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Abstract

The adoption of artificial intelligence methods in the financial industry widens the
door to data-driven decision-making, algorithmic trading, etc. In this paper, a
method called deep hedging with reweighted measure is introduced. The normal
deep hedging represents hedging price data with a single feedforward neural net-
work. It helps to reduce parameters of deep learning comparing with a strategy
using multiple networks for different time steps. The deep hedging with reweighted
measure improves the deep hedging from replacing the traditional loss function by
an exponential utility function and reweighting the probability measure for each
asset path for making the underlying asset price free of arbitrage. This method
improves the resulted hedging strategy, especially for markets with large monotonic
price increments, and have multiple financial applications.
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Chapter 1

Introduction

Machine learning has been applied to pricing and hedging derivatives in the financial
industry. Thanks to the revolution of electronic trading which makes a large amount
of trading data available via the methodical collection of data done by market mak-
ers, bankers or their acquisition from data providers, etc. In addition, Kahneman
[13] detects that a machine-based decision reduces the emotional bias and results
rational and systematic investment choices. Hedging using machine learning has
been attractive in recent years and caused various researches.

In an ideally adapted market with frictions, a trader could do hedging using trivial
mathematical deduction based on the pricing models. For instance, in the perfect
Black-Scholes model, a unique option pricing solution can be obtained from under-
lying asset prices with a changed measure based on the Radon-Nikodym theorem
and a trading portfolio allocation can be calculated by a simple Black-Scholes delta
function.

In real markets, prices are normally not adapted and there exist many frictions and
uncertainties such as transaction costs, incur costs, liquidity constraints, market im-
pacts, various signals, etc. These factors are added and adjusted in financial models
for real trading based on different researchers’ knowledge, purpose and preference,
which might influence the accuracy and efficiency of derivative hedging and option
pricing outcomes. According to the discovery of Kahneman [13], hedging and pricing
using machine learning seem to be a reasonable solution.

Many pieces of research relating to machine learning in the financial industry have
been done in recent years. These papers structured some usages using different kinds
of deep learning strategies. Kohonen's self-organizing maps (SOMs), a method of
machine learning, was studied by Huber [12] on the application of hedge funds selec-
tion for stable portfolio performance by avoiding concentrations. Benhamou et al.
[3] created one type of machine learning called deep reinforcement learning (DRL)
based on the convolutional neural network, which is widely used for image recog-
nition. He created it for an asset manager to plan the optimal-timing allocation
decision for her/his hedging strategies with given market information such as addi-
tional contextual information, i.e., financial data, which is other than asset prices
and is assumed to have some indirect link with the portfolio assets prediction. One
vear later, Wu et al. [21] used the same neural network to forecast the financial
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market but encode time series to Gramian angular fields (GAF) images for the
classification task.

In this paper, we use deep hedging which was originally devised by the researchers
at JP Morgan and ETH Zurich in 2017. Deep hedging is a hedging methodology
based on unsupervised deep learning that can be used to hedge options or other
derivatives. Multiple frictions such as transaction costs are considered to make
this approach more accessible to reality. The hedging strategy is represented by a
single feedforward neural network and trained the price data ignoring the existence
of statistical arbitrages. Buehler et al. [7] suggest that it is efficient to replace
traditional loss functions by an exponential utility function during option pricing.
As to preclude the deep hedging strategy from longing underlying assets only, which
is caused by the rapid-shifted asset path, there exists a solution that reweights
measure and eliminates statistical arbitrages before hedging [8].

Outline

The rest of this paper is organised as follows. In Chapter 2, some characteristics of
numerical pricing models; i.e., the Black-Scholes model and the Heston model, are
introduced. Chapter 3 describes the structure and features of our unsupervised neu-
ral network, feedforward neural network. The buildups and relative methodology
for deep hedging are explained in Chapter 4. The numerical results part, Chap-
ter 5, shows the outcomes of deep hedging strategy and reweight measure in several
situations. Finally, Chapter 6 is the conclusion summary and further improvements.

10




Chapter 2

Pricing models

Before introducing my trained deep hedging method, let me give an explanation on
two widely used mathematics models, i.e., the Black-Scholes model and the Heston
Model. The setups, relative theories and characteristics of both models are the
foundations of my deep hedging method.

2.1 Black-Scholes Model

In the simplest form of the Black-Scholes model, we only involve two underlying
assets, a riskless asset called cash bond and a risky asset called stock under a physical
measurement P. The cash bond price, B,, is assumed to increase depending on a
certain amount of interest rate as r, which we called the riskless interest rate. The
differential equation followed by the cash bond is written as
(EBL )
ar

and its unique solution is

¢
B, = Byexp ( / ':’rf'u) = Byexp (rt)
0

The stock with a share price Sy at time ¢ satisfies a stochastic differential equation
(SDE), derived via Ito's lemma, in the form of

dS; = pSedt + a5 dW,

and it can be found that the SDE has a unique solution by solving explicitly

2
Sy = Spexp ((,u, — D; ) t+ JH"L) (2.1.1)

where p is the drift coefficient term; o is the volatility of the asset, which represent
the size of random fluctuations of the asset stock price; W, is a stochastic variable
(Brownian motion) value at time {.

To secure the object is a martingale, the discounted asset price S is introduced
under a risk-neutral probability P* [19] as

5‘,_', S’(] a 2
So= = X[ —7)— — |t W,
S, B~ B exp (0 —r) 5 + oW,

11




By applying the I[to’s formula, one can get
dS; = (p—r)S;dt + oS, dW, (2.1.2)

Note that in the equation (2.1.2) mentioned above, u should be equalled to r for
martingale which requires the drift term, g — r, is necessary to be 0 [14]. However,
the equation still holds even when the drift coefficient term has a different value with
the riskless interest rate. Because if p4 # r, the investor will demand a premium for
holding the stocks. Thus it generally appears while investors are doing trading or
hedging [9].

2.1.1 Black-Scholes European Option Pricing

The initial equation for the Black-Scholes Merton (BSM) model was introduced by
Black and Scholes in 1973 [4]. It is a differential equation used to calculate the
theoretical price of options utilizing five inputs: current stock (or underlying) price,
the option’s strike price, expected interest rates, time to maturity and expected
volatility.

Here, the option is specified as European one and can only be exercised at its
expiration as a self-financing investment, with no dividend is paid out before the
expiration of the option.

A European call option price Cy(Sp, K) with maturity ¢ > 0 and strike K > 0 pays
at maturity (S, — K)T = max(S, — K,0) and a European put option price P,(Sy, K)
pays at maturity (Cy — K)™ = max(K — S;,0). The mathematical expressions given
by MacBeth and Merville [16] are as below:

Cy= S N(dy) — Ke7""N(dy) (2.1.3)
and
P = Ke"i -5 +C (2.1.4)
= Ke ""N(—dy) — S;N(—dy)
with

3 2
In(3)+ (r+2)7
d; = (I‘) 2 and  dy =d; —o/T
oT
where 7 is the time to expiration, valued as 7 =T — {; N is a normal distribution
function.

