

t

r(Xv) dv

)
f(XT )

∣∣∣∣Xt = x

]
, (v = s+ t).

The new PDE system (2.3.6) together with solution u(t, x) form the basic elements of the Feynman-
Kac theorem. The Kolmogorov equation also comes for free: compare (2.2.5) to the above deriva-
tion with r ≡ 0.

The upshot from this analysis is that elliptic partial differential equations are worth studying first:
we can frequently realise the time-dependent PDEs as an instance of the more general stopping
time problems.
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2.4 Laplace Transforms of Transition and First Passage
Time Densities

We continue to work with Itô diffusions and closely follow the work of [Darling et al., 1953] in
this part. Our goal is to determine Laplace transformations of the density functions laid out in
Section 2.3; these identities will be used in the remaining chapters to tackle the optimal stopping
problems. Derivations of the transforms are rather mechanical once equipped with the renewal-
style equations. We also explore the interesting duality between conditional expectations and
Laplace transforms. Previously, we had seen that conditional expectations were the solution to
some second-order linear PDEs; the converse is also true and these solutions are nothing other
than Laplace transformations.

The first identity we want to derive is for probability density functions p as defined in (2.2.2).
The identity looks similar to the renewal equation from renewal theory, so it acquires its name as
such.

Lemma 2.4.1 (Renewal principle).

p(x | y, t) =

∫ t

0

fc(x, s) p(c | y, t− s) ds, x < c < y. (2.4.1)

Proof. We start via the transition probabilities using the law of total probability. By exhausting
all possible outcomes, a direct enumeration of the joint events gives

P (x | y, t) = P(Xt < y |X0 = x)

= P(Xt < y ∩ Tc < t |X0 = x) + P(Xt < y ∩ Tc ≥ t |X0 = x)

= P(Xt < y |Tc < t,X0 = x)P(Tc < t |X0 = x) + P(Tc ≥ t |X0 = x)

where we assume τc < ∞ almost surely. This happens if and only if f̂c(x, 0) = 1, as seen in
condition (2.3.2). The last line follows as the event {Xt < y ∩ Tc ≥ t} = {Tc ≥ t}. Continuing,

P (x | y, t) =

∫ t

0

P(Xt < y ∩ Tc = s |X0 = x) ds+ P(Tc ≥ t |X0 = x)

=

∫ t

0

P(Xt < y |Tc = s,X0 = x)P(Tc = s |X0 = x) ds+ P(Tc ≥ t |X0 = x)

=

∫ t

0

P(Xt < y |Xs = c,Xu < c ∀u ∈ (0, s), X0 = x) fc(x, s) ds+ (1− Fc(x, t))

=

∫ t

0

P(Xt < y |Xs = c) fc(x, s) ds+ (1− Fc(x, t))

by definition of conditional probability and the Markov property. Assuming continuity of the
functions, we can exchange the derivative and integral to attain the transition density function as

p(x | y, t) =

∫ t

0

∂yP(Xt < y |Xs = c) fc(x, s) ds

=

∫ t

0

∂yP(Xt−s < y |X0 = c) fc(x, s) ds

=

∫ t

0

p(c | y, t− s) fc(x, s) ds

It is worth realising that the above proof also holds when y < c < x. This will be useful when we
want to work out the form of p̂ and f̂c. The second identity we need to carefully derive is similar
to identity (2.4.1), except for the distributions of Ta and Tb. The basis of the proof is as before; we
enumerate over all possible outcomes and reach an identity via homogeneity and Markovity.

Lemma 2.4.2. For a < x < b,

fa(x, t) = f−ab(x, t) +

∫ t

0

f+ab(x, s) fa(b, t− s) ds,

fb(x, t) = f+ab(x, t) +

∫ t

0

f−ab(x, s) fb(a, t− s) ds.
(2.4.2)
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Proof. We will prove the second identity, with the proof of the first being similar. Since

Fb(x, t) = P
(
Tb(x) < t, Tab(x) = Ta(x)

)
+ P

(
Tb(x) < t, Tab(x) = Tb(x)

)
,

we have that
fb(x, t) = P

(
Tb(x) = t, Tab(x) = Ta(x)

)
+ f+ab(x, t)

by using an abuse of notation, where the middle term is really a density function. Expanding over
all possible times that the process can hit the lower barrier a, we get

P
(
Tb(x) = t, Tab(x) = Ta(x)

)
=

∫ t

0

P
(
Tb(x) = t, Tab(x) = Ta(x), Tab(x) = s

)
ds

=

∫ t

0

P
(
Tb(x) = t | Tab(x) = Ta(x), Tab(x) = s

)
P
(
Tab(x) = Ta(x), Tab(x) = s

)
ds

=

∫ t

0

P
(
Tb(x) = t |Ta(x) = s

)
f−ab(x, s) ds

=

∫ t

0

P
(
Tb(a) = t− s |Ta(a) = 0

)
f−ab(x, s) ds

=

∫ t

0

fb(a, t− s) f−ab(x, s) ds

where P
(
Tb(x) = t

∣∣Ta(x) = s
)

= P
(
Tb(a) = t− s

∣∣Ta(a) = 0
)
. This is true by stationarity and the

Markov property of the process X, for example Tb(x) = t ⇐⇒ Xu ∈ (−∞, b) for 0 ≤ u < t and
Xt = b for deterministic time t. Upon rearranging, this completes the proof.

Now we can find the Laplace transformations of the hitting time and transition function densities.
The transform of a convolution from (2.3.1) will be useful, as both Lemmas 2.4.1 and 2.4.2 contain
a convolution of functions. The proofs below follow the insightful work of [Darling et al., 1953,
page 5] again.

Proposition 2.4.3. For fixed s ∈ C, the Laplace transform of the transition density p is a product

p̂(x | y, s) =

{
u(x)ũ(y), x < y,

v(x)ṽ(y), x > y,

and the Laplace transform of the FPT density fc is a ratio

f̂c(x, s) =


u(x)

u(c)
, x < c,

v(x)

v(c)
, x > c.

for x, y, c ∈ R. The functions u, ũ, v, ṽ are unique up to scaling factors of s.

Proof. For x < c < y, the Laplace transform of the renewal principle equation (2.4.1) is

p̂(x | y, s) = f̂c(x, s) p̂(c | y, s) (2.4.3)

For fixed s ∈ C, the transformed density p̂(x | y, s) can be seen as a function of x multiplied by a
function of y (both depending on c). Let

p̂(x | y, s) = u(x)ũ(y) ≡ u(x; s)ũ(y; s), (2.4.4)

where we suppress the dependence on s to simplify the notation. Upon rearranging, it follows that

f̂c(x, s) =
p̂(x | y, s)
p̂(c | y, s)

=
u(x)

u(c)
.

The proof of the alternate case is identical for y < c < x once one spots that p̂(x | y, s) = v(x)ṽ(y)
is a function of x times a function of y. The functions v and ṽ are in general different from u and
ũ as the value c in (2.4.3) will differ.

15



Proposition 2.4.4. Let the functions u and v be as in Proposition 2.4.3 and a < x < b. Then

f̂+ab(x, s) =
u(a)v(x)− u(x)v(a)

u(a)v(b)− u(b)v(a)
,

f̂−ab(x, s) =
u(x)v(b)− u(b)v(x)

u(a)v(b)− u(b)v(a)
,

f̂ab(x, s) =
v(x)

(
u(a)− u(b)

)
− u(x)

(
v(a)− v(b)

)
u(a)v(b)− u(b)v(a)

.

Proof. We begin as in the last proof. Taking the Laplace transform of the equations in identity
(2.4.2) provides a set of simultaneous equations for f̂+ab and f̂−ab. Thus,

f̂a(x, s) = f̂−ab(x, s) + f̂+ab(x, s)f̂a(b, s),

f̂b(x, s) = f̂+ab(x, s) + f̂−ab(x, s)f̂b(a, s).

Using the expressions for f̂c in Proposition 2.4.3, and upon solving for f̂−ab and f̂+ab, the first two

identities are obtained. We give a brief derivation of the identity for density f̂+ab. Solving the pair
of simultaneous equations gives

f̂+ab(x, s) =
f̂b(x, s)− f̂a(x, s)f̂b(a, s)

1− f̂a(b, s)f̂b(a, s)

=

v(x)

v(b)
−
u(x)

u(a)

v(a)

v(b)

1−
u(b)

u(a)

v(a)

v(b)

=
u(a)v(x)− u(x)v(a)

u(a)v(b)− u(b)v(a)
.

The final identity is shown by considering the relation between the three densities:

f̂ab(x, s) = f̂+ab(x, s) + f̂−ab(x, s)

=

(
u(a)v(x)− v(a)u(x)

)
+
(
v(b)u(x)− u(b)v(x)

)
u(a)v(b)− u(b)v(a)

=
v(x)

(
u(a)− u(b)

)
− u(x)

(
v(a)− v(b)

)
u(a)v(b)− u(b)v(a)

.

Proposition 2.4.4 will be especially useful when finding the solution to the value function in Chapter
3. Next, we explore the equation which p̂ satisfies when taking the Laplace transform with respect
to the time variable. We have already shown that the transition density p can be found as the
solution to Kolmogorov’s backward equation; see system (2.2.6). It turns out that we can transform
the KBE to get another PDE system for the Laplace transform p̂. The infinitesimal generator terms
can be transformed by exchanging the order of differentiation with respect to x and integration
with respect to t by continuity of p to yield terms in p̂. Hence, the remaining object we need
to transform is the time derivative of p. [Bateman, 1954, page 129] provides a formula for this,
claiming that

L
{
∂f(t)

∂t

}
= sf̂(s)− f(0).

Consider the same system as in (2.2.6) with two boundary conditions on the x-domain. For x, y ∈ R
and t ≥ 0, suppose that

∂p

∂t
(x | y, t) = Ap(x | y, t), p(−∞| y, t) = 0,

p(x | y, 0) = δy(x), p(∞| y, t) = 0,
(2.4.5)
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where we assume that the transition probability density function decays if the process starts very
far away from the y-coordinate. These boundary conditions may not always be true, but they
certainly hold for an arithmetic Brownian motion, geometric Brownian motion and the Ornstein-
Uhlenbeck; see Appendix Section A.1. Taking s ∈ R, the Laplace transform of system (2.4.5) for
x 6= y becomes

sp̂(x | y, s) = Ap̂(x | y, s),
p̂(−∞| y, s) = 0,

p̂(∞| y, s) = 0,
(2.4.6)

because for x 6= y,

L
{
∂p(x | y, t)

∂t

}
= sp̂(x | y, s)− (x | y, 0) = sp̂(x | y, s).

By definition of the Laplace transform, the two boundary conditions are also zero in the complex
frequency domain. The final initial condition p(x | y, 0) = δy(x) cannot be transformed, since the
transform is in the time variable. Instead, this condition becomes encoded in the new problem via
the transform of the time derivative.

The result from Proposition 2.4.3 allow us to translate these boundary conditions into conditions
on u and v. For the case x < y, we had p̂(x | y, s) = u(x)ũ(y). As x → −∞, by arbitrariness of
ũ(y) it must be that u(−∞) = 0. Similarly, as x → ∞, the condition v(∞) = 0 must hold. By
equation (2.4.3), as

p̂(x | y, s) = f̂c(x, s) p̂(c | y, s)
is a function of x multiplied by a function of y and the derivatives in PDE system (2.4.6) are with

respect to x, we can factor out the dependence on y to also get a PDE system for f̂c. The domain
for fc is either (−∞, c) or (c,∞) depending on the starting value x and the function is degenerate

otherwise. We now claim that the boundary condition at barrier level x = c is given by f̂c(c, s) = 1.
If the process X starts at x = c, then

P(Tc(c) ≥ t) =

{
1, t = 0,

0, t > 0,

by definition, since the process has left its open domain and thus Tc(c) = 0. Loosely speaking, the
FPT density at the boundary is

−δ(t) =
∂

∂t
P(Tc(c) ≥ t) =

∂

∂t

(
1− P(Tc(c) < t)

)
= −fc(c, t),

where δ is the Dirac delta distribution. Hence, the boundary condition for the Laplace transformed
density at x = c is

f̂c(c, s) =

∫ ∞
0

δ(t) e−st dt = 1,

as required. By Proposition 2.4.3, one can also deduce that f̂c(−∞, s) = 0 for x < c or f̂c(∞, s) = 0
for x < c. Putting this all together, the PDE system for x < c is

sf̂c(x, s) = Af̂c(x, s),
f̂c(c, s) = 1,

f̂c(−∞, s) = 0,
(2.4.7)

and the corresponding system for x > c can be found in the same way. Although not all the
conditions of Theorem 2.3.6 are met, there is a close similarity and, it follows by plugging in the
above components into formula (2.3.3) that

f̂c(x, s) = L
{
fc(x, t)

}
= Ex

[
e−sTc

]
(2.4.8)

is the unique solution to the Dirichlet problem with r(x) ≡ s and f ≡ f̂c. Alternatively, by Remark
2.3.5, we can view the expectation in (2.4.8) as the Laplace transform of a random variable Tc(x),
giving us two ways of viewing the conditional expectation.

Proceeding in a similar fashion, let us now consider the solution to Dirichlet’s problem for f̂−ab:

sf̂−ab(x, s) = Af̂−ab(x, s), x ∈ D,

f̂−ab(x, s) = 11{Ta(x)<Tb(x)}, x ∈ ∂D,
(2.4.9)
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with D = (a, b) being an open, bounded interval and the boundary ∂D = {a, b}. On the boundary,

we have f̂−ab(a, s) = 1 and f̂−ab(b, s) = 0. The solution to the PDE is

f̂−ab(x, s) = Ex
[
e−s Ta 11{Ta<Tb}

]
(2.4.10)

as given by the stochastic solution to the Dirichlet problem. It is not too hard to convince one-
self that the right-hand side of equation (2.4.10) is also a Laplace transform. Take the density
f−ab(x, t) = P

(
Tab(x) = t, Tab(x) = Ta(x)

)
which is a joint density for

(
Tab(x), Ta(x)

)
. The ex-

pected value can be recasted as

Ex
[
e−s Ta 11{Ta<Tb}

]
= Ex

[
e−s Tab 11{Tab =Ta}

]
=

∫ ∞
0

∫ ∞
0

e−sy 11{y=z}P(Tab = y, Ta = z |X0 = x) dy dz

=

∫ ∞
0

e−sy P(Tab = y, Ta = y |X0 = x) dy

= L
{
f−ab(x, t)

}
.

Again, the nice connection on the conditional expectation exists between Dirichlet’s PDE and
Laplace transformations. The same analysis can be carried out for f̂+ab by a repeat argument.

Given the significance of the functions fc and fa,b, it is essential to know how to calculate them.
Expressions in terms of the functions u and v have been formulated in this section, but the final
part we need to address is how to find u and v. Based on the Laplace transform discussion of the
KBE and identity (2.4.4), both functions are independent solutions of the Sturm-Liouville problem

with Dirichlet boundary conditions. For example, f̂c(x, s) ∝ u(x) for all x < c and so u must also
satisfy Dirichlet’s PDE. More details on this can be found in [Darling et al., 1953, Theorem 4.1,
page 7].
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Chapter 3

Optimal Trade Execution and
Timing Problems

This chapter is the crux of the thesis and relates our mathematical theory to financial StatArb
strategies. An optimal double-stopping problem is constructed on a price process tracking the value
of a portfolio and the problem is split into two halves. The first half assesses when it is optimal
to enter a trade; the second decides when it is best to close the trade. There are two perspectives
a trader can take on the optimal execution problem. They can either pursue a long position to
buy a portfolio or hold a short position to sell a portfolio. These problems are treated separately
initially, with the hope of tying them together into a joint problem that determines whether to
take a long or short position. Sections 3.1 and 3.2 deal with the restrictive single-sided strategies,
whilst Section 3.3 addresses the flexible joint problem. We also mention how an exit stop-loss can
be incorporated into the problem to make the model more realistic.

Our work has been motivated from the paper by [Leung and Li, 2015], who provide extensive
coverage of the long optimal double-stopping problem for the Ornstein-Uhlenbeck process. We
believe this chapter covers their theoretical framework in greater generality, allowing an application
to more general Itô price processes. The benefit of extending their framework comes at a cost in
the form of assumptions; these must be substantiated on a case-by-case basis for the chosen price
process. However, we provide evidence in the thesis that the proposed properties hold at least for
the ABM and GBM as well as the OU process.

3.1 One-Sided Optimal Stopping Problem

Let X = (Xt)t≥0 be a price process modelling the value of a basket of assets and assume that it
is a diffusion process satisfying the conditions from Section 2.1. In addition, let c ∈ R, r > 0 and
ĉ ∈ R, r̂ > 0 be the transaction costs incurred and interest rate parameters for the exit and entry
problems respectively. Depending on the duration of a trade from start to end, these parameters
have the scope to change and so it may be that c 6= ĉ and r 6= r̂. We can include this market
feature in our model but have to impose that c+ ĉ > 0 and 0 < r̂ ≤ r.

We now look at the optimal trading problem, first describing a long position for an investor, and
then the opposite short position. As we will see, it is natural to set out the exit problem first and
use it to write down the entry problem.

3.1.1 The Initial Problem: Long Position

Assume an investor has already entered a trade, taking a long position in the selected assets. If
they decide to liquidate their holdings at time τ , then their portfolio will be worth Xτ . The fee
for the trade will also cost c assuming instantaneous execution. Hence, the time-zero value of the
collection of assets X is given by

V
(τ)
L (x) = Ex

[
e−rτ (Xτ − c)

]
,
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under continuous discounting at exit rate r. We call this the exit performance criteria of the
investor. For all F-measurable stopping times τ ≥ 0, the exit value function is

VL(x) = sup
τ

Ex
[
e−rτ (Xτ − c)

]
, (3.1.1)

which gives the best possible profit for exiting a long position on the securities with current value
x. Note by stationarity of diffusion processes, the performance function and hence value function
are both independent of time. We refer to (3.1.1) as the optimal exit problem for a long portfolio
position.

