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Abstract

The goal of this thesis is to use a classification-based approach to predict movements of an Interest
Rates security called Gadget. We will focus on four models with increasing complexity, ranging
from less than a hundred trainable parameters for Multinomial Logistic Regression, to more than
ten thousand parameters as in the case of Long Short Term Memory networks, We will also review
some recent research in machine learning about optimisers to achieve faster convergence. Further,
we will discuss the results for short-term (2 minutes ahead) and long-term (10 minutes ahead)
predictions using appropriate metrics. We will finish by implementing a simple trading strategy
and study the profitability of alpha generated by each model. The research from this thesis can
potentially be used for market-making purposes by banks, hedge-funds and liguidity providers

alike.
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1 Introduction

Until a few years ago, it was believed that financial markets were completely random and any
changes in market regimes were impossible to predict. While the extent of noise in financial mar-
kets data is relatively high, many recent studies have established trading opportunities in a variety
of markets. According to Bank for International Settlements’ research [1], today nearly three-
quarters of trading in certain asset classes such as FX and Equities is driven by algorithms, many
of which use sophisticated machine learning technigques. One of the markets in which trading is
still very much voice-driven is the Interest Rates derivatives market. The goal of this thesis is to
study the scope of viability of using machine learning algorithms for an Interest Rates product only
available in an inter-bank market, called Gadget. The research from this thesis can potentially be

used for market-making purposes by banks, hedge-funds and liquidity providers alike.

The aim is to classify the short-term (2 minutes) and long-term (10 minutes) log-returns of 5Y
Gadget time series into 5 categories, which will be appropriately defined. A very common approach
is to predict the level of the asset log return using techniques such as vector auto-regression, how-
ever, Leung et al. [2] provide evidence that classification based methods outperform level based
methods in the prediction of the direction of asset movement and trading returns maximization.
Keeping this view in mind, all our models will be introduced for the purpose of classification. A
similar approach applied by Dixon et al. in [3] using Deep Neural Networks yielded impressive

results for predicting 3-class movements in 43 commodities and FX futures.

We will start with the most basic model, Multinomial Logistic Regression which was introduced
in statistical literature by J.Engal [4] using a Ridge penalty for regularisation (by Hoerl & Ken-
nard [5]). MLR method is fast, easy to train and provides interpretability of the model parameters.
However, financial markets are proved to exhibit non-linear behaviour (see [6]), and the biggest
problem with this model is its inability to address non-linearity in data. We will explore alternative

models to address this problem.

We will look at a famous ensemble learning technique called Random Forests introduced by Leo
Breiman [7] based on the idea of bootstrap aggregation and random feature selection. The idea be-
hind such an approach is simple but extremely effective: a congregation of relatively uncorrelated
randomised decision trees outperforms any of the individual randomised trees in the congregation.
Effectively, Random Forests can be tuned to minimise the overall variance of single CART decision
trees. The element of randomness in these models was a success and served as an inspiration for

using randomness in deep learning.
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The space of functions represented by Random Forests is relatively rich but it can be further ex-
tended by considering a Deep Neural Network, which from Universal Approximation Theorem (8]
can theoretically approximate a wide variety of interesting functions. Even though applications of
artificial neural networks to time series were well documented long ago (see Kaastra and Boyd [9]),
many problems with convergence and over-fitting were not thoroughly researched. With higher
computation speed, came the ability to feasibly implement neural networks with millions of param-
eters to train. The problem of overfitting was solved by applying randomness to DNNs through

‘dropouts’ introduced by Srivastava et al. [10].

While feedforward neural networks can theoretically represent an extremely rich space of functions,
their inability to comprehend sequential data gave rise to Recurrent Neural Networks and their
popular extension Long Short Term Memory units introduced by Hochreiter & Schmidhuber [11].
These networks don’t only exhibit temporal dynamic behaviour but also fix the infamous vanishing
gradient problem. LSTMs have a forget gate which controls the memory of each cell state over
time. Such an invention was revolutionary in processing complex time series in speech recognition
and language modelling [12] and has been regarded the most commercial Al achievement. We will
explore this ‘black box’ model’s use case in finance, where it is extremely important to be able to

explain the reason for decisions.

Current research in machine learning is verv much focused on developing gradient descent op-
timisers for faster convergence. We will discuss the problem with two common gradient descent
optimisers, Stochastic Gradient Descent [13] and Adam [14], and also apply the latest development,

Rectified-Adam [15] to our dataset.

The out-of-sample performance of all the models will be then evaluated using relevant performance
metrics, i.e, Precision, Recall and F-score. Furthermore, we shall back-test a simple trading strat-
egy using our models on 2-months data, and compare its profitability against the performance of

a random predictor to verify the alpha generated.
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2 Basics

2.1 What’s ‘Gadget’?

Our prediction target throughout this thesis will be the 5-year Gadget, an exclusive Interest Rates
product only available at the i-Swaps interbank market. It is a ‘proxy’ of the asset swap spread of
BOBL, which are standardised futures contracts based on a basket of medinm-term debt (4.5-5.5
vear maturities) issued by the German Federal Government. BOBL futures contracts trade under
the symbol FGBM on the Eurex exchange and are settled by delivery. These contracts mature
quarterly in March, June, September, and December. At any given point of time, the implied yield
of a BOBL future is determined by the yield of the cheapest-to-deliver debt contract in the basket.
Since the cheapest-to-deliver bond in the basket is dynamic, the asset swap spread can’t be directly
caleulated. Hence to maintain the product’s simplicity, the 'proxy’ asset swap spread, which is
Gadget, is calculated by taking the floating rate as the 6 month fixed leg of the 5y EURIBOR.
Gadget is a difference between two interest rates and so the unit of measurement is basis points.
In this thesis, the focus of our analysis will be on modelling this financial instrument empirically.

Hence, we will be working in ‘p-measure’.

- - [

Fixed Leg of Sy
Swap
EURIBOR-8m

Yield of Cheapest to
Deliver

Basket of medium
term bonds with 4.5-
5.5 years maturities

Figure 1: Gadget (5Y) Explanation

2.2 Why use 10 year Gadget?

The justification for using 10 year Gadget time series for predicting the 5-year Gadget is that both
financial instruments are based on German interest rate futures of different maturities and hence
driven by the same macroeconomic factors. From the following graph, prima-facie it can be said

that the two time series move together.
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Figure 2: Gadget 5Y (top) & Gadget 10Y (bottom)

This becomes clearer when we look at the correlation between the log returns of the two series on
different timescales. As the timescales gets wider, there is a significant correlation between the

two.

Figure 3: Increasing correlation between Gadget 5Y and Gadget 10Y log returns w.r.t time

2.3 Data Preparation

The precursor to any effective analysis is the data preparation stage. The first step was to con-
catenate the two asynchronous time series. Just by comparing the lengths of the two time series
it was observed that the 10-year Gadget ticks more frequently than the 5-year Gadget (although
the latter is more volatile than the former). Also, given that the prediction target is 5-year Gad-

get, the 10-year Gadget was adapted to the time index of the 5-year using forward filling technique.

Once the time indices were unified, the concatenated tick data-frame was re-sampled to a 2-minute
timescale, such that for any given two-minute window, the closing mid of the window was taken to
be the mid at that time point. This timescale was chosen keeping in mind our prediction horizon (2
minutes and 10 minutes) and to ensure minimal loss of data points. Also, the decision of working

in time units instead of ticks was made keeping in mind the nature of this market.
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2.4 Feature Generation

We need to define features that capture the appropriate amount of information about historical mid
movements. For this purpose, we use the Exponential Moving Average Lagged and Exponential
Moving Average Cross indicators which are both based on Exponential Moving Average (EMA)
indicator of the given time series. Mathematically, for some a € (0,1) and ¢ € {1,...,T}, EMA :

N x (0,1) — R¥ is defined as:

EMA(0, ) = MID(0)

EMA(t,a) =a* MID(t)+ (1 —a)* EMA(t - 1,a)

The parameter o controls the memory in the time series as each data point is now a linear com-
bination of the present and the past mids, with decreasing weights. Clearly, higher o gives more
weight to the present data point and implies less memory in the time series. Using this function,

we shall now define two types of technical indicators:

e Exponential Moving Average - Cross Indicators: For 0 < a; < a; < landt €
{0, T},
EMAcross(t, a1, a2) = EMA(t, as) — EMA(t, a4)

+ Exponential Moving Average - Lagged Indicators: For o € (0,1) and i € {lag, .., T’}

EMApaceep(t,a) = EMA(t, o) — EMA(t — lag, «)

Essentially, both the indicators are linear combinations of the data points of the time series and
capture past fluctuations of the mid. For the purpose of this thesis, at each time point, to predict
the future log return we consider a list of a’s which was arbitrarily taken to be {0.1,0.3,0.5,0.7,0.9}
and list of lags {0, 10, ..., 40, 50}, where each lag is in units of 2 minutes. This way we are able to

generate a large number of features that might contain some information about the future.

2.5 Data Splitting, Denoising and Scaling

At this point, we split our prepared dataset into training and testing sets. Training and validation

were performed for the months of April and May, and testing on June and July.

We only alter the target variable (future log returns) in the training set by fitting a standard scaler
to the target variable y, such that:

y,:-—ryi_”
a

for i € {0,...,T} where p and o are the mean and variance of y. To denoise the peaks, we clip all

the entries greater than 3 (so more than 3 standard deviations away from the mean) to 3. We then
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transform the log returns back to the original scale by applying an inverse of the transformation
defined above. The testing set target is kept untouched throughout this procedure to avoid peeking

into the future.

Turther, many of the log returns on the training set were found to be equal to 0. We remove 20%
of such data points (randomly chosen) to make the distribution of log returns on the training set

smoother.