2.1.2 Girsanov’s Theorem

As discussed in the previous section, it is clear that the discounted asset price S is
risk-neutral as well as a P*-measurable martingale only if when the drift coefficient
term g is equal to the riskless interest rate r. 'T'his achievement can only be reached
for asset prices in pure mathematical models. In reality, g can rarely equal to
the riskless interest rate as the asset price changes randomly and always contains
arbitrages.
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To make the unadapted discounted asset price Sy suitable for mathematicians to
study and do pricing, S; should be re-weighted and becomes a martingale under a
new measure, (. A well-known theorem, the Girsanov Theorem, is defined to do
the measure reweighting on P*.

Some additional conditions are assumed before the start of the conduction of the
Girsanov Theorem

By=1
r=10
pFET

It leads to: the price of cash bond, B,, will never change with respect to time ¢ and
always equal to its initial price By, which is 1; the discounted asset price, S}, has the
same value as the share price, S, as the effect from the bond price can be neglected
under our setting. It also means that the distribution of measure P* is the same as
the one of physical measure, P, at the same time.

Then the Black-Scholes Model has the stock price formula and SDE as

{ S; =S, = Spexp ((;s - %) t+ gm) (2.1.5)

(PIJS: = dSL = [ Ld! + T4 Ldl’l”&

Theorem 2.1.1 (Girsanov’s theorem). Let Wy be a Brownian motion on (Q, F,P)
and {FV'} be the natural filtration generated by Wi.

If P ~ Q are two probability measures on F, then there exists a FW -predictable
process C' such that the probability Q@ is defined via the Radon-Nikodym density in

the form of
dQ ! [,
= exp (/ Cy - dW, — 7/ [Cul du.) (2.1.6)
T 0 2 Jy

Pri=
t

dp

Conversely, for fired T =0 suppose p is a strictly positive continuous PP -martingale
with Bp [pr] = 1. Then p has the representation of (2.1.6) for t < T and it defines
a measure (Y which is equivalent to P on {J-'LW < T}, In both cases,

t
W= W, - / Cudu (2.1.7)
0
is a Q Brownian motion.[1]

According to the Girsanov’s theorem, SDE of (2.1.7) can be computed in the form
of

AW, = dW, — Cdt

with the solution under @

W, =W, — Oyt (2.1.8)
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this is equivalent to dW, = dW, + Cydt by changing the orders. Once implement it
back into the equation (2.1.5), the represent equation for S, transforms

dS, = puS,dt + S, (cn,-i-’£ + qdr.)
-5, (,u,d!, +odW, + gc;dz.) (2.1.9)
_ s, ((u YoC)dt+ adl-f’})

For making the drift term of the stock price S; in the above SDE vanishes (i.e.,
ft+aCy = 0), there is only one choice for Cy to be taken, which is

Cg:—;—t

a

Under this value of C, the RHS of equation (2.1.9) is a true martingale risk-neutral
measure (J by the Novikov's condition while the Radon-Nikodym derivative, equa-
tion (2.1.6), is valid.

The SDE of the stock price becomes
! = 0 td]{i‘!{'

and has a result
-~ 0'2
S = Spexp (Jlﬂ - ?1)

which is a true martingale under the unique probability measure @@ due to the
uniqueness of solvable result for ;.

With holding the value of €, as —£, the exact expression of Radon-Nikodym deriva-
tive (2.1.6) for measure (Y can then be generated as

¢ t :
@ . = exp (/n (—g) ~dW, — %/ﬂ (—%)2 d-u.)

dP
— axr _E_..f_l _;_’:2 2.1.10
E‘XIJ( W, 2( ) f,) (2.1.10)

2
. oy M
— exp (—; . .H(g — @f)

Note that this result can be rechecked by multiplying the asset price before re-
weighted, 5, and the generated Radon-Nikodym derivative formula. According to
the characteristic of a true martingale, the conditional expected value of the next
observation is equal to its current observation. If all the conditional probabilities
for the past observations are given, one can duplicate all the paths and also their
initial value. Hence, if the multiplication approaches the initial value of the asset
price, then it is a true martingale under the risk-neutral measure (.

2.1.3 Delta Hedging

Delta Hedging is an option trading strategy. It can be used to hedge, or reduce, the
direct risk which relates to the price shifts of the underlying asset, such as the stock
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prices. Financiers often use this approach to offset the risk of holding another single
option or the risk of holding an entire portfolio by options that currently exist. The
investors tend to enable their hedging strategy to reach a delta neutral state, instead
of having any directional bias.

Let’s prove the reducing direct risk characteristic of delta hedging. By simplify
equation (2.1.1), the underlying asset, S(t), under Black-Scholes model can be rep-
resented as

dS = pSdt + o S5dW, (2.1.11)

Set the value of option, V' (S, 1), depends on the underlying asset and by Ito’s formula
one will have

rel% A% 1%V
dV = —dt + d — 52
ot ds S+ 2052 s
ov oV 10°V 5252
= —dt Sdt SdWW, ———a“5=dt 2.1.12
orlt+ gt + oSdWy) + 5555075 (2.1.12)
A% r)V 1 2r}2V dv
- n - & i d‘[‘l’
(f)z hS55 T30S )9‘2) +o5%s

where 2V + ;;,S‘”’ + 3 ""S""d,’z is the drift term of dV" and USE.:;E: is the stochastic

term o[ dV

In a delta hedged portfolio, II, investors hedge by long one unit of option and short
A units of underlying asset price.

=V —AS (2.1.13)

By implementing equation (2.1.11) and (2.1.12) into equation (2.1.13), ones can get

ATl = dV — AdS
OV AV 1, LY oV
- it + oS82 aw, ) — A (uSdt + oSdWw,
((m tuSpst s }52) 555 L) (pSdt+ o Sdiv)
OV VLG oV
- : IV apsVit+ (052 — Acs) aw,
(f)t m555 37 Y G “g) N (ggas "9) L

(2.1.14)

The aim of delta hedging is to reduce the direct risk. Therefore, the stochastic term
of dII should approaches zero. We have

dV
g )9 AG’S‘ = U

intuitively, one has the solution as
av
as

(2.1.15)

Hence, if the investors have a portfolio strategy of holding one unit of option and

g‘g units of the underlying asset, they can hedge their risk.




Remark 2.1.2. Combining with equation (2.1.3), (2.1.4) and (2.1.15), it is intuitive
that the mathematical expression of delta for Call option pricing, which will be used
later, is

Ao, =

N(dy) (2.1.16)

and for Put option

Ap, = —N(—dy)

In other words, the delta hedging under the Black-Scholes model makes the instan-
taneous net value of short sale to be zero according to the principle of no-arbitrage
[11]. The model is self-financing, which means that the values of inflows and outflows
of cash are fixed while the time of hedging strategy is operating.

