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Abstract

Presented in this paper will be a discrete option pricing and hedging model using Reinforcement
Learning, specifically, the Q-learning algorithm implemented by Chris Watkins in 1989 [1]. This is
achieved by first establishing a Markov Decision Process for a discrete-time Black-Scholes setting
where the price of the option is the optimal action-value, while the optimal hedge is represented as
the optimal action. Hence, both pricing and hedging are contained within the same formula. This is
achieved by an agent, which optimally re-balances a portfolio of bonds and the underlying asset as
to maximize the risk-adjusted returns. We will also evaluate the use of neural networks and kernel
estimation to help us estimate optimal hedges in a reinforcement learning setting. Reinforcement
learning is particularly attractive to finance as it also allows for model-free methods and can learn
to solve the pricing/hedging problem without the explicit dynamics of the world; learning directly
from market data.
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Introduction

Reinforcement Learning (RL) is one of the fastest growing research sectors within the field of ma-
chine learning. The application of reinforcement learning in the real world is endless, from robotics
to optimising chemical reactions [2] to superhuman performance in Atari games [3]. The funda-
mental aim of reinforcement learning is to train an agent to undertake actions in an environment
in which the dynamics are unknown, and to do so optimally in the sense of maximising rewards
received by the environment. This idea of choosing optimal actions seems very well suited to many
problems within the realm of finance such as trading or investment decisions. In this paper, we will
be following a variety of ideas formulated by Igor Halperin in his paper on Q-learning in the Black-
Scholes World (QLBS) [4]. In particular, we will see how we can reformulate the discrete-hedging
problem in an RL setting.

Before we delve into the world of finance, one of the most popular platforms for testing RL
algorithms is the OpenAI Gym [5]. This library offers a variety of continuous space and discrete
space environments such as the classical Cartpole and Gridworld environments. As such, we can
create similar environments to evaluate RL algorithms for financial purposes. These environments
allow one to test both discrete and continuous action space RL algorithms. In the problems we
will encounter, our action-space is the ability to trade an asset for hedging purposes.

The benchmark model used in this paper is the famous and classical Black-Scholes model (BS),
we will be using the discrete version of the Black-Scholes model [6]. One of the major underlying
ideas of the BS model is that derivatives can be priced using a replicating portfolio consisting of
tradable assets (generally underlying stock and cash) called the hedge portfolio. The wealth in this
portfolio is re-balanced between the stock and cash in a self-financing manner such that there are
no cash injections/withdrawals apart from at the inception of the portfolio. The purpose of the
replicating portfolio and dynamic nature of re-balancing is to emulate the pay-off of the derivative.

In the original continuous time-setting of Black-Scholes, the hedge portfolio can be re-balanced
continuously to dynamically replicate the option. In this setting, the hedge portfolio perfectly
replicates the option, thus eliminating mis-hedging risk. As such, the combined portfolio of the
option and hedge portfolio earns the risk-free rate. As the mis-hedging risk is eradicated, the price
of the option does not depend on the risk preferences of the investor and is equal to the unique
price of the perfectly replicated hedge portfolio of stock and cash.

In this setting, an option can be perfectly replicated by a simple, straightforward portfolio of
stock and cash. If the real world followed this model, it would render options superfluous as they
can be easily replicated and no one would trade them. However, the derivatives market is vast,
the notional amount of OTC derivatives rose to $640 trillion at end-June 2019 [7]. They are of
paramount importance in the financial sector.

This is because the assumptions of the original Black-Scholes model break down in the real
world which causes the option to no longer be risk-free. Many factors contribute to options being
risky, such as transaction costs, volatility risk, cost of funding, etc [8]. We will mainly focus on
mi-shedging risk, which arises when we relax the unrealistic assumption of continuous re-balancing
of the hedge portfolio.

In most option markets, the replicating portfolio is re-balanced in discrete time steps, e.g. daily.
Moreover, with the introduction of transaction costs, re-balancing frequently can lead to accruing
large costs. In this setting, a continuous-time limit analytical solution may not even exist as the
transaction costs may cause the prices to blow out of proportion due to the infinite number of
trades taking place in the continuous-time limit.
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As we are now working in a discrete-version of the BS model, creating a perfectly replicating
portfolio of the option is no longer possible. The value of the hedging portfolio will generally be
different from the option value, this will depend on the stock price evolution between consecutive
hedges of the portfolio. The option buyer/seller will now charge a risk premium to offset the
potential losses due and uncertainty introduced by mis-hedging risk. The price of the option is
adjusted accordingly to encapsulate the risk taken on by the investor and depends on the investors’
view on risk.

The aim of an option seller in a discrete-time setting is to minimize the costs caused by mis-
hedging risk over the lifetime of the option by dynamic option replication. The option seller has to
make decisions (rebalancing hedge position) in a sequential manner with the current observations
of the market (e.g. stock price) with the purpose of minimizing (or maximizing rewards defined as
negative costs) mis-hedging risk. The sequential decision-making nature of dynamic option repli-
cation with a goal of minimizing risk makes it highly compatible with Reinforcement Learning
(RL). We can use RL methods in various ways to gain insight into the hedging problem. For ex-
ample, one could amend the reward function to include transaction costs, this is a straightforward
task yet the analytical solution to incorporating transaction costs can be challenging and taxing.
Extensions using RL is relatively simple and straightforward. In this paper we will mainly focus
on hedging the option rather than pricing.