2.6 Data Labelling

Traditionally, researchers go for 3-label classification of movement in financial instruments but for
the purpose of this thesis, we considered a 5-label classification. More number of classification
bins would mean clearer distinction between future movements and hence allow for more effective

decision making for the investor. We label our target variable into 5 labels which are:
e 1 or ‘- -": extreme downward, bottom 10 percentile of the training set log returns
e 2 or ‘-": gentle downward, 10 to 30 percentile of the training set log returns
e 3 or ‘~’ : not significant, 30 to 70 percentile of the training set log returns
e 4 or ‘+": gentle upward, 70 to 90 percentile of the training set log returns
e 5 or ‘++": extreme upward, top 10 percentile of the training set log returns

It is important to note that by doing this, we are introducing a class imbalance in our data set.
Labels 1 and 5 will be under represented in our dataset and label 3 will be the most represented.
This is desirable because we want extreme movements to be more rare and kept exclusive, but this
can also disrupt our machine learning models. We will address this problem in Section 3 when we

discuss the models.
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3 Models

Now that we have defined the setup of our data, we can go onto discussing the theory behind each
model that was implemented.

First we will introduce some notation which will be used throughout this section unless stated
otherwise. We can assume that we are given a dataset D := {(xy, 1), t = 0,..., T}, where x; and y;
are our input and ontput variables respectively. It is assumed that x; belongs to RP, where p is the
number of features. Also, since we are classifying into 5 categories, ¥ will be a label in the label
space Y := {1,2,3.4,5}. Hence, each observation from D will be a realisation of the stochastic

vector (Xy, Y3) belonging to R? x ). The model prediction at time ¢ is denoted by g, which also

belongs to Y.

Further we define the vector representation or ‘one-hot encoding’ of the label 3 as vy € [0,1]°
(realisation of a stochastic vector T;), such that v;; = 1 if i = y and vy; = 0 otherwise. For
example, OHE for label y; = 1 would be v, = [1,0,0,0,0]. This way we are able to get a vector
representation for each label. Usually, machine learning models will output a discrete probability
estimate 0, € [0, 1]5 over the 5 categories, such that, Eizl D¢, = 1. For a model prediction 7,

the label y; can be simply taken as arg maxgeqy | 5y Ork-

The goal of all machine learning models in this thesis is to approximate a non-deterministic function

fe: RP — Y, such that the Expected Prediction Error (EPE) is minimised, where,

EPEy|x=a,clfc] = By|x=o c[L(Y, fc(X))),

Here £ C D is a carefully chosen ‘learning/training set’ on which fg is constructed and L : Y x Y —
R is called a loss/cost function for the machine learning problem. Alternatively, the loss function

can also be defined on the probability estimates, such that, L: [0,1]° x [0,1]° - R

Bias-Variance Decomposition for Multi-Classification Problem: Before we go on to define
the models, it would be useful to decompose the EPE to find its components. While such a
decomposition is widely discussed for regression problems, the expression for classification problems
is more complicated. For simplicity consider a zero-one loss function, for the true label ¥, and
predicted label §; as:

0 if g =wi

L(gt, y) =

1 otherwise,

Since f¢ is a non-deterministic function, we define g} for an example x; to be the ‘optimal predic-

tion’ which minimises EPE|[f;] for that example. Then the ‘optimal classifier’ fg : RP — V is the
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model for which fg(x:) = g for every t. We call this the Bayes classifier, and its loss the Bayes rate.

Also, define the ‘main prediction’ to be the value yi whose average loss relative to all the predictions
in £ is minimum, i.e, it is the Bayes estimator. Under the assumed loss function, this would be
the mode (the most frequent prediction) of the predictions. With this setup, we will reproduce the
results from Domingos [16], where he introduced the idea of a unified bias-variance decomposition
for several loss functions. For a data sample (x,y) € (X, Y;) (we omit the subseript ¢ for now for

convenience), in a multi-classification problem like ours, consider the following:

By|x=2[L(fe(x),Y)] = Ey|x=2[1(fe(x) # Y)]
=P(fe(x) #Y)
=1-P(fe(x) =Y)
=1-P(fe(x) =Y|fs(x) # Y)P(f5(x) # Y)
=I(fe(x) # fB(x)) + coBy x=2[I(Y # fs(x))]

where ¢ = —P(fe(x) = Y|fo(x) # V) it fe(x) # fs(x) and ¢y = 1 otherwise, and I(.) is the

indicator function. Similarly one can show that:
Be[L(fa(x), fo(x))] = L(f8(x),¥B8) + c2Eg[L(fe(x),y5)]
=I(fs(x) # y5) + 2B [I(fe(x) # y5))

where co = —Pg(fe(x) = fe(x)|fe(x) # yg) if fe(x) # fr(x) and ¢2 = 1 otherwise.

From the above results, we have:

Ef[Ey x=c(L(fe(x), V)] = E¢[By x=s[I(fc(x) # Y]]
= Ez[I(f2(x) # f8(x)) + coBy|x=a[I(Y # fr(x))]
= Ec[I(fz(x) # f5(x))] + Eyx=2[I(Y # f5(x))|E£[co]
= I(fa(x) # yB) + 2B [I(f2(x) # y8)] + Ey|x=o[I(Y # f5(x))]Ec]co]

where Ey|x—, [I(Y # fs(x))] doesn’t depend on £ in the third-last step, and ¢; can be calculated

as:
a1 =Egleo] =Pe(fe(x) = f(x)) — Pe(fe(x) # f8(x))Py|x=a(fe(x) = Y|fa(x) #Y)

So for a multi-classification problem considering a zero-one loss function, the EPE is a linear

combination of 3 quantities:

e Bias: L(fz(x),yg), the loss incurred by the main prediction relative to the optimal predic-

tion. It measures the systematic loss incurred by a learner, and is training set independent.
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e Variance: Eq[L(yg, fc(x)], the average loss incurred by predictions relative to the main
prediction. It measures the loss incurred due to fluctuations around the central tendency,

and is independent of the true value of the predicted variable.

e Noise: Ey|y—.[L(Y, f5(x))], the unavoidable component of the loss, incurred independently

of the learning algorithm

More intuitively, bias can be considered as the ‘stiffness’ of the model, and variance can be con-
sidered as its ‘flexibility’. Usually bias and variance move in opposite directions, and so machine
learning models need to be carefully tuned in order to balance the bias and the variance. The

above idea will be particularly useful to build the argument for Random Forests.

Coming back to our classification problem, we would ideally want fg to estimate a probability
distribution over the 5 classes from which the class can be easily inferred (defined at the beginning
of this section). It is safe to assume that as we improve on the estimation of this probability
distribution for a particular training sample, we will also improve in predicting the correct label.
So we would like to define our loss function L on [0,1]® x [0,1]®. For this purpose, the conventional

choice of the loss function in literature is ‘Categorical Cross Entropy’ (CCE), defined as:

L(vy, 0y) == — Zi:] Vg 1o 10g (D4 1)

The CCE loss function is a measure of distance between two probability distributions and hence a
suitable choice of loss function for this problem [17]. Moreover, it is differentiable unlike the zero-
one loss function. Even though no explicit solution exists in current literature for bias-variance

decomposition of this loss function, the idea of bias-variance trade-off still holds.

Testing set: If we simply take £ as D, it is guaranteed that we will able to come up with f, which
would give us a very low EPE for all (x4,4;) € £. This is could be easily achieved by fitting a
polynomial of order equal to the number of data points in £. Such a model would get increasingly
complex with increase in data points and would capture signal as well as noise in the data. The
model would perform poorly on any unseen data point, a condition in machine learning known as
‘overfitting’. Hence, as deseribed in section 2, we shall take 2 disjoint partitions of our data, such

that, D = LU T, where £ is the training or learning set and 7 is the testing set.

Hyperparameters and Regularisation: Generally, as the model complexity increases, bias
decreases but variance increases and so the machine learning objective should also take into account
the complexity of the model. More formally, we must first choose a class of functions F and then
within that class find the aforementioned function fr. Here each F is characterised by some

parameters (not to be confused with parameters of fz) which control the complexity of fg, called
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‘Hyperparameters’. Usually, we optimise the set of hyperparameters by trial and error.
We will now a add a complexity or ‘regularisation’ term to the original error function (CCE). In

totality, the machine learning objective to be minimised then becomes:

obj(fe) = L(fe) +C(fe),

where L(fc) = Z(x,y}Eﬁ L(fe(x),y), and C controls the model complexity, also called the ‘Regu-
larisation term’. The regularisation term is model-type specific, for example, dropouts in Neural

Networks and maximum tree depth in Random Forests.

Cross Validation for Time Series Data: Cross-validation is one of the model selection tech-
niques used to tune hyperparameters in machine learning. The technique aims to find the optimal
hyperparameters independent of the choice of the training set and hence to remove any selection
bias while doing so. For this purpose, we take disjoint partitions of the learning set called folds,
such that, £ = £; U Lo... U L. The standard algorithm used for cross validation, called K-Fold
Cross Validation, iterates through the folds such that in each iteration, all but one folds are used
for training and the remaining one is used for testing. This way, for each combination of hyperpa-
rameters, the algorithm computes an aggregated loss (for example, average) over the K-folds, and
chooses the combination of hyperparameters for which loss is minimised. However, this approach
cannot be directly used for time series data because of the serial order of the data points. For time
series data, it is assumed for K-folds that £, < £5... < Lg, where < denotes the ordering of the
folds. Hence, because of these serial dependencies, we cannot train a model on £o... U L and then

evaluate it on £q (we can’t train a model on future data, and then evaluate it on some past data).