Next, we present the entry problem which is a function of the exit problem V . If we decide to enter
the trade at time ν, then the assets will cost Xν and a penalty fee of ĉ will be paid. The expected
payoff for the portfolio at this time will be V (Xν). Therefore, the entry performance criteria of
the investor is

J
(ν)
L (x) = Ex

[
e−r̂ν

(
VL(Xν)−Xν − ĉ

)]
,

discounted at entry rate r̂. For all F-measurable stopping times ν ≥ 0, the entry value function is

JL(x) = sup
ν

Ex
[
e−r̂ν

(
VL(Xν)−Xν − ĉ

)]
, (3.1.2)

which gives the optimal time-zero expected profit for the whole round-trip trade. By the set-up
of the problem, the optimal entry time always precedes the optimal exit time and so there is no
overlap of time in the two problems, ie. we always enter the trade before exiting. Equation (3.1.2)
is referred to as the optimal entry problem for a long portfolio position.

To integrate the stop-loss component, we define the stopping time τK which is the time when the
process X hits a predetermined level K ∈ R. Recall that this is a true stopping time, as discussed
in Section 2.3. The first passage time is given by

τK = inf{t ≥ 0 : Xt ≤ K}.

The stop-loss is an upper bound on the process X because we want to avoid a severe drop in value
of our portfolio. Under the addition of a stop-loss constraint, the optimal entry and exit problems
are altered in the following way:

J∗L(x) = sup
ν

Ex
[
e−r̂ν

(
V ∗L (Xν)−Xν − ĉ

)]
,

V ∗L (x) = sup
τ

Ex
[
e−r(τ∧τK)(X(τ∧τK) − c)

]
.

(3.1.3)

Before attempting to solve for each value function, it is worth identifying properties of the solution.
As noted in [Leung and Li, 2015, page 6], both VL and JL are non-negative since τ = ν = ∞
is a valid stopping time. This could be the case for a bounded price process, where it would
never be optimal to enter a trade. Also, the exit stop-loss constraint restricts the set of possible
maximal stopping times. As a result, our value functions satisfy x − c ≤ V ∗L (x) ≤ VL(x) and
0 ≤ J∗L(x) ≤ JL(x).

3.1.2 The Reverse Problem: Short Position

In light of the previous subsection, the treatment of the flipped problem will be brief. We consider
an investor holding a short position in a basket of assets. Under the same set up as before, the
exit performance criteria becomes

V
(τ)
S (x) = Ex

[
e−rτ (−Xτ − c)

]
,

and the exit value function is

VS(x) = sup
τ

Ex
[
e−rτ (−Xτ − c)

]
, (3.1.4)

as the investor will acquire the portfolio when closing a position and pay a fee of c. We refer to
(3.1.4) as the optimal exit problem for a short portfolio position. Similarly, the entry performance
criteria becomes

J
(ν)
S (x) = Ex

[
e−r̂ν

(
VS(Xν) +Xν − ĉ

)]
,
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and the entry value function is

JS(x) = sup
ν

Ex
[
e−r̂ν

(
VS(Xν) +Xν − ĉ

)]
, (3.1.5)

as the investor receives money for selling the portfolio, pays a transaction fee ĉ for the trade and
expects to incur the cost V (Xν) when purchasing the portfolio at exit time ν. Equation (3.1.5) is
the optimal entry problem for a short portfolio position. The corresponding problems with an exit
stop-loss are:

J∗S(x) = sup
ν

Ex
[
e−r̂ν

(
V ∗S (Xν) +Xν − ĉ

)]
,

V ∗S (x) = sup
τ

Ex
[
e−r(τ∧τK)(−X(τ∧τK) − c)

]
,

(3.1.6)

where the stop-loss time at level K is now redefined as

τK = inf{t ≥ 0 : Xt ≥ K}.

This is because an investor holding a short position would want to avoid a large increase in the
value of the portfolio. In the spirit of consistency with the previous subsection, we now see that
0 ≤ V ∗S (x) ≤ VS(x) and x− ĉ ≤ J∗S(x) ≤ JS(x).

Remark 3.1.1. From the outset, it appears as if not much separates the long and short optimal
stopping problems. The difference between the two problems comes down to a couple of minus
sign changes. For a process with symmetric probability distribution, the connection between both
problems is enhanced and this creates convenient shortcuts.

Imagine that X is a process with symmetric probability distribution about zero and define another

process Y such that Xt
d
= −Xt := Yt. Then the long exit payoff function for X equals the short

exit payoff function for Y as

Xt − c
d
= −Xt − c = Yt − c

and the same is true of the entry payoff function. We hypothesise that it is enough to study only
one optimal stopping problem for a centred, symmetric price process; eg. the OU process. For
example, one can obtain the short problem by replacing every X term by Y = −X (as they are
equal in distribution) in the long problem. The stop-loss constraint would also change from level
K to −K when converting between long and short problems.

3.2 Solution to the One-Sided Problems

The traditional procedure to find the solution to the value functions in Section 3.1 would involve
solving variational inequalities from the dynamic programming principle, producing a verification
argument to ensure the solution is maximal. Here we avoid this laborious route, instead maximising
the double-stopping problem over all open intervals (a, b) as suggested by [Leung and Li, 2015].
One bonus of using this method is that it reveals the form of the value function, unlike the DPP
set up. Analysis for the stop-loss is omitted but can be found [Leung and Li, 2015, Section 5, page
13].

3.2.1 The Initial Problem Solution: Long Position

Consider the Sturm-Liouville problem defined as

Aw(x) = rw(x), x ∈ R (3.2.1)

where we take the function r(x) ≡ r ≥ 0 to be the exit interest rate and the infinitesimal generator,
where we assume it exists, for X = (Xt)t≥0 acting on w to be

Aw(x) = b(x)
∂w(x)

∂x
+

1

2
σ2(x)

∂2w(x)

∂x2
.

As explained at the end of Section 2.4, we assume that two linearly independent solutions to the
Sturm-Liouville problem exist, call them u(x) ≡ u(x; r) and v(x) ≡ v(x; r). These solutions take
the form of the functions in identity (2.4.4), with Dirichlet boundary conditions u(−∞) = 0 and
v(∞) = 0. In addition, we make the following assumptions about the solutions to the partial
differential equation.
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Assumption 3.2.1 (Properties of u and v).

(i) u and v are both positive and convex

(ii) u is strictly increasing whilst v is strictly decreasing

(iii) u and v are at least twice differentiable and continuous

These assumptions and the ones that follow are motivated by the characteristics of the OU solu-
tions. We provide formulae in Appendix Section A.1 to confirm that these properties hold for the
ABM, GBM and OU processes.

The first identity we can verify is the probabilistic relation for functions u and v. By combining
the results in Proposition 2.4.3 and equation (2.4.8), we get that

Ex
[
e−rTk

]
=


u(x)

u(k)
, x ≤ k,

v(x)

v(k)
, x ≥ k,

(3.2.2)

as described in [Leung and Li, 2015, Equation 3.5, page 7]. This is a well-known expression for
the expected value of a discount factor at rate r and agrees with the classical reference [Itô, 1996,
Section 4.6, page 128]. The aim is to take this a step further to try and find an analytic expression
when attaching a cost or payoff function to the discount factor.

For process X starting at X0 = x, take Ta∧Tb := Ta,∞∧T−∞,b to be its exit time from the interval
(a, b), where the interval end points could be infinite, ie. −∞ ≤ a < x < b ≤ ∞. When a = −∞
or b = ∞, what we are describing is the process hitting a single level b or a respectively. Also,
introduce the function h(x) := x− c, which specifies the payoff function when exiting a long trade.
We will now attempt to find an explicit expression for the long exit value function by looking at
the interval that contains the initial portfolio price x.

The discounted payoff under expectation is:

Ex
[
e−r(Ta∧Tb)h

(
XTa∧Tb

)]
= h(a)Ex

[
e−r Ta 11{Ta<Tb}

]
+ h(b)Ex

[
e−r Tb 11{Ta>Tb}

]
(3.2.3)

= h(a)f̂−ab(x, r) + h(b)f̂+ab(x, r)

= h(a)
u(x)v(b)− u(b)v(x)

u(a)v(b)− u(b)v(a)
+ h(b)

u(a)v(x)− u(x)v(a)

u(a)v(b)− u(b)v(a)

by expanding over whether Ta∧Tb hits barrier level a or b first. The second line follows by equation
(2.4.10). We are now ready to maximise the discounted payoff over all intervals (a, b), however, we
propose three transformations which will help simplify this computation. Step one is to consider
the transform:

ψ(x) :=
u(x)

v(x)
, x ∈ R, (3.2.4)

which is well-defined as v is always positive. By Assumption 3.2.1 and by properties of a quotient of
functions, it follows that ψ is continuous, positive and strictly increasing, so we can safely assume
it has an inverse and is a bijective mapping. Applying the transformation, we get

Ex
[
e−r(Ta∧Tb)h

(
XTa∧Tb

)]
= v(x)

[
h(a)

v(a)

ψ(b)− ψ(x)

ψ(b)− ψ(a)
+
h(b)

v(b)

ψ(x)− ψ(a)

ψ(b)− ψ(a)

]
.

Steps two and three are intrinsically a relabelling exercise. Take y = ψ(x) and define the more
compact mapping

HL(y) :=


h

v
◦ ψ−1(y), y > 0,

lim
x→−∞

(
h(x)

)+
v(x)

, y = 0,

(3.2.5)

which is also well-defined for all y. The second case (y = 0) may appear to be slightly arbitrary
and in fact unnecessary as ψ is always positive. However, we will need to extend the function H
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to be continuous at zero later on. Under these two transformations with ψ(x) > 0 for all x, we
have

Ex
[
e−r(Ta∧Tb)h

(
XTa∧Tb

)]
= v
(
ψ−1(y)

)[
HL(ya)

yb − y
yb − ya

+HL(yb)
y − ya
yb − ya

]
,

where ya = ψ(a) and yb = ψ(b). To find the optimal interval such that this expectation is
maximised, we need to take the supremum over all pairs {(a, b) : −∞ ≤ a < x < b ≤ ∞}. By the
strict monotonicity of ψ, this is equivalent to maximising over all pairs {(ya, yb) : −∞ ≤ ya < y <
yb ≤ ∞}. Define the function

WL(y) := sup
{(ya,yb):ya<y<yb}

[
HL(ya)

yb − y
yb − ya

+HL(yb)
y − ya
yb − ya

]
, y > 0, (3.2.6)

which is the smallest concave majorant of H (see Appendix Lemma B.4.3). Then the expression
for the optimal expected value is

sup
{(a,b):a<x<b}

Ex
[
e−r(Ta∧Tb)h

(
XTa∧Tb

)]
= v(x)WL

(
ψ(x)

)
. (3.2.7)

We claim that equation (3.2.7) is the exit value function for the long problem, that is,

VL(x) = v(x)WL

(
ψ(x)

)
. (3.2.8)

Therefore, it would appear that optimising the exit payoff function over all stopping times is
equivalent to maximising the exit payoff function over all intervals (a, b). Equation (3.2.7) suggests
the best time to liquidate one’s holdings is when the price process X leaves the optimal exit interval
(a∗, b∗) (more on this later).

Relation (3.2.8) will be verified in Theorem 3.2.2, but before doing so, we will apply the same
treatment to the long entry value function JL. The following text repeats the above derivation
with the only difference being that we ‘hat’ the quantities whilst transferring them to the entry
problem variant. One may question the decision to repeat the above arguments as opposed to
dealing with both cases in one hit. Though this would be possible initially, we would run into
notational issues further on and so it is in our best interests to treat the entry and exit problems
separately with two sets of notations.

Suppose instead that two linearly independent solutions û(x) ≡ û(x; r̂) and v̂(x) ≡ v̂(x; r̂) exist
to the Sturm-Liouville problem (3.2.1) with the discount rate r replaced by its entry problem
counterpart r̂. These solutions also share the properties of u and v from Assumption 3.2.1. In
addition, define the cost function ĥ(x) := VL(x)−x− ĉ and the two transformations as in the long
exit problem as

ψ̂(x) :=
û(x)

v̂(x)
, x ∈ R, (3.2.9)

which is continuous, positive and strictly increasing and the tidier mapping

ĤL(y) :=


ĥ

v̂
◦ ψ̂−1(y), y > 0,

lim
x→−∞

(
ĥ(x)

)+
v̂(x)

, y = 0.

(3.2.10)

With these two transformations in place, by an identical argument to the long exit problem with
u, v, ψ and HL swapped for û, v̂, ψ̂ and ĤL, we have for y = ψ̂(x) that

Ex
[
e−r̂(Tâ∧Tb̂)ĥ

(
XTâ∧Tb̂

)]
= v̂
(
ψ̂−1(y)

)[
ĤL(yâ)

yb̂ − y
yb̂ − yâ

+ ĤL(yb̂)
y − yâ
yb̂ − yâ

]
,

where yâ = ψ̂(â) and yb̂ = ψ̂(b̂). Defining the function

ŴL(y) := sup
{(yâ,yb̂):yâ<y<yb̂}

[
ĤL(yâ)

yb̂ − y
yb̂ − yâ

+ ĤL(yb̂)
y − yâ
yb̂ − yâ

]
, y > 0, (3.2.11)
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it then follows that

sup
{(â,b̂):â<x<b̂}

Ex
[
e−r̂(Tâ∧Tb̂)ĥ

(
XTâ∧Tb̂

)]
= v̂(x)ŴL

(
ψ̂(x)

)
, (3.2.12)

where ŴL is the smallest concave majorant for ĤL (see Appendix Lemma B.4.4). The silver lining
is again that we make a likewise claim: the entry value function for the long problem is given by
(3.2.12) and

JL(x) = v̂(x)ŴL

(
ψ̂(x)

)
. (3.2.13)

So finding the candidate strategy for entering a trade over all possible stopping times is the same
as finding the time at which the price process X leave the optimal entry interval (â∗, b̂∗). This is
when the purchase of assets will be triggered (more on this later). All that is left to do is to verify
our claims in equations (3.2.8) and (3.2.13). This is what the next result describes.

Theorem 3.2.2 (Optimality of value functions). The optimal time to exit the long problem (3.1.1)
is characterised by finding an optimal interval (a∗, b∗) such that when the price process X leaves
this interval, the investor should sell. Consequently, we claim that

VL(x) = v(x)WL

(
ψ(x)

)
, x ∈ R.

The optimal time to enter the long problem (3.1.2) is characterised by finding an optimal interval

(â∗, b̂∗) such that when the price process X leaves this interval, the investor should buy. Conse-
quently, we claim that

JL(x) = v̂(x)ŴL

(
ψ̂(x)

)
, x ∈ R.

Proof. We only prove the first identity. The proof of the second identity is identical by hatting the
quantities. By Lemma 2.3.2, we know that Ta ∧ Tb is a stopping time and so

VL(x) = sup
τ

Ex
[
e−rτh(Xτ )

]
≥ sup
{(a,b):a<x<b}

Ex
[
e−r(Ta∧Tb)h

(
XTa∧Tb

)]
= v(x)WL

(
ψ(x)

)
.

The proof of the reverse inequality is a little more involved. WL is concave so by Appendix
Lemma B.4.2, for any y0 > 0 there exists an affine majorant F that supports WL at point y0. In
mathematical terms, this means

(majorant) WL(y) ≤ F (y), y > 0,

(supporting) WL(y0) = F (y0), y0 > 0,

(affine) F (y) = ay + b, a, b ∈ R,

where it is important to note that the function F := Fy0 and coefficients a := ay0 and b := by0
depend on the choice of y0. Take any stopping time ν ∈ F and t ∈ R≥0 and define τ := t∧ ν. Also,
let y0 := ψ(x) be the supporting boundary point of WL. For payoff function h,

h(Xτ ) = v(Xτ )HL

(
ψ(Xτ )

)
≤ v(Xτ )WL

(
ψ(Xτ )

)
≤ v(Xτ )F

(
ψ(Xτ )

)
= a v(Xτ )ψ(Xτ ) + b v(Xτ )

= a u(Xτ ) + b v(Xτ ).

Taking the discounted expectation, continuing on from the above expression gives

Ex
[
e−rτh(Xτ )

]
≤ aEx

[
e−rτu(Xτ )

]
+ bEx

[
e−rτv(Xτ )

]
= au(x) + bv(x) (3.2.14)

= v(x)

[
a
u(x)

v(x)
+ b

]
= v(x)F

(
ψ(x)

)
= v(x)WL

(
ψ(x)

)
,
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where line (3.2.14) is explained by an application of the optional stopping theorem (as τ is a
bounded stopping time) and that

(
e−rtu(Xt)

)
t≥0 and

(
e−rtv(Xt)

)
t≥0 are both martingales. Taking

the supremum over all times t and then ν, we get that VL(x) ≤ v(x)WL

(
ψ(x)

)
and so we have

equality.

Verifying the martingale claim is consigned to Appendix Lemma B.3.4, but boils down to an
application of Itô’s lemma. An interesting argument can also be found in [Kessler et al., 1999,
Section 5, page 312], which also includes information about the eigenfunction characterisation of
solutions to the Sturm-Liouville problem.

So far we have established the alternative light that the value function problems can be viewed
in but have not yet found an explicit expression for them. We will now lay out some further
assumptions relating to the properties of HL and ĤL that will allow us to derive exact expressions
for both value functions. This is where the treatment of both problems begins to diverge and so
we deal with the exit value function VL first, since the entry value function JL is posed in terms
of VL.

Assumption 3.2.3 (Properties of HL).

(i) HL is continuous on [0,∞) and twice differentiable on (0,∞).

(ii) HL(0) = 0 and for exit transactional cost c,

HL(y) =

{
< 0 if y ∈ (0, ψ(c)),

> 0 if y ∈ (ψ(c),∞),

with HL

(
ψ(c)

)
= 0.

(iii) Given x∗ as the solution to v(x)− (x− c)v′(x) = 0, then

H ′L(y) =

{
< 0 if y ∈ (0, ψ(x∗)),

> 0 if y ∈ (ψ(x∗),∞),

where x∗ < c. In addition, H ′L
(
ψ(x∗)

)
= 0 and H ′L(y)→ 0 as y →∞.