One of the major advantages of using RL methods is the flexibility of either using a model or
going model-free. One of the most famous model-free methods is the Q-learning algorithm which
allows one to obtain the optimal policy (e.g. best actions) without the need to build a model
of the dynamics of the environment. The original Q-learning algorithm was built to work in a
discrete-state setting, which is suited for simple environments (i.e. Gridworld). This algorithm
breaks down for continuous state settings (i.e. Cartpole). One solution to this is to incorporate
neural networks to approximate action-value functions or even policies. Neural Networks paved
the way for a new sector of RL, namely Deep Q-Networks (DQN) [9].

The method we use in this paper is called the QLBS model as it combines both Q-learning and
the discrete-version of the BS model [4]. In this model, the option price and delta are contained in
the same function, the optimal action-value function Q. This method could be used for model-based
RL or model-free when the dynamics are unknown. In a model-free setting, the QLBS model can
work with real data to train an agent to learn the optimal price and hedge for a dynamic replicating
portfolio. Without an explicit model, one can use value-based RL methods to try and solve the
Bellman Optimality Equation using only sample data. [10, Chapter 3.6, page 64] In this paper,
we will only work with simple vanilla European Options but it is possible to extend the model to
include more complex derivatives.

In the first section of the paper, we will look at the foundations of Reinforcement Learning and
analyze common RL methods as well as explaining some key concepts. In the second section, we
will formulate a discrete-time, continuous observation space setting of the Black-Scholes model and
introduce the QLBS model to help us obtain a Dynamic Programming based solution for hedging
and pricing. We will look at a variety of methods of solving from discrete-state RL algorithms to
kernel estimation and utilizing neural networks. In the last chapter of this paper, we will move
away from a Black-Scholes world, and see how well our Q-learning framework works in a different
setting to Black-Scholes.
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Chapter 1

Foundations of RL

In this section, we will discuss the basics of reinforcement learning and define key ideas within RL,
which entails Markov Decision Processes (MDP) and Dynamic Programming. We will also touch
upon Q-learning and other RL methods.

1.1 Basic Definitions

• State - Information which depicts the internal representation of the environment. This is
the information used by the agent to choose the next action.

• Agent - This is the entity that interacts with the environment by undertaking actions based
on the information available.

• Environment - The environment is the entity that analyzes the action taken by the agent
and emits the subsequent state/observation and reward.

• Reward - This is a special numerical value the agent receives from the environment as a
consequence of undertaking a certain action.

1.1.1 Finite Markov Decision Process (MDP)

Definition 1.1.1 (Markov Decision Process). This is a 4-tuple < S,A,P,R > where:

• S is a set of finite states called the state space

• A is a set of finite actions called the action space

• P is a probability state transition matrix such that Pa(s, s′, r) = P(St+1 = s,Rt+1 = r|St =
s,At = a) is the probability that action a will cause state s to transition to state s′ at time
t whilst receiving reward r.

• R is a Reward matrix such that Ra(s, s′) is the immediate reward received when state s
transitions to state s′ under the action a.

The agent and the environment interact with each other at discrete time steps. At time t,
the agent receives some information about the environment’s state St ∈ S, in our setting, this
information could be stock price. The agent then analyzes this information to select an action
At ∈ A, e.g. hedge position. The environment then processes this action and a time step later,
emits a reward Rt+1 and new state St+1 to the agent. The agent then processes this new state
and repeats this entire process either indefinitely or until it reaches a terminal state, producing a
trajectory or episode as follows:

S0, A0, R1, S1, A1, R2, S2, A2, R3 . . .

Definition 1.1.2 (Policy). The way in which an agent selects actions is called a policy. A policy
is a map π defined as follows:

π : A x S
π(a, s) = P(at = a|st = s)

This is the probability of the agent selecting action a when in state s at time t.
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1.1.2 Returns and Value Functions

The goal of an agent is to find a policy that will maximize the total reward received. This is the
cumulative reward received in the long run and not the short-sighted immediate reward. An action
may lead to great immediate reward but in the future, it may be inferior to other possible actions.

Definition 1.1.3 (Returns). The total discounted accumulated rewards from time t up to a final
time step T with discount factor γ ∈ [0, 1] is called the Returns Gt:

Gt = Rt+1 + γRt+2 + γ2Rt+3 . . .+ γT−1RT

The terminal time step could be thought of as the expiration of an option in our problem or it
could be the end of a game as another example. The episodes end in a terminal state and episodes
start independently from one another. An episode can be seen as one simulation of the lifetime of
an option. The purpose of the discount factor γ is to make sure that the total reward is finite as
some problems do not have a terminal state and so rewards are received continually. Moreover, the
discount factor allows us to adjust our view on short-term or long-term rewards. A discount factor
of 1 means that we value rewards far into the future equally to immediate rewards (far-sighted),
whereas a discount factor of 0 means we ignore future rewards and only care about immediate
rewards (myopic). The way in which the agent should maximize the total reward is by maximizing
the expected returns Et[Gt].

Definition 1.1.4 (Value Function Vπ(s)). The Value function Vπ(s) is the expected return when
the agent follows a policy π and starts in state s:

Vπ(s) = Eπt [Gt|St = s]

The value function can be seen as a measure of how beneficial it is for the agent to be in a
given state under a certain policy. The policy that maximizes the expected returns is the optimal
policy and is not necessarily unique.