KFold TimeSeriesSplit
m Testing set B Testing set
0 == Training set o = Training set
1 1
] ]
& 2 - 2
o g
5 5
class dass
group 1IN | | group {7 | -
6 20 40 60 80 100 20 % (] a0 100
Sample index Sample index

Figure 4: K-Fold Vs. Time Series Split

For the purpose of cross-validation, we shall use a variation of K-Fold, for which we formally define
algorithm 1.
In algorithm 1, we assume that H is the hyperparameter space which is appropriately chosen, we

train on £* and test on T* (different for each k), fz- is the model trained on £* expressed as a
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Algorithm 1 Time Series Cross-Validation
1: for h in H do

2: losses + []

3 for k in {2,...,K} do

4: LY Ly U ULk

5: T* 4 Ly

6: foo — A(h, L*)

7: losses « losses + [L(fe(T7))]
8 end for

o: grid(h) +— max(losses)

10: end for

11: hope € arg ming,cq grid

function (A, some algorithm) of the hyperparameters h and £*. With a slight abuse of notation,
we define L(fz+(T*)) to be the loss of a model trained on £* and evaluated on T*. Furthermore,
we took the aggregated loss function over K folds to be the maximum of the losses (the worst case
scenario) and not average of the losses because in practice, even if the mean loss for a particular

combination of hyperparameters is low, the standard error of h defined as:

h))

Var(losse

K

SE(h) =

could be high, leading to a bad choice of hyperparameters. Here losses(h) is the array of losses for

hyperparameter set h over the K folds.

Addressing Class Imbalance: As stated in Section 2, when creating the boundaries for clas-
sification, we take unequal bin sizes. This creates a class imbalance which might lead to biased
models. The way we address this problem in this thesis is by taking appropriate class weights.
Since class ‘1" and *5” are top 10 and bottom 10 percentiles, classes *2" and ‘4" each are 20 and class
‘3" is middle 40 percentile of the training set, misclassification in each class should be penalised in
inverse proportions to the size of the class. A simple caleulation would dictate class weights of 4
for ‘1" and ‘5°, 2 for ‘2" and ‘4’ and 1 for *3". By doing this, during model training, a misclassifi-
cation of classes ‘1" and ‘5" is penalised 4x more than that for ‘3" because they are considered as
rarer data points. So all throughout our analysis, we are considering a weighted version of CCE. In

theory, we will use the variable w for the array of weights and take a weighted loss function to be L.

Having discussed some background about the general methodology, we will now discuss some
methods of constructing f. We will start with a linear model, and then escalate the complexity to

training over 10,000 parameters. All models were implemented in Python. For Multinomial Logistic
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Regression and Random Forests we used Scikit Learn’s [18] implementations LogisticRegression and
RandomForestClassifier, and for Deep Neural Networks and LSTMs we used Keras. Note that in
this thesis, Deep Neural Network classifier refers to a deep neural network with a feedforward

architecture.

3.1 Multinomial Logistic Regression

We will start with a basic model which extends the idea of Logistic Regression to multiple classes,
and is also known as Softmax Regression. Considering the setup as defined earlier, the learning

funetion fr for Multinomial Logistic Regression can be defined by the following simple steps:

o First, consider the affine transformation z, = 0 x x, + b, where, ff € R°*P and b € R® so that

z; € R°. Here # is the weight matrix and b is called the bias of the model.
e To this affine transformation, we apply the ‘softmax’ function, which is defined as:

softmax : R® — R®

et

softmax;(z) = —

Ep
Zj:l entd
where i € {1,2,3.4,5}. This way softmax function transforms vector z; into a probability

distribution vector, which is the model’s prediction .

o More concisely, we can define the learning function as &, = fz(x;) = softmax(x, +b) and we
can now compute the associated Categorical Cross Entropy loss with this prediction, given
by L. (ve, 0¢). From above, for a given vy, we can clearly express the loss just as a function

of # and b.

The above procedure is called ‘Forward Propagation” where we start with some random parameters
¢ and b, and compute the associated loss for them. Now the question remains to choose the # and
b which minimise this loss. For this, we use an approach called ‘Gradient Descent’. Due to the
differentiability of the loss function, we can find its gradient with respect to # and b, and update
both in the direction of minimisation of the loss. Assume for the following that the data is scaled

and so b = 0, so that the update rule for # is given by:

AL, (6)
'qx',j - 9;',_3' - ’-’!Tj‘js
where i € {1,2,3,4,5}, j € {1,...,p} and 5 is the step size or learning rate.

The next step is to compute the gradient, which is done using ‘Backward Propagation’” based on
simple chain rule. For a single sample (x,y) € £ and v the OHE of y,

L,
Wi =

"~ 0Ly 90, Oz
8'ﬁk 325 86'5‘_‘-;',
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but we know

(‘:)Zj

— =X

;. ¢

oL, _ WkUg

oo Oy

3: = aizjsoftmaxk(z)

For the last differential, consider 2 cases:
e Case 1:i=k

Aoy ad e e Z?:l €% — (‘?ZE)Q
OZg (‘:}Zi z,?:l eZi

2
% e%i

5

Z',: 1 €% Zj: 1 €%

= softmax;(z)(1 — softmax;(z))

= 0;(1 - ;)

e Case 2: i £k
ek

(i)

Combining the two cases we get,

OLW {}g’}k -~ w,-?,ri(l = 'I‘:‘i) ifi=k%k
oy Oz;

— WV D; otherwise

= wrvk(dix — 0i),

where §; . = 1 if i = k and 0 otherwise. Therefore, the overall gradient is calculated to be:

dL 2
— Zwkt?k[&.k - 'E:’j)xj
%ii o

9

5 5
= - E WrURG; g — E Wi UED; Xj=—|wivi — 0; E WEUE | X5,
k=1 k=1

k=1

For the entire training sample £, we get

OL., o
0. = E wiv; — O E wrUk | X5
tJ (x.y)EL k=1

The above calculations would still hold for unscaled data for which we could find the gradient with

respect to the bias in a similar fashion.
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Multinomial Logistic Regression with Regularisation: The above algorithm was defined for
just weighted CCE, without taking into account the regularisation term. For this model, we will

control the model complexity by considering ‘Ridge’ penalty, defined by:
1
c(o) = ~|9/3
0) = 51013

where A is the inverse of the overall regularisation strength, and ||| is the L2 norm. The empirical

results for tuning this hyperparameter will be discussed in Section 4.

This model is extremely fast with less than a hundred parameters to train. One big drawback is
that although softmax function is a non-linear function, the softmax transformation was applied
to an affine transformation of the original data, and so MLR belongs to the family of ‘Generalised
Linear Models’. These models capture individual predictors’ (or features’) nonlinear impact on the
target variables, but do not take into account the nonlinear interactions between different features.

To enable this for our analysis, the rest of the models will have this ability.

3.2 Random Forests Classifier

Random Forests is based on ensemble learning method, where we train several different models on
the same training set £ by introducing random perturbations in the learning procedure, and then
combine the prediction of each of the individual models to form the prediction for the ensemble.

However, before we discuss this concept, we must look at their building blocks - decision trees.

To understand decision trees, consider that for any classification problem with classes {c1, ..., cx },

the true label space Y defines a partition of the universe w, such that,
W = We, Uweyeoo Utdey

where w., is the subset of w for which the true label is ¢;, and i € {1,..., K'}. Similarly, we can
consider that f, the classifier to be trained, defines a partition on the input space X" of the learning
set to give an approximation ) of the true label space ). This partition is different from the one
above and defined as:

X=xfuxf.ux!

Cr

where X is the subset of X' for which f(x) = ¢; for all x € X{. The aim is to then find a partition

which matches as closely as the one defined by the Bayes model fz:
L=clsuck. ucke

Based on the above, a decision tree can be defined as a model f: & — Y which approximates the

partition of the Bayes model by recursively partitioning the input space A" into a set of terminal
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subspaces and then assigning constant prediction values y € Y to each of the subspaces.

The procedure for defining an optimal f as above is an NP-complete problem and only has a sub-
optimal solution. It has been well defined by Breiman et al. [19]. Crucial to their idea is defining
an ‘impurity measure’ associated with each node n of the tree. For the purpose of this thesis, the

impurity measure considered is based on Gini index [21], defined for a node n as:

K
ia(n) = ple;In)(1 = p(cj|n))

j=1

where p(c;|n) is the probability of getting the label ¢; in the samples under the node n. Essentially,
the Gini-based impurity measures how often a randomly chosen object x € £,, would be incorrectly
classified if it were randomly labeled by a class ¢ € ) according to the distribution p(c|n). A lower
impurity measure means a purer node and so better predictions for the subset of the input space
falling below that node. Starting from a root node, near-optimal decisions can be grown by
iteratively dividing nodes into purer nodes until a stopping criterion is met or the nodes cannot be
made purer. This is done by taking a greedy approach, where the split at each node is determined
by considering the locally maximum impurity decrease of the resulting child nodes. For a binary

split s € @ dividing the node n into ny, and ng, the impurity decrease can be defined as:
Ai(s,n) :=i(n) — pri(ty) — pri(tr)

where py and pg are the fraction of total samples under node n under the nodes n;, and ng re-

spectively.

Once a terminal node ny (also called leaf node) is reached, it is assigned a constant value. For a
multi-classification problem like ours, this constant value is taken to be the majority class for the
subset L, of the learning set £. Now the question that remains to answer is that when should

we stop splitting the nodes, i.e, how to define the ‘stopping criterion’ for a decision tree?

In G. Louppe’s work on Random Forests [20] Proposition 3.1, one can find the proof that the more
we split a terminal node in any way, the smaller the training loss gets. Likewise, one can say that
the training loss is minimal when terminal nodes can no longer be divided. In particular, it is
equal to zero if the tree can be fully developed, that is if terminal nodes can be divided until they

all contain exactly one object from L, in absence of any stopping criterion.

However, such a decision tree would overfit on the learning set, and perform badly on the testing
set. It would capture noise along with signal, and fail to generalise from the dataset due to too much

information. Hence, we need to introduce hyperparameters which define the stopping criterion for
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the decision tree. These hyperparameters would control the depth of the tree, where a very deep
tree leads to high variance and overfits and an extremely shallow tree has high bias and underfits
(recall bias-variance tradeoff). The most common approaches to prevent overfitting in decision

trees are by setting n as a terminal node if:
e it contains less than a certain number of samples Nypip, or
e it reaches a certain maximum depth d,,, 4., or
e any further decrease in node impurity is less than a certain threshold 3, or

e there is no such split for which both the child nodes meet a certain requirement Ny, for the
minimum number of samples. Hence it guarantees a minimum number of samples in every

leaf.