Note that, as the portfolio is self-financing and perfectly hedged, the investor shall
gain a return under a risk-free interest rate after some time period ¢{. The portfolio
value with no-arbitrage has movements also follow below formula

dll = rIldt

Implementing the equation (2.1.15) back to (2.1.13) and (2.1.14), one can conduct

HV — AS)dt = (d: +p 9()5 1 292(;2—; _ L\;;,S) dt
(gsd "9 - AgS) AW,
r (V — 3‘; ) dt = ((j: + 4 9(})—; %0 92% - %,&:5) dt
+ (gs% - (,)}—ggs) aw,
W WV 1, 40
(v-s3s) = (G + 575

-, - 2717

V- rSgs =+ 3 g

It can eventually turn out to be the PDE of a European call or put under the
Black-Scholes model, called the Black-Scholes equation.

OV 1,V OV
— i 1 1 -‘/ = [
or 27 s TS5 )

2.2 Heston Model

The Heston model is a popular financial model nowadays for pricing options using
stochastic volatility. In the Heston model, the volatility of an asset is assumed to
vary stochastically over time, instead of as a constant in the Black-Scholes model.
The Heston model is a type of volatility smile model. The volatility smile is a
graphical representation of several options with the same expiration dates. The
name of smile models comes from the concave shape of the volatility graph, which
is similar to a smile.
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In Heston model, the stock price, or the underlying price, under risk-neutral measure
@ has the following dynamics

dS; = pSydt + Si\/VidWS, 55> 0 (2.2.1)
and the variance process V} is also stochastic with SDE in form of
dVy = k(0 — Vi)dt + E/VidWYr, Vi >0 (2.2.2)

where p is the drift coefficient term; V4 is the initial variance level and has the value
of Vj = 02; # is the long-term average variance level of the price (i.e., the expected
value of variance process, V;, tends to # as time tends to infinity); x is the mean
reversion speed of variance; £ is the volatility of instantaneous variance; p is the
correlation between of the two continuous random walks.

Note that W;¥ W} are two correlated Brownian motions with correlation p under
measure Q, such that dWdW} = pdt. The covariance matrix is presented as

) . ; ; 1 p
covariance for H-’f and 1-1;-’:' = [ _ ﬂ (2.2.3)
P
The variance process, V; is guaranteed to be strictly positive in the Heston model if
the Feller condition 2x@ > £? is satisfied.

2.2.1 Characteristic Function

Normally, the stock prices is generated under the Heston model using its unique char-
acteristic function, which describes the probability density function of the model.
The characteristic function for the Heston model was first introduced by Heston [10]
as part of his seminal paper. For clarifying, we use the numerically robust function
llustrated by Broodryk [6].

terised by (Vo, r,v, A, #, p) under the risk-neutral measure Y. By assuming the log
stock price, s, under the measure @ as sy = log (St), the characteristic function

for the Heston model ¢, (u) = E [¢™7 | F,] can then be represented as

Oyp (1) = exp (C' + DV, +iulog (5,))

From equation (2.2.1) and (2.2.2), it is intuitive that the Heston model is parame-

where .
1 1—ge™
C=rTiu+0A (T:::_ — —log (L))
a 1—g
1 — H—Td
== ml’_
with ) .
+1
a = 5 h=M\— f)y-ﬁ:’t;:.: C = —”‘72?“: d = ,-'bz o 4(“-_‘:
P btd 1 _ xr_
Ty = % and g = o

Note that if we assume r = (), the first term of €' will be removed and simplify the
equation.
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2.2.2 Unreliable Delta Hedging

As derived before, the greek delta in the form of (2.1.14), A = ‘:g In the Heston
model, one can find the representative formula of delta via some mathematical

derivations.

However, the Heston model is incomplete in which prices are uniquely determined
but is usually not available for perfect hedges. It implies that the delta hedge in
the Heston model will not work as perfectly as it was in the Black-Scholes model.
Also, Branger and Schlag [5] have attempted to measure the size of tracking error
for option hedging under a discrete-time stochastic volatility model. They found
that the discreteness error that occurred in the Heston model cannot be improved
by a delta hedging approach.

As the deep hedging method under the Heston model used later is under a discrete
market, the approach of delta hedge can not be considered as a reliable numerical
method. Therefore, we will not have numerical results for comparison when the
underlying assets are simulated by the Heston model.
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Chapter 3

Feedforward Neural Network

(FNN)

The neural network is a special architecture applied in deep learning, which is a
popular subfield of machine learning. It can be used to solve difficult issues such
as image recognition, data classification, voice recognition, etc. By using neural
networks, problems, especially with complex formulas, will become easier and more
efficient to conduct the results.

3.1 General Construction

In this paper, only one type of neural network will be used to do the unsupervised
deep learning, which is the feedforward newral network (FNN). The definition of FNN
is written by Pakkanen [18]. It has a construction of alternately affine function and
non-linear function.

Definition 3.1.1. Suppose there is a FNN with input dimensions I € N, output
dimensions O € N, the number of network layers r € N and a representing function
J:RT — RO The FNN has r—1 € {0,1,...} hidden layers , where there are d; € N
units in the i-th hidden layer for any i = 1,...,r — 1, and activation functions
o, R - R% i=1,...,r, where dy :==1 and d, := O, if

f=0,0L,0- 0og;0l, (3.1.1)
where L; : R% — R% for any i =1,...,r, is an affine function
Li(x) == Wiz +b, xR
- iced by weio ot TV — [TV dixdi_1 Siag
parameterised by weight matrix W = [H ;‘,\_]Fl‘m‘ ket d S R *4i-1 and bias

vector bt = (b‘“ e =b:£;) € R%. We shall denote the class of such functions f by

feN (I,dy,...,d1,0501,...,0,) (3.1.2)

write ¢ in place of ¢; in equation 3.1.1 and 3.1.2.

The integers r,dy,. .., d._1 are called the hyperparameters of the FNN. The weights
in W ..., W and biasesin b', ..., b" are called the actual parameters of the network
and can be written in a vector § = (W?, ... W7, b, ... b").




3.2 Activation Functions

Unlike affine functions, the activation functions are mostly non-linear. The com-
mon affine functions can be divided into two types: one-dimensional and multi-
dimensional. In this paper, only the one-dimensional affine functions are is dis-
cussed. Some key one-dimensional examples are in Table 3.1.

Activation Definition Graph Range
Identity (Id) glx)=u=x R
Rectified )
linear unit g(z) = max{x, 0} [0, o0)
(ReLU)
Sigmoid g(r) = = ,/'/ (0,1)
Hyperbolic /-
tangent gla) = == R
(tanh) T
Softplus g(x) =log(1 + &%) (0, oc)
Gaussian g(z) = e (0, 1]

Table 3.1: Common One-dimensional activation functions and their properties
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The Identity is normally used only in the output layer, as it may reduce the re-
sulting neural network into a simple affine function when applying simultaneously
in all layers. The Rectified linear unit (ReLU) is a common activation function in
the hidden layers. Mathematically, ReLU only keeps the non-negative values and
enables a numerically efficient deduction. Both Sigmoid and Hyperbolic tangent are
saturating. Because the output of Sigmowd and Hyperbolic tangent are bounded,
these two activation functions are popularly used in the output layer for making the
neural network result bounded in a controllable range. The Softplus is the smooth
function of ReL U for some specific situations.