(iv) There exists a constant L∗ such that

H ′′L(y) =

{
≥ 0 if y ∈ (0, ψ(L∗)],

≤ 0 if y ∈ [ψ(L∗),∞).

y=ψ(x)

H
(x
)

z=ψ(b * )

ψ(L * )

ψ(c)
ψ(x * )

Figure 3.1: Properties of HL
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We pose these properties as an assumption rather than a lemma or proposition as they may not
always hold for arbitrary Itô diffusions. Our attempt to justify these assumptions in the general
case can be found in Appendix Section B.5.1. Thankfully for our select three diffusion processes,
these properties can be verified. A proof is constructed for an ABM in Appendix Section B.5.3,
the OU process is covered in the paper by [Leung and Li, 2015] and the GBM is left as an exercise
with the steps mirroring those in the ABM example. Armed with the attributes of HL, we can
now find the exit value function VL.

Theorem 3.2.4. The optimal exit problem (3.1.1) for a long position is given by

VL(x) =

(b∗ − c) u(x)

u(b∗)
, x ∈ (−∞, b∗),

x− c, x ∈ [b∗,∞),

(3.2.15)

where the constant b∗ > c∧L∗, which is the optimal liquidation level, is the solution to the equation

u(b) = (b− c)u′(b) (3.2.16)

and the optimal liquidation time is

τ∗ = inf{t ≥ 0 : Xt ≥ b∗}.

Proof. The presentation of this proof is not entirely rigorous and the derivation for the form of
WL may appear to be abstract. We do this to avoid complicated geometrical arguments, hoping
that Figure 3.1 is enough to convince the reader.

From the properties of HL and the sketch, we conclude that the smallest concave majorant of
HL must be a two part function. The two sections will meet at some value y = z, where z >
ψ(c) ∧ ψ(L∗). The first part of this function will be a line segment connecting the coordinates
(0, HL(0)) and (z,HL(z)) and the second part must trace HL exactly, since HL is already concave
in this region, ie.

WL(y) =

y
HL(z)

z
, y ≤ z,

HL(y), y ≥ z.
(3.2.17)

The connecting point z must lie beyond both of y = ψ(L∗) and y = ψ(c), otherwise a contradiction

can be found to WL being concave. Since limy→∞H ′L(y) = 0, the line segment yHL(z)z must be
tangential to HL at y = z. Therefore, z must satisfy

HL(z)−HL(0)

z − 0
=
HL(z)

z
= H ′L(z). (3.2.18)

We want to make use of Theorem 3.2.2 which is stated in terms of the initial starting value x.
Therefore, we transform variables from the y to x domain. Taking z := ψ(b∗), the left-hand side
of equation (3.2.18) becomes

HL(z)

z
=
HL

(
ψ(b∗)

)
ψ(b∗)

=
h(b∗)

ψ(b∗)v(b∗)
=
b∗ − c
u(b∗)

.

The right-hand side can be expressed as

H ′L(z) =
v(b∗)− (b∗ − c)v′(b∗)

u′(b∗)v(b∗)− u(b∗)v′(b∗)
,

where the derivative of HL is known from Appendix equation (B.5.2). Equating the two expressions
leads to the identity

u(b∗) = (b∗ − c)u′(b∗)
for b∗ after further cancelling. Moreover, taking y = ψ(x), the smallest concave majorant WL can
be expressed in terms of x as

WL

(
ψ(x)

)
=


u(x)

v(x)

b∗ − c
u(b∗)

, x ≤ b∗,

x− c
v(x)

, x ≥ b∗.

The value function then follows by identity (3.2.8), where VL(x) = v(x)WL

(
ψ(x)

)
.
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Finally, the long exit value function VL has been found. An explication of the result is now given
to relate the solution to the actions that a trader would make based on the value of the selected
securities. Reminding ourselves of equation (3.2.3), for x ∈ (a, b) we had

Ex
[
e−r(Ta∧Tb)h

(
XTa∧Tb

)]
= h(a)Ex

[
e−r Ta 11{Ta<Tb}

]
+ h(b)Ex

[
e−r Tb 11{Ta>Tb}

]
.

Choosing a = −∞ and b = b∗, where b∗ is the solution to equation (3.2.16), our optimal interval
is IV := (−∞, b∗) and we get

Ex
[
e−r(T−∞∧Tb∗ )h

(
XT−∞∧Tb∗

)]
= Ex

[
e−r Tb∗h

(
XTb∗

)]
= h(b∗)Ex

[
e−r Tb∗

]
.

If x < b∗, then x ∈ IV and h(b∗) = b∗ − c. We can calculate the expectation to be

Ex
[
e−r Tb∗h

(
XTb∗

)]
= (b∗ − c) u(x)

u(b∗)
,

where we make use of formula (3.2.2) to compute the expected value of the discount factor. On
the other hand, if x ≥ b∗ then x /∈ IV and

Ex
[
e−r(T−∞∧Tb∗ )h

(
XT−∞∧Tb∗

)]
= x− c

because the process X started outside of IV , so T−∞∧Tb∗ = Tb∗ := T−∞,b∗ = 0. The interpretation
in the context of optimal trading is now elucidated:

If the portfolio value lies inside the optimal interval, ie. x ∈ IV , then the trader should liquidate
their holdings only when the portfolio value increases to level b∗. Premature liquidation would
be suboptimal. On the other hand, if the value of the traded assets are in excess of price b∗, ie.
x /∈ IV , then it is optimal to sell immediately. This explanation characterises b∗ as the optimal
liquidation level and Tb∗ = T−∞,b∗ as the optimal liquidation time.

The following result analyses the impact of the transaction cost on the problem. The impact of
the other parameters is not so clear cut but a plot of the dependence structure can be produced
to evaluate this.

Proposition 3.2.5. The value function VL is decreasing in the exit transaction cost c and the
optimal barrier level b∗ is increasing in c.

Proof. To show that VL is a decreasing function of c, it is enough to realise that the payoff function

Ex[e−rτ (Xτ − c)] = Ex[e−rτXτ ]− cEx[e−rτ ]

is decreasing in c. So if c1 < c2, then

V
(τ)
L (x; c1) := Ex[e−rτ (Xτ − c1)] ≥ Ex[e−rτ (Xτ − c2)] =: V

(τ)
L (x; c2).

By taking the supremum over all stopping times, we see that VL(x; c1) ≥ VL(x; c2) and so VL
is decreasing in c. To show that b∗ is increasing in c, we assess the derivative of b∗(c). By
differentiating identity (3.2.16) with respect to c, we obtain that

(b∗)′(c) =
u′(b∗)

(b∗ − c)u′′(b∗)
> 0

which proves the result.

This result confirms the obvious for a more expensive trade: a smaller profit margin is made
and the sell barrier level increases. The entry problem is tackled next with a brief but alike
derivation.

Assumption 3.2.6 (Properties of Ĥ). Let VL, b
∗ and L∗ be as in Theorem 3.2.4. Then we assume

(i) ĤL is continuous on [0,∞), differentiable on (0,∞) and twice differentiable on (0, ψ̂(b∗)) ∪
(ψ̂(b∗),∞).
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(ii) ĤL(0) = 0 and for constant k∗ < b∗, where k∗ is the unique solution to ĥ(x) = 0,

ĤL(y) =

{
> 0 if y ∈ (0, ψ̂(k∗)),

< 0 if y ∈ (ψ̂(k∗),∞),

with ĤL

(
ψ̂(k∗)

)
= 0.

(iii) ĤL is strictly decreasing for y ∈ (ψ̂(b∗),∞).

(iv) There exists a constant L∗ < b∗ such that

Ĥ ′′L(y) =

{
≤ 0 if y ∈ (0, ψ̂(L∗)],

≥ 0 if y ∈ [ψ̂(L∗),∞).

y= ̂ψ

Ĥ
̂x
)

z=ψ̂b * )

̂z= ̂ψ̂d * )

̂ψ̂L * )
̂ψ̂k * )

Figure 3.2: Properties of ĤL

In an identical manner, these properties are treated as an assumption rather than fact. Our attempt
to justify the properties can be found in Appendix Section B.5.2. The case specific application to
the ABM resides in Appendix Section B.5.3. We can now go on to find the exit value function
JL.

Theorem 3.2.7. The optimal entry problem (3.1.2) for a long position is given by

JL(x) =


VL(x)− x− ĉ, x ∈ (−∞, d∗],
VL(d∗)− d∗ − ĉ

v̂(d∗)
v̂(x), x ∈ (d∗,∞),

(3.2.19)

where the constant d∗ < k∗ ∧ L∗, which is the optimal entry level, is the solution to the equation

v̂(d)
(
V ′L(d)− 1

)
= v̂′(d)

(
VL(d)− d− ĉ

)
(3.2.20)

and the optimal liquidation time is

ν∗ = inf{t ≥ 0 : Xt ≤ d∗}.

Proof. As previously discussed, the presentation of this proof is best supplemented with the plot
in Figure 3.2. A precise proof would be too cumbersome given the target of this thesis.
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From the properties of ĤL and the sketch, the smallest concave majorant of ĤL must be a two
part function. These two sections will meet at some value y = ẑ, a global maxima of ĤL. The
first part will trace the concave part of ĤL up to the maximum value ẑ and the second part is a
horizontal line segment, ie.

ŴL(y) =

{
ĤL(y), y ≤ ẑ,
ĤL(ẑ), y ≥ ẑ.

(3.2.21)

By definition of being a global maximum, ẑ < ψ̂(k∗) < ψ̂(b∗). In fact, ẑ must be bounded above

by both y = ψ̂(k∗) and y = ψ̂(L∗). If not, a contradiction can be deduced to ŴL being concave.
A key property of being a maxima is that

Ĥ ′L(ẑ) = 0.

Suppose ẑ = ψ̂(d∗). Then d∗ must satisfy

Ĥ ′L(ẑ) =
ĥ′(d∗)v̂(d∗)− ĥ(d∗)v̂

′(d∗)

û′(d∗)v̂(d∗)− û(d∗)v̂′(d∗)
= 0,

by referring to the expression for H ′L from Appendix equation (B.5.1). By definition of ĥ, this
identity becomes

(V ′L(d∗)− 1)v̂(d∗)− (VL(d∗)− d∗ − ĉ)v̂′(d∗)
û′(d∗)v̂(d∗)− û(d∗)v̂′(d∗)

= 0.

The denominator is always positive and so equating the numerator to zero yields equation (3.2.20),

which can be solved to find the candidate level d∗. Moreover, taking y = ψ̂(x), the smallest concave
majorant ŴL can be displayed in terms of x as

ŴL

(
ψ̂(x)

)
=


VL(x)− x− ĉ

v̂(x)
, x ≤ d∗,

VL(d∗)− d∗ − ĉ
v̂(d∗)

, x ≥ d∗,

by definition of ĥ. The statement of the theorem then follows by an application of identity (3.2.13)

with JL(x) = v̂(x)ŴL

(
ψ̂(x)

)
.

This completes the task of finding the long entry value function JL. Like before, we can choose
the optimal interval to be IJ := (d∗,∞), where d∗ is the solution to equation (3.2.20). Then for
x ∈ IJ ,

Ex
[
e−r̂(Td∗∧T∞)ĥ

(
XTd∗∧T∞

)]
= Ex

[
e−r̂ Td∗ ĥ

(
XTd∗

)]
= ĥ(d∗)Ex

[
e−r̂ Td∗

]
=
VL(d∗)− d∗ − ĉ

v̂(d∗)
v̂(x)

and conversely for x /∈ IJ ,

Ex
[
e−r̂(Td∗∧T∞)ĥ

(
XTd∗∧T∞

)]
= VL(x)− x− ĉ.

The strategy behind entering a long trade in an optimal fashion is now explained:

By the set up of the problem, d∗ < b∗ so the strategy is well-defined and non-overlapping. A
trader will only enter a long position once the initial portfolio value x goes below the level d∗,
ie. x /∈ IJ . In this case, the trader should instantly buy and hold their selected assets modelled
by price process X. On the contrary, if the initial portfolio value is contained inside the optimal
interval, ie. x ∈ IJ , then the portfolio is over-valued. When this occurs, the trader should wait
until the portfolio value falls below the barrier level d∗ before purchasing any assets. If and when
the portfolio rises in value to b∗, the portfolio should be sold to cash in the profit.

Lastly, the impact of the transaction cost ĉ is assessed in the next result. Instinctively, a higher fee
would mean the trader would want to pay a lower cost to enter the trade and so we should expect
d∗ to decrease with increasing ĉ.

Proposition 3.2.8. The optimal barrier level d∗ is decreasing in the entry transaction cost ĉ.

Proof. The method of proof relies on differentiating equation (3.2.20). We refer the reader to
[Leung and Li, 2015, Proposition 4.6, page 13] for the proof.
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3.2.2 The Reverse Problem Solution: Short Position

Now we tackle the short problem and extend the work of [Leung and Li, 2015]. A large amount of
the theory from Section 3.2.1 can be reshaped and reused to solve this problem. For this reason our
analysis is kept brief and we highlight the similarities and differences in the build-up to the reverse
problem solution. The notation is unchanged from the long problem for consistency of reading.
However, the functions will be intrinsically different because of the adjusted payoff functions h and
ĥ. Note that if the price process was a symmetric diffusion process, then this subsection would be
redundant by Remark 3.1.1.

We begin with the short exit trading problem as the entry problem is defined in terms of the exit
problem:

Assume that two linearly independent solutions u and v exist to the Sturm-Liouville problem (3.2.1)
with Dirichlet boundary conditions. These solutions should share all the properties of Assumption
3.2.1. To reflect the new problem and payoff function in the short exit value function (3.1.4), we
redefine

h(x) := −x− c.

From here on, the long problem framework can be copied with ψ,HS and WS being defined as in
equations (3.2.4), (3.2.5) and (3.2.6). ψ is positive, continuous and strictly increasing and WS is
the smallest concave majorant of HS (see Appendix Lemma B.4.4 and remove the hats).

Moving onto the short problem, the alternate formulation is described:

Assume that two analogous solutions û and v̂ exist. The payoff function is altered to mimic the
short entry value function (3.1.5) and is redefined in terms of the exit value function as

ĥ := VS(x) + x− ĉ.

Apart from this, the rest of the framework is unchanged. ψ̂, ĤS and ŴS are defined equivalently as
in (3.2.9), (3.2.10) and (3.2.11). Likewise, ψ̂ is positive, continuous and strictly increasing and ŴS

is the smallest concave majorant for ĤS (see Appendix Lemma B.4.3 and hat the quantities).

Theorem 3.2.9 (Optimality of value functions). The optimal time to exit the short problem (3.1.4)
is characterised by finding an optimal interval (a∗, b∗) such that when the price process X leaves
this interval, the investor should buy. Consequently, we claim that

VS(x) = v(x)WS

(
ψ(x)

)
, x ∈ R.

The optimal time to enter the short problem (3.1.5) is characterised by finding an optimal in-

terval (â∗, b̂∗) such that when the price process X leaves this interval, the investor should sell.
Consequently, we claim that

JS(x) = v̂(x)ŴS

(
ψ̂(x)

)
, x ∈ R.

Proof. See the proof of Theorem 3.2.2, which treats h and ĥ as unspecified payoff functions.

This theorem highlights that the short value functions can also be characterised in terms of optimal
intervals. Our end goal is to solve for the value functions and Theorem 3.2.9 provides an easier
route to find VS and JS . We begin with the short exit value function, assuming properties of HS

to help describe the shape of WS .

Assumption 3.2.10 (Properties of HS).

(i) HS is continuous on [0,∞) and twice differentiable on (0,∞).

(ii) HS(0) = 0 and for exit transactional cost c,

HS(y) =

{
> 0 if y ∈ (0, ψ(−c)),
< 0 if y ∈ (ψ(−c),∞),

with HS

(
ψ(−c)

)
= 0.
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(iii) Given b∗ as the solution to v(b)− (b+ c)v′(b) = 0, then

H ′S(y) =

{
> 0 if y ∈ (0, ψ(b∗)),

< 0 if y ∈ (ψ(b∗),∞),

where b∗ < −c. Also, H ′S
(
ψ(b∗)

)
= 0.

(iv) There exists a constant L∗ such that

H ′′S(y) =

{
≤ 0 if y ∈ (0, ψ(L∗)],

≥ 0 if y ∈ [ψ(L∗),∞).

y=ψ(x)

H
(x
)

z=ψ(b * )

̂ψ(L * )

ψ(−c)

Figure 3.3: Properties of HS

Like for the long problem, these properties are assumed as not all of them can be substantiated for
a general diffusion process. We show as many characteristics as is possible in Appendix Section
B.6.1. A specific verification on the properties of HS for the OU process can be found in Appendix
Section B.6.3. The ABM and GBM cases will be very similar.

Theorem 3.2.11. The optimal exit problem (3.1.4) for a short position is given by

VS(x) =


−x− c, x ∈ (−∞, b∗],

(−b∗ − c) v(x)

v(b∗)
, x ∈ (b∗,∞),

(3.2.22)

where the constant b∗ < (−c) ∧ L∗, which is the optimal exit level, is the solution to the equation

v(b) = (b+ c)v′(b) (3.2.23)

and the optimal liquidation time is

τ∗ = inf{t ≥ 0 : Xt ≤ b∗}.

Proof. See Figure 3.3 for the supplementary plot to support the method of proof. As the properties
ofHS for the short problem are close to those of ĤL from the long problem, the proof of this theorem
follows the lines of Theorem 3.2.7.

By the properties of HS and the sketch, it should be apparent that the smallest concave majorant
must be a two part function. The two sections will meet at some value y = z, a global maximum of
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HS . The first part will trace the concave part of HS up till the maximum value z and the second
part is a horizontal line segment, ie.

WS(y) =

{
HS(y), y ≤ z,
HS(z), y ≥ z.