Since all these hyperparameters directly or indirectly affect the depth of the tree and control over-
fitting, we will aim to optimise only one of them, i.e, Nj.or. This, we will do using K-Fold cross

validation for time series as defined earlier.

Considering the bias-variance decomposition for a multi-classification problem, it is established
from [16], that the tolerance for variance will decrease as the number of classes increases, other
things being equal. Thus the ideal setting for the bias-variance trade-off may be more in the di-
rection of low variance in problems with higher classes. Keeping this conclusion in mind, we shall
aim to decrease the EPE by decreasing the variance and keep the bias constant or even a little
higher. We will now show how taking a collection of uncorrelated randomised decision trees gives
a model which supersedes all the individual models in the collection. This aggregated model is the

Random Forests model.

Let some random variable £ be the source of randommness in a decision tree fr ¢ trained on the
learning set £. Taking into account the randomness from &£, the bias-variance decomposition for

such a decision-tree under zero-one loss function becomes:
Eg ¢[By|x—u[L(fee(x), Y)]] = bias(x) + eynoise(x) + cpvar(x),
where:
noise(x) = By x—s[I(Y # f5(x))]

bias(x) = I(fa(x) # Ec.¢[fe.c(x)])
var(x) = Ez [l(fr.£(x) # Ecglfe.e(x)])]

and ¢; and ¢o were both defined in the beginning of this section. This new decision tree has both

bias and variance higher than the non-random one and by itself is not an improvement. But what
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if we take M of these?

Let fees fogas o fo ey be a collection of decision trees trained on the same learning set £, using
random seeds £y, &9, .... £3r which are independent and identically distributed samples. Assume each
decision tree fg ¢, gives a probability estimate pg ¢, (Y = ¢|X = x) for each class ¢ € {cy,..,c;}. We
also define an ensemble model which is a combination of these M decision trees for a classification

problem as

M
Ve gy,..6y (X) = arg max — Z Pre, (Y =cX =x)
ceY ﬂ[ m=1

This is called the ‘soft-voting’ rule [22], wherein we first aggregate the probability estimates for
each class by taking an average of the estimate from each individual tree, and then the ensemble
prediction is taken as the class with the highest probability estimate. We will now prove that the
ensemble technique improves these probability estimates, thereby improving the prediction as a

whole.

For mean and variance of the prediction of some x by any individual model, fz e, , we let

1t e (%) = Eg g, [f2, 20 (3)] = Eg g [P, (Y = €| X = x)]
076, (%) = Ve g, [frain(X)] = Ve, [bee. (Y = ¢l X =x)]
Also, let Pee, ..., (Y = ¢/X = x) be the probability estimate by the ensemble for the class ‘¢’

Note that the final prediction of the ensemble is just the class with the highest probability estimate.

Then it can be shown (from [20]) that for any x € X,

Eﬁ-fl----«f.\r [ﬁﬁ-ﬁl-----f.\:{y = ch = X)] =ML (X],

where £ € {£1,...,Ear}. So, an ensemble of M randomised decision trees has the same bias as that

for an individual randomised decision tree for predicting the probability estimate.

To calculate the variance of the ensemble, we will first need the correlation between any two
randomised decision trees. Consider fr ¢ and fg¢,, where £ and & are i.i.d as before. Then the

correlation can be calculated as follows:

(&) = Ere,el(foe (x) = pee () (fre(x) — pre(x))]
P - Trg (X)O‘ﬁ,sz (x)
_Ereelfee (X fre(x) - fre (x)#::&;(x) = fre(X)pee (x) — peg, () pe.e, (x)]
Ot e (x)
_ Eﬁ,&| N3 [ff._.fl (x)fﬁ-ﬁz (X)] - -u%.& (x)
D%.{l (x) '

where the simplifications are made because of the i.i.d property of & and &. The correlation

p measures the strength of the random perturbations introduced by the learning algorithm. If
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p(x) = 0, it would mean perfectly random models, whereas if p(x) = 1, there would be no
randomness. Having derived an expression for correlation, the variance of probability estimate
prediction is:

M
va.r(x) = Vﬁ.&l..“.ﬁu |ii;|._];; Z ff..Em (K)]

m=1

1 M 2 M
=2 |Besin (Z frgn (X)) —Ergn Kz fﬁ.e...(x))}

m=1 m=1

2

1 .
= 37 |Betmtn |20 foe (g ()| = (Mpcg)”
]

= o1 | DB (e (0 e (0] ~ M2k g, ()
i
= % [MEc ¢, [fe.e(%)°] + (M? — M)BL g, 6, [fr.e, (%) feea (%) — MPpZ ¢, (%)]
_ ﬁ [M(0% ¢, (%) + ik ¢, (%)) + (M2 — M)(p(x)0% ¢, (%) + p2 ¢, (X)) — M2p2 ¢ (x))]
! 2
- w + p(x)0Z ¢, (%) — p(x)%}m
_ p{x}ﬁ%&{x} + wﬂ%.& (X)

M
From above, as the size of the ensemble M — oo, the variance of prediction var(x) — p(x)oéfl (x).
Assuming that the randomised trees aren’t perfectly correlated (i.e, there is some randomisation
strength), and so p(x) < 1, the variance of an ensemble is strictly less than the variance of an
individual model. However, in practice, shrinking the correlation between trees usually leads to
a higher variance of individual trees and so the three quantities, correlation, bias and variance
should be balanced by tuning appropriate heuristics. Since, bias and noise, both remain the same,
and variance is strictly less than an individual decision tree, we can conclude that the ensemble

technique indeed supersedes the individual trees in terms of the EPE.

Moreover, it should be noted that we have proved that the quantity pee ¢, (Y = ¢[X =x) is
a better estimate than pg (Y = ¢/X = x), for £, a random seed. The actual predicted class by
the ensemble is the class for which the probability estimate is the highest. Also, for the purpose of
minimising the CCE loss, a better estimate of the probability distribution definitely brings down

the loss.

More intuitively, the reasons for why ensembles work better than individual decision trees as stated

by Dietterich [23] are three fold:

e For a small training set, a learning algorithm can typically find several models in the hypoth-

esis space with the same performance on the training data. Assuming their predictions are
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uncorrelated, averaging several models reduces the risk of choosing the wrong hypothesis.

e Many other algorithms rely on some greedy approach to optimisation, and hence fall prey to
local optimal solutions. Even though the individual decision trees in an ensemble are formed
using greedy algorithms, they all have different starting points and so have a more reliable

solution as a whole.

e Finally, having a large number of constituent models where none of the individual models

can represent the true function, in fact enrichens the space of representable functions.
The question that remains to answer is - where is the randommess injected in Random Forests?

e Bagging: This technique was proposed by Breiman [24] in which each decision tree in the
ensemble is trained on a dataset of the same size as £, drawn from £ with replacement. For
each draw, the probability of getting selected is the same for all the samples, and so for large
data-sets, for the probability of a training sample getting chosen, we can make the following
approximation:

1

= N -1
P(x(—:ﬁb)fl—[l—j\—r} m=1l—e,

as N — o0o. So each training sample contains 63% of the training samples in £. Since each
decision tree is trained on a slightly different training set, this technique has a de-correlating

effect on the ensemble.

¢ Random Feature Selection: The other way of injecting randomness is by training each
decision tree only for a subset of the training features, introduced by Ho [25] and is also called
‘Random Subspace’ method. This again has a decorrelating effect on the trees. This way, the
output Y can be explained in several ways with trees that are different in structure. Doing
this, increases the bias only slightly while the variance shrinks considerably when taken in
an ensemble. This method requires us to tune the fraction of total number of features to be
considered for each randomised decision tree. Some common choices are, the square root of

the total number of features, or 50%, etc.

Recall that we introduced a class imbalance in our data during labelling. In the other three models
such a class imbalance is taken into account by a weighted loss function. However, in random
forests, weights are applied particularly at two different steps: (i) In tree induction procedure:
class weights are used to weight the Gini criterion for finding splits (ii) During soft voting, instead
of taking a simple average of the probability estimates for each class from the M decision trees,

we take a weighted average, thereby giving higher weights to under-represented classes ‘1" and ‘5°.

In this section, we expanded the space of functions that our model is capable of representing and

addressed non-linearity beteen input data. Now, we would like to discuss a model with an even
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richer space of functions represented. Also, it is worth noting that all the above analysis focuses
on zero-one loss, and any probability estimates produced by the model are only a bi-product of
it. We would ideally want a model which given a differentiable loss function (for example, CCE),
can directly minimise the loss associated with predicting the probability estimate, and thereby
also improve the quality of class predictions. This is why we now review Deep Neural Network

classifiers (or Multi-layer Perceptron in some literature).

3.3 Deep Neural Network Classifier

Consider our most basic classifier, the MLR model. We trained a network by first taking an affine
transformation of the input vector, and then transforming that into a probability distribution by
taking a softmax function. If we add atleast one hidden layer after taking the affine transforma-
tion and before applying softmax function, we get a Deep Neural Network. According to Universal
Approximation theorem [8], doing so, makes the space of representable functions infinitely rich.
However, in practicality, defining the appropriate parameters requires careful learning procedures.
In this section, we will define a neural network for one hidden layer. However the same idea can

be extended to many layers.