3.3 Loss Functions

T

Suppose we ohserve N € N samples of input variables X with input dimension

TeN(={1,2,...,}),

] T}
A A

and matching N samples of R-valued reference value Y,

y'
y"
A function £ : RY x R — R is called loss function and the realised loss is computed
as
(f(X),Y)
where f : RY — R9, f € N, (I.dy,...,d—1,0:01,...,0,), is the neural network.

Theoretically, for X and Y random and joint, f can be sought till optimal by
minimising risk

E[{(f(X).Y) (3.3.1)
However, the distribution of X and Y are typically unknown in practice. The risk is
required to be computed, equation (3.3.1), as an empirical risk via the average loss

L) = 5 S (X))

The average loss of the whole X and Y set does not operate efficiently for large N.
The idea of minibatch, B, is introduced as a random subset of samples with a given
size

BC{l....N}

Therefore, it is reasonable to approach the result by minimising the average loss of
different minibatches over and over. One pass of the neural network training process
over each minibatches’ training data constitutes a training epoch. The minibatch
risk is defined as 1
L(f) = #—BZMJ% (X1),Y)
ieB

where the neural network fy = f is then fully determined by the parameter vector
# which need to be optimized.
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Chapter 4

Pricing and Hedging by
Unsupervised Deep Learning

Buehler et al. [7] has introduced a neural network that can hedge a portfolio of
derivatives, or underlying assets, in the presence of transaction costs in a financial
market. In this section, a similar method will be introduced. For simplicity, the
method will be without any market frictions. As it is found in practice that the
result of hedging strategy via unsupervised deep learning may occur to be over-
hedged, the probability measure of the underlying assets is required to be modified.
Buehler et al. [8] have found that the measure reweighting can also be done using
deep learning.

4.1 Setting: Discrete Time-market Simulation

Suppose there is a discrete-time financial market with 7" € N finite trading periods
(i.e., the maturity can be either considered as 71" or one, which is 7/7T") and N € N
risky (or underlying) assets. The trading assets in each trading period are denoted
as

S = {Sz,:} = (SL,I;SL,Q; BRI 9L,N)

where t =0,1,...,T are different time steps and i =1,2,..., N represent different
asset paths. The probability measure for the market is IP, where P[{w;}] > 0 for
all 7. It is assumed that the non-negative stochastic process is adapted over a
filtered probability space (Q, (F)E,, [F"). And for a simpler model and calculation,

the riskless interest risk, r, takes the value of zero.

The underlying asset price going to be processed is either collected from the real
market data or simulated as a random stochastic process according to the SDEs
for different financial models. When pre-processing or simulating 5, the scale for
each asset price, S;;, should not be too large, as the training by unsupervised deep
learning process may cause a failure.

If the risky asset prices are collected from the real market data, they should be pre-
processed into a matrix with the number of time steps in columns and the number of
asset paths in rows. For each asset path, the total number of time steps is required
to be equal and the existence of missing data cannot be there. The prices can also be
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re-scaled by the mean of all the values in the price matrix or by any other numbers
with a similar scale.

Two types of financial models are used when doing asset price simulation, the Black-
Scholes model and the Heston model. These two types of models have different SDEs
but have similar simulation methods.

As mentioned before, the continuous-time Black-Scholes price process has the for-
mula as
SPS = Spexp(ut + oW,), t€[0,1]

When doing the simulation, the stochastic variable W, is replaced by a sum of some
normal (i.e., Gaussian) distributed independent random variables with mean zero
and standard derivation 1/7". These mutually generated Gaussian distributions are
adapted as (, ~ N(0, %) and have

t
W,=> ¢, tel01]
u=1

and the price process is constructed as follow

t
; t
S;BS’ZS()E‘XI'J (“T—FJ;@): t=0,1,....T

In the Heston model, there are two standard Brownian motions, dW; and dW}.
Two distributions, ¢ and ¢}, are generated for the two stochastic processes using
the covariance matrix (2.2.3). The price process is transformed from the Heston
SDEs

dVLH =k(f — Vin )dt + €4/ VH dl‘l’f
dSft = uStat + S\ Vi aw?
into the form of

VA =V 4 k(0 - VI)dt + e/ VA Vit

I " LILH . (f—lll)
Sity=Slexp ((n—— ) d+ VSVt

by taking dt = 1/T. The value of underlying asset price at expiry time 7" is deducted
from the initial value of instantaneous volatility and underlying asset price using
recursion through time steps.

4.2 Deep Hedging

Define an adapted, self-financing trading strategy as

with ¢ = 0,1,...,T — 1. If & is equal to zero, it means that the trader sells ev-

ervthing he holds and only left cash in his account. The costs during trading, such
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as transaction cost and incur cost, are all assumed equalling to zero. Then the
liquidation wealth of the trading strategy o at expiry time 7" is

T
11/’]"(6; S) = Z (')_,:_1 . (S,: - S,',_l)
t=1

Assume now we are the market makers, or the bankers, our hedging strategy aims to
hedge a contingent claim Z. This claim has a value p € R at time 0. The price p can
also be considered as an additional cash flow which is given by the financial market
(e.g., a market quote) or by the market maker’s pricing and is needed to inject into
our portfolio. If p is positive, it means that the market maker has initially sold the
claim. If p is negative, it means that the market maker has bought the claim at
time 0. The payoff gotten at maturity T by our claim Z is

where f:RT*! = R is a measurable function.

The profit and loss value if we trade the underlying followed by a portfolio ¢ which
is counteracting the risk brought from Z at time 7" is

P&Ly.z(p,0;S) = p+Vp(6;5) — Zr

According to the risk preferences, the chosen hedging portfolio ¢ needs to offset the
risk brought by claim Z. Hence, the aim of deep hedging is to find the specific
portfolio & which enables the value of P&Lr.z(p, §;.5) tobe optimal for each time
step t. We define an objective function, i.e., a loss function, ¢ : R — R such that, if
we try to minimise the finite value for finding the result of ¢ we are aiming for

E [f (P&Lr;z(p; 5; S) )l
over all adapted process 4, our hedging strategy will approach optimal.

Remark 4.2.1. For example, the objective function can be deemed as a quadratic
loss function

() = x°
or the utility indifference pricing function
((z) = —Ul(x)
with some utility function U/, which has a further explanation in Section 4.3.

In reality, it is complex to find out the result of optimal trading strategy § over all
adapted asset paths. Approaches using deep learning may make things simpler and
time saving.

Suppose that the trading strategy 4 is only based on the asset price and a measurable
function f, : R*! — R exists. Such that
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over all time periods from 0 to 7', i.e., time ¢ takes the value 0,1,...,7. This

function determines the trading strategy as a result and it may resort the FNN as
a proxy approach.

Suppose there is a FNN ¢, (+;6,), which is parameterised by vector 6, for any ¢t =
0,....7— 1. Replace the measurable function f; by the network ¢,

5% = &, (So, ... S 0))

and optimise over the trading strategies. The parameter vector ¢, is trained over
epochs and becomes a fixed value when reaching the optimal empirical risk.