(3.2.24)

The connecting point z is a maximum with H ′S(z) = 0. By Assumption 3.2.10, the value z = ψ(b∗),
where b∗ is the solution to equation (3.2.23). Recall that HS is defined as

HS(y) :=


h

v
◦ ψ−1(y), y > 0,

lim
x→−∞

(
h(x)

)+
v(x)

, y = 0,

with h = −x− c. Taking y = ψ(x), the smallest concave majorant WS can be formulated in terms
of x as

WS(ψ(x)) =


−x− c
v(x)

, x ≤ b∗,

−b∗ − c
v(b∗)

, x ≥ b∗.

By applying the identity in Theorem 3.2.9, VS(x) = v(x)WS(ψ(x)) and the result follows. The
condition b∗ < (−c) ∧ L∗ can be verified by producing a contradiction if not true.

Notice the similarity to the solution for the long exit value function (3.2.15), supporting the
comments in Remark 3.1.1. Next, the entry problem will be solved and a combined analysis
of the solutions will be given afterwards.

Assumption 3.2.12 (Properties of ĤS). Let VS , b
∗ and L∗ be as in Theorem 3.2.11. Then the

following properties of ĤS are assumed:

(i) ĤS is continuous on [0,∞), differentiable on (0,∞) and twice differentiable on (0, ψ̂(b∗)) ∪
(ψ̂(b∗),∞).

(ii) ĤS(0) = 0 and for constant k∗ > b∗, where k∗ is the unique solution to ĥ(x) = 0,

ĤS(y) =

{
< 0 if y ∈ (0, ψ̂(k∗)),

> 0 if y ∈ (ψ̂(k∗),∞),

with ĤS

(
ψ̂(k∗)

)
= 0.

(iii) ĤS is strictly decreasing for y ∈ (0, ψ̂(b∗)) and Ĥ ′S(y)→ 0 as y →∞.

(iv) There exists a constant L∗ > b∗ such that

Ĥ ′′S(y) =

{
≥ 0 if y ∈ (0, ψ̂(L∗)],

≤ 0 if y ∈ [ψ̂(L∗),∞).
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y= ̂ψ

Ĥ
̂x
)

z=ψ̂b * )

̂z= ̂ψ̂d * )

̂ψ̂L * )
̂ψ̂k * )

Figure 3.4: Properties of ĤS

Again, these properties are treated as an assumption for now. Some characteristics of ĤS are
established and can be found in Appendix Section B.6.2. The case-specific verification for the OU
process can be found in Appendix Section B.6.3.

Theorem 3.2.13. The optimal entry problem (3.1.5) for a short position is given by

JS(x) =


VS(d∗) + d∗ − ĉ

û(d∗)
û(x), x ∈ (−∞, d∗),

VS(x) + x− ĉ, x ∈ [d∗,∞),

(3.2.25)

where the constant d∗ > k∗ ∧ L∗, which is the optimal entry level, is the solution to the equation

û(d)
(
V ′S(d) + 1

)
= û′(d)

(
VS(d) + d− ĉ

)
(3.2.26)

and the optimal liquidation time is

ν∗ = inf{t ≥ 0 : Xt ≥ d∗}.

Proof. See Figure 3.4 for the supplementary plot to support the method of proof. As the properties
of ĤS for the short problem are close to those ofHL from the long problem, the proof of this theorem
follows the lines of Theorem 3.2.4.

By the properties of ĤS and the sketch, it is evident that the smallest concave majorant must be
a two part function. The sections will meet at some value y = ẑ, where ẑ > ψ̂(k∗) ∧ ψ̂(L∗). The
first part will be a line segment joining the coordinates (0, ĤS(0)) and (ẑ, ĤS(ẑ)) and the second
part must trace ĤS exactly as ĤS is already concave in this region, ie.

WS(y) =

y
ĤS(ẑ)

ẑ
, y ≤ ẑ,

ĤS(y), y ≥ ẑ.

By Assumption 3.2.12, we have that limy→∞ Ĥ ′S(y) = 0 and so the line segment y ĤS(ẑ)ẑ must be

tangential to ĤS at y = ẑ. Therefore, the following condition holds:

ĤS(ẑ)− ĤS(0)

ẑ − 0
=
ĤS(ẑ)

ẑ
= Ĥ ′S(ẑ). (3.2.27)
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Letting ẑ = ψ̂(d∗), the left-hand side of equation (3.2.27) becomes

ĤS(ẑ)

ẑ
=
ĤS(ψ̂(d∗))

ψ̂(d∗)
=

ĥ(d∗)

ψ̂(d∗)v̂(d∗)
=
VS(d∗) + d∗ − ĉ

û(d∗)

and the right-hand side is

(V ′S(d∗) + 1)v̂(d∗)− (VS(d∗) + d∗ − ĉ)v̂′(d∗)
û′(d∗)v̂(d∗)− û(d∗)v̂′(d∗)

,

where expression (B.5.1) is used to calculate the derivative of ĤS . By equating the two sides of
equation (3.2.27), one can realise that d∗ solves

û(d∗)(V
′
S(d∗) + 1) = û′(d∗)(VS(d∗) + d∗ − ĉ)

after some cancellations. Moreover, taking y = ψ̂(x), the smallest concave majorant Ŵ in terms
of x is

ŴS(ψ̂(x)) =


û(x)

v̂(x)

VS(d∗) + d∗ − ĉ
û(d∗)

, x ≤ d∗,

VS(x) + x− ĉ
v̂(x)

, x ≥ d∗.

Taking the identity from Theorem 3.2.9, the value function is given by JS(x) = v̂(x)ŴS(ψ̂(x))

and the result follows. Lastly, the connecting point ẑ must be larger than both y = ψ̂(k∗) and

y = ψ̂(L∗), otherwise a contradiction to the concavity of ŴS would arise.

The arduous task of finding the short entry and exit value problems has been completed. Observe
that the methods used to find the value functions in the long and short problem were complemen-
tary and that no new techniques were needed. This time, the optimal interval for the short exit
problem is IV := (b∗,∞), where b∗ solves equation (3.2.23). With a = b∗ and b = ∞ in equation
(3.2.3), the expectation calculation for x ∈ IV becomes

Ex
[
e−r(Tb∗∧T∞)h

(
XTb∗∧T∞

)]
= Ex

[
e−r Tb∗h

(
XTb∗

)]
= h(b∗)Ex

[
e−r Tb∗

]
= (−b∗ − c) v(x)

v(b∗)

by the formula in identity (3.2.2). Conversely, for x 6∈ IV ,

Ex
[
e−r(Tb∗∧T∞)h

(
XTb∗∧T∞

)]
= −x− c

as Tb∗ ∧T∞ = 0. Similarly, the short entry problem optimal interval is IJ := (−∞, d∗), where d∗ is

the solution to equation (3.2.26). Taking â = −∞ and b̂ = d∗, for x < d∗ the expectation is

Ex
[
e−r̂(T−∞∧Td∗ )ĥ

(
XT−∞∧Td∗

)]
= Ex

[
e−r̂ Td∗ ĥ

(
XTd∗

)]
= ĥ(d∗)Ex

[
e−r̂ Td∗

]
=
VS(d∗) + d∗ − ĉ

û(d∗)
û(x)

and for x ≤ d∗,
Ex
[
e−r̂(T−∞∧Td∗ )ĥ

(
XT−∞∧Td∗

)]
= VS(x) + x− ĉ.

Taking into account the long problem, the optimal trading strategy for the short problem should
not be too surprising:

In this instance, b∗ < d∗ and so the entry and exit problems do not conflict each other. The
trader should make a market order for a short position if their price process exceeds value d∗, ie.
x /∈ IJ , as the portfolio would be over-valued. Otherwise, they should do nothing and wait until
the portfolio value rises. Once a position has been entered, the trader must buy back their short
position if and when the portfolio value falls to b∗.

To conclude, a quick result on the impact of the transaction costs is presented.

Proposition 3.2.14. The value function VS is decreasing in the exit transaction cost c. The
optimal barrier level b∗ is decreasing in c, whilst d∗ is increasing in ĉ.
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Proof. Refer to Proposition 3.2.5 and Proposition 3.2.8 for ideas on the proof.

Remark 3.2.15. After repeating the arguments to calculate conditional expectations of the form

Ex
[
e−r(Ta∧Tb)h

(
XTa∧Tb

)]
= h(a)Ex

[
e−r Ta 11{Ta<Tb}

]
+ h(b)Ex

[
e−r Tb 11{Ta>Tb}

]
multiple times, the reader should have an awareness of the ease at which this can be done. By taking
an infinite end point, the expression simplifies massively and the calculation becomes routine. The
difficult and lengthy part of this section was not the computation of the value functions, but rather
finding the equations for the optimal levels b∗ and d∗.

3.3 Two-Sided Optimal Stopping Problem

This section aims to glue together the two trading strategies into one overarching problem. We
formulate two variants of the joint optimal stopping problems: the first considers a maximal profit
scenario and the second considers the earliest trading signal to enter a position.

To formulate this optimal stopping problem, we consider the two exit value functions for the long
and short problems

VL(x) = sup
τ

Ex
[
e−rτ (Xτ − c)

]
,

VS(x) = sup
τ

Ex
[
e−rτ (−Xτ − c)

]
.

We will also use the entry payoff functions h for both strategies, which we now denote by

ĥL(x) = VL(x)− x− ĉ and ĥS(x) = VS(x) + x− ĉ.

3.3.1 The Joint Problem: Maximal Value Strategy

This strategy is written down for a purely illustrative purpose; we do not solve the problem and
discuss why not. One possible way of combining the single-sided problems is to trade off the
strategy that produces the largest expected profit at entry. More precisely, consider the entry
performance criteria based on the maximum value of long and short strategies. Then we get

J (ν)(x) = Ex
[
e−r̂ν ·max

(
VL(Xν)−Xν − ĉ, VS(Xν) +Xν − ĉ

)]
= Ex

[
e−r̂ν ·max

(
ĥL(Xν), ĥS(Xν)

)]
as the entry performance criteria for the joint trading problem. The joint entry value function is
defined as

J(x) = sup
ν

Ex
[
e−r̂ν ·max

(
ĥL(Xν), ĥS(Xν)

)]
. (3.3.1)

The best we can say about the combined value function J is that

max
[
JL(x), JS(x)

]
≤ J(x)

by convexity of the maximum function. To make further progress with this two-sided stopping
problem, we would need to know more about the maximal distribution. Another way to go about
tackling this problem is by brute force, using Monte Carlo simulation to simulate the value func-
tions.

3.3.2 The Joint Problem: First Execution Strategy

The strategy in this case is designed to pick the market order signal that occurs the earliest. We
can formulate this problem independently of time as follows:

J (ν)(x) = Ex
[
e−r̂ α

{
VL(Xα)−Xα − ĉ

}
11{α≤υ} +

{
e−r̂ υVS(Xυ) +Xυ − ĉ

}
11{α≥υ}

]
= Ex

[
e−r̂ αĥL(Xα) 11{α≤υ}

]
+ Ex

[
e−r̂ υĥS(Xυ) 11{α≥υ}

]
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is the performance criteria of the investor, where ν = α∧υ is the minimum of two random stopping
times. Then we can define the joint problem entry value function as

J(x) = sup
ν

{
Ex
[
e−r̂ αĥL(Xα) 11{α≤υ}

]
+ Ex

[
e−r̂ υĥS(Xυ) 11{α≥υ}

]}
.

Note that by the set up, the maximal value trading strategy (3.3.1) will always be larger than the

first execution strategy. From the single-sided problems, we know for y = ψ̂(x) that

Ex
[
e−r̂ Tâ ĥL(XTâ) 11{Tâ≤Tb̂}

]
+ Ex

[
e−r̂ Tb̂ ĥS(XTb̂

) 11{Tâ≥Tb̂}

]
= ĥL(â)Ex

[
e−r̂ Tâ 11{Tâ<Tb̂}

]
+ ĥS(b̂)Ex

[
e−r̂ Tb̂ 11{Tâ>Tb̂}

]
= ĥL(â)

u(x)v(b̂)− u(b̂)v(x)

u(â)v(b̂)− u(b̂)v(â)
+ ĥS(b̂)

u(â)v(x)− u(x)v(â)

u(â)v(b̂)− u(b̂)v(â)

= v̂
(
ψ̂(y)

)[
ĤL(â)

yb̂ − y
yb̂ − yâ

+ ĤS(b̂)
y − yâ
yb̂ − yâ

]
.

with yâ = ψ̂(â) and yb̂ = ψ̂(b̂). In the spirit of the single-sided problems, we define

Ŵ (y) := sup
{(yâ,yb̂):yâ<y<yb̂}

[
ĤL(yâ)

yb̂ − y
yb̂ − yâ

+ ĤS(yb̂)
y − yâ
yb̂ − yâ

]
, y > 0,

and make the claim that

J(x) = v̂(x)Ŵ
(
ψ̂(x)

)
, (3.3.2)

where Ŵ is now the smallest concave majorant of ĤL and ĤS together. Clearly Ŵ dominates
both ĤL and ĤS by definition so Ŵ should be at least as large as max(ĤL, ĤS). We plot the
maximum here, to get an idea for the form of Ŵ .

The parameters used for the OU are: θ = 0.8, µ = 0.1, σ = 1.25. The parameters for the trading
framework are: r = 0.2, r̂ = 0.2, , c = 1, ĉ = 1.
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Figure 3.5: The Joint Problem: ĤL ,ĤS and Ĥmax

Based on this plot, we propose that Ŵ is a three part function that traces ĤL initially and traces
ĤS for larger y values. In between, Ŵ will be a line segment that is tangential to both ĤL and
ĤS at their respective points. The next figure uses the same parameters as the previous figure and
demonstrates the form of the smallest concave majorant Ŵ .
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Figure 3.6: The Joint Problem: Ŵ

So the entry value function will also be a three part function by identity (3.3.2). We now give an
interpretation of the trading strategy:

Suppose that
ẑL = ψ̂(dL) and ẑS = ψ̂(dS),

where dL and dS are the optimal barriers that can be found by solving for the tangential points
to the respective Ĥ-functions. There are three regions where the initial price of the portfolio x
can be. By the single-sided problems, the optimal entry intervals for both problems will now be
IS := (−∞, dS) and IL := (dL,∞) for the short and long problems respectively. Note that dL < dS
by the set up of the problems (refer to the single-sided problems to see this).

If x < dL, then x /∈ IL so the optimal strategy in this case would be to enter a long position. On
the other hand, if x > dS , then x /∈ IS so the optimal strategy is to enter a short position. Finally,
if dL < x < dS , then x ∈ IL and x ∈ IS and so the optimal strategy is to just wait until the
process breaches one of the levels dL or dS . Summarising this,

optimal strategy =


x < dL, enter a long position,

dL < x < ds, wait,

x > dS , enter a short position.

(3.3.3)

The exit trading strategy is unchanged from the single-sided strategies. If a short position is
entered into, then the short exit level will be used for the optimal buy back level. If a long position
is entered into, then the long exit level will be used to determine the optimal sell level.
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Chapter 4

An Application of the Optimal
Stopping Problems

This chapter is motivated by the practise of pairs trading in finance. We feel obliged to give at
least one working example with the Ornstein-Uhlenbeck process given its popularity in industry.
In addition, the assumptions postulated in Chapter 3 were made with the OU process in mind,
so it is only fair to have an application here. We will explore the equivalence between the long
and short problems and also provide a pictorial example for the long optimal stopping problem.
Expressions for the transition density and other probabilistic constructs are also mentioned in this
part.

4.1 The Ornstein-Uhlenbeck Process

Let (Ω,F ,P) be a probability space under which (Bt)t≥0 is a Brownian motion. Consider the
stochastic process X = (Xt : Ω→ R)t≥0 defined via the SDE

dXt = θ (µ−Xt) dt+ σ dBt, X0 ∈ R, (4.1.1)

where θ, σ > 0 and µ ∈ R are constants. A process satisfying this SDE is called an Ornstein-
Uhlenbeck process. The term θ (µ − Xt) is known as the drift coefficient and σ is the diffusion
coefficient. Often, the OU process is defined with µ = 0, in which case the long-term mean of the
process is zero. Below is an illustration of the OU process for µ = 0, θ = 0.2 and σ = 0.2 starting
at X0 = 0.
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Figure 4.1: The Ornstein-Uhlenbeck Process

The process is often referred to as mean-reverting, meaning it has a tendency to fall back to its
mean value. This behaviour arises due to the drift coefficient, which encourages the process to
always recenter itself. We can analyse this via the SDE: if the process X grows, then θ (µ−Xt) dt
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will contract and so the change in value dXt will decrease. Conversely if the process X shrinks in
value, then dXt will grow and the process will rise. Therefore, the mean-reverting behaviour is an
evident feature of this stochastic model.

The OU process is typically used to model the price spread on a pair of assets and is the most
famous example of a mean-reverting model. A standard price process would be set up like this:
suppose Y (1) and Y (2) are processes tracking the price of two highly correlated assets. The spread
on the assets is measured by X := Y (1)) − αY (2)), where α ∈ R≥0 rebalances the asset weights
appropriately. Assuming it is possible to statistically validate that the observed market data and
model are homologous, one can begin to fit the OU model parameters to the observed data set.
A standard method to do this is maximum likelihood estimation, which is not too difficult for the
OU process because of its Gaussian transition densities. Given that all of this can be done, the
optimal stopping problems can then be used to find the optimal barrier levels b∗ and d∗ to give a
StatArb trading strategy.

4.1.1 Fundamentals

In this part we scrutinise the OU process and confirm the results that have been developed in the
previous chapters. We also analyse the process and talk about its evolution and features.

Theorem 4.1.1. The Ornstein-Uhlenbeck process has a unique strong solution with continuous
paths almost surely. In addition, it falls into the class of diffusion processes.

Proof. For the OU process, we can pick the constant D = θ such that the Lipschitz condition in
inequality (2.1.4) is met:

|θ (µ− x)− θ (µ− y)|+ |σ − σ| = θ |x− y| ≤ D |x− y|.

Independence of the initial condition is guaranteed by choosing the initial value to be a constant
or a normal random variable independent of the driving BM. By Theorem 2.1.1, as the OU process
is an Itô diffusion, it follows that a unique strong solution exists with continuous paths almost
surely.