Input
layer
Hidden
x(1) layer 1 Hidden
§ layer 2
.2 — . :
x(2) ’ - ) Qutput
o \ . — . layer
X
~_ @i
x(4) <K
@i
x(5)
x(6)
x(7)

Figure 5: A feedforward network with architecture 7 x 5 x 4 x 2, taken from [3]

For Deep Neural Networks with p features, size of hidden layer s and number of classes K, the

definition of the learning function fy changes to following:

h, = o(0Wx, + b))

oy = softmax(8@h, + b)),

where #(1) € Rs*P_ h, b1 € R®, (2 ¢ RE*s p(2) ¢ RE. The function o is a popular activation
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function defined as:

1
aifzp= 1+e=

In the above, we apply it elementwise to a vector in R*. For such a neural network we shall say
that the architecture is p x s x K, and the set of parameters to be trained is {9(1], 62 (), b(2)}.
We initialise all the parameters to random values and calculate the associated CCE loss at the

output layer, as defined for MLR.

The process for error minimisation using backpropagation in Deep Neural Networks is similar to
what we defined for Multinomial Logistic Regression. The only difference is that now we have an
extra layer, with the sigmoid activation function. The derivative for the sigmoid function can be

easily found to be:
do(x)
dx

= o(x)(1 - o(x))

Using the same chain rule as we did for Multinomial Logistic Regression, we can compute the gra-

dient of the weighted CCE loss with respect to all the parameters and carry out the training process.

However, model training is neural network is not as direct as for Multinomial Logistic Regression
where there were only a few parameters to train. In many practical applications neural networks
may contain millions of trainable parameters. This would make the learning process computation-
ally very expensive as at each update step, we would be training over all the data points available.
For this purpose, training of DNNs is carried out in randomly chosen ‘batches’ of the training data.
The batch size is considered as a hyperparameter to be tuned. The randomness due to training
in batches also solves the problem of the algorithm getting trapped in the local minima. We also
define the number of ‘epochs’ (another hyperparameter) as the number of times we iterate through

a cycle of forward and backpropagation.

Now that we are dealing with a way higher number of trainable parameters than before, we
are more exposed to the risk of our model overfitting. This calls for a need to regularise the
network, even better using randomisation as seen for Random Forests. This can be done by using
a technique called ‘dropouts’ introduced in [10], wherein some randomly chosen connections (or
weights) between the two layers where we apply the dropout are set to zero. The fraction (called
dropout ratio) of connections set to zero falls between 0 and 1, and is a hyperparameter to be
tuned. A higher dropout ratio means a higher strength of regularisation, and hence a higher bias.
Note that the concept of dropouts in Neural Networks is analogous to the random feature selection
technique in Random Forests, where we trained different decision trees on a randomly chosen
subset of the feature space.

This is a ‘black-box’ approach to modelling time series. Given the high number of parameters it
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is extremely difficult for one to explain certain decisions made by the model. This is one of the

biggest limitations of this approach, and also a reason for it gaining vast criticism.

3.4 LSTM Classifier

So far our approach has been to train the models using input features that were defined in Section 2.
These are Exponential Moving Average based indicators that contain a certain amount of memory
from the past. Our choice of lags and alphas was rather arbitrary and was kept sparse. This way of
time series prediction can be a bit restrictive as we consider only a subset of information from the
past to predict the future. Ideally, we would like the model to learn the weights associated with
log returns at different time points from the past to predict the future instead of using exponential
moving averages which already assume decaying weights. This gives motivation for Long Short
Term Memory units introduced by Hochreiter & Schmidhuber [11] that can take sequential data
such as time series data as input and model complicated patterns in them. We will first review
Recurrent Neural Networks (which LSTM is a type of), and then address the problems with RNNs
which make them a bad choice for modelling long range dependencies. Then we will review how

LSTMs fix this problem.
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Figure 6: RNN expressed as a feedforward network

Before we dive into the theory, there are some important remarks to be considered. For the purpose
of this model, we do not use the feature generation method as deseribed in Section 2. Instead,
in the implementation of LSTMs, we consider Gadget 5 vear and Gadget 10 yvear sequential log
returns with lookback period (or step size) of 50 timescale units. So, each training sample consists
of series of 50 past log returns of 5 year and 10 year Gadget data, and the corresponding label for

the future log return of Gadget 5-year.

As seen in figure 6, we see that an RNN is essentially a feedforward network in a loop, and so has a
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training process similar to that of DNN. However, for DNNs, the hidden layer (or hidden variable)
is only a function of x¢, and so doesn’t contain any memory of the past hidden states. What makes
RNNs different is that for every time point ¢, the hidden state is a non-linear function of both, the
input x; and the hidden state at previous time point ¢ — 1, and hence recursively is a function of
all previous hidden states. It is common to take this function as tanh, so that the output of the

recurrent layer at time ¢, hy of the RNN model can be defined as:

= tanh(Why_, + Ux, + b(1))

F
\

0 = softmax(Ohy + b?)

where tanh (defined below) is applied element-wise,

e’ —e "
tﬂﬂh(fﬁ) = ﬁ
€ e

¥, is the model prediction as defined earlier, and the trainable model parameters are:
e IV has dimensions n x p
e [/ has dimensions n x n
e () has dimensions K x n

e b and b® are bias vectors used to translate the non-linear transformations, and have

dimensions n x 1 and K x 1 respectively.
e hy is time ¢ output with dimensions n % 1 and 4 is the prediction with dimensions K x 1.

In the above, n is the step-size in the implementation of LSTMs, taken to be 50 in this thesis, p
is the number of features, taken to be 2 as explained earlier, and K is the number of nodes in the
output layer, which is 5 for the purpose of this thesis. Note that, figure 6 was taken from Chen
( [26]), where Wy, is W, W, is U, W), is O and z; is O,.

All the trainable parameters of the model are first initialised with some random values, and the
associated loss is caleulated by forward propagation as in the case of Multinomial Logistic Regres-
sion and Deep Neural Networks. This is followed by gradient descent for loss minimisation at the
output node, which is done by a variation of backpropagation algorithm called ‘Backprogagation
Through Time’ or BPTT. This is thoroughly discussed in [26] and will be only reviewed in this

thesis.
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For ease of notation, let a; = Why_; + Ux; + by, Then using chain rule we get that,

N

dL,, OL,, Ovy
90;; ; D0y 00,

AL, <~dL, 0%,
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where,
aL, 9L, 95y dhg; dhy;
day; 00y Ohy; Ohy; day;
and i,! € {1,...,d} and j € {1,...,p}. In the above gradient, 3:;‘ is calculated iteratively using
the relation: :
Ohy; 17 Oha
ti r+1.1 (31)

ohg; Oh, ;

Once, we have the gradients for all the parameters, a gradient descent approach (as explained

r=k
previously) can be used to minimise the loss.
In theory, RNNs being a subset of neural networks, can approximate any function (from [8]). How-

ever in practice, RNNs fail to capture long-range dependencies. Since h; is expressed as a tanh

function, its range is from -1 to 1 and the range of its derivative is from 0 to 1. In equation 3.1, as

32; will go to zero. This is called the ‘Vanishing Gradient Problem’ and

t—k — oc, the gradient
leads to loss of learning capabilities for capturing long term dependencies. The similar problem
is faced if we use the sigmoid function for this purpose. If we attempt to fix this problem by
replacing the activation function with a function with gradient larger than 1, we might face an
‘Exploding Gradient Problem’ as the gradient in question would explode to high values, disrupting

the learning process.

LSTMs are a variation of RNNs invented to fix the drawbacks of Recurrent Neural Networks,
particularly, vanishing gradient problem. As shown in figure 7 (top), in vanilla RNNs, the hidden
state is just a tanh function of linear combination of input and previous hidden states. In LSTM,
this relation is more complicated and is controlled by structures called ‘gates’. Crucial to LSTM
is a conveyor belt like structure called the ‘cell state’ c;, which is passed on from cell to cell

(top flow in LSTM, figure 7). Note that in the figure, pink nodes signify element-wise operations
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Figure 7: Difference between RNN(top) and LSTM(bottom), taken from [27]

and the vellow nodes are the activation functions. We have already defined tanh, and o is the
sigmoid function. Since the range of the sigmoid function is between 0 and 1, they can be used
to regulate the information flow. The cell state holds the memory of the network and addition of
any new information entering the network is regulated at each time point by gates. This removes
LSTM'’s dependence on iterative multiplication of gradients. The gate mechanism in LSTM can

be characterised by the following equations:

e Forget gate: This gate controls the amount of information that is remembered from the cell
state. Corresponding to each number in the cell state ¢;_;, it outputs a number between 0
and 1 (range of the sigmoid function) to regulate its information flow. The related equation
is:

f, = o‘(”r"fxt + Ufha—l +bf)

e Input Gate Layer and Temporary Cell State: These two gates regulate the new infor-
mation that is to be stored in the current cell state. First, the input gate layer decides which
values will be updated:

i, = o(Wix, + Ushy_1 +b;),

and then we define a temporary cell state, ¢;, which regulates the extent to which they are
updated:

& = tanh(Wax, + Ushy_y + by),

e Cell State Update: The cell state at time ¢ can now be defined by a linear of combination

of (i) memory from the previous cell state and (ii) information extracted from the current
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input. So, the cell state update equation is:

cg=foc  +iot

e Hidden state: The hidden state output hy is a function of the cell state ¢;. We first define
the output gate as

o = o(Woxt + Usghy_1 + by,),

which regulates what in the current cell state should be output, and then multiply it with a

scaled version of the current cell state ¢; as follows:

h; = o, o tanh(c;)

e Prediction: Finally, the prediction ¥ is a function of h;. This could be through another

hidden layer, or directly through a softmax function.

This gives the set of trainable parameters for LSTM to be {Wy, Uz, by, Wi, Uy, by, Wi, Uz, bz, Wy, Us, b, }
with appropriate dimensions. Hence, the recurrent layer of LSTMs has four times more parameters
to train than the recurrent layer of vanilla RNNs. This makes the possible space for prediction
functions much more vast than any other models we have previously reviewed. However, with
this greater degrees of freedom, comes a greater risk of overfitting the data. This also means
that LSTMs require a higher degree of regularisation and more powerful optimisers with adaptive
learning rates as compared to DNNs. In the next section we will review some developments in this
segment, where the learning rate is made adaptive with momentum for faster convergence and for

avoiding falling into local minima.