In practice, the FNN is unsupervised as finding the numerical result of portfolio
strategy is not efficient, typically during trading. However, having a separate net-
work ¢, for every £ = 0,..., T — 1 may result too many parameters §, if the maturity

T is large and may also be ineflicient as it neglects the fact that many hedging
strategies enjoy some form of continuity in time.

Input  Hidden Hidden Output
layer layer layer layer

Input #1: Time —
Input #2: Price set I —

Input #3: Price set [I —

Figure 4.1: The single feedforward neural network (FNN) illustrated by Horvath
et al. [2]. Input #1 is the series of time steps ¢. Input #2, #3, ..., are the sets
containing price paths for one asset. FNN here hedges among these assets and
results the corresponding hedging strategies.

Horvath et al. [2] has illustrated a more efficient approach if a single feedforward
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neural network is used to represent ¢y,...,dr_1 by taking time and current and
lagged asset price as its inputs

80 = & (.S, ... 51 0)

where ¢(;#) : RYUFDH 5 RY s a FNN and [ = 0,1, ... determines the size of the
lookback window. I can be zero if the asset price is a Markov process and the claim
Z is not path-dependent.

4.3 Exponential Utility Indifference Pricing

To further apply the deep hedging methodology on other financial products such
as derivatives, it is required to measure the price p € R of claim Z during training
process. Buehler et al. [7] have pointed out that a method called utility indifference
pricing can be used as a convenient solution with the combination of deep hedging.

Suppose the loss function ¢ is given by ¢(z) := —U(x) for some utility function
U : R — R. Assume that the utility function U is strictly both increasing and
concave.

As Buehler et al. [7] have defined in their paper that the indifference price is the
amount of cash difference that is charged between selling the claim Z and not doing
so. As the optimal value for profit and loss will not change for selling the claim Z
or not, then

By implementing the utility function U, we have the LHS
iI;['E[f(P&LT;Z(p, 59 = ilgl'IE [-U (P&Lrz(p, 6;5)))
=sup E[U (P&Lr.z(p, 8; .5))]
§
and the RHS
iI;[E [ (P&Lpp(0,0;8))] = ilgl'IE [<U (P&Lrpg(0,6;5))]
=supE [U (P&Lzy(0,6; 5))]
§
Wherefore, one needs to satisfy

supE [U(P&Lr.z(p, 6; S))] = supE [U(P&L1(0, §; 5))]
5 ;

Hence, the price p is the utidity indifference price of claim Z under U if it solves

supE |U(zx +p+V(6;5) — Zr)| =supE |U(z+ V(§;5) ) (4.3.1)
5 ———— 5 S——
=P&Lr.z(p.d;5) =P&Lr.0(0,55)

where © € R is the amount of cash in account at time 0. Because the function
sups E [U(-)] determines the expected utility level, the influence of # can be neglected
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and considered as equal to zero. In other words, market maker has the same expected
utility if he sells the claim Z, receives a p amount of cash and trades the underlying
assets in the market or he/she holds the claim Z without selling it.

There are many kinds of utility functions for different purposes. The key example
of utility function is the exponential utility. It has the expression as

Us(x) = —exp(—Ax)

with a risk aversion parameter A > 0. In some paper, e.g..[8] and [2], it is written
as Uy(z) = —3exp(—Az). The fraction part influence only on utility function Uy
scaling, not its characteristics, and will not change the results of utility indifference
price p.

Being simplified, equation (4.3.1) turns to be
RHS =supE U, (V(9;5))] =supE[U, (p + V(6; S) — Zr)] = LHS
i §
= sup E[exp(—Ap) - Uy (V(6:5) — Z7)]
§

=exp(—Ap)supE [Uy (V(6;5) — Zy)],
s

A unique solution can be solved

h( sups E [Uy (V(;.9))] )

1
P= 18 S E O, (V(0:S) — Z7))

Then, for finding the value of indifference price p, the only thing is to solve the
utility level for the profit and loss both with and without position —Z. It is much
simpler and faster than the traditional method.

Applying deep learning, there would only be two times training to get the results:
39 trained by the loss function ¢(5;.) = —U,(V(3;S)) and 67 trained by the loss
function ¢(4;.5) = —U,(V(8;S) — Zr). Finally, by implementing the result of two
trading strategy, the price p for claim Z is estimated using the formula

T SO (V(88)
) ) % Z:\=1 Us (V(ég; Si) — ZT)

b

4.4 Probability Measure Reweighting

Hedging using deep hedging may sometimes cause a result portfolio approaching
one especially when the underlying asset market price is shifting monotonously and
rapidly. The reason for this is the existence of statistical arbitrage.

Normally, we hedge a derivative with underlying which has higher utility. However,
when the market is increasing/decreasing rapid enough, the neural networks may
consider that statistical arbitrages are large enough for hedging and prefer to do
nothing. Since then, all cash will be used to long or short the the underlying assets
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in order to offset the risk. This cannot be said as a mathematical error once future
asset’s paths are disclosed. But, as the market is moving randomly and long-term
unpredictable, hedging the claim by portfolio approximately equal to one is too risky
and is not allowed in financial institutions.

Buehler et al. [8] have illustrated a method in their thesis as to reweight the prob-
ability of each asset path before it is used to be hedged for the trading strategy 9.
With deep learning, the reweighting method enables the change of underlying asset
probability measure from the physical one, P, to a new measure, (¢, which enables
assets free from statistical arbitrage. The result of new measure () seeks to have the
same result as the one of the Radon-Nikodym density, equation (2.1.10), achieves.

Suppose there is a set of underlying assets with N paths and measure P, the aim is
to remove the statistical arbitrage from the set for further hedging process. Suppose
further that the loss function for the neural network still holds as ¢(z) := —U(z) for
some utility function U : R — R.

The claim price at maturity, Zr, and the utility indifference price, p, may be ne-
glected because they only relate to the hedging strategy computation when offsetting
the statistical arbitrage among underlying assets. The only focused term is the lig-
uidation value term. The measure reweighting method is parametrized by a neural
network with outcome 4% as the liquidation wealth

E[6(V(5:9)]
is optimised. In other words,
E[¢(V(6%;8))] = iI;['IE[f’ (V(8;.5))]
= iI;[E [UA (V(6;5))]
= sup E[Ux (V(é:9))]

If the result satisfies I£ [—U, (V(0%;.5))] > 0, then the market under new measure
is given by

QY7 S))

dP  Ep[-U, (V(6*;9))]
For real market data, all asset paths initially have the same probability, i.e., measure
IP is equally weighted. The new probability weights ¢* is generated for each path
under the new measure () via

UV (659)
Y UL (V(6%9))

where the sum refers to the sum of all paths.

*

q
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Chapter 5

Numerical Results

Suppose a set of asset prices are simulated using the methodology in Section 4.1,
and our claim Z is a European call option

Zr = (885 - K)*

with initial cash x = (. The loss function for empirical risk determination is ¢ :=
U(z) where U is the exponential utility function

Uy(x) = —exp(—Az)

with a risk aversion parameter A > (.