By a simple application of Itô’s lemma to f(Xt, t) = Xt eθt, it is not too hard to show that the
unique, strong solution to (4.1.1) in terms of the initial value X0 is

Xt = X0 e−θt + µ (1− e−θt) + σ

∫ t

0

e−θ(t−u) dBu, t ≥ 0. (4.1.2)

The solution can also be formulated in terms of an initial starting point Xs as

Xt = Xs e−θ(t−s) + µ (1− e−θ(t−s)) + σ

∫ t

s

e−θ(t−u) dBu, t ≥ s ≥ 0. (4.1.3)

The only source of randomness arises through the last term in both identities. It is widely known
that the stochastic integral of a deterministic function of time with respect to Brownian motion
is a centralised Gaussian process; see eg. [Shreve, 2004, Theorem 4.4.9, page 149]. Under the

assumption that the initial condition Xs ∼ N (µ, σ
2

2θ ) independently of (Bu)s≤u≤t, the state of the
OU process Xt itself is normally distributed. Here, N signifies the Gaussian distribution.

By the results in Chapter 2, one can conclude that the OU process is strongly stationary. An
alternative proof of this is given to explore the mean and covariance of the process.

Theorem 4.1.2. The Ornstein-Uhlenbeck process is a strongly stationary process.

Proof. Strong stationarity holds for a Gaussian process if and only if the first moment is con-
stant and the joint second moment only depends on the difference between the time indices
[Percival and Walden, 1993, page 38]. In other words, for process X

µ := E[Xt] = E[X0],

γ(τ) := Cov[Xt, Xt+τ ] = Cov[X0, Xτ ], t, τ ∈ R≥0,
(4.1.4)
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where µ and γ(τ) are both finite. By symmetry of covariance, it follows that γ(τ) ≡ γ(−τ) and
so we only need to consider γ as a function of τ ≥ 0. Any process satisfying condition (4.1.4) is
usually called a weakly stationary process.

By identity (4.1.2), using that the stochastic integral is a zero-mean martingale,

E[Xt] = E[X0] e−θt + µ (1− e−θt) = µ, t ∈ R≥0,

and by (4.1.3), using the independent increments property of a Brownian motion and that Xt

depends on BM increments up to time t, it follows that

E
[
XtXt+τ

]
= E

[
Xt

(
Xt e−θτ + µ (1− e−θτ ) + σ

∫ t+τ

t

e−θ(t+τ−u) dBu

)]

= E
[
X2
t

]
e−θτ + E[Xt]µ (1− e−θτ ) + E[Xt]E

[
σ

∫ t+τ

t

e−θ(t+τ−u) dBu

]

=

(
σ2

2θ
+ µ2

)
e−θτ + µ2 (1− e−θτ ).

Cov[Xt, Xt+τ ] = E
[
XtXt+τ

]
− µ2

=
σ2

2θ
e−θτ , t, τ ∈ R≥0.

So the OU process has a constant and finite expectation for all times. Similarly, the covariance is
finite and is only a function of the time difference τ ; the other parameters are constants. Hence,
the process is Gaussian and weakly stationary which implies it is also strongly stationary.

The impact of each parameter can now be deduced: the long-term mean of the process is controlled
by µ and this is confirmed via identity (4.1.2) by taking t→∞, the variance is given by Var[Xt] =
σ2

2θ so σ influences the volatility and the decay rate of the covariance is commanded by θ.

Remark 4.1.3. By Section 2.1, we also know the OU process is Markovian. It is rather remarkable
to hear the OU process is the only Gaussian, Markov and stationary process that is continuous in
probability, up to a translation of a constant, as mentioned in [Breiman, 1968, page 350].

4.1.2 Further Properties

We now look at some properties of the OU process from Sections 2.2 and 2.3. First, we present
a result of great significance due to its application in some PDE proofs and optimal stopping
problems. The relevance of this result is underplayed in this thesis, but simply put, the optimal
stopping problems would not make much sense otherwise.

Proposition 4.1.4. The hitting time for an OU process is almost surely finite. That is, for hitting
time

τK = inf{t ≥ 0 |Xt = K},

τK <∞ a.s..

Proof. By Levy’s characterisation of Brownian motion, the OU process in (4.1.2) can be shown to
be equal in distribution to the process Y = (Yt)t≥0, Y0 = X0 defined as

Yt = e−θt
[
X0 + µ (eθt − 1) + σWu(t)

]
, (4.1.5)

with W = (Wt)t≥0 a standard BM independent of everything and u(t) = 1
2θ (e2θt − 1). This result

is also known as Doob’s transformation of the OU process. [Herrmann and Tanré, 2016, page 19]
then shows the hitting time for an OU process is equal in distribution to u−1(τ), where τ is a
hitting time for W . The statement then follows as the FPT for a BM is finite almost surely.
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Next we detail some of the quantities introduced in the earlier chapters for reference and complete-
ness. The transition density function is

p(x | y, t) =

√
θ

πσ2(1− e−2θt)
exp

(
− θ

σ2

(
(y − µ)− (x− µ)e−θt

)2
1− e−2θt

)
,

which can be found by solving the KBE in system (2.4.5). One can also check that p satisfies the
PDE and initial conditions that we proposed. A contrasting but simpler method to find p is to
notice that the OU process is normally distributed, so the result can be deduced by transforming
a Gaussian density function. By Proposition 2.2.3, the infinitesimal generator for the Ornstein-
Uhlenbeck process is

Af(x) = θ (µ− x)
∂f(x)

∂x
+

1

2
σ2 ∂

2f(x)

∂x2
,

for suitable f . We will now use this to solve for the functions u and v in Chapter 3, motivated by
[Capocelli and Ricciardi, 1971, Section 6, page 7]. Consider the highly non-trivial Sturm-Liouville
PDE problem

θ(µ− x)
∂w(x)

∂x
+

1

2
σ2 ∂

2w(x)

∂x2
= rw(x).

where w is the eigenfunction of the equation with eigenvalue r. Note that w(x) := w(x, r), but we
suppress the dependence here for ease of notation. Rewriting the PDE, we have

∂2w(x)

∂x2
+

2θ (µ− x)

σ2

∂w(x)

∂x
− 2r

σ2
w(x) = 0 (4.1.6)

Let x− µ =
(
1
θσ

2z
) 1

2 so that (x− µ)2 = 1
θσ

2z := kz. Then under this substitution,

∂z

∂x
=

2(x− µ)

k
and

∂2z

∂x2
=

2

k
.

By the chain rule, we have

∂w

∂x
=
∂w

∂z

∂z

∂x
=

2(x− µ)

k

∂w

∂z
,

∂2w

∂x2
=
∂2w

∂z2

(
∂z

∂x

)2

+
∂w

∂z

∂2z

∂x2
=

4(x− µ)2

k2
∂2w

∂z2
+

2

k

∂w

∂z
.

Inputting these derivatives into equation (4.1.6), the differential equation becomes

4(x− µ)2

k2
∂2w

∂z2
+

(
2

k
− 4(x− µ)2

k2

)
∂w

∂z
− 2r

σ2
w = 0.

(
k =

1

θ
σ2

)
There is currently a mismatch of the terms with the differential equation being expressed in terms
of x and z but we can remedy this to get, upon cancelling of some constants,

z
∂2w

∂z2
+

(
1

2
− z
)
∂w

∂z
− r

2θ
w = 0.

(
x− µ = (kz)

1
2

)
Here, the function w is now a function of z and not x. We make an abuse of notation by writing
w(z), which should really be written as w

(
(µ+(kz)

1
2

)
. One final set of transformations are required

to achieve a familiar PDE. Let

w(z) = e
z
2 u(z) and z =

ξ2

2
.

Then again by the chain rule,

∂w

∂z
=
∂w

∂ξ

∂ξ

∂z
=

1

ξ

∂w

∂ξ
,

∂2w

∂z2
=
∂2w

∂ξ2

(
∂ξ

∂z

)2

+
∂w

∂ξ

∂2ξ

∂z2
=

1

ξ2
∂2w

∂ξ2
− 1

ξ3
∂w

∂ξ
,

(4.1.7)
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and so

∂2w

∂ξ2
− ξ ∂w

∂ξ
− r

θ
w = 0.

(
z =

ξ2

2

)
Again, we make an abuse of notation by writing u(ξ) in place of u

(
ξ2

2

)
. Reverse engineering the

set of equations (4.1.7) in terms of our transformations gives

∂w

∂ξ
=

[
ξ

2
u+

∂u

∂ξ

]
e
ξ2

4 ,

∂2w

∂ξ2
=

[(
u

2
+
ξ

2

∂u

∂ξ
+
∂2u

∂ξ2

)
+
ξ

2

(
ξ

2
u+

∂u

∂ξ

)]
e
ξ2

4 ,

and thus we are left with the final partial differential equation

∂2u

∂ξ2
+

(
1

2
− ξ2

4
− r

θ

)
u = 0,

(
w(z) = e

z
2 u(z)

)
.

This is called the Weber equation and has known solutions in terms of special parabolic cylinder
or Weber-Hermite functions. More details can be found in [Bateman, 1953, Section 8.2, page 116].
Undoing all the transformations leads to the solution in terms of our initial variable x.

The solution is presented in two differing forms that are convenient. [Leung and Li, 2015, Section
3, page 6] quote the two linearly independent solutions to be

u(x) =

∫ ∞
0

y
a
θ−1e

√
2θ
σ2

(x−µ)y− y
2

2 dy,

v(x) =

∫ ∞
0

y
a
θ−1e

√
2θ
σ2

(µ−x)y− y
2

2 dy.

(4.1.8)

To show the second solution form, we present the FPT for the OU process, where the numera-
tor of the hitting time formula is a solution to the Sturm-Liouville problem by equation (3.2.2).
[Ricciardi and Sato, 1988, Equations 1(a) and 1(b), page 3] calculate the FPT; we extend their
work to include an OU process with non-zero drift to get

Ex
[
e−aτc

]
=



exp

[
κ

2

{
(x− µ)2 − (c− µ)2

}]D− aθ (√2κ(µ− x)
)

D− aθ
(√

2κ(µ− c)
) , x ≤ c,

exp

[
κ

2

{
(x− µ)2 − (c− µ)2

}]D− aθ (√2κ(x− µ)
)

D− aθ
(√

2κ(c− µ)
) , x ≥ c,

where κ = θ
σ2 and Da is a parabolic cylinder function [Borodin, 2002, Appendix 2, Section 9,

page 639]. The other formulation of the solution in terms of Hermite functions can be found in
[Ditlevsen, 2007, page 5].

4.1.3 Analytical Results

Assumption 3.2.1 can be verified for this u and v. For example considering the integral solution u,
we can show it is strictly increasing and convex:

u′(x) =
√

2θ
σ2

∫ ∞
0

y
a
θ e

√
2θ
σ2

(x−µ)y− y
2

2 dy > 0,

u′′(x) = 2θ
σ2

∫ ∞
0

y
a
θ+1e

√
2θ
σ2

(x−µ)y− y
2

2 dy > 0,

by an application of Leibniz’s rule. Furthermore, the integrands are non-negative, continuous
functions and the integral preserves these properties. We let the reader check that v is strictly
decreasing and convex. Therefore, the work in Chapter 3 completely holds and the framework
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applies to the OU process. We plot the value functions below for the long and short problems to
visualise the expected payoffs and confirm the properties of H, Ĥ,W and Ŵ .

The parameters used for the OU are: θ = 0.3, µ = 0.8, σ = 2. The parameters for the trading
framework are: r = 0.2, r̂ = 0.2, , c = 1, ĉ = 1.
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Figure 4.2: The Ornstein-Uhlenbeck Process: Long Exit Problem
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Ĥ Ŵ J
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Figure 4.3: The Ornstein-Uhlenbeck Process: Long Entry Problem

Here we see that the long entry value function JL is decreasing in ψ̂(x) and thus in the portfolio
value x. This is in line with what we would expect: if the traders’ portfolio of assets becomes
over-valued, the return they can make by taking a long position diminishes.
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Figure 4.4: The Ornstein-Uhlenbeck Process: Short Exit Problem

43



2 4
y= ̂ψ̂x)

2

4

̂z= ̂ψ̂d * )

Ĥ Ŵ
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Figure 4.5: The Ornstein-Uhlenbeck Process: Short Entry Problem

Likewise, we see the opposite for the short entry problem: the value function JS increases with
the value of assets. This is because the trader will enter a short position with an overpriced
portfolio.

One unique feature of the Ornstein-Uhlenbeck process is its symmetry, which does not hold for
most other stochastic processes. Suppose X follows an OU process as postulated in SDE (4.1.1).
Define the mirror image process Y = {Yt := −Xt}t≥0. Then

dYt = −dXt

= −θ (µ−Xt) dt− σ dBt
= −θ (µ+ Yt) dt+ σ dB̃t

= −θ (−µ̃+ Yt) dt+ σ dB̃t

= θ (µ̃− Yt) dt+ σ dB̃t.

Therefore, Y is an OU process with mean µ̃ = −µ being driven by a Brownian motion B̃t = −Bt.
Observe in Figures 4.2-4.5 the symmetry that can be seen between the long and short problems.
We now describe why this harmony between both problems is to be expected. The long exit
performance criteria was stated as

V
(τ)
L (x) = Ex

[
e−rτ (Xτ − c)

]
,

whilst the short exit performance criteria was specified by

V
(τ)
S (x) = Ex

[
e−rτ (−Xτ − c)

]
.

Given the mirror process Y which starts at Y0 = y = −x, we have that

V
(τ)
L (x, µ) = Ex

[
e−rτ (Xτ − c)

]
= E−y

[
e−rτ (−Yτ − c)

]
= V

(τ)
S (−y, µ̃),

where the dependence on the long-term mean is highlighted. Subsequently, VL(x, µ) = VS(−y, µ̃),
which is what Theorems 3.2.4 and 3.2.11 say. To go from the long exit problem to the short
one, the pair (x, µ) is changed to (−x,−µ) and the solution u changes accordingly to v (see the
definition of u and v in identity (4.1.8)). Correspondingly, the symmetry of the exit value function
translates to the entry value functions and

J
(ν)
S (x, µ) = Ex

[
e−r̂ν

(
VS(Xν) +Xν − ĉ

)]
= E−y

[
e−r̂ν

(
VS(−Yν)− Yν − ĉ

)]
= E−y

[
e−r̂ν

(
VL(Yν)− Yν − ĉ

)]
= J

(ν)
L (−y, µ̃).

This yields that JS(x, µ) = JL(−y, µ̃). Based on this analysis, studying the long problem is
identical to studying a variant of the short problem and so the need to study both problems is
unnecessary.
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Finally, we provide an example of the long trading strategy. We use the OU model parameters
θ = 0.8, µ = 0.1, σ = 1 and r = 0.2, r̂ = 0.2, c = 1, ĉ = 1. The optimal levels are also calculated,
with d∗ − 1.45 and b∗ = 1.62.
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Figure 4.6: The Ornstein-Uhlenbeck Process: Long Trading Example

The picture illustrates that a trade is entered at about t = 2.7 and is exited at around t = 9. A
market order for a long position is placed once the price process falls below level d∗. Then, the
strategy is to hold the basket of securities until they exceed the value b∗.
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Chapter 5

Conclusion

While many stochastic control problems are relatively easy to write down, finding a solution to
them is a highly non-trivial exercise requiring some heavy machinery to be built up. Of course,
one can work around this using computational methods, but obtaining a closed form solution is
much more satisfactory. Nevertheless, we have managed to find the solution to the single-sided
optimal stopping problems for both a long and short strategy. The optimal execution levels can
be found computationally for the OU process to yield the best trading strategy. Although we did
not analyse this, by the simplicity of the solution to the Sturm-Liouville problems, the optimal
execution levels for the ABM and GBM should be able to be found explicitly.

Our efforts to generalise the framework to arbitrary diffusion processes had its advantages and
disadvantages. The obvious benefit to this approach was that the optimal stopping problems could
be applied to any price process meeting the assumptions made. An example where this extension
could be useful is in the study of American perpetual option. The drawback of this approach
was that a lot of assumptions began to creep into the formulation of the solution. There is a fine
balance between having too many assumptions and not enough generality; we believe that this
level of assumption was enough but not too overloading.

We also gained a better understanding of the duality that exists between a lot of the concepts
described. For example, the relation between Laplace transformations and solutions to the PDE
problems in Chapter 2 or the equivalence of the value functions for processes that have a mirror
analogue in Chapter 4. In addition, we did all of this whilst maintaining mathematical rigour in
the thesis. A common theme in papers and books describing optimal stopping problems is that a
lot of the understanding in the build up to the problem is lost, mainly due to the sheer depth of
the theory. We attempted to break this trend to give a more complete picture to the reader.

The progress on the joint problem is something that should be investigated as a future problem.
It would have been nice to be able to have found the optimal entry equations to determine the
parameters dL and dS . Although our analysis on the joint problem was minimal, the framework
behind it has been provided so completing the study of the problem should be reasonable. Another
area worth looking into is the effect of the problem and diffusion process parameters on the value
function. This would really help in understanding the forms of H, Ĥ,W and Ŵ . Another path of
research is to investigate the properties of the optimal stopping time solution. It would be nice to
have some idea of when we should expect to enter to exit the trade. However, the distributions of
stopping times are notoriously complicated so this might be challenging.
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Appendix A

Supplementary Examples

A.1 Examples of Diffusion Processes and Their Properties

This section of the Appendix considers two other popular stochastic processes: the arithmetic
and geometric Brownian motions. We detail their defining stochastic differential equations, the
solutions to their SDEs, expressions for their transition probability densities and first hitting times
and further properties. Note that all of these processes have a unique strong solution and continuous
paths a.s. (Theorem 2.1.1) and are Itô diffusions (Definition 2.1.2).