3.5 A Note on Optimisers

Training time and convergence of models for both, DNNs and LSTMs, are largely impacted by the
choice of optimiser. In this thesis, we will discuss 3 optimisation algorithms existing in current
literature: Mini-batch Gradient Descent, Adaptive Moment Estimation (Adam) and the newest
development, Rectified-Adam (RAdam). The theory and equations for Mini-batch Gradient de-

scent and Adam are well explained in [28] and RAdam was introduced at Microsoft (see [15]).

Starting with the very basic optimiser, Mini-batch Gradient Descent algorithm performs parameter
updates in small batches of the training sample. This way it greatly reduces the variance of the
parameter updates as compared to the case where updates are made individually for each training
sample (as in Stochastic Gradient Descent). It also ensures speed and tractability relative to the

case where the whole dataset is considered for every epoch (Batch Gradient Descent). The idea
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of training in batches also enables parallel computing (atleast for non-recurrent models) and takes
up less RAM as the whole dataset doesn’t have to considered at once. Note that in computer
applications, Mini-batch Gradient Descent is usually referred to as Stochastic Gradient Descent,

and so the two terms will be used interchangeably in this thesis as well.

Bri1 = 0 — Vo L(6;) (3.2)

While the above optimiser led to a fast convergence in the case of Deep Neural Networks, recurrent
neural networks such as LSTMSs require more powerful approaches to gradient descent. As discussed
in [28], the concept of having a fixed learning rate for training doesn’t yield good results if the data
is sparse and the features have very different frequencies. To address this problem, Adam uses an
adaptive learning rate mechanism for each parameter based on (1) exponentially decaying average
of past gradients (estimate of the first moment or the mean), and (2) exponentially decaying
average of past squared gradients (estimate of the second moment or the uncentered variance).

Hence, the update rule becomes:

my = By + (1 — $1)VeL(0:)
ve = Bavi—1 + (1 — B2) (Ve L(0:))? (3.3)
By =0 — J_ul,jﬁ"r”f-
According to the authors of Adam, suitable values for 3, A2 and € are 0.9, 0.999 and 10~® respec-
tively. For empirical purposes, m; and 14 are replaced by their bias corrected versions:

g N Vi
. =
at . at
1-pt 1- 3%

my =

However, Liu et al. [15] successfully identified the problem of high variance of the adaptive learning
rate as the fundamental cause of convergence to suspicious local optima in Adam and other adap-
tive learning rate algorithms. They pointed out that the adaptive learning rate has large variance
in the early stage of model training due to lack of training samples being used. To fix this problem,
they proposed R-Adam which rectifies the variance issue and has a reduced susceptibility to the

choice of the hyperparameter 7 due to improvement in robustness of model training,.

R-Adam improves by bringing consistency in the variance of v4. Let g4 := VpL(#;), then for a

generic adaptive learning rate optimiser, 1, is set to ¥(gy, ..., g¢). For Adam, this function is

Y(g1, -1 9t) Sl
NGLs - Gt) = t—i
(1= B2) Xicy Bs~'07

It can be shown that q}?( g1, ... gt ) approximately subjects to a scaled inverse chi-square distribution

with p; degrees of freedom, where p; is due for approximation. From Theorem 1 in [15], we have that
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Figure 8 LSTM training with architecture 50 x 0.5 x LSTM(50) x 0.5 x 5 for 2 minute look-forward
prediction using (i) MB-GD (ii) Adam (iii) R-Adam

Var(y(.)) decreases monotonically with increase in py, which is exactly what we want. Further,
the authors prove that p; = f(t, 32), where f is defined as

2 2134
t, B2) 1= —1- 2
1(,2) 1— s 1—1'1)}5

Clearly, for a fixed G2, p¢ is monotonically increasing in {, and so the maximum value of p; is
2
Dog 1= ———— — 1
Fes 1- J'3'2
and so this is the number of degrees of freedom for which the variance of «(.) is minimum.
Based on this, a rectification term 7 for all ¢ can be found such that we have, Var(ri(.)) =

Var(y(.))p,—p. = K, some constant. In the paper, this term is approximated to be

L (pr — 2)(pr — 1) poc

=y —

(P'm = 2) (ﬁm = 4)!-5'&
Due to the constraints on g in ry, the rectified adaptive learning rate term r;14 is only applied
to the parameter update when p; > 4. This way R-Adam ensures that the variance of adaptive

learning rate is consistent over the learning period leading to better convergence.

When the 3 discussed optimisers were used for training an LSTM network on Gadget dataset for
50 epochs, the learning curves as shown in figure 8 were observed. While mini-batch Gradient

Descent is stable, the convergence to minima is slow as the loss only decreases to 1.56 as opposed
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to below 1.5 in the other two. For Adam, even though the optimiser can be considered strong
in terms of bringing the loss down, there are major fluctuations in validation loss indicating poor
convergence. This is further improved by R-Adam which succeeds in bringing the loss down with

a relatively more stable learning curve.
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4 Empirical Results

Having discussed the underlying theory for each model, we will now discuss the hyper-parameter
tuning and performance of these techniques for predicting Gadget 5-year. Two prediction horizons
were considered: short-term (2 minutes) and long-term (10 minutes). All the results are out-of-
sample, for the months of June and July, covering 9900 data points in total. Training and validation

was done on approx. 10000 data points for the months of April and May.

4.1 Model Evaluation:

For each model, we will report the Expected Prediction Error (EPE) based on a Categorical Cross
Entropy loss, where the EPE will be an average of 10 simulations. Since EPE is only a measure of
the goodness of estimate of the probability distribution, the predictive power of the classifiers will
also be evaluated using the following classification metrics derived from the confusion matrices for
each class:

e Precision:
TruePositive

TruePositive + FalsePositive

e Recall:

TruePositive

TruePositive + FalseNegative

e F1-Score:

Precision  Recall

T T ]

Precision + Recall
More intuitively, for each class, Precision measures the number of times the classifier correctly pre-
dicted that class out of the total number of times the classifier predicted that class, and hence is a
measure of how ‘reliable’ a model is for predicting a particular class. Recall measures the number
of times the classifier correctly predicted that class out of the total number of times that class
oceurred in the dataset. and hence, measures how ‘opportunistic’ a model is towards a particular

class. Fl-score is simply the harmonic mean of Precision and Recall.

Note that it may be tempting to consider accuracy as the base metric, but accuracy doesn’t give
a true measure of a classifier’s performance when there is class imbalance. For example, a trivial

model predicting ‘3" in this case everytime would be a highly accurate one but mostly redundant.

4.2 Loss and Average Fl-score Comparison

In figure 9 we see that in both short-term and long-term cases, all the four models have a loss

less than the random model. Hence, we can conclude that all the four models beat the random
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I L AR AN

2-minutes 1.5720 1.5602 1.5708  1.5599

10-minutes 1.6 1.5738 15730 1.5736  1.5727

Figure 9: CCE loss on Test set averaged over 10 simulations

model when it comes to predicting the probability distribution over the 5 classes (defined to be ©).
Moreover, we observe that this loss is more for 10-minute predictions than for 2-minute predictions,

which confirms that it is easier to predict nearer into the future.

In terms of ranking of the models, we observe that LSTM brings down the loss of prediction the
most, followed by the Random Forest model. We don’t observe a significant difference between the

performance of DNN and Multinomial Logistic Regression as the loss for both the cases is similar

I L) K TN T

2-minutes 0.27 0:27 0.26 0.27
10-minutes 0.2 0.19 0.22 0.20 0.25

Figure 10:  Average Fl-score over 5 classes

In figure 10, for 2-minute predictions, we observe that averaged across the 5 classes, each model
performs 35% over the baseline of 0.2, However, for prediction horizon of 10 minutes, the reduced
loss doesn’t necessarily translate to a higher predictive power. In the next sub-section, we will

explore this in greater detail.

4.3 Hyperparameter Tuning and Predictions

e Multinomial Logistic Regression: The hyperparameter A in the regularisation term is
calculated using a 5-fold Time Series Cross Validation as shown in Algorithm 1. It is clear
from the diagram below how first with inerease in A (decrease in regularisation) the loss
decreases monotonically until an optimal point, and increases after that. It is at this point
that the bias and variance of the model are balanced to give the minimum loss. Any further

decrease in regularisation leads to increase in model variance.

Something worth noting for comparing the 2 minute and 10 minute cases is the difference be-
tween the optimal A in the two. For 2-minute predictions, the optimal point is A = 0.45 and

for 10-minute predictions, A = 0.01. Since A is inversely related to regularisation strength,
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Figure 11: Hyperparameter A tuning for 2 mins (L) and 10 mins (R) prediction

we can conclude that the model needs stronger regularisation for the 10-mimite case. This is
in line with our intuition, since for the same data, the signal to noise ratio will decay as the
prediction horizon gets longer and so the same data would be more prone to overfitting for
long term predictions. This can also be attributed to market efficiency, wherein any long-

term alpha would be discovered and quickly exploited.

Given in figure 12 is the classification report for Multinomial Logistic Regression for 2 min-
utes prediction. On the rows, we have the actual label, and on the columns, we have the
predicted label. For example, from the matrix below, the model correctly predicted ‘5" as ‘5’

438 times, and incorrectly predicted ‘5" as ‘1" 87 times.