Definition 1.1.5 (Action-Value Function Qπ(s, a)). The Action-Value function Qπ(s, a) is the
expected return when the agent and starts in state s and takes action a and thereafter follows
policy π:

Qπ(s, a) = Eπt [Gt|St = s,At = a]

1.2 Bellman Equations

We will now explore the famous Bellman equations by Richard Bellman [11]. These equations are
essentially the pillars of Reinforcement Learning. One of the core ideas used throughout RL is the
recursive relationship that is satisfied by the value functions which we will formulate below.

1.2.1 Bellman Expectation Equation

The value function can be rewritten into a recursive relationship in the following way using the
law of iterated expectation:

Vπ(s) = Eπt [Gt|St = s]

= Eπt [Rt+1 + γRt+2 + γ2Rt+3 . . . γ
T−1RT |St = s]

= Eπt [Rt+1 + γGt+1|St = s]

= Eπt [Rt+1 + γEπt+1[Gt+1|St+1 = s′]|St = s]

= Eπt [Rt+1 + γVπ(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

P(s′, r|s, a)[r + γVπ(s′)] (1.2.1)
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Analogously, we can rewrite the action-value function in the same way:

Qπ(s, a) = Eπt [Rt+1 + γQπ(St+1, At+1)|St = s,At = a]

=
∑
s′,r

P(s′, r|s, a)[r + γ
∑
a′

π(a′|s′)Qπ(s′, a′)] (1.2.2)

If the MDP dynamics are known (i.e. transition probabilities and reward matrix), then the
Bellman expectation equation is a linear equation, it can be solved explicitly with some basic
linear algebra. However, if the state space is large, this may cause matrix manipulation to be
computationally inefficient. We can use iterative algorithms which we will explore later on to
approximately solve for the value-functions. Solving the Bellman Expectation equations informs
one of the actual value functions under a chosen policy π. Solving these equations do not tell us
the optimal policy, it just allows us to find the values of states under a certain policy. We can
use policy iterative methods to try and find the optimal policy. Another method is using value
iterative methods based on the Bellman Optimality equations which we will discuss below.

1.2.2 Bellman Optimality Equation

The purpose of solving the RL problem is to find a policy that returns a large amount of rewards
in the long run. A policy π is said to be better than another policy π′ if it’s expected return is
greater for all states s ∈ S, or in other words Vπ(s) ≥ Vπ′(s) ∀s ∈ S. There always exists at least
one policy that is better or equal to all other policies. This is called the optimal policy and may not
be unique and we denote it by π∗. The optimal value-function V∗ is defined as the value-function
which follows the optimal policy, the same goes for the optimal action-value function:

V∗(s) = max
π

Vπ(s) ∀s ∈ S

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S, ∀a ∈ A

The optimal action-value function Q∗(s, a) is the expected returns from taking action a in state
s and thereafter following the optimal policy, thus we can rewrite Q∗ in terms of V∗.

Q∗(s, a) = Et[Rt+1 + γV∗(St+1)|St = s,At = a] (1.2.3)

=
∑
s′,r

P(s′, r|s, a)[r + γV∗(s
′)] (1.2.4)

Moreover, the optimal value function can be rewritten in terms of Q∗. This is because the opti-
mal value-function is equal to the optimal action-value function under the constraint of undertaking
the optimal action always:

V∗(s) = max
a∈A

Q∗(s, a) (1.2.5)

We can now substitute equations (1.2.4) and (1.2.5) into one another to obtain both versions
of the Bellman Optimality equation.

V∗(s) = max
a∈A

∑
s′,r

P(s′, r|s, a)[r + γV∗(s
′)] (1.2.6)

Q∗(s, a) = P(s′, r|s, a)[r + γ max
a′∈A

Q∗(s
′, a′)] (1.2.7)

Unlike the Bellman Expectation equations, the optimality equations are not linear and cannot
be solved explicitly. As such iterative algrorithms have to be used. Once the algorithms are applied
and the value functions are knows, obtaining the optimal policy is very simple as we just choose
the action that maximizes the optimal action-value function, as follows:

π∗(a|s) =

{
1 if a = argmaxa′ Q∗(s, a

′)

0 otherwise
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1.3 Model-Free Reinforcement Learning

One can use dynamic programming techniques to learn an optimal strategy where the model
dynamics are known. We will not include dynamic programming techniques in the main body
of this paper and discussion of these methods can be found in the appendix. We will mainly
focus on Reinforcement Learning. The whole basis of Reinforcement Learning is for an agent to
learn an optimal strategy in an environment where the model dynamics are unknown (transition
probabilities and reward function). In this section, we will be discussing different methods that
do not assume a model for the environment and are able to solve for the optimal strategy, in both
discrete and continuous state spaces.

1.3.1 Exploration vs Exploitation

Before we look at any model-free RL methods, we will first introduce the idea of exploration vs
exploitation. Exploration is the idea of trying different actions and analyzing the outcomes. Ex-
ploitation is acting greedily and undertaking actions that are known to give out high rewards. The
agent has to be careful with acting greedily as this could lead to a sub-optimal policy. An agent has
to compromise exploiting the action values and exploring the environment to discover new states
and actions which may in fact prove better. One analogy to explain this further is for an agent to
pick the best restaurant to dine in London. The agent can pick the best restaurant to their own
knowledge (exploitation) or the agent can pick a new randomly chosen restaurant (exploration)
which may prove to be a better choice.