In Section 2.4, we claimed that two boundary conditions in equation (2.4.5) for the transition
density function were reasonable assumptions. These boundary conditions are true for the trio of
stochastic processes, which are in essence a monotone transform of the normal distribution that
decays at ±∞. The transition density formulas can be determined by also leveraging the normal
distribution relationship. An alternative method, albeit slightly more challenging, is to solve the
Fokker-Planck equation to realise expressions for p.

Denote by X = (Xt)t≥0 to be a stochastic process and τc to be the first time that X hits the level
c, ie. τc is a stopping time defined as

τc = inf{t ≥ 0 |Xt = c}.

Then, the formula to calculate Ex[e−aτc ] can be found from equation (3.2.2).

A.1.1 Arithmetic Brownian Motion

An arithmetic Brownian motion is defined as a process satisfying SDE

dXt = µdt+ σ dBt,

where µ ∈ R and σ > 0. The solution is

Xt = X0 + µt+ σBt

with initial condition X0 ∈ R. Its transition density function is

p(x | y, t) =
1√

2πσ2t
exp

(
−1

2

(x− y + µt)2

σ2t

)
and the first hitting time for an ABM is

Ex
[
e−aτc

]
=


exp

{(√
µ2 + 2aσ2 − µ

) (x− c)
σ2

}
, x ≤ c,

exp

{(√
µ2 + 2aσ2 + µ

) (c− x)

σ2

}
, x ≥ c,

which can be verified by finding the solutions to the second-order linear Sturm-Liouville PDE

µ
∂w(x)

∂x
+
σ2

2

∂2w(x)

∂x2
= aw(x).

47



Alternatively, [Borodin, 2002, Part II, Section 2.2, page 295] provides this formula for a simplified
ABM which can be transformed to get this result. We now check the properties of the solution to
the PDE. Let us check them for

u(x) = exp
{(√

µ2 + 2aσ2 − µ
) x

σ2

}
.

The function is evidently continuous and positive. Furthermore, so long as a > 0

u′(x) =
1

σ2

(√
µ2 + 2aσ2 − µ

)
exp

{(√
µ2 + 2aσ2 − µ

) x

σ2

}
> 0,

u′′(x) =
1

σ4

(√
µ2 + 2aσ2 − µ

)2
exp

{(√
µ2 + 2aσ2 − µ

) x

σ2

}
> 0,

and so we have that u is strictly increasing and convex. These properties can also be checked for
v assuming a > 0. Finally, one can observe that choosing µ = 0 and σ = 1, we obtain formulae for
Brownian motion. Going forward, we will only consider ABMs for a > 0.

A.1.2 Geometric Brownian Motion

The geometric Brownian motion is one natural extension of an ABM and is defined by the
SDE

dXt = µXt dt+ σXt dBt

for µ ∈ R and σ > 0. The solution to this SDE is obtained using Itô’s lemma and is

Xt = X0 exp

((
µ− σ2

2

)
t+ σBt

)
,

with initial value X0 > 0. Unlike the arithmetic Brownian motion, the geometric counterpart is
a strictly positive process. For this reason, the analysis we have done needs to be shifted over to
the positive real line. The boundary points on this domain now reside at x = 0 and x = ∞. The
transition function density for a GBM is

p(x | y, t) =
1

y
√

2πσ2t
exp

(
− 1

2

(
log( yx )− (µ− σ2

2 )t
)2

σ2t

)

and the first hitting time is

Ex
[
e−aτc

]
=


(x
c

)√ν2+2a/σ2−ν
, x ≤ c,( c

x

)√ν2+2a/σ2+ν

, x ≥ c,
(A.1.1)

where µ = σ2

2 +σ2ν, which can be confirmed by finding the solutions to the Sturm-Liouville/Euler-
Cauchy PDE

µx
∂w(x)

∂x
+

1

2
σ2x2

∂2w(x)

∂x2
= aw(x).

[Borodin, 2002, Part II, Section 9.2, page 622] quotes this formula for a GBM starting at X0 = 1.
Their result can be transformed to an arbitrary GBM starting at X0 > 0 by using the rescaled
process Y = (Yt := Xt

X0
)t≥0 to yield equation (A.1.1). We now check the properties of the solution

to the PDE. Let us take the solution

u(x) = x
√
ν2+2a/σ2−ν .

This function is well-defined for x > 0 and is continuous and positive in this region. Assuming
a > max(2σ2(1 + ν), 0), the derivatives are

u′(x) =
(√

ν2 + 2a/σ2 − ν
)
x
√
ν2+2a/σ2−ν−1 > 0,

u′′(x) =
(√

ν2 + 2a/σ2 − ν
)(√

ν2 + 2a/σ2 − ν − 1
)
x
√
ν2+2a/σ2−ν−2 > 0,
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and so u is strictly increasing and convex. This analysis can be repeated for the solution

v(x) =

(
1

x

)√ν2+2a/σ2+ν

,

where v is strictly decreasing and convex so long as a > max(2σ2(1−ν), 0). Thus, we can conclude
that the properties of Assumption 3.2.1 are true given that a > 2σ2 · max(1 − ν, 1 + ν). Going
forward, we will assume that a satisfies this inequality.

A.2 Additional Plots

Auxiliary plots are given for an arithmetic Brownian motion. The parameters used for the ABM
are: µ = −0.2 , σ = 2 and for the trading framework: r = 0.4 , r̂ = 0.4 , c = 0.1 , ĉ = 0.1.
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Figure A.1: Arithmetic Brownian Motion: Long Exit Problem
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Ŵ J

Figure A.2: Arithmetic Brownian Motion: Long Entry Problem

1 3 5
y=ψ(x)

−3

−2

−1

1

z=ψ(b * )

H W

1 2 3 4 5 6
y=ψ(x)

−4

−2

0

2

4

6

z=ψ(b * )

H W V

5 10 15 20 25 30 35 40
y=ψ(x)−1

1

3

5

7

W V

Figure A.3: Arithmetic Brownian Motion: Short Exit Problem
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Figure A.4: Arithmetic Brownian Motion: Short Entry Problem

These plots should be seen as additional evidence to support the general framework developed in
Chapter 3 regarding the solutions to the optimal stopping problems. The main difference between
the OU plots in Figures 4.2-4.5 and these plots are the scale, where the ABM value functions
dwarf the OU value functions. Like with the OU process, the symmetry between the long and
short problems is also observable and is explained by a similar argument. Given that Y = −X,
and that dXt = µdt+ σ dBt,

dYt = −µdt− σ dBt
= µ̃ dt+ σ dB̃t

= µ̃ dt+ σ dB̃t

for µ̃ = −µ and B̃t = −Bt. Hence, the same arguments used in Section 4.1.3 applies.
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Appendix B

Mathematical Results

This chapter deals with the more technical details of proofs that are omitted from the main text
and definitions which have been excluded or assumed to be known by the reader. The results used
within the main text are detailed and extensions to these results are laid out to describe more
general theorems.

B.1 Real Analysis and Probability Theory

The definitions below concern the variation of a function, with Lipschitz continuity being the most
restrictive definition. Any function satisfying either of the two conditions below is automatically
uniformly continuous by definition.

Definition B.1.1 (Hölder continuity). A function f : R 7→ R is Hölder continuous or satisfies the
Hölder condition if for constants K,α ∈ R>0

|f(x)− f(y)| ≤ K|x− y|α, x, y ∈ R.

If we choose α = 1, then we get Lipschitz continuity. Therefore, any Lipschitz continuous function
must also be Hölder continuous.

Definition B.1.2 (Lipschitz continuity). A function f : R 7→ R is Lipschitz continuous if for
constant K ∈ R>0

|f(x)− f(y)| ≤ K|x− y|, x, y ∈ R.

The next two results concern functional properties used in the thesis.

Lemma B.1.3 (Inverse derivative). Let f : R 7→ R be a differentiable function and suppose that
its inverse function f−1 exists and is well-defined. Then

d

dy
f−1(y) =

1

f ′(f−1(y))
.

Proof. Suppose y = f(x). Then dy
dx = f ′(x) and

d

dy
f−1(y) =

d

dx
f−1(f(x)) · dx

dy
=
dx

dx
· 1
dy
dx

=
1

f ′(x)
=

1

f ′(f−1(y))
.

Lemma B.1.4 (Generalised L’Ĥopital’s Rule). For real-valued functions f and g which are dif-
ferentiable on some open interval,

lim inf
x→a

f ′(x)

g′(x)
≤ lim inf

x→a

f(x)

g(x)
≤ lim sup

x→a

f(x)

g(x)
≤ lim sup

x→a

f ′(x)

g′(x)

with g(x) 6= 0 close to a.
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Proof. The proof of this fact comes from Cauchy’s mean value theorem applied to some parts of
the proof to L’Ĥopital’s rule. By using this, one can show that, for example

lim sup
x→a

f(x)

g(x)
≤ lim
x→a

f ′(x)

g′(x)

and similarly for the infimum counterpart. The inequalities can then be achieved by using the
definitions of inf and sup.

Another theorem implemented a few times is Leibniz’s rule; we recommend the reader understands
how to apply this rule. Lastly, we describe the nifty independence lemma. Often, when given
a conditional expectation which cannot be simplified, this lemma comes to hand to untangle
calculations.

Lemma B.1.5 (Independence lemma). Given a sub-σ-algebra G ⊆ F and two random variables,
X independent of G and Y a G-measurable random variable, then for arbitrary function f

E[f(X,Y ) | G] = g(Y ),

where g(y) := E[f(X, y)] is an unconditional expectation.

Proof. The proof is not provided, as it is not in [Shreve, 2004, Lemma 2.3.4, page 73] either.
However, the statement of the lemma in more generality can at least be found in the text.

B.2 Stochastic Analysis and the Markov Property

This part states some fundamental results within stochastic analysis and Markov theory. Some
other results not mentioned here that we use include the optional stopping theorem and the mar-
tingale property of the Itô integral for square-integrable functions.

Doob’s lemma is a useful instrument that relates the σ-field inclusivity of two functions f and h
to their functional relationship. The result is also known as the Doob-Dynkin lemma.

Lemma B.2.1 (Doob’s lemma). Suppose f and h are measurable functions between the measurable
spaces (Ω,F) and (R,B(R)). Then the following are equivalent:

1. σ(f) ⊆ σ(h),

2. there exists a measurable function g : (R,B(R))→ (R,B(R)) such that f = g ◦ h.

Proof. See [Rao, 2006, Propostion 3, page 8] for a comprehensive proof.

As seen in Chapter 2, there are many different formulations of the Markov property; having some
formulations are more convenient than others. Doob’s lemma will be used to derive another
formulation of the Markov property.

Lemma B.2.2 (Markov property). Let f : R → R be bounded and measurable. A stochastic
process X = (Xt)t≥0 is Markov if and only if for arbitrary function g,

E
[
f(Xt) | Fs

]
= g(Xs), s ≤ t.

Proof. We start by proving the only if direction. Suppose X is Markov and satisfies Definition
2.1.5. By properties of conditional expectation, we know that E[f(Xt) |Xs] is measurable with
respect to σ(Xs). So by an application of Doob’s lemma, this holds if and only if there exists a
measurable function g such that

E
[
f(Xt) |Xs

]
= g(Xs).

Hence, we get the statement. To prove the if direction, by taking the conditional expectation with
respect to Xs, we get

E
[
f(Xt) |Xs

]
= E

[
E
[
f(Xt) | Fs

] | Xs

]
= E

[
g(Xs) |Xs

]
= g(Xs)

and by definition of g(Xs) in the statement, the proof is complete.
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The next result introduced is the strong Markov property, an extension of the standard Markov
property. The result is identical in all aspects apart from the time index being replaced with a
stopping time. Amazingly, all Itô diffusions satisfy the strong Markov property.

Definition B.2.3 (Strong Markov property). A process X = (Xt)t≥0 has the strong Markov
property if for any f : R→ R, bounded and measurable and stopping time τ <∞ a.s.,

E
[
f(Xτ+s) | Fτ

]
= EXτ

[
f(Xτ+s)

]
, 0 ≤ s,

where convention dictates that as in Definition 2.1.5, we usually write that EXτ
[
f(Xτ+s)

]
=

E
[
f(Xτ+s) |Xτ

]
. Details on the σ-algebra can be found in [Øksendal, 2013, Definition 7.2.3, page

111].

Theorem B.2.4 (Strong Markov property). Itô diffusions have the strong Markov property.

Proof. See [Øksendal, 2013, Theorem 7.2.4, page 111] as the proof is beyond the scope of this
thesis.

Another useful formula to have for stopping times is Dynkin’s formula. The result is extremely
useful as it involves an integral evaluated at a stopping time.

Proposition B.2.5 (Dynkin’s formula). Let X be an Itô diffusion starting at x and f : R → R.
If f ∈ C2

0 (R) and Ex[τ ] <∞, then

Ex[f(Xτ )] = f(x) + Ex
[∫ τ

0

Af(Xs) ds

]
.

Proof. By the proof of Proposition 2.2.3,

Mx
t (f) = Ex[f(Xt)]− f(X0)− Ex

[∫ t

0

(
b(Xs)

∂f(Xs)

∂x
+

1

2
σ2(Xs)

∂2f(Xs)

∂x2

)
ds

]

= Ex
[∫ t

0

σ(Xs)
∂f(Xs)

∂x
dBs

]
= 0

is a martingale for t ∈ R≥0, by square-integrability of the final integral. By the optional stopping
theorem, we can also argue that the stopped integral formula∫ τ

0

σ(Xs)
∂f(Xs)

∂x
dBs =

∫ ∞
0

11{s<τ} σ(Xs)
∂f(Xs)

∂x
dBs, (B.2.1)

is martingale for all stopping times τ . Hence, Mx
τ (f) still martingale under stopping time τ and

Ex[f(Xτ )]− f(X0)− Ex
[∫ τ

0

(
b(Xs)

∂f(Xs)

∂x
+

1

2
σ2(Xs)

∂2f(Xs)

∂x2

)
ds

]
= 0.

Realising the expression for a generator, the proposition is proved.

B.3 Partial Differential Equations and Their Stochastic
Representation

The theorems here are mostly extensions to the PDE results from the main text. The PDEs
considered here include non-homogeneous terms and also linear terms (without a derivative) in
the solution variable u. The first result is an extension of Kolmogorov’s equation and the second
result extends Dirichlet’s problem.
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Theorem B.3.1 (Kolmogorov’s equations). Suppose X = (Xt)t≥0 is an Itô process satisfying
SDE

dXt = b(t,Xt) dt+ σ(t,Xt) dBt.

Let P (x, t | y, u) be a transition function for X specified from Definition 2.2.1 as

P (x, t | y, u) = P(Xu < y |Xt = x)

and assume that it is smooth enough such that its transition density function p(x, t | y, u) =
∂
∂yP (x, t | y, u) exists. Then the density p satisfies both the Kolmogorov forward differential equation

in the forward variables (u, y)

∂p

∂u
= − ∂

∂y

(
b(u, y)p

)
+

1

2

∂2

∂y2
(
σ2(u, y)p

)
, p(t, x | t, y) = δy(x),

and the Kolmogorov backward differential equation in the backward variables (t, x)

−∂p
∂t

= b(t, x)
∂p

∂x
+

1

2
σ2(t, x)

∂2p

∂x2
, p(t, x | t, y) = δy(x).

Proof. The proof of Kolmogorov’s backward equation is shown in Section 2.2 using a time homo-
geneous transition function. To adapt the proof to a non-stationary transition function should be
possible so this is left as an exercise. The proof of Kolmogorov’s forward equation is not given,
but is extensively covered in [Pavliotis, 2014, Chapter 4, page 48].

One may wonder why the backward equation (2.2.6) differs by a minus sign to the KBE. Since
we were discussing time homogeneous processes, our definition of the transition function was
P (x, t | y, u) =: P (x | y, u− t) so the minus sign crept in via the derivative of u− t.

Theorem B.3.2 (Feynman-Kac). Let T > 0 and X = (Xt)t≥0 be an Itô process started at Xs = x
satisfying the PDE

dXt = b(t,Xt) dBt + σ(t,Xt) ds, t ∈ [s, T ].

Given that the functions r, f, ψ meet the conditions of [Mao, 2008, Problem (iii), page 82], for
(t, x) ∈ [0, T ]× R define

u(t, x) := Ex
[

exp

(
−
∫ T

s

r(t,Xt) dt

)
ψ(XT )

]
+ Ex

[∫ T

s

exp

(
−
∫ t

s

r(v,Xv) dv

)
f(t,Xt) dt

]
.

Then the function u(t, x) satisfies

∂u(t, x)

∂t
+Atu(t, x)−r(t, x)u(t, x) + f(t, x) = 0, (t, x) ∈ (0, T )× R,

u(T, x) = ψ(x), x ∈ R,
(B.3.1)

where At is a time-dependent infinitesimal generator for X given by

Atf(x) = b(t, x)
∂f(x)

∂x
+

1

2
σ2(t, x)

∂2f(x)

∂x2
, x ∈ R,

whenever it exists for suitable f . Furthermore, if w(t, x) satisfies (B.3.1), then the solution is
unique and w(t, x) ≡ u(t, x) holds.

Proof. The proof that u(t, x) is a solution can be found in [Øksendal, 2013, Thereom 8.2.1, page
135]. To show uniqueness of the solution, simply apply Itô’s formula to the process

Yτ := exp

(
−
∫ τ

s

r(t,Xt) dt

)
u(τ,Xτ ) +

∫ τ

s

exp

(
−
∫ t

s

r(v,Xv) dv

)
f(t,Xt) dt.

Presented next is the general form of Dirichlet’s problem, still under the class of Sturm-Liouville
partial differential equations. Recall from Section 2.3 that an argument was constructed to show
how the PDE problems involving time could be constructed from the Dirichlet problem without
time. The same argument applies here and so Theorem B.3.2 can be seen as a consequence of
Theorem B.3.3.
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Theorem B.3.3 (Generalised Dirichlet problem). Suppose that

(i) D ⊂ R be open and bounded,

(ii) r is a non-negative Hölder continuous function on the closure D̄,

(iii) ψ is continuous on the boundary ∂D,

(iv) f is Hölder continuous on the closure D̄,

(v) the boundary is sufficiently smooth (eg. ∂D is C2).