[ 12 |3 | a4 | s | suppont]
448 239 281 171 1463

1 324
2 259 764 516 579 328 2446
2l 174 623 444 555 306 2102
4 201 651 488 662 426 2428
5] 87 269 223 396 438 1413
Precision 0.31 0.28 0.23 0.27 0.26
Recall 0.22 0.31 0.21 0.27 0.31
F1-Score 0.26 0.29 0.22 0.27 0.28

Figure 12: MLR Classification Report for 2 minutes prediction

From the classification report we can see that MLR improves the Fl-score over the baseline
of 0.2 for all the 5 classes. Further it can also be observed that the model understands
the hierarchy of the classes. For example, against a prediction of class ‘1’ (see the column
under ‘1%), we observe decreasing frequencies of prediction along the column, i.e, the model

understands that ‘17 is closer to ‘2" than to *5’. Likewise, under the prediction class *3’, this
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distribution of frequencies is more or less symmetric. Notice that we observe a negligible
improvement of Fl-score under class ‘3’. While this can be seen as a room for improvement,
we will see in the next section that this doesn’t hurt the investor because we don't trade

when the model signals ‘3.
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Figure 13: MLR Performance for 2 minutes prediction

Another way of visualising alpha generated is the bar chart in figure 13. On the x-axis, we
have the signal generated by the model, and for each class prediction, we have the actual
underlying distribution of frequencies. We see a strong skew in frequency distributions of

classes ‘1" and *5°, and none at all for ‘3.
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Figure 14: MLR Performance for 10 minutes prediction
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A similar bar chart is presented for 10-minute predictions in figure 14. We observe that the
desired skew of frequencies is now much fainter in most classes, signifying diminishing alpha.
Also, we observe that the performance of the model towards predicting extreme classes ‘1’
and ‘5 is severely affected, which is intuitive, as extreme movements are the hardest to

predict.
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¢ Random Forest:

In Random Forest classifier, we focused on 3 hyper-parameters:

— Number of estimators (or trees) in the forest (parameter M): As established in
section 3, as the number of estimators in the forest increases, the prediction variance
decreases whereas the bias remains the same. Although, having a large number of
estimators only makes the model more efficient and doesn’t lead to overfitting, it is
computationally expensive. Usually, the loss goes down with increase in number of
estimators until a critical point, after which it plateaus, as illustrated below. For our
analysis we took M = 500, as it was fast enough (3 seconds) for our dataset and guar-

anteed the loss plateau.

Figure 15: Loss Vs. Number of Estimators (elbow point at M=25) for 2-minute predictions

— Maximum Features: as discussed in Section 3, as this value increases, the strength
of randomisation for the random forests decreases, and hence the correlation between
individual decision trees increases. More concisely, the higher this number is, the lower
is the variance for the ensemble. However, a high value for this number can also lead
to a high bias and so it needs to be carefully tuned. This is an ensemble specific
hyperparameter.

— Minimum Samples per Leaf Node: this parameter was explained in Section 3 as a
stopping criterion for the tree to grow. The more we allow the individual trees to grow
(low minimum samples per leaf node), the more prone they are to overfitting, and have

a high variance. This is a tree specific hyperparameter.

To select the optimal hyperparameters for Random Forests, we use a technique called Grid

Search, where the grid contains a value of metric of interest (categorical cross entropy loss),

against every hyperparameter combination in the hyperparameter space. In this thesis, we
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shall consider a 2-dimensional grid (for maximum features and minimum samples per leaf
node). Also, apart from the stopping criterion defined, we let any other hyperparameters
be as liberal as possible. For example, there is no limit on the maximum depth of the tree,
minimum impurity split, and minimum samples split, maximum leaf nodes, etc. are all set
to none. Also, we use bagging as explained in Section 3 for training the random forests. We

fix the number of estimators during cross validation to M = 100.

For an appropriate hyperparameter space of the form (minimum samples leaf x maximum
features),
H = {1,50, 10, 40, 80, 100, 200,500} x {[].1_.[].2_.[).4_.[).8_. 1,sqrt}

the grid after 5-fold cross validation for 2-minute prediction is given in figure 16.

sty aram AT 1 (2 AT

Figure 16: Random Forests Grid Search for 2 minutes (top) and 10 minutes (bottom)

From the grid, it can be seen that for 2-minute prediction the optimal value for the hyvperpa-

rameters minimum samples leaf and maximum features is 80 and 0.1 respectively. Surpris-

ingly, we see a similar result for 10-minute predictions which can be potentially attributed
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to the fact that for increasing time horizons, the correlation between 5Y and 10Y Gadget

increases (see figure 2.2), and that the RF model is the best at exploiting it.

Note that the ‘NaN’ column means that there is no randomisation in the feature selection
process for Random Forests. Similarly, for minimum samples leaf set to 1, there is no stop-
ping eriterion for the leaves in the individual decision trees. We can also observe, that for any
fixed value of maximum features hyperparameter, the loss first decreases until some point,
and then increases with increase in minimum samples split. This can again be explained by

the concept of bias-variance trade-off.

Figure 17: RF Performance for 2 minutes (L) and 10 minutes (R)

Just as for the MLR 2-minute case, we observe the desired skew of frequencies for each label
in RF as well (figure 17). One stark difference this time is in the 10-minute case, where we
begin to observe improvements in classes ‘1" and ‘5. This proves RI's credibility over MLR.
for longer term predictions. The classification report for this model, along with the next two

models, is given in the appendix.

e Deep Neural Network:

For the DNN classifier, the hyperparameters to be tuned were the model architecture, num-
ber of epochs, learning rate, batch size, and dropout ratios. The choice of optimiser was
already established to be Stochastic (Mini-batch) Gradient Descent with a learning rate of

1073 (see Section 3, A Note on Optimisers).

The model architecture was chosen based on some simple rules of thumb for network training.
We fixed the number of hidden layers to 2 to capture a higher degree of non-linearity and
then followed a simple approach. The number of nodes in the hidden layers was always kept

less than the number of nodes in the input layer (number of features), and more than the
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number of nodes in the output layer (five, in our case). Also, the number of nodes in the
first hidden layer was kept more than or equal to the mumber of nodes in the second hidden
layer. For each configuration, the model was trained, and the learning curve was observed for
500 epochs and a minimal batch size of 16. If the training loss was seen to diverge from the
validation loss (a sign of overfitting in neural networks), the problem was solved by adding
more nodes in the hidden layers, and considering regularisation (dropouts, as explained in

Section 3) between different layers.
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Figure 18: DNN 2 minute prediction without (L) and with (R) dropout ratio of 0.2 for architecture

T3 %36 %36 x5

The effect of dropouts can be clearly seen in figure 18, where we first considered a deep
neural network for 2 minute predictions, without any dropouts and then applied a dropout
ratio of 0.2 between the two hidden layers, for the model architecture ninputs X Minputs/2 %
Ninputs/2 % 5, using sigmoid activation function on each hidden layer and softmax function
for the output layer. This general architecture translated to 73 x 36 x 36 x 5 and 4,145
trainable parameters in total for our problem. The training and validation time recorded for

this architecture was 500 seconds (= 1 second per epoch).

Note that in figure 18, the training loss and the validation loss are on different scales (blue for
training, green for validation). This is becanse during training, the model loss is calculated
taking the class weights into account, however during validation/testing, no class weights are

applied.

Analogous to the MLR model, where for 10-minute prediction we needed a higher regularisa-
tion strength, for DNNs also, it was observed that the training curve is better when a higher
dropout ratio of 0.5 is applied, with the same architecture as above.

Close to the performance of MLR 10 minute case, where the model didn't perform well for

the extreme cases, we see a similar phenomenon occuring in the DNN classifier. This is also
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Figure 19: DNN Performance for 2 minutes (L) and 10 minutes (R)

reflected by its average Fl-score, which is only 0.2 and close to that of MLR.

e Long Short Term Memory:

The same parameters were tuned for LSTMs using a similar approach. The optimal archi-
tecture for LSTMs was found to be nippuss X LSTM(Ripnputs) X Minputs % 5, with a dropout of
0.5 between the recurrent layer and the hidden layer, and also between the hidden layer and
the output layer. This amounted to 13,405 trainable parameters in total. Notice that this
time, we applied a higher amount of regularisation to the network as compared to the case of
DNN. An explanation for this is that the number of trainable parameters is much higher in
this model as compared to the last one and hence it is more prone to overfitting. In fact, for
this model, the number of trainable parameters is more than the number of training samples,
which is indeed a reason why it needed much stronger regularisation. It can be observed
from figure 20 that not applying regularisation gave an extremely volatile training procedure

which diverges to a very high value of CCE loss by the end of the training process.

A 'S
Figure 20: LSTM 2 minute prediction without(L) and with(R) dropout ratio of 0.5 around the
non-recurrent hidden layer

Furthermore, for LSTMs, the choice for optimisers was Rectified-Adam, as discussed in Sec-

tion 3. Due to robustness of training and lower susceptibility to learning rate in R-Adam,
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Figure 21: LSTM performance for 2 minutes (L) and 10 minutes (R)

the learning rate was taken to be 1072, Since the optimiser used was stronger than SGD,

the number of epochs was reduced to 50 with a batch size of 64.
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5 Trading Strategy

Another way of confirming models’ alpha generation is assessing their performance when used in
a trading strategy. This way we can test its profitability and also study the behaviour of models
in different market conditions. The trading strategy implemented was kept simple to make the
models’ predictive power more explicit. The strategy closes out all the long positions and opens
two short positions if the label is 1, and closes out all the long positions and opens one short
position if the label is 2. Likewise, the strategy closes out all the short positions and opens two
long positions if the label is 5, and closes out all the short positions and opens one long position
if the label is 4. The strategy simply holds on to the inventory if the label is 3.

In calculating the cumulative PnL, the following assumptions are made:
o We start with 0 basis points.
e There is always sufficient cash available to maintain the brokerage account margin.
e No restrictions on the minimum or maximum holding period and overnight positions.

e We trade mid-to-mid, transaction spread is ignored.