5.1 Deep Hedging and Measure Reweighting in
Black-Scholes Model

In this section, the underlying prices are generated followed by the Black-Scholes

price process with fixed parameters:

Number of market pathes N = 10°

e Number of time periods T' = 100

Initial underlying price Sy = 1

Strike price K =1
e Stochastic volatility ¢ = 0.5
The drift coeflicient g and risk aversion parameter A in utility function are left as
variables. According to Section 4.3 and 4.4, the loss function for optimizing deep
hedging risk is
(PR (5, 8)=t(p+V(5;8) + Zr)

=-U,(p+ V(55 + Zr)

=exp(—A-(p+ V(6;8)+ Z7))
and for measure reweighting risk is:

(W (5,8) = 0(V(5; 9))

=-U,(V(5;9))
=exp(—X\ - V(4:5))
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The FNN we used has a structure
J € N.(2,100,100, 100, 1; ReLU, ReLU, ReLU, tanh)

Because the financial intuitions hedge position should be hetween -1 to 1, the output
activation function is helpful to choose as Hyperbolic tangent. It can be replaced by
Sigmotd when shorting is not allowed in the market.

Whether the deep hedging strategy performs well requires to be verified when the
market is monotonically increasing or decreasing, i.e., the drift coefficients in the
Black-Scholes price process formula is not equal to zero. Its conclusion is the premise
for the next section because the results of deep hedging with a measure transformed
using the Radon-Nikodym density (will call this measure as Radon-Nikodym mea-
sure later) and the delta hedging is not reliable in the Heston model and makes the
Heston model having no numerical reference. Therefore, by comparing the perfor-
mance of numerical delta hedging and deep hedging with different measures in the
Black-Scholes model, the reliability of different strategies can be identified.

— — KB
A=1 A=5
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=== Delta === Delta
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Figure 5.1: Black-Scholes model - Comparison of hedge ratio between deep hedging
strategy with reweighted, Radon-Nikodym and unweighted measure and the delta
hedging strategy with drift term g =0 at time ¢/7 = 0.9.
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The first step of our detection is to find the best suitable risk aversion A for the
optimal output via deep learning. Both deep hedging strategy and delta hedging
strategy are lunched for the measurable underlying assets, i.e., with drift term p
equals to zero, and their results are shown in Figure 5.1. We found that the higher
value risk aversion has, the more proper the trained hedging strategies are.

The histogram in Figure 5.2 represents the distribution of profit and loss based on
hedging the European call option with adapted underlying assets. The results of
different deep hedging strategies are quite similar to the one of the numerical delta
hedging strategy. Therefore, deep hedging is an applicable method for portfolio
building up. The line graph on the right-hand side of Figure 5.2 is the graph of the
hedging strategies for a particular underlying path. The curves indicate that the
deep hedging strategies properly match the numerical one with ¢+ = 0 and large A.
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Figure 5.2: Black-Scholes model - The profit and loss histogram for European call op-
tion and hedge ratio for a hedge path among deep hedging strategy with reweighted,
Radon-Nikodym and unweighted measure and the delta hedging strategy with drift
term g = 0 and risk aversion A = 15.
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Figure

5.6: Black-Scholes model - Comparison of the hedge ratio between deep

hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
the delta hedging strategy with A =7 and ;2 = 0.6.

i=020 p=10

.j'.=0 40

08 - 08
= =
¥ ]
E 06 ¢ 06
m a
& [y
T, 2
L oos 2 0
= = —— Reweighted
02 = —— RadonN
Unweighted
00- ===——== === Delta 00 === Detta
abo 035 050 0I5 10 135 150 175 200 000 025 050 075 100 135 150 175 200
s (spot price) 5 {spot price)
1=0.60 A=T u=10 T=080 A=7 p=10
10- 10
o8- o8
= e
B 06- 2 06
t 2
5 g
%o %o
= = ~— Reweighted
0z 0z ~—— RadonN
Unweighted
00 a0 - I --- Deta
L":'l'J (;"' ars 1 '.;’H 150 :"-\ 0 D. L'-‘)‘-\ (:;> ::'.n’\ 100 'I:“: -_;,:: 175
5 [spot price) s (spot price)

Figure

5.7: Black-Scholes model - Comparison of the hedge ratio between deep

hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
the delta hedging strategy with A =7 and g = 1.0.
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the delta hedging strategy with A =7 and p = —0.1.

$=020 A=7 u=-0.3
10-
o8
06
2 3
g os =
L o0z &
£ o0- z
& 53
0.4 -
’ 0.50 -
0.6 4
000 025 050 075 100 125 150 175 200 000 035 050 075 100 135 150 175 200
5 [spot price) s (spot price)
=060 A=7 u=-0.3 T=080 A=7 p=-03
0 — Reweighted 100 — Reweighted
. —— Radonh = RadonN
75 1 Unweighted Unweighted
= psp. " Detta 5 =p - M
S 050- S 050
a E
2 [
o o 035
& &
= =
2 I pm- mmmma
S s < oo -
-0.50 - oo ;
- | | | | | ) 075 - | . :
0o0 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200
5 (spot price} 5 [spot price)

Figure 5.12: Black-Scholes model - Comparison of the hedge ratio between deep
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Figure 5.3 to Figure 5.7 indicates that the trained results from deep hedging with
either reweighted measure or the Radon-Nikodym measure match the one from nu-
merical delta hedging. When the drift term is increasing, the results of the deep
hedging strategy with unweighted measure deviate from the analytical results fur-
ther. Finally, portfolios with unweighted measure equal to one when the drift term
is 0.6 and 1, i.e., large increment in the financial market. The results in Figure 5.10
to Figure 5.14 for negative drift terms draw similar curves but tend to a negative
investment for low-price assets.

The occurrence of the weird shape on the left parts of the figures in Figure 5.4 to
Figure 5.7 might be explained by Figure 5.8 and 5.9. Because the underlying asset
prices are simulated by a Gaussian distribution, the network input samples that are
priced in range 0 to 0.5 or to 0.75 lack. Thus, the FNN is not fully trained for low
prices and produces these strange curves.

Note the figures for p = 0.6 have a better reweighted deep hedging result than the
figures for po = 0.3 in Figure 5.3, 5.5 and 5.6. These two attempts with different drift
terms are generated using the same value of A. During training, the hedging strategy
under a higher drift term deduces more empirical risks than the one with the lower
p. It may be caused by the huge utility function outcomes for large underlying
asset prices with high drift. The hedging strategy reduces risk more efficient when
the empirical loss is enlarged. When the neural network is fully trained, its output
approaches the optimal solution. Also, the shifting turning points in the price range
0.5 to 0.75 for deep hedging strategies matches the moving input prices, Figure 5.5
and 5.6, caused by the positive drift term.

We are not taking A = 15, which theoretically enables to achieve the best result,
for all attempts. It is mainly because large risk aversion will lead to an explosive
empirical risk loss. It is hard for computers to handle this huge loss and to train it
down.