One method of choosing actions, which balances exploration and exploitation is the ε− greedy
algorithm. With probability ε, the agent chooses the ’greedy’ action and with probability 1−ε, the
agent chooses a random action. This algorithm does improve the policy as well. The ε − greedy
policy can be expressed as:

π′(a|s) =

1− ε+ ε
|A(s)| if a = argmaxa′ Q∗(s, a

′)

ε
|A(s)| otherwise

Theorem 1.3.1 (ε − greedy Policy Improvement). For any policy π, the ε − greedy policy with
respect to Qπ is an improvement such that Vπ′(s) ≥ Vπ(s) for all s ∈ S

Proof.

Qπ(s, π′(s)) =
∑
a∈A

π′(a|s)Qπ(s, a)

=
ε

|A(s)|
∑
a∈A

Qπ(s, a) + (1− ε) max
a∈A

Qπ(s, a)

≥ ε

|A(s)|
∑
a∈A

Qπ(s, a) + (1− ε)
∑
a∈A

π(a|s)− ε/|A(s)|
1− ε

=
∑
a∈A

π(a|s)Qπ(s, a)

= Vπ(s)

As we have shown, if Q(s, π′(s)) ≥ Vπ(s), using theorem A.2.1 in the appendix, it follows that
Vπ′(s) ≥ Vπ(s) for all s ∈ S

1.3.2 Q-Learning

Q-learning is probably the most famous method within the realm of reinforcement learning, devel-
oped by Christ Watkins in 1989 [1]. Q-learning is an off-policy method within the sect of temporal
difference learning. Generally, the policy that is used to generate the episodes is an ε − greedy
policy whilst a pure greedy method is used to improve the policy. Q-learning is an effective method
to obtain the optimal Q-values and optimal policy in a discrete state setting with unknown model
dynamics. The reason why this method is effective is because the learned action-value function Q
that approximates the optimal action-value function is independent to the policy that generates
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the episodes and data. The target for the update of Q-learning is essentially based on the Bellman
Optimality Equation (1.2.4). Let us recall the form of the Bellman Optimality equation:

Q∗(s, a) = Et[Rt+1 + γV∗(St+1)|St = s,At = a]

= Et[Rt+1 + γ max
a′∈A

Q∗(St+1, a
′)|St = s,At = a]

Q-learning essentially uses Rt+1 + γmaxa′∈AQ∗(St+1, a
′) as a target in the update to estimate

Q∗(St, a). One major advantage here is that updates can happen on-line. The Q-learning algorithm
is below:

Algorithm 1: Q-Learning Algorithm

Initialize Q(s, a) arbitrarily for all s ∈ S and a ∈ A(s)

Initialize step size α ∈ (0, 1]

Initialize n as number of episodes

for i← 0 to n do
Initialize current state S

while S is not terminal do
Sample action A from ε− greedy policy based off Q

Take action A and observe reward R and next state S′

Q(S,A)← Q(S,A) + α
[
R+ γmaxa∈A(S′)Q(S′, a)−Q(S,A)

]
S ← S′

end

end
Return Q(s, a) for all s ∈ S and a ∈ A(s)
Return π∗(a|s) = argmaxa′∈A(s)Q(s, a′) for all s ∈ S and a ∈ A(s)

The Q-learning algorithm is relatively simple yet very effective for discrete-state RL problems.
This algorithm can be used in a wide variety of environments with little amendments made. The
simplest version of Q-learning stores data in a tabular form, this can be efficient for discrete
state settings. However, once we work in a continuous-state setting, this method is no longer
efficient as the number of states is infinite. Even in a large state setting, this algorithm is no longer
feasible. One workaround in a continuous-state setting is to quantize the possible continuous values
describing the environment into bins/buckets. Another method is to use function approximation
to approximate the value functions.

1.4 Model-Based Reinforcement Learning

In this section, we will now discuss how the agent can slowly have some understanding of the model
dynamics using real experiences. So far we have been discussing Model-Free RL, where we do not
assume any model dynamics and the agent only learns the value functions and optimal policy. Just
like Model-Free RL, the agent starts with unknown initial knowledge of the model dynamics. We
will discuss how the agent can gradually learn and utilize the model dynamics to solve problems
in both discrete and continuous state settings.

1.4.1 Tabular Model-Based RL

This particular method is used for discrete state settings. The first phase of this method is to
estimate the model dynamics using real experience; we want to estimate the reward function
and transition probabilities of an MDP. The second phase is to either solve for this estimated
MDP using value iteration methods, or to use sample-based planning; producing sample episodes
using the estimated MDP dynamics and then applying model-free methods such as Q-learning on
both the sampled and real experience for the agent to learn. Sample-based planning can also be
implemented by not estimating the model, rather storing transitions in a block of memory just
like the Deep Q-learning algorithm and sampling transitions from this memory. We can count the
visits to each state-action pair, and produce sample probabilities of a transition to a next state
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due to this state-action pair. We could also use a sample mean to estimate the reward function
for a given state-action pair. The mathematical formulation is below:

P̂
(
St+1 = s′ | St = s,At = a

)
=

1

N(s, a)

T∑
t=1

1
(
St+1 = s′ | St = s,At = a

)
R̂as =

1

N(s, a)

T∑
t=1

1
(
St = s,At = a

)
Rt

Where N(s, a) is the total number of visits to the state-action pair (St = s,At = a) and
P̂
(
s′ | s, a

)
is the estimated probability transition from state s to state s′ under action a whilst

R̂as is the estimated immediate reward of executing action a while in state s.
As we now have an estimate for the dynamics of the model; we can implement a version

of the value iteration algorithm A.2.1 to find the optimal policy. This algorithm is a dynamic
programming method which is originally used when the agent has knowledge of the model dynamics.
Value iteration improves the policy after each update of the value function. The update of the
value iteration algorithm is based on the Bellman Optimality equation (1.2.6) and can be found
in the appendix A.2.1.