We ignore any slippage effects - it is assumed that a market order gets filled immediately.

e No operational risk measures are deployed, such as placing stop-loss orders
Along with the four models that we have trained, we will also implement the strategy in a ‘Ran-
dom’ scenario, where we will put a random number generator in place to predict the outcome.
We will consider the following trade metries to compare results across models:

e Net Profit: Basis points captured at the end of two months

e Total Trades: Important to know if the model is trading too much or too scarcely.

e Long Positions %: Generally we would want number of long and short positions to be roughly
the same. Extreme percentage of long positions would depict model’s bias towards a certain

kind of signal, and hence any profitability would be just a fluke.
e Profit Factor: Total spread won on winning trades over total spread lost on losing trades.
e Profitable (%): Percentage of profitable trades

e Profit per Trade: Total Spread gained over total number of trades. It is a measure of how

effectively the model trades.
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5.1 Trading every 2 minutes:

The first striking observation from the figures in 22 is that all the four models have alpha, and in a
mid-to-mid scenario show a consistent net gain of basis points at the end of the two months. The
random number generator has some profit but it is safe to assume that it is just a fluke. Moreover,
for all the models, the number of long and short positions is roughly the same which suggests that
they are not biased towards any one particular kind of order. The inventory track confirms that
none of the models is repeatedly buying or selling in large amounts, which would be an unusual
behaviour. There are some spikes in the inventory track which can be visually mapped with peri-
ods of successive drops and hikes in the spread in the top figure, which is a desirable feature. For
all the models, the percentage of profitable trades is close to two-thirds, which suggests that we
gain more often than we lose. Also, the profit factor being way higher than 1 suggests that we win

more than we lose.

It can be observed that the DNN classifier has an edge over the other three models thronghout
the trading period. The first argument for this behaviour could be that this model trades more
frequently than the other three. However, in terms of efficiency of trading (profit per trade), it
still ranks the highest which confirms its top rank. While we can comment that the DNN performs
the best over specifically these two months, we cannot extrapolate this statement until we have a
much larger dataset. Moreover, due to the black box approach of this model. it can’t be explained

very well why it reacts to certain market conditions in some way.

Sharing the second position are the MLR and RF classifiers. The performance for both is con-
sistently very close to each others’. However we can observe that the RF classifier trades way
more frequently than the MLR classifier, shrinking the former’s profit per trade to 0.05 against
0.054 of the latter. Finally, we have the LSTM, with the lowest efficiency in trading, and performs

consistently the worst out of the four.

We observe that the ranking of efficiency of trading for the four models is not in line with how
much they bring down the CCE loss, or even their Fl-scores. One of the reasons for this can be
that in our trading strategy, we clear the inventory for all opposite positions before taking a certain
position. Due to this reason, DNN might be performing the best because it consecutively gives
similar predictions and hence has a tendency to accumulate inventory. This is evidenced by the
inventory track where the inventory for DNN (shown with a dotted line) has the highest peaks.
So one can comment that the profitability of the high profitability of DNN is not solely due to its

predictive power, but also due to its tendency to take positions of similar nature consecutively.
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Total Trades 7902 7942 8488 8954 8008

% Long 049 052 052 058 05
Profit Factor 114 298 294 315 242
% Profitable 044 066 072 068 D066

Profit per Trade 0.007 0.0543 0.0502 0.0557 0.0449

Figure 22: Top to bottom: (i) 5y Gadget in June and July (ii) PnL (iii) Inventory (iv) Trade

metrics
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5.2 Trading every 10 minutes:
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Net Profit -41.40 9268 11052 111.07 10047
Total Trades 1578 1563 1606 1481 1538
% Long 0.50 0.57 0.52 0.49 0.56
Profit Factor 0.78 1.98 1.88 236 2.05
% Profitable 0.45 0.66 0.69 0.67 0.64

Profit per Trade -0.0262 0.0593 0.0688 0.0750 0.0653

Figure 23: Top to bottom: (i) PnL (ii) Inventory (iii) Trade metrics

As before, we observe profitability over the random model for all the four models. This time, we
do lesser number of trades as we only trade every 10 minutes (so only every tenth prediction for
test data is used). The trading efficiency (profit per trade) is similar to before, or even higher,
however the profit factor falls. All the reasoning from the 2-minute case directly applies to this

scenario as well.
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6 Further Research and Conclusion

In this thesis, we looked at a machine learning problem in gquantitative finance both from a theoret-
ical and practical perspective. We defined the methodology for a time series classification problem
with class imbalance. The four models we looked at were increasing in complexity, but decreasing
in interpretability. Looking at the empirical results, we observe that the average loss on the test
set decreased as we took more complicated models. However, this improvement in test loss didn’t
bring any considerable improvement in predicting the actual class. For 2 minute predictions, the
average F1-Score over the 5 classes in all the models was 0.27, which is 35% above the baseline
of 0.2. For 10 minute predictions, this dropped to close to 0.2 for all models but LSTMs, which
had an average of 0.25. The alpha generated was confirmed when we implemented a mid-to-mid
trading strategy, in both 2 and 10 minute cases. Moreover, it was observed that the Deep Learning
classifier performed consistently the best in both prediction horizons due to its tendency to acen-
mulate inventory, which shed some light on how profitability not only depends on the predictive
power, but also the type of strategy executed. Since for short-term predictions all the models are
equally reliable and adding complexity did not help, we can go with the simplest choice which is
the MLR model. However, it should be noted that no feature generation method was used for
LSTMs. It was only fed past log returns, and it learnt how to weight past observations, to give

equally good or even better results than the other models.

This project was undertaken at Deutsche bank’s electronic Rates trading team and was aligned
with the bank’s endeavour for market-making the Gadget. Having proved short-term and long-
term alpha in this market, the models produced in this thesis can be coupled with other trading
signals for a careful ‘mid’ selection with a bid-ask spread built around it. Moreover, since this mar-
ket is fundamentally driven by macroeconomic factors, we suspect that the alpha can be boosted
if we also use alternative data such as prices of German futures contracts (Bobble, Bund, Schatz),
prices of German government bonds (varying maturities), sentiment data, etc. We could also use
some market volatility index and observe its effect on the Gadget spread. We also believe that as
the amount of available data points for this product increases, we would be able to increase the

prediction horizon even further, and expect different models to show differences in predictive power.

We believe that the models can be further improved using a cost-sensitive approach [29]. Even
though in the last section we witnessed that the models learn the hierarchy of the classes, we can
still define the loss function in a way that the models penalise different misclassifications in different
ways. For example, misclassifying a ‘1’ as ‘2" wouldn’t hurt the investor much, but misclassifying
it as a ‘5" would be a blunder. This can be taken into account by defining a custom CCE loss

function (different from a class weighted CCE loss function).
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One of the key challenges in machine learning is model interpretability. While we can easily
interpret the parameters for a Multinomial Logistic Regression model, it is very difficult to comment
about the parameters of an LSTM with more than 10,000 parameters to train. There are some
techniques in current literature like using Surrogate models relying on local linearity of models, and
Shapley values from cooperative game theory [30] which use a combinatorial approach to explain
the decision of a neural network. However, a major breakthrough in this domain still awaits and

so model interpretability in machine learning remains to be an open problem.
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e 1 2 | 3 | 4 | 5 | Support |

il 324 448 239 281 Al 1463

2 259 764 516 579 328 2446

3 174 623 444 555 306 2102

4 201 651 488 662 426 2428

5 87 269 S 396 438 1413
Precision 0.31 0.28 0.23 0.27 0.26
Recall 0.22 031 021 0.27 0.31
F1-Score 0.26 0.29 0.22 0.27 0.28

1| 2 3 | 4 | 5 | supont

1 383 466 163 257 209 1463

2 307 757 377 620 391 2446

5 228 582 402 533 369 2102

4 250 616 405 696 472 2428

5 116 232 171 402 497 1413
Precision 0.30 0.29 0.26 0.28 0.26
Recall 0.26 (il 0.19 0.29 0.35
F1-Score 0.28 0.30 0.22 0.28 0.30

5
Precision 0.33 0.28 0.25 0.27 0.24
Recall 0.19 0.34 0.11 0.31 0.43
F1-Score 0.24 031 0.15 0.29 0.31

1 353 498 205 200 207 1463

2 264 814 486 486 396 2446

3 188 627 466 456 365 2102

4 215 674 456 557 526 2428

5 106 339 141 304 523 1413
Precision 0.31 0.28 0.27 0.28 0.26
Recall 0.24 0.33 0.22 0.23 0.37
F1-Score 0.27 0.30 0.24 0.25 0.30

Figure 24:  Classification Reports for 2 minutes prediction : (i) MLR (ii) RF (iii) DNN (iv) LSTM
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B Appendix: 10-minute classification reports

I N T T I
20

il 621 267 595 29 1532

2 8 739 451 853 32 2083

3 6 921 575 1233 19 2754

4 6 718 491 1132 33 2380

5 [ 257 S 572 41 1099
Precision 0.43 0.23 0.29 0.26 0.27
Recall 0.01 0.35 021 0.48 0.04
F1-Score 0.03 0.28 0.24 0.33 0.07

1| 2 3 | 4 | 5| supont

1 114 629 216 384 189 1532

2 96 783 388 588 228 2083

5 92 982 532 839 309 2754

4 83 753 504 713 327 2380

5 37 279 192 344 247 1099
Precision 0.27 0.23 0.29 0.25 0.19
Recall 0.07 0.38 0.19 0.30 0.22
F1-Score 0.12 0.28 0.23 0.27 0.21

5
Precision 0.59 0.22 0.29 0.26 0.24
Recall 0.01 0.38 0.26 0.38 0.07
F1-Score 0.01 0.28 0.28 0.31 0.10

1 174 477 303 474 104 1532

2 123 631 465 752 112 2083

3 120 777 661 1066 130 2754

4 a3 555 550 1039 143 2380

5 80 234 180 435 170 1099
Precision 0.29 0.24 031 0.28 0.26
Recall 0.11 0.30 0.24 0.44 0.15
F1-Score 0.16 0.27 0.27 0.34 0.19

Figure 25:  Classification Reports for 10 minutes prediction : (i) MLR (ii) RF (ili) DNN (iv)
LSTM
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