Let τD = inf{t ≥ 0 : Xt /∈ D} be the first exit time of the process from D, where we consider
X = (Xt)t≥0 as an Itô diffusion started at X0 = x. Define

u(x) = Ex
[
exp

(
−
∫ τD

0

r(Xs) ds

)
ψ(XτD )

]
+Ex

[∫ τD

0

exp

(
−
∫ t

0

r(Xs) ds

)
f(Xt) dt

]
. (B.3.2)

Then the function u(x) satisfies

Au(x)− r(x)u(x) + f(x) = 0, x ∈ D,
u(x) = ψ(x), x ∈ ∂D.

(B.3.3)

Furthermore, if v(x) satisfies (B.3.3), then the solution is unique and v(x) ≡ u(x) must hold.

Proof. The proof that u(x) is a solution to (B.3.2) is not shown, but can be found in texts such
as [Friedman, 1975], although the details are non-trivial to show and require a lot of PDE theory.
To show uniqueness of the solution, the reader can refer to [Mao, 2008, Theorem 8.1, page 79].
The idea is to apply Itô’s lemma in a similar way to the proof of uniqueness in Theorem B.3.2, the
Feynman-Kac theorem.

The final result included here proves the martingale property for solutions to the Sturm-Liouville
problem for constant eigenfunction parameter r.

Lemma B.3.4. Let u and v be solutions to the Sturm-Liouville problem as in Section 3.2.1. Then
the stochastic processes {

e−rtu(Xt)
}
t≥0

and
{

e−rtv(Xt)
}
t≥0

are martingales, where X = (Xt)t≥0 is a diffusion process started at X0 = x. Furthermore, u and
v are eigenfunctions with eigenvalue r.

Proof. Notice that the solutions to the Sturm-Liouville problem resemble an eigenvalue equation.
We call a solution w an eigenvalue solution with eigenvalue r if

Aw(x) = rw(x). (B.3.4)

We claimed in Section 2.2 that the definition of an infinitesimal generator was a generalisation of a
derivative for random processes. By the proof of Dynkin’s formula in Appendix Proposition B.2.5,
for the function defined as

Ψt(w)(x) := Ex
[
w(Xt)

]
,

it follows that
∂

∂t
Ψt(w)(x) = AΨt(w)(x) = rΨt(w)(x).

This is a standard first order differential equation, which we can solve to get

Ex
[
w(Xt)

]
= Ψt(w)(x) = ertw(x)

To prove the martingale property, consider an application of Itô’s lemma to the process Yt :=
e−rtw(Xt). We have that

Yt = Y0 +

∫ t

0

e−rs
[
Aw(Xs)− rw(Xs)

]
ds+

∫ t

0

e−rs
∂w(Xs)

∂x

= Y0 +

∫ t

0

e−rs
∂w(Xs)

∂x
.
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By properties of the stochastic integral, as e−rs ∂w(Xs)
∂x is square-integrable, the last term is a

martingale and so Y is a martingale process. Hence, for any solution w to the Sturm-Liouville
problem, e−rtw(Xt) must be martingale.

B.4 Convex Analysis

The convex analysis results used in these proofs are highlighted here.

Definition B.4.1 (Epigraph and hypograph). The epigraph of a function f : Rn → R is a subset
of Rn × R and is defined as

epi(f) = {(x, a) ∈ Rn × R : a ≥ f(x)}.

The hyograph of f is defined as

hypo(f) = {(x, a) ∈ Rn × R : a ≤ f(x)}.

Lemma B.4.2 (Supporting hyperplane). Any convex function f : Rn → R has an affine minorant.
In particular, for any x0 ∈ Rn on the boundary of epi(f), there exists an affine minorant g which
touches f at x0, ie.

f(x) ≥ g(x) and f(x0) = g(x0), x, x0 ∈ Rn.

Similarly, any concave function f̃ : Rn → R has an affine majorant. In particular, for any y0 ∈ Rn
on the boundary of hypo(f̃), there exists an affine majorant g̃ which touches f̃ at y0, ie.

f̃(y) ≤ g̃(y) and f̃(y0) = g̃(y0), y, y0 ∈ Rn.

Proof. The proof for the inverse case of a convex minorant can be found in [Krantz, 2014, Propo-
sition 3.23, page 71]. By using the fact the f is convex if and only if −f is concave, we get the
result.

The supporting hyperplane lemma says that for any concave function, there exists a tangent to
its curve that always lies above the function. This result will be the basis of the smallest concave
majorant proofs. Note the logic to this point: we assumed W and Ŵ were concave and figured out
their forms with this information. Now we are just checking that these two functions are actually
concave.

Lemma B.4.3. The function WL given by

W (y) = sup
{(ya,yb):ya<y<yb}

[
HL(ya)

yb − y
yb − ya

+HL(yb)
y − ya
yb − ya

]
, y > 0 (B.4.1)

is the smallest concave majorant of HL = h
v ◦ ψ

−1 with h, v, ψ exactly as defined in Section 3.2.1.

Proof. Recall the definition of WL from equation (3.2.17). For y > 0, the function is defined
piecewise as

WL(y) =

y
HL(z)

z
, y ≤ z,

HL(y), y ≥ z,

where z = ψ(b∗). Notice that WL is a strictly increasing function for all y, since the first segment
is a line with positive gradient and the second segment is strictly increasing as HL is strictly
increasing for y ≥ z ≥ ψ(x∗). WL is also greater than HL at all points and is a dominating
function. Let

JL(y; ya, yb) :=

[
HL(ya)

yb − y
yb − ya

+HL(yb)
y − ya
yb − ya

]
.

By continuity of HL, we can take the limit in ya to get

JL(y; y, yb) = lim
ya↑y

JL(y; ya, yb) = lim
ya↑y

[
HL(ya)

yb − y
yb − ya

+HL(yb)
y − ya
yb − ya

]
= HL(y).
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We maintain that ya < y < yb is upheld since ya ↑ y but y 6= ya at all. Therefore, WL(y) ≥ HL(y)
for all y > 0. To prove that WL is concave, we use an exhaustive approach. There are two cases
we need to address, either when y ≤ z or y > z.

The second case can easily be dispatched as follows. HL is concave for y > ψ(L∗) and y > z =
ψ(b∗) ≥ ψ(L∗). So for any y > z, WL(y) = HL(y) is a concave function. Clearly WL dominates
(and is equal to) HL in this instance, so it must be the smallest concave majorant over this region.
To prove the other case, we use proof by contradiction. WL is a concave majorant of HL, so the
only contradicting assumption left to make is that there is a smaller concave majorant to HL. Let
ϕ be the smallest concave majorant. Then as ϕ dominates HL,

HL(y) ≤ ϕ(y), y ≤ z

and as ϕ is the smallest concave majorant to HL, there must exist a point y0 < z such that

HL(y0) ≤ ϕ(y0) < WL(y0),

with strict inequality and ϕ(y) ≤ WL(y) more generally for y ≤ z. By Lemma B.4.2, there exists
an affine majorant to ϕ at (y0, ϕ(y0)) that touches the curve on the boundary of its hypograph.
Thus, for gradient m ∈ R,

HL(y) ≤ ϕ(y) ≤ ϕ(y0) +m(y − y0). (B.4.2)

Suppose m ≤ 0. Choosing y = z from equation (B.4.2), we get that

ϕ(y0) < WL(y0) = y0
HL(z)

z
< HL(z) ≤ ϕ(z) ≤ ϕ(y0) +m(z − y0) ≤ ϕ(y0), (B.4.3)

which is a contradiction. Suppose instead that m < 0. Then by similar reasoning to equation
(B.4.3), we have that

HL(y) ≤ ϕ(y) ≤ ϕ(y0) +m(y − y0) < W (y0) +m(y − y0) = y0
HL(z)

z
+m(y − y0).

Taking y = z again gives that

HL(z) < y0
HL(z)

z
+m(z − y0) ⇐⇒ HL(z) < mz.

On the other hand by continuity of HL, taking y ↓ 0 in equation (B.4.3), we get that

0 = HL(0) = lim
y↓0

HL(y) ≤ y0
HL(z)

z
−my0 ⇐⇒ mz ≤ HL(z),

a contradiction. Therefore, we have proved that WL is the smallest concave majorant of HL over
two collectively exhaustive disjoint regions covering all y so the statement of the lemma follows.

Lemma B.4.4. The function ŴL given by

ŴL(y) = sup
{(yâ,yb̂):yâ<y<yb̂}

[
ĤL(yâ)

yb̂ − y
yb̂ − yâ

+ ĤL(yb̂)
y − yâ
yb̂ − yâ

]
, y > 0 (B.4.4)

is smallest concave majorant of ĤL = ĥ
v̂ ◦ ψ̂

−1 with the corresponding functions ĥ, v̂, ψ̂ exactly as
defined in Section 3.2.1.

Proof. The proof of this lemma follows the lines of Appendix Lemma B.4.3, where we split the
problem up into two cases.

Recall that ŴL is formulated in equation (3.2.21) and is defined for y > 0 as

ŴL(y) =

{
ĤL(y), y ≤ ẑ,
ĤL(ẑ), y ≥ ẑ,
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where ẑ = ψ̂(d∗). For the same reasons, ŴL also dominates ĤL. To prove that ŴL is concave we
consider two cases again, either when y < ẑ or y ≥ ẑ.

For the first case, ĤL is concave for y < ψ̂(L∗) and y < ẑ = ψ̂(d∗) < ψ̂(L∗). Thus, for any
y ≤ ẑ, ŴL(y) = ĤL(y) is a concave function and it must be the smallest concave majorant in this
region. We now attempt to show concavity for the second case via proof by contradiction. Suppose
there exists a function ϕ̂ that is the smallest concave majorant instead. Then as ϕ̂ dominates ĤL,

ĤL(y) ≤ ϕ̂(y), y ≥ ẑ.

By definition of ϕ̂, there must also exist a point ŷ0 > ẑ such that

ĤL(ŷ0) ≤ ϕ̂(ŷ0) < ŴL(ŷ0), (B.4.5)

with strict inequality and ϕ̂(y) ≤ ŴL(y) holding more generally for y ≥ ẑ. Again, by Lemma B.4.2
we can find a tangent to the curve with gradient m̂ ∈ R. It follows that

ĤL(y) ≤ ϕ̂(y) ≤ ϕ̂(ŷ0) + m̂(y − ŷ0). (B.4.6)

Now suppose that m̂ ≥ 0. By equation (B.4.6), we have for y = ẑ that

ĤL(ẑ) ≤ ϕ̂(ẑ) ≤ ϕ̂(ŷ0) + m̂(ẑ − ŷ0) ≤ ϕ̂(ŷ0) < ŴL(ŷ0) = ĤL(ẑ)

which is a contradiction. Conversely, for m̂ < 0 we construct a new argument.

ĤL(ẑ) ≤ ϕ̂(ẑ) ≤ ŴL(ẑ) = ĤL(ẑ)

and so ϕ̂(ẑ) = ĤL(ẑ). Pick two points y and ỹ such that ẑ < ŷ0 < y < ỹ and let θ := ỹ−y
ỹ−ẑ ∈ (0, 1).

Then (1− θ) = y−ẑ
ỹ−ẑ and

θĤL(ẑ) + (1− θ)ĤL(ỹ) ≤ θϕ̂(ẑ) + (1− θ)ϕ̂(ỹ)

≤ ϕ̂ (θẑ + (1− θ)ỹ)

≤ ϕ̂(ŷ0) + m̂ (θẑ + (1− θ)ỹ − ŷ0) .

(B.4.7)

In the limit, the individual terms can be calculated as

lim
ỹ→∞

θ = 1, lim
ỹ→∞

(1− θ)ỹ = y − ẑ, lim
ỹ→∞

(1− θ)ĤL(ỹ) = 0,

where the last limit holds since ĤL decays at a slow rate, as characterised by the rate of increase
of V . Taking the limit as ỹ →∞ in (B.4.7) leads to the following inequality:

ĤL(ẑ) ≤ ϕ̂(ŷ0) + m̂ (y − ŷ0) < ϕ̂(ŷ0).

Finally, applying the definition of ŴL, we arrive at our contradiction:

Ŵ (ŷ0) = ĤL(ẑ) ≤ ϕ̂(ŷ0) + m̂ (y − ŷ0) < ϕ̂(ŷ0),

which contradicts the assertion in (B.4.5). Therefore, ŴL must be the smallest concave majorant
to ĤL for all values of y.

B.5 Justification of Assumptions: The Initial Problem

The attempts of proofs in this section are dedicated to providing some grounding to the assump-
tions made in Assumption 3.2.3 and Assumption 3.2.6 regarding the properties of HL and ĤL

respectively for the long trading problem. The basis for these assumptions comes from the work
by [Leung and Li, 2015, Appendix A.2 & A.3, pages 21 and 22] who prove these properties of HL

and ĤL for the Ornstein-Uhlenbeck process.

Our aim is to extend their work to arbitrary Itô diffusions, allowing the reader to apply the problem
to their preferred choice of stochastic process. This treatment is preferential as a trader may not
necessarily have a portfolio of assets that exhibits mean-reverting behaviour like the OU process.
Inevitably, by having this generalisation we will not be able to provide complete proofs for every
property. We will highlight any asymptotic properties of u and v that we need for the arguments
to work and will also apply the results to the arithmetic Brownian motion. This should convince
the reader that the generalisation was worthwhile.
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B.5.1 Assumption 3.2.3

We require the following asymptotic properties:

lim
x→−∞

u(x) = 0, lim
x→−∞

v(x) =∞, lim
x→−∞

v′(x) = −∞

and that the growth rate of
∣∣∣ v(x)v′(x)

∣∣∣ < Kxα.

Recall the definition of HL in (3.2.5). By continuity and differentiability of h, u, v, ψ and hence
ψ−1, assumption (i) follows over the domain (0,∞). Furthermore, one can verify that

HL(0) = lim
x→−∞

(
x− c

)+
v(x)

= 0

since the numerator is zero whilst v(x) is always positive, so this proves the first assumption.
Continuity of HL at y = 0 follows since y = ψ(x)→ 0 as x→ −∞, so

lim
y→0

HL(y) = lim
x→−∞

x− c
v(x)

= lim
x→−∞

1

v′(x)
= 0

by L’Hôpital’s rule. The remainder of assumption (ii) explains whether HL is positive or negative
over different regions. Since v > 0, the sign of HL only depends on the sign of h

(
ψ−1(y)

)
. As

explained in Section 3.2.1, ψ−1 is strictly increasing and positive so if y ∈ (0, ψ(c)), then

h
(
ψ−1(y)

)
< h

(
ψ−1(ψ(c))

)
= c− c = 0.

Similarly, we can verify that h
(
ψ−1(y)

)
> 0 for y ∈ (ψ(c),∞). Assumption (ii) then follows

directly. Next we attempt to justify assumption (iii). For y = ψ(x),

H ′L(y) =

(
h

v

)′
(ψ−1(y))

1

ψ′(ψ−1(y))

=

(
h

v

)′
(x)

1

ψ′(x)

=
h′(x)v(x)− h(x)v′(x)

u′(x)v(x)− u(x)v′(x)
(B.5.1)

=
v(x)− (x− c)v′(x)

u′(x)v(x)− u(x)v′(x)
, (B.5.2)

where the derivative of ψ−1 is given by Appendix Lemma B.1.3. Since the denominator is always
positive, the sign of the derivative of HL depends on the sign of v(x)− (x− c)v′(x). To assess this,
we define the function

g(x) := (x− c)− v(x)

v′(x)
.

As x→ −∞, the function g(x) < 0. Conversely, for x = c,

g(c) = − v(c)

v′(c)
> 0.

Since v is positive, strictly decreasing and convex, − v(x)
v′(x) is strictly increasing and positive. Con-

sequently, g must be strictly increasing. By the intermediate value theorem, there exists a unique
root x∗ such that g(x∗) = 0 if and only if x∗ is the solution to v(x)−(x−c)v′(x) = 0. This confirms
that H ′L(ψ(x∗)) = 0. Checking that H ′L(y) → 0 as y → ∞ needs to be done on a case-by-case
basis. That x∗ < c is valid, since g is strictly increasing.

Finally, by differentiating H ′L again, we can find an expression for the second derivative of HL.
However, there is not much we can say about this quantity without having explicit formulae for u
and v. For this reason, assumption (iv) is treated as a pure assumption.
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B.5.2 Assumption 3.2.6

We require the following asymptotic properties:

lim
x→−∞

u(x) = 0, lim
x→−∞

u′(x) = 0,

lim
x→−∞

û(x) = 0, lim
x→−∞

û′(x) = 0, lim
x→−∞

v̂(x) =∞, lim
x→−∞

v̂′(x) = −∞.

The proofs for the properties of ĤL share a lot of commonality with the arguments for HL. That
ĤL is continuous on (0,∞) follows by continuity of all of its components. To assess differentiability

of ĤL, we need to investigate the differentiability of ĥ and in turn VL. By equation (3.2.15), it
follows that

V ′L(x) =


u′(x)

u′(b∗)
x ∈ (−∞, b∗),

1 x ∈ (b∗,∞),

since b∗ satisfies u(b∗) = (b∗ − c)u′(b∗). The derivative at x = b∗ also exists and V ′L(b∗) = 1 as the
left and right derivatives agree. Moreover, the second derivative is

V ′′L (x) =


u′′(x)

u′(b∗)
x ∈ (−∞, b∗),

0 x ∈ (b∗,∞).