Frozen Gridworld

We will implement the tabular model-based RL method on the Frozen Gridworld environment.
We will be performing value iteration while learning the model dynamics. The Frozen Gridworld
environment is a 4x4 grid of tiles where the agent always starts on the upper left corner and can
move up, down, left, and right. Some of the tiles have ”holes” which causes the agent to fall
through and terminates the episode. All other tiles are ”slippery” and so undertaking a certain
action does not guarantee a transition to a certain state; this environment is thus stochastic. The
goal of the agent is to reach the bottom left corner at which point the episode terminates and the
agent receives a reward of +1; the agent receives no reward elsewhere.
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Figure 1.1: Average Total Reward over 20 episodes for Frozen Gridworld

The left plot of Figure 1.1 shows the training of the agent using Q-learning. At each update,
we played 20 episodes and averaged the total reward received by each episode. One can see that
it took more than 5 seconds for at least one episode to terminate at the goal state. As the
policy is stochastic and we cannot guarantee a reward of +1 every episode, we set the threshold
to stop training at 0.8 for Q-learning. This took roughly 40 seconds to train the agent with
5655 iterations which is relatively slow. This is because rewards are given out rarely and so
learning is slow with Q-learning. On the other hand, learning is very quick with Model-Based
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Value iteration. We implemented this by interchanging the value function iteration and model
learning; at each iteration, we played 100 steps and used these steps to update the probability
matrix and reward function. A threshold of 0.85 was achieved within a second and required only
74 iterations. Using real experience to build a model can be advantageous and speed up training
time. In environments where rewards are emitted infrequently, it is best to first try and learn the
dynamics of the environment before trying to learn the optimal policy.

1.4.2 Kernel-Based Reinforcement Learning

The tabular model-based RL methods do not work in a continuous state setting. We require a
different method to facilitate continuous state settings. One way is to use kernel-based methods
to approximate a finite state MDP using historical outcomes. The way this works essentially is
that the kernel-based methods approximate the consequences of an action a from a given state
s as the weighted average of previous results of that action. The weightings are computed using
a continuous kernel function of the distance metrics between state s and previous states. Let us
assume we have access to historical transitions (si, ai, ri, s

′
i) for i = 1 . . . N . Where si is the current

state, ai is the executed action, ri is the immediate reward and s′i is the next state. The Bellman
Optimality equation can be approximated using kernel-based methods in the following way:

Q̂(s, a) =
1

Zs,a

∑
i|ai=a

φ

(
d(si, s)

b

)[
ri + γmax

a′
Q̂(s′i, a

′)
]

(1.4.1)

[12]

Where Zs,a =
∑
i|ai=a φ

(
d(si,s)
b

)
is used to normalize the weights and φ is a non-negative

kernel function used to compute the weights depending on the relative distance of the states.
Typically, one uses Gaussian kernels (φ(x) ∝ e−x2

) to compute the weights. The parameter b is a
smoothing parameter. Equation (1.4.1) can be solved using value iteration.
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Chapter 2

Discrete-Time hedging and QLBS

In this chapter, we will now formulate the classical Black-Scholes model in a discrete-time setting.
In particular, we will be looking at the point of view of a seller of a vanilla European option (e.g.
Call Option) with maturity T and terminal payoff GT (ST ) which is dependent on the underlying
stock price at maturity. The seller of the option will setup a replicating portfolio Πt consisting
of some position ut of the stock St and risk-free bond Bt at time t. As discussed previously in
the introduction, the goal of hedging and pricing in this setting is to reduce mis-hedging risk in a
sequential manner.

2.1 Hedge Portfolio

The purpose of the replicating portfolio is to try and match the value of the option at all times
by re-balancing the wealth between the bonds and stocks. Exact replication is achievable in the
classical BS model where continuous re-balancing is hypothetically possible. In the setting of re-
balancing the portfolio at discrete-time steps; exact replication is no longer possible at all times.
At maturity T , the option is exercised and the position of the hedge uT is also closed, i.e. the
stocks are bought/sold and converted to cash. This is constrained by setting uT = 0. Thus, at
time T , the hedge portfolio only consists of risk-free bonds. The portfolio value at maturity is:

ΠT = BT = GT (ST ) (2.1.1)

The portfolio value at times t < T is given by:

Πt = utSt +Bt (2.1.2)

Moreover, using the self-financing constraint, we can find out the amount of bonds required at
times t < T . The self-financing constraint means that all changes in the hedge position should be
funded by an initial bond. Wealth can only be balanced between the stock and bond; there are
no external cash flows in or out of the portfolio during the lifetime of the option. One can then
formulate the following recursive equation by equating the value of the portfolio at time t+ 1 just
before and after re-balancing:

Πt+1 = utSt+1 + er∆tBt = ut+1St+1 +Bt+1 (2.1.3)

Where ∆t is the difference between time t + 1 and time t. The middle section of equation
(2.1.3) is the portfolio value Πt+1 expressed in terms of the previous hedge position and bond with
accrued interest. Due to no cash flows in or out of the portfolio, this must be equal to the value of
the portfolio after re-balancing which is expressed as the right-hand side of equation (2.1.3). We
can rearrange this equation for Bt to produce a recursive equation for the bond:

Bt = e−r∆t[Bt+1 + (ut+1 − ut)St+1], t = T − 1, . . . , 0 (2.1.4)

We can plug equation (2.1.4) into equation (2.1.2) to produce a recursive equation for the
portfolio value Πt. The substitution is as follows:
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Πt = utSt +Bt

= utSt + e−r∆t[Bt+1 + (ut+1 − ut)St+1]

= utSt + e−r∆t[Πt+1 − utSt+1]

= e−r∆t[Πt+1 − ut∆St] (2.1.5)

Where ∆St = St+1 − e−r∆tSt

From the recursive equations for Πt and Bt, one can see that these variables are not Ft mea-
surable where Ft is the information up to time t. This is because both Bt and Πt depend on future
values of bond and portfolio value, respectively. As such, the initial values B0 and Π0 are random
variables with some distributions. We can use Monte Carlo simulations to estimate these distribu-
tions for any given hedging strategy (ut)

T
t=0. This is achieved by simulating N stock price paths

(Sit)
T
t=0 under the Black-Scholes model, where the super-script i denotes the ith path. Under the

Black-Scholes model, one can produce a stock price path using the following recursive formulation:

St+1 = St exp

(
(r − σ2

2
)∆t+ σ∆tZt

)
Where r is the risk-free interest rate, σ is the volatility of the underlying stock and Zt is an

independent standard normal random variable. Once all the stock price paths have been simulated,
one can compute the portfolio value ΠT (ST ) at maturity T for all N paths. We can then evaluate
Πt for t < T using the recursive equation (2.1.5) and our trading strategy (ut)

T
t=0. Under the

Black-Scholes model, we assume that the sellers trading of the stock has no impact on the stock
price and so the stock price evolution (Sit)

T
t=0 is independent of the trading strategy. So, we only

need to produce the sample paths once and we can reuse these paths for a variety of trading
strategies (ut)

T
t=0. In this paper, we use synthetic simulated data, however, it is possible to use

real historical data for the underlying stock prices.
One of the objectives of the seller is to price the option today (t = 0). The fair price of the

option can be the mean across all price paths of Π0, the dealer can also add a premium to be
compensated for taking on risk. Pricing can only happen once the seller has a trading strategy. In
the next section, we will discuss how the seller can choose an optimal trading strategy.

2.2 Optimal Trading Strategy

To compute the optimal hedging strategy u∗t (St), we need to utilise all MC paths at time t, this is
essentially a cross-sectional analysis of the simulated paths. We used a pathwise backward recursion
to compute the portfolio value. We still use a backward recursive formula to compute the optimal
hedge, but we use every MC path available as well, starting from t = T to t = 0. Though, like
most trading strategies, our strategy must be adapted and not predictive; it can only depend on
information Ft up to time t. We cannot use future information to decide how we hedge today.
Hence, any computation for the optimal hedge must be conditioned with the information Ft at
the current time t. In this setting, we can compute the optimal hedge at time t by minimising the
variance of the portfolio value Πt across all MC paths conditioned on the current cross-sectional
information Ft:

u∗t (St) = argmin
u

V ar[Πt | Ft]

= argmin
u

V ar[Πt+1 − ut∆St | Ft]

= argmin
u

[
V art[Πt+1]− 2utCovt[Πt+1,∆St] + u2

tV art[∆St]

]
(2.2.1)
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We can minimize equation (2.2.1) by setting the derivative with respect to u to zero and by
doing so, we have an analytical solution to the optimal hedge:

0 = −2Covt[Πt+1,∆St] + 2u∗tV art[∆St]

Rearranging this equation for u∗t gives us the optimal hedge:

u∗t (St) =
Cov[Πt+1,∆St | Ft]
V ar[∆St | Ft]

(2.2.2)

This expression can be computed in a variety of ways depending if the state space is discrete or
continuous. In a discrete state setting, one can use the transitions probabilities and finite sums to
compute the expectations of variables at time t + 1 conditioned on information at time t. If we
are in a continuous state setting, we can use Kernel-Regression, in particular the Nadraya-Watson
estimator to compute the expectations conditioned on the stock price St. The expectations can also
be computed using basis functions. (Note from now on we will denote an expectation conditioned
on information Ft) at time t, as Et[·] rather then E[· | Ft] for brevity).

2.3 Option Pricing in a Discrete-Time Setting

The fair price of an option Ĉt at time t is defined as the expected value of the hedge portfolio Πt:

Ĉt = Et[Πt] (2.3.1)

Using the tower property of expectation and equation (2.1.5), we can express the fair option price
Ĉt in a recursive form:

Ĉt = Et[Πt] = Et[e−r∆tΠt+1 − ut∆St]

= Et
[
Et+1[e−r∆tΠt+1 − ut∆St]

]
(using Tower Property)

= Et
[
e−r∆tEt+1[Πt+1]

]
− utEt[∆St] (ut is Ft measurable)

= Et[e−r∆tĈt+1]− utEt[∆St] (2.3.2)

We can use the tower property to express the optimal hedge u∗t (St) in terms of Ĉt+1 rather
than Πt+1:

u∗t (St) =
Cov[Ĉt+1,∆St | Ft]
V ar[∆St | Ft]

(2.3.3)

Let us now substitute equation (2.3.3) into equation (2.3.2) and use a change of measure to
obtain a recursive formula for the fair price Ĉt:

Ĉt = Et[e−r∆tĈt+1]− utEt[∆St]