More figures with different p and A can be seen in Appendix A.L

5.2 Deep Hedging and Measure Reweighting in
Heston Model

Because the solution of martingale measure () for the Heston model is not unique, the
result by Radon-Nikodym measure cannot be a numerical reference in this section.
The given parameter and FNN settings for Black-Scholes remain unchanged. Some
additional fixed parameters typically for the Heston model are introduced:

e Revert rate k = 0.3
e Long-term volatility ¢ = 0.2
e Correlation between Brownian motions p = —0.2

e Initial instantaneous volatility 1V, = (.2
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The risk aversion A keeps as 10 for efliciency. The indifference price p in utility
hedging exists as it was in the Black-Scholes model because it only affects the scale
of loss during neural network training.
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Figure 5.15: Heston model - Hedge European call option with ;¢ = 0.1 and A = 10 for
different volatility of instantaneous volatility £. The graphs are shown with respect
to changes in time.
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Figure 5.17: Heston model - Hedge European call option with g = 0.6 and A = 10 for

different volatility of instantaneous volatility £&. The graphs are shown with respect

to changes in time.
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The Heston model turns into a Black-Scholes model if # = V, and & = 0. The
equation (4.1.1)

VE = VH 4 k(0 - VIdt + €\/VEYVat
= Vo + k(Vo — Vo)dt + 0 \JV{fI ¢ Vat

=W
Thus, by induction, one can have
H
Vi =W

and the underlying asset price

W ;
SH = SHexp ((,u - 7“) dt +/VioC? \/W)
= ST exp ((,u, —c)dt+c - Cf\/m)

Where ¢ and ¢ represent constants. This case is tested as for validation purpose but
does not present the result in this paper (which hold the same results as in Section
5.1).

From Figure 5.15 to 5.23, it shows that the result of deep hedge options becomes
flat when the volatility of instantaneous volatility increases. The changes in curves
indicate that: the investors are required to spend most of their cash on the high
valued underlying assets when £ is around zero; the hedging portfolio lifts the weight
for low valued underlying assets when the absolute value of £ becomes large.

The figures, especially in Figure 5.17, 5.22 and 5.23, show that the deep hedg-
ing strategy with unweighted measure approaching to one during neural network
training as it does with the Black-Scholes model. As a comparison, strategy with
reweighted asset path probability results a reasonable and reliable output.

Remark 5.2.1. The blue dash-line curves in figures are calculated by Black-Scholes
delta hedging. It is placed just for reference instead of an analytical solution.

More figures with different g, £ and A can be seen in Appendix A.2.

5.3 Black-Scholes Model with Realized Volatility

Buehler et al. [8] have written in their paper that the deep hedging strategy can be
applied to a Black-Scholes market, where underlying assets and at the money Puts
and Calls can be traded at each time step, for illustrating the effect of the measure
change. Hence, besides simulating the underlying prices, a related European call
option is generated as well. The option is priced with a volatility value different
from the one for underlying asset price simulation. In this case, there is an effective
statistical arbitrage between the underlying asset and the option. For transforming
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the market to an adapted version for deep hedging, one may reweight the underlying
asset paths’ measure.

The basic settings are similar as the one in Section 5.1, but the market is free of
drift with variable volatility:

e Stochastic volatility for underlying assets gmeat=¢d
¢ Stochastic volatility for European call options g@#tied
and the FNN structure

e Ni(3,100,100,100, 1; ReL U, ReLU, ReLU, linear)

The FNN has inputs: time, underlying asset price and call option price. The linear
in the output layer represents the activation function converts into an affine function.

Remark 5.3.1. Be careful to use linear as the output layer activation function.
This function is unbounded. Thus, it may cause a jump in losses when training the
neural network and results a failure.
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Figure 5.24: Black-Scholes model - Scatter Plot of the standard derivation for un-
derlying asset price (i.e., the realized volatility ¢"****?) and the trained reweighted
measure

The figure on the left in Figure 524 represents the case gimplied < grealized T
demonstrates that paths with low realized volatility are low weighted and paths
with high realized volatility are high weighted. A counter result is shown from
the figure on the right with situation g™Pled > grealized that the asset path weight
increases when the realized volatility increases.

Because high implied volatility generates highly stochastic option paths, the reweighted
measure is influenced more by the prices of the option. So the right-hand-side figure

in Figure 5.24 has a more dispersed shape than the left one.
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5.4 Pairs Trading on Real Funds

In the real financial market, sometimes one can apply pairs trading strategy on two
funds. These two funds are typically doing simultaneous movements, i.e., either
increase or decrease their price in the same percentages at the same time, for a
long period of time. The instability between two funds may increase due to the
chasing ups and downs done by investors or the miss-pricing caused by market
makers, but a stable mean value exists for the spread between two funds to oscillate
around. These two funds can be said as mathematically cointegrated. Pairs trading
is the strategy that utilizes the spread price divergence. For example, when the
instantaneous spread is positive and higher than its mean value, investors sell the
fund with higher price; when the instantaneous spread is positive but lower than
its mean value, investors buy the fund with lower price. Unlike many other trading
strategies, pairs trading is a risk-neutral trading strategy.

We may consider that the measure reweighting is similar to the pairs strategy. Both
of them do cancellation on the effective statistical arbitrage between two financial
derivatives. As we use deep learning to train for a new measure of two derivatives,
the structure of FNN may keep the same as in Section 5.3

f e Ny(3,100,100,100, 1; ReL U, ReLU, ReLU, linear)

If there is a purpose for bounded outcomes, the activation function in the output
layer can use Hyperbolic tangent.

A one-year data in seconds of two funds is used here: the Vanguard 500 Index Fund
(VOO) and the iShares Core S&P 500 Index Fund (IVV) [15]. The raw data I used
is a pre-proceeded data (pre-proceed hy my supervisor Dr Mikko Pakkanen) which
is collected from the first to the last trading date in year 2020 and separated by two
minutes. The final dataset gained is a set of prices with 48259 asset paths and 120
time steps (i.e., 120 seconds) for each fund.
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Figure 5.25: The histogram of profit and loss with reweighted measureand the scatter
plot of two funds correlation and their reweighted measure.

The shape of profit and loss, histogram in Figure 5.25, although the statistical arbi-
trage in funds VOO and IVV are small, the deep hedging strategy with reweighted
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measure results more concentrate, which agrees free of statistical arbitrage. Differ-
ent from the results assumed in Section 5.3, scatter plots in Figure 5.25 and 5.26
reveal that there is no relationship between the trained reweighted measure and the
highly correlated (most values of correlation between VOO and IVV are equal to
one) and cointegrated (most p-values for cointegration between VOO and IVV are
nearly zero) price paths.
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Figure 5.26: The scatter plots of two funds correlation (p-value based on MacKinnon
[17]) and their different-scaled reweighted measure.

With an attempt of finding how the trained measure works (Table 5.1), it is found
that the result does not follow the pairs strategy. The portfolio generated under the
measure-reweighting-like strategy is long together and short together.

VOO | 7.8535438 2.7456868 -1.577576 -2.4031937 -4.8154325 -5.388236
IVV | 13.704949 5.2937264 -1.206552 -2.4244452 -5.0658345 -5.685785

Table 5.1: Few fragments of the trained reweighted measure for the path gains the
highest profit and loss.