However, the second derivative at x = b∗ does not exist for VL. Differentiability of VL translates
into the differentiability of ĥ and as a result into ĤL. Lastly, continuity of ĤL at y = 0 follows
because

0 ≤ ĤL(0) = lim
x→−∞

(
ĥ(x)

)+
v̂(x)

= lim sup
x→−∞

b∗−c
u(b∗)u(x)− x− ĉ

v̂(x)
≤ lim sup

x→−∞

b∗−c
u(b∗)u

′(x)− 1

v̂′(x)
= 0

and so ĤL(0) = 0. The inequality is explained in Appendix Lemma B.1.4 and is a variant of
L’Ĥopital’s rule. In addition,

lim
y→0

ĤL(y) = lim
x→−∞

VL(x)− x− ĉ
v̂(x)

= lim
x→−∞

V ′L(x)− 1

v̂′(x)
= 0

again by L’Ĥopital and so ĤL is continuous at zero. This proves assumption (i). To assess the

sign of ĤL, we need to first investigate properties of ĥ. For x ∈ [b∗,∞), the function is constant
with

ĥ(x) = VL(x)− x− ĉ = x− c− x− ĉ = −(c+ ĉ) < 0

whilst for x small enough, ĥ(x) > 0 by virtue of limx→−∞ ĥ(x) = ∞. Since the derivative of ĥ is
given by

ĥ′(x) = V ′L(x)− 1 =
u′(x)

u′(b∗)
− 1 <

u′(b∗)

u′(b∗)
− 1 = 0,

the function ĥ is strictly decreasing for x < b∗. By the IVT and the fact that ĥ is strictly monotone,
there exists a unique value k∗ ∈ (−∞, b∗) such that ĥ(k∗) = 0. As a result,

ĥ(x) =

{
> 0 if x ∈ (−∞, k∗),
< 0 if x ∈ (k∗,∞).

By realising that ψ̂−1 is a strictly increasing mapping and that v̂(x) > 0 for all x ∈ R, assumption
(ii) can be deduced. Assumption (iii) can be verified by calculating the derivative of ĤL, which

can be found in Appendix equation (B.5.1), by hatting the quantities. We get for y = ψ̂(x) and
x > b∗

Ĥ ′L(y) =
ĥ′(x)v̂(x)− ĥ(x)v̂′(x)

û′(x)v̂(x)− û(x)v̂′(x)
=

(c+ ĉ)v̂′(x)

û′(x)v̂(x)− û(x)v̂′(x)
< 0, (B.5.3)
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since the denominator is positive and v̂′ is negative. So ĤL is strictly decreasing for y > ˆψ(b∗).
For x < b∗, the sign of Ĥ ′L depends on the sign of

ĥ′(x)v̂(x)− ĥ(x)v̂′(x) = (V ′L(x)− 1) v̂(x)− (VL(x)− x− ĉ) v̂′(x)

=

(
u′(x)

u′(b∗)
− 1

)
v̂(x)−

(
u(x)

u′(b∗)
− x− ĉ

)
v̂′(x), (B.5.4)

but no further progress can be made here without explicit expressions for u and v. As before the
final assumption has less of an actual basis for general stochastic processes so we cannot provide
supporting ideas to justify its presence within Assumption 3.2.6. This property would need to be
checked on a case-by-case basis instead.

B.5.3 Application to the Arithmetic Brownian Motion

Since the properties of HL and ĤL have been well-described in the paper by [Leung and Li, 2015]
for the OU process, we will instead verify them for an ABM. The procedure is identical for a
GBM due to the similar structure of its solutions to the Sturm-Liouville problem. The majority
of Assumption 3.2.3 and Assumption 3.2.6 has been proved in Section B.5.1 and Section B.5.2, so
we do not need to review everything again.

Recall that the two linearly independent solutions to the Sturm-Liouville problem were:

u(x) = exp
{(√

µ2 + 2aσ2 − µ
) x

σ2

}
,

v(x) = exp

{(√
µ2 + 2aσ2 + µ

) −x
σ2

}
.

One can check the asymptotic properties of the solution to be

lim
x→−∞

u(x) = 0, lim
x→−∞

u′(x) = 0, lim
x→−∞

u′′(x) = 0,

lim
x→−∞

v(x) =∞, lim
x→−∞

v′(x) = −∞, lim
x→−∞

v′′(x) =∞,

lim
x→∞

u(x) =∞, lim
x→∞

u′(x) =∞, lim
x→∞

u′′(x) =∞,

lim
x→∞

v(x) = 0, lim
x→∞

v′(x) = 0, lim
x→∞

v′′(x) = 0.

The above results are the same when dealing with the hatted quantities and one just needs to map
the terms by u 7→ û, v 7→ v̂ and a 7→ â.

B.5.3.1 Properties of HL

Differentiability and continuity of HL follows by the smooth and continuous nature of u and v. By
the asymptotics of the two solutions u and v, all the properties needed to prove assumption (ii)
have been verified. For assumption (iii), the growth rate of v is∣∣∣∣ v(x)

v′(x)

∣∣∣∣ =
σ2√

µ2 + 2aσ2 + µ

and so the function g(x) < 0 as x → −∞. That H ′L(y) → 0 as y → ∞ follows using identity
(B.5.2). For y = ψ(x) with y →∞ as x→∞,

H ′L(y) = H ′L(ψ(x)) =
v(x)− (x− c)v′(x)

u′(x)v(x)− u(x)v′(x)
=
σ2 + (x− c) (µ+ κ)

2κ
exp

{
(µ− κ)

x

σ2

}
→ 0,

with κ =
√
µ2 + 2aσ2. To check the second derivative of HL, we differentiate again to get

H ′′L(y) = H ′′L(ψ(x)) =

(
σ2 + (x− c) (µ+ κ)

)
(µ− κ) + σ2(µ+ κ)

4κ2
exp

{
(µ− 3κ)

x

σ2

}
by an application of the chain rule and through the definition of ψ. The sign of H ′′L depends only
on the sign of

m(x) :=
(
σ2 + (x− c) (µ+ κ)

)
(µ− κ) + σ2(µ+ κ) = 2σ2(µ− a(x− c))
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since the other terms are all positive. Solving for m(x) = 0, we calculate L∗ = µ+ac
a and that HL

is convex for y ∈ (0, ψ(L∗)] and concave otherwise. Lastly, we can find the connection between
c, x∗ and L∗. We can calculate that

g(L∗) = (L∗ − c)− v(L∗)

v′(L∗)
=
µ

a
+
µ+ κ

σ2
,

which depends on the value of µ. As g is a strictly increasing function,

L∗ < x∗ < c, if µ < − aκ

σ2 + a
,

L∗ = x∗ < c, if µ = − aκ

σ2 + a
,

x∗ < c ∧ L∗, if µ > − aκ

σ2 + a
.

B.5.3.2 Properties of ĤL

Assumption (i) follows by continuity, differentiability and the asymptotic results of u, û and v̂.
Assumptions (ii) and (iii) are proved in full generality, so no further works needs to be done here.
We can look into the sign of Ĥ ′L for x < b∗ using equation (B.5.4) to get

ĥ′(x)v̂(x)− ĥ(x)v̂′(x) =

[
2κ̂

κ̂− µ

{
e(κ̂−µ)(x−b

∗)/σ2

− â

κ̂
(x+ ĉ)

}
− 1

]
v̂(x), (B.5.5)

with κ̂ =
√
µ2 + 2âσ2. As v̂ is positive, the sign of Ĥ ′L depends only on the inner bracketed

expression. A simple plot of this function will determine the sign of Ĥ ′L from here.

Lastly, to determine the convexity of ĤL, we calculate its second derivative. The derivative inherits
the two part property from the value function VL. For x > b∗, we can differentiate equation (B.5.3)
to achieve

Ĥ ′′L(y) = Ĥ ′′L(ψ̂(x)) =
âσ2

2κ̂2
(c+ ĉ) exp

{
(µ− 3κ)

x

σ2

}
> 0.

For x < b∗, one can show that

Ĥ ′L(y) = Ĥ ′L(ψ̂(x)) = σ2

[
1

κ̂− µ

{
e(κ̂−µ)(x−b

∗)/σ2

− â

κ̂
(x+ ĉ)

}
− 1

2κ̂

]
exp

{
(µ− κ̂)

x

σ2

}
using equation (B.5.5) and thus

Ĥ ′′L(y) = Ĥ ′′L(ψ̂(x)) =
σ2

2κ̂2

(
â(x+ ĉ)− µ

)
exp

{
(µ− 3κ̂)

x

σ2

}
.

The sign of Ĥ ′′L only depends on â(x+ ĉ)− µ. Define the function

m̂(x) = â(x+ ĉ)− µ

The unique solution to m̂(x) = 0 is L∗ = µ−âĉ
â . For x 6= b∗, if x < L∗ then ĤL is concave.

Otherwise, for x > L∗, the function ĤL is convex. Convexity at b∗ follows by continuity of ĤL at
this point. The condition L∗ < b∗ also holds here.

B.6 Justification of Assumptions: The Reverse Problem

This section builds on the work from Section B.5. We attempt to verify as many of the properties
of HS and ĤS as possible for the short trading problem. The last subsection confirms these
properties hold for the OU process, giving the reader a complete picture of the long and short
optimal stopping problems when combining the work by [Leung and Li, 2015].
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B.6.1 Assumption 3.2.10

We require the following asymptotic properties:

lim
x→−∞

u(x) = 0, lim
x→−∞

v(x) =∞, lim
x→−∞

v′(x) = −∞

and that the growth rate of
∣∣∣ v(x)v′(x)

∣∣∣ < Kxα for α ∈ (0, 1),K > 0.

Continuity and differentiability of HS is straightforward to show. One can verify that

HS(0) = lim
x→−∞

(
− x− c

)+
v(x)

= lim
x→−∞

−x− c
v(x)

= lim
x→−∞

−1

v′(x)
= 0

by L’Ĥopital’s rule. Continuity of HS at y = 0 follows by the same reasoning since

lim
y→0

HS(y) = lim
x→−∞

−x− c
v(x)

= lim
x→−∞

−1

v′(x)
= 0,

where y = ψ(x) → 0 as x → −∞. The sign of HS

(
ψ−1(y)

)
depends only on the sign of h(x) =

−x − c. This function is positive is x < c and negative for x > c. The gradient of HS can be
determined by working out the derivative. For y = ψ(x),

H ′S(y) =
h′(x)v(x)− h(x)v′(x)

u′(x)v(x)− u(x)v′(x)

=
−v(x) + (x+ c)v′(x)

u′(x)v(x)− u(x)v′(x)
.

Since the denominator is always positive, the sign of the derivative of HS depends on the sign of
−v(x) + (x+ c)v′(x). To assess this, we define the function

g(x) := −(x+ c) +
v(x)

v′(x)
.

As x→ −∞, we have that g(x) > 0. Conversely, for x = −c,

g(−c) =
v(−c)
v′(−c)

< 0.

As g is a strictly decreasing function, there exists a unique root x∗ such that g(x∗) = 0 if and only
if x∗ is the solution to v(x)− (x+c)v′(x) = 0. Consequently, H ′S(ψ(x∗)) = 0 holds. That x∗ < −cc
is valid, since g is strictly decreasing. We will denote b∗ := x∗ as it turns out these two points are
equal in Theorem 3.2.11. Assumption (iv) is taken for granted without a specific process to work
on.

B.6.2 Assumption 3.2.12

We require the following asymptotic properties:

lim
x→−∞

u(x) = 0, lim
x→−∞

u′(x) = 0,

lim
x→−∞

û(x) = 0, lim
x→−∞

û′(x) = 0, lim
x→−∞

v̂(x) =∞, lim
x→−∞

v̂′(x) = −∞,

lim
x→∞

v(x) = 0, lim
x→∞

v′(x) = 0,

lim
x→∞

v̂(x) = 0, lim
x→∞

v̂′(x) = 0

and that xv̂′(x)→ 0 as x→∞.

Differentiability and continuity of ĤS is easy to show. We highlight the derivatives of VS briefly.
The first derivative is

V ′S(x) =


−1 x ∈ (−∞, b∗),

− v
′(x)

v′(b∗)
x ∈ (b∗,∞).
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The derivative also exists at x = b∗. The second derivative is

V ′′S (x) =


0 x ∈ (−∞, b∗),

− v
′′(x)

v′(b∗)
x ∈ (b∗,∞),

but does not exist for at x = b∗. Differentiability of VS translates into the differentiability of ĥ and
as a result into ĤS . Continuity of ĤS at y = 0 also holds as

ĤS(0) = lim
x→−∞

(
ĥ(x)

)+
v̂(x)

= lim
x→−∞

(
VS(x) + x− ĉ

)+
v̂(x)

= lim
x→−∞

−c− ĉ
v̂(x)

= 0.

In addition, ĤS is continuous at zero as

lim
y→0

ĤS(y) = lim
x→−∞

VS(x) + x− ĉ
v̂(x)

= lim
x→−∞

V ′S(x) + 1

v̂′(x)
= 0,

again by L’Ĥopital. To assess the sign of ĤS , we need to first investigate properties of ĥ. For
x ∈ (−∞, b∗], the function is constant with

ĥ(x) = V (x) + x− ĉ = −x− c+ x− ĉ = −(c+ ĉ) < 0

whilst for x large enough, ĥ(x) > 0. Since the derivative of ĥ is given by

ĥ′(x) = V ′(x) + 1 = − v
′(x)

v′(b∗)
+ 1 > −v

′(b∗)

v′(b∗)
+ 1 = 0,

the function ĥ is strictly increasing for x > b∗. By the IVT and the fact that ĥ is strictly monotone,
there exists a unique value k∗ ∈ (b∗,∞) such that ĥ(k∗) = 0. As a result,

ĥ(x) =

{
< 0 if x ∈ (−∞, k∗),
> 0 if x ∈ (k∗,∞).

Assumption (ii) follows. Assumption (iii) can be verified by calculating the derivative of ĤS . For

y = ψ̂(x) and x < b∗,

Ĥ ′S(y) =
ĥ′(x)v̂(x)− ĥ(x)v̂′(x)

û′(x)v̂(x)− û(x)v̂′(x)
=

(c+ ĉ)v̂′(x)

û′(x)v̂(x)− û(x)v̂′(x)
< 0.

So ĤS is strictly decreasing for y < ˆψ(b∗). For x > b∗, the sign of Ĥ ′S depends on the sign of

ĥ′(x)v̂(x)− ĥ(x)v̂′(x) = (V ′S(x)− 1) v̂(x)− (VS(x)− x− ĉ) v̂′(x)

=

(
1− v′(x)

v′(b∗)

)
v̂(x)−

(
− v(x)

v′(b∗)
+ x− ĉ

)
v̂′(x),

but no further progress can be made here without explicit expressions for u and v. However, we
can check that Ĥ ′S(y) → 0 as y = ψ̂(x) → ∞. The final assumption would need to be checked on
a case-by-case basis like before.

B.6.3 Application to the Ornstein-Uhlenbeck Process

Our aim is to check the properties of HS and ĤS for the OU process and finish off the work by
[Leung and Li, 2015]. We have given a flavour of what the solution to the ABM looks like and
invite the reader to continue it. Since many of the properties have been checked in the general
formulation, we only verify the case-specific properties.

Recall that the two linearly independent solutions to the Sturm-Liouville problem were:

u(x) =

∫ ∞
0

y
a
θ−1e

√
2θ
σ2

(x−µ)y− y
2

2 dy,

v(x) =

∫ ∞
0

y
a
θ−1e

√
2θ
σ2

(µ−x)y− y
2

2 dy.

The solutions u and v share the asymptotic properties mentioned in Section B.5.3 and the same
goes for the hatted quantities.
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B.6.3.1 Properties of HS

Assumptions (i) and (ii) hold for any diffusion process. Assumption (iii) has already been deter-

mined provided that the growth rate condition of v(x)
v′(x) is true. It is complicated to validate this so

we suggest plotting the result instead to gauge the validity of the statement. The main property we
have to verify is assumption (iv). From the paper by [Leung and Li, 2015], they calculate

H ′′S(y) = H ′′S(ψ(x)) =
2

σ2v(x)(ψ′(x))2
(A− a)h(x). (B.6.1)

Therefore, the sign of the second derivative only depends on the sign of

(A− a)h(x) = −θ(µ− x)− a(−x− c) = (ac− θµ) + (θ + a)x =

{
≤ 0 x ∈ (−∞, L∗],
≥ 0 x ∈ [L∗,∞),

where

L∗ :=
θµ− ac
θ + a

.

So we get that HS is concave for y ∈ (0, ψ(L∗)] and convex outside of this region. Encouragingly,
this is close to the expression derived for L∗ in the initial long problem for the arithmetic Brownian
motion.

B.6.3.2 Properties of ĤS

As for HS , the majority of assumptions (i)-(iii) have already been proved. The only thing we need

to verify is that Ĥ ′S(y)→ 0 as y = ψ̂(x)→∞. Given the nature of the solution, it is complicated
to substantiate this claim, so we also suggest to plot this to convince oneself. Assumption (iv) can
be checked using equation (B.6.1) to reveal that

Ĥ ′′S(y) = Ĥ ′′S(ψ̂(x)) =
2

σ2v̂(x)(ψ̂′(x))2
(A− â)ĥ(x),

where the sign of Ĥ ′′S depends on (A− â)ĥ(x). Analysing this produces

(A− â)ĥ(x) =

[
σ2

2
V ′′S (x) + θ(µ− x)V ′S(x)

]
+ θ(µ− x)− â(VS(x) + x− ĉ)

=

{
â(c+ ĉ) > 0, x < b∗,

(a− â)VS(x)− (θ + â)x+ θµ+ âĉ, x > b∗.

Thus, we only need to assess the second derivative’s sign for x > b∗. Note that VS is a decreasing
function in this range and a ≥ â by assumption. As a result, (A− â)ĥ(x) is decreasing for x > b∗.
Also, for x ∈ (b∗, L∗],

(A− â)ĥ(x) = (a− â)VS(x)− (θ + â)x+ θµ+ âĉ

≥ (a− â)(−x− c)− (θ + â)x+ θµ+ âĉ

= −(θ + a)x+ (θµ− ac) + â(c+ ĉ)

≥ −(θ + a)L∗ + (θµ− ac) + â(c+ ĉ)

= â(c+ ĉ) > 0

and (A − â)ĥ(x) → −∞ as x → −∞ since VS grows at a slow rate. By the IVT, there exists a

unique L∗ such that (A− â)ĥ(L∗) = 0 with L∗ > b∗. This completes the verification of assumption
(iv).
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