= Et[e−r∆tĈt+1]−

[
Et[Ĉt+1∆St]− Et[Ĉt+1]Et[∆St]

V ar[∆St | Ft]

]
Et[∆St]

= Et[e−r∆tĈt+1]−

[
Et
[
Ĉt+1∆StEt[∆St]

]
− Et

[
Ĉt+1(Et[∆S)2

]
V ar[∆St | Ft]

]

= Et

[
e−r∆tĈt+1 −

Ĉt+1∆StEt[∆St]− Ĉt+1

(
Et[∆St]

)2
V ar[∆St | Ft]

]

= Et

[
e−r∆tĈt+1

(
1− er∆t

(
∆St − Et[∆St]

)
Et[∆St]

V ar[∆St | Ft]

)]
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= Et

[
e−r∆tĈt+1

dQ̂
dP

]

= EQ̂
[
e−r∆tĈt+1 | Ft

]
Where P is the physical probability measure and Q̂ is a signed measure. We have used a change

of measure with the transition probabilities as [4, pg 8 eqn, 12]:

q̂(St+1 | St) = p(St+1 | St)
(

1− er∆t
(
∆St − Et[∆St]

)
Et[∆St]

V ar[∆St | Ft]

)

Where p(St+1 | St) is the transition probability under the physical measure P. Q̂ is not a
legitimate probability measure as for large movements of ∆St, the value for q̂(St+1 | St) can
become negative. The fair option price Ĉt can potentially be negative but this is not the price the
seller charges. In actual fact, the seller charges a risk-adjusted price which depends on the sellers
risk preferences by a risk aversion term λ. So, by choosing an appropriate risk aversion term, the
price of the option can be forced to be non-negative.

The option seller has to charge a risk premium to compensate for the risk of depleting the
bank account at some time in the future Bt. If the bank account is depleted, then the seller would
require external cash injections into the portfolio hence nullifying the self-financing constraint.
One possible method to introduce a risk premium is to have an additional term of the cumulative
expected discounted variance of the portfolio value at each discrete time step t = 0, . . . , T with a
risk-aversion parameter λ. This was first suggested by Potters and Bouchaud.[13]

C0(s, u) = E0

[
Π0 + λ

T∑
t=0

e−rtV ar[Πt | Ft]

∣∣∣∣∣ S0 = s, u0 = u

]

The objective of the seller is to minimize this expression by choosing an appropriate adapted
trading strategy u∗t (St). This is equivalent to maximizing the following expression which is defined
as the state-value function:

V (St) = Et

[
−Πt − λ

T∑
t′=t

e−r(t
′−t)V ar[Πt′ | Ft′ ]

∣∣∣∣∣ Ft
]

(2.3.4)

2.4 Hedging and Pricing in the Continuous BS limit

In our framework, one can show that we obtain the classical continuous Black-Scholes solutions
for the hedge and price when we take the limit ∆t → 0 in our model. Let us recall that in the
continuous BS-model, the underlying stock price follows a Geometric Brownian motion with drift
µ and volatility σ:

dSt = µStdt+ σStdWt

Where Wt is a standard Brownian Motion.

Let us first show that our optimal hedge u∗t (St) tends to the the Black-Scholes Delta ∂Ct

∂St
under

the limit ∆t→ 0. Let us express the option price Ct+1 using a first-order Taylor expansion:

Ct+1 = Ct +
∂Ct
∂St

∆St +O(∆t) (2.4.1)
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Let us substitute equation (2.4.1) into equation (2.3.3) and take the limit ∆t→ 0:

lim
∆t→0

u∗t (St) = lim
∆t→0

Cov[Ct+1,∆St | Ft]
V ar[∆St | Ft]

= lim
∆t→0

Cov[Ct + ∂Ct

∂St
∆St +O(∆t),∆St | Ft]

V ar[∆St | Ft]

=
∂Ct
∂St

Cov[∆St,∆St | Ft]
V ar[∆St | Ft]

=
∂Ct
∂St

We will utilise equation (2.3.2) to find the continuous-time limit of the option price. Let us
first compute the limit of utEt[∆St].

lim
∆t→0

utEt[∆St] = lim
∆t→0

ut(Et[St+1]− er∆tSt) = lim
∆t→0

ut(e
µ∆tSt − er∆tSt)

= lim
dt→0

(µ− r)St
∂Ct
∂St

dt (2.4.2)

Let us use a second order Taylor expansion to evaluate Ct+1:

Ct+1 = Ct +
∂Ct
∂t

dt+
∂Ct
∂St

dSt +
1

2

∂2Ct
∂S2

t

(dSt)
2 + . . .

= Ct +
∂Ct
∂t

dt+
∂Ct
∂St

(µStdt+ σStdWt) +
1

2

∂2Ct
∂S2

t

(σ2S2
t dt) +O(dt2) (2.4.3)

Let us now substitute equation (2.4.3) and (2.4.2) into (2.3.2) and recall that Et[dWt] = 0 and
take the limit ∆t→ 0:

lim
∆t→0

Ct = lim
∆t→0

Et[e−r∆tCt+1]− utEt[∆St]

= lim
dt→0

(1− rdt)
[
Ct +

∂Ct
∂t

dt+
∂Ct
∂St

(µStdt) +
1

2

∂2Ct
∂S2

t

(σ2S2
t dt)

]
− (µ− r)∂Ct

∂St
Stdt

= lim
dt→0

[
Ct +

∂Ct
∂t

dt+
∂Ct
∂St

(rStdt) +
1

2

∂2Ct
∂S2

t

(σ2S2
t dt)− rCt

]
If we rearrange this expression and ignore terms in order of dt2, we obtain the famous Black-

Scholes PDE in the limit dt→ 0:

∂Ct
∂t

+ rSt
∂Ct
∂St

+
1

2
σ2S2

t

∂2Ct
∂S2

t

− rCt = 0

Thus, we have shown that in our discrete-time framework, we can obtain the classical formulae
of the continuous BS-model in the limit of ∆t→ 0. Note, the formulae for the price and delta can
be found in the appendix B.1.
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2.5 Q-Learning: Black-Scholes (QLBS)

We will now reformulate the hedging and pricing methods presented in the previous section as
a Markov Decision Process (MDP) and explore methods in both a discrete and continuous state
setting. We are still in a framework of dynamically rebalancing a hedge portfolio at discrete time
steps to replicate a vanilla European option. We will view this problem as a sequential decision
process, where we try to maximize the ”rewards” received which in this case is the negative of the
variances of the portfolio value Πt conditioned at time t multiplied by a risk aversion term λ. This
is achieved by finding the optimal hedge at each re-balancing step dependent on the current stock
price St.

If the transition probabilities and reward function are known, then one can use value iteration
to solve the Bellman Optimality equation. In fact, in our case of QLBS, this equation can be
solved analytically, as it is a simple quadratic optimization problem. However, if we do not have
information pertaining to the transition probabilities or reward function; we could instead solve
the optimality equation using sampled data using RL algorithms.

We will first solve the problem in a discrete state setting by aggregating the stock price into
fixed-length bins and use efficient RL algorithms such as Q-learning or Model-Based Value iteration
and compare the efficiency of different algorithms. We will then solve this in a continuous-state
setting initially using basis functions and later on a feed-forward neural network. The last method
we will evaluate is Kernel Estimation. For all methods, we will try and show convergence to the
classical BSM model for hedging and pricing in the limit ∆t→ 0.

2.6 QLBS: Setup

2.6.1 Change of Variable

We will also be using a variable Xt which is a transformation of the stock price such that this
is a stochastic variable with zero drift. Xt can be expressed in terms of St and vice versa in the
following way:

Xt = −
(
µ− σ2

2

)
t+ log(St)

St = exp

(
Xt +

(
µ− σ2

2

)
t

)

Thus the differential equation for Xt is the following:

dXt = −
(
µ− σ2

2

)
dt+

1

St
dSt = σdWt

Where Wt is a standard Brownian motion. This implies that Xt is a Brownian motion with
volatility σ. As such, Xt has no drift and is homogeneous with time and is stationary, unlike the
stock price which has some non-zero drift. Furthermore, as Xt is a martingale (under a Black-
Scholes setting), throughout the lifetime of the option, the variable should not differ on average
far from the initial value X0. Throughout this section, we will use the stock price St and Xt

interchangeably for different methods.

2.6.2 Bellman Equations

Let us now formulate the Bellman Equations in our discrete-time Black-Scholes setting using
sequential risk minimization as stated in the previous chapter. We will now express the stock price
as the time-uniform variable Xt and at = at(Xt) is the hedge as a function of Xt whilst ut = ut(St)
is the hedge position as a function of St. We will also introduce the notion of a deterministic policy
π(t,Xt):

π : {0, . . . , T − 1} × X → A (2.6.1)
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Where π is a policy which maps the time t and state Xt ∈ X to action at ∈ A

As for our value function, we will utilise equation (2.3.4) in terms of our new variable Xt,
following policy π:

V πt (Xt) = Et

[
−Πt(Xt)− λ

T∑
t′=t

e−r(t
′−t)V ar[Πt′(Xt) | Ft′ ]

∣∣∣∣∣ Ft
]

= Et

[
−Πt(Xt)− λV ar

[
Πt(Xt)

]
− λ

T∑
t′=t+1

e−r(t
′−t)V ar[Πt′(Xt) | Ft′ ]

∣∣∣∣∣ Ft
]

(2.6.2)

The summation in equation (2.6.2) can be expressed in terms of Vt+1 and Πt+1 using the
expression for the value function at time t+ 1 in the following way:

Et+1

[
−Πt(Xt+1)− λ

T∑
t′=t

e−r(t
′−(t+1))V ar[Πt′(Xt′) | Ft′ ]

∣∣∣∣∣ Ft
]

= V πt+1(Xt+1)

Et+1

[
− λ

T∑
t′=t

e−r(t
′−(t+1))V ar[Πt′(Xt′) | Ft′ ]

∣∣∣∣∣ Ft
]

= V πt+1(Xt+1) + Et+1[Πt+1(Xt+1)]

Et+1

[
− λ

T∑
t′=t

e−r(t
′−t)V ar[Πt′(Xt′) | Ft′ ]

∣∣∣∣∣ Ft
]

= γ

(
V πt+1(Xt+1) + Et+1[Πt+1(Xt+1)]

)
(2.6.3)

Let us now substitute equation (2.6.3) into equation (2.6.2) so we can obtain the Bellman
equation in a Black-Scholes setting:

V πt (Xt) = Et

[
−Πt(Xt)− λV ar

[
Πt(Xt)

]
+ γ

(
V πt+1(Xt+1) + Πt+1(Xt+1)

) ∣∣∣∣∣ Ft
]

= Et

[