Combined with Figure 5.27, price paths for VOO and IVV have almost the same
shape of lines with a value around 3 x 10° but with tiny changes in units of 10? (Fig-
ure 5.28 is the spreads when investing the same amount of cash into both funds).
The spreads are too small comparing with their price value. A more significant
spread price between VOO and IVV, which is suitable for pairs trading, might be
found with datasets in smaller time steps (e.g., millisecond-to-millisecond).
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Figure 5.27: Related price paths of fund VOO and IVV with maturity 7 = 2min.
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Chapter 6

Conclusion

In the Black-Scholes model, the traditional deep hedging strategy (i.e., equally-
weighted on each asset price based on Buehler et al. [7]) performs well when the
market prices are adapted or slowly increased /decreased in its overall trend (i.e.,
the absolute value of drift term 4 is small). However, the trading strategy is equally
buying underlying assets when the market has a trend with a sharp gradient, which
is unrealistic in reality. For applying the deep hedging strategy to reality, this paper
introduces one type of solution by changing the measure of the market. The new
market measure enables underlying prices to be measurable and can be generated
by either analytical Radon-Nikodym density calculation or by measure reweighting
method.

It testifies that both the Radon-Nikodym measure and reweighted measure improve
the traditional deep hedging strategy and make it reliable under most of the cases
in the Black-Scholes model. Even if there is no accessible analytical reference (e.g.,
in the Heston model), the deep hedging strategy with reweighted measure results

reasonable and reliable.

For showing the influence of measure reweighting, a test of hedging between un-
derlying assets and their related options. The volatility of the options, called the
implied volatility, is not aligned with the one of underlying assets. It is found that
the scale of the reweighted measure has a monotonic relationship to the realized
volatility, i.e., the volatility of the underlying asset. When gimplicd ~ greatized {}o
trend between the reweighted measure and realized volatility is monotonically in-
creasing; and when gimPlied < grealized - he trend between the reweighted measure

and realized volatility is monotonically decreasing.

Pairs trading is a practical case that operating similarly to measure reweighting as
they are both making market risk-neutral. However, although the paths for fund
VOO and IVV are highly correlated and cointegrated, the result we got does not
like what pairs strategy should present. The failure might be caused by the tiny
scale of the spread between two funds in our dataset.

Further attempts could be made to simulate more underlying prices with a wider
time range or to find the most reasonable value of A for each drift term in the Black-
Scholes model. For further study of the pairs trading case, it is suggested to try
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either new funds with more significant spreads or a VOO and IVV price dataset
with smaller time steps (e.g., millisecond-to-millisecond).
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Appendix A

Additional Figures

A.1 Figures for Black-Scholes model

A.1.1 Figures with A =1
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Figure A.1: Black-Scholes model - Hedge European call option with A = 1 for
different positive y2. The graphs are shown with respect to changes in time.
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Figure A.2: Black-Scholes model - Hedge European call option with A =
different negative p. The graphs are shown with respect to changes in time.
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Figure A.3: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
the delta hedging strategy with A =1 and ¢ =0.1
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Figure A.4: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
the delta hedging strategy with A =1 and ¢ = 0.3
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Figure A.5: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
the delta hedging strategy with A =1 and ;. = 0.6
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Figure A.6: Black-Scholes model - Comparison of the hedge ratio between deep
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Figure A.T: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
the delta hedging strategy with A =1 and ¢ = —0.1
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Figure A.8: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
the delta hedging strategy with A =1 and p = —0.3
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Figure A.9: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
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Figure A.10: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
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A.1.2 Figures with A =5
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Figure A.11: Black-Scholes model - Hedge European call option with A = 5 for
different positive p2. The graphs are shown with respect to changes in time.

08
08 -
0e
S o s
g 0a-
g il
3 2 2
= o
= = .
= 02 o
-0.2
0o
0.4
oo 02 04 06 08 10
+(time)
A=5 u=-0.6
100 —— Rewsighted 075 -
75 —— Radon
075 -
Unwelghted 150 -
—. 050 ——- Delta .
5 S 025
@ 025 '
5 .00
& 000 &
a = -
@ T -025
= =
& & -0.50
L 075
.\ - = |
-1.00 o 00
oo 02 04 a6 08 10 0.0 02 04 06 na 10
T (time) + (time)

Figure A.12: Black-Scholes model - Hedge European call option with A = 5 for
different negative p. The graphs are shown with respect to changes in time.
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Figure A.13: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
the delta hedging strategy with A =5 and = 0.1
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Figure A.14: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
the delta hedging strategy with A =5 and ¢ = 0.3
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Figure A.15: Black-Scholes model - Comparison of the hedge ratio between deep

hedging strategy with reweighted, Radon-Nikodym and
the delta hedging strategy with A =5 and ;0 = 0.6
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Figure A.16: Black-Scholes model - Comparison of the hedge ratio between deep

hedging strategy with reweighted, Radon-Nikodym and
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Figure A.17: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
the delta hedging strategy with A =5 and g = —0.1
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Figure A.18: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
the delta hedging strategy with A =5 and p = —0.3
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Figure A.19: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
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Figure A.20: Black-Scholes model - Comparison of the hedge ratio between deep
hedging strategy with reweighted, Radon-Nikodym and unweighted measure and
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A.2 Figures for Heston model

A.2.1 Figures with A =1
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Figure A.21: Heston model - Hedge European call option with ¢ = 0.1, A =1 and
different volatility of instantaneous volatility £. The graphs are shown with respect
to changes in time.
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Figure A.22: Heston model - Hedge European call option with p=0.3, A =1 and
different volatility of instantaneous volatility £&. The graphs are shown with respect

to changes in time.
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Figure A.23: Heston model - Hedge European call option with g = 0.6, A =1 and
different volatility of instantaneous volatility £&. The graphs are shown with respect

to changes in time.
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Figure A.26: Heston model - Hedge European call option with ¢ = 0.3, A =1 and
different positive volatility of instantaneous volatility £.
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Figure A.27. Heston model - Hedge European call option with ¢ = 0.3, A =1 and

different negative volatility of instantaneous volatility £.
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Figure A.28: Heston model - Hedge European call option with ¢ = 0.6, A = 1 and
different positive volatility of instantaneous volatility £.
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Figure A.29: Heston model - Hedge European call option with ¢ = 0.6, A = 1 and

different negative volatility of instantaneous volatility &.
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Figure A.30: Heston model - Hedge European

different volatility of instantaneous volatility £.
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Figure A.31: Heston model - Hedge European call option with g = 0.3, A =5 and
different volatility of instantaneous volatility £&. The graphs are shown with respect
to changes in time.
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Figure A.32: Heston model - Hedge European call option with g = 0.6, A =5 and
different volatility of instantaneous volatility £&. The graphs are shown with respect

to changes in time.
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Figure A.33: Heston model - Hedge European call option with ¢ = 0.1, A =5 and
different positive volatility of instantaneous volatility £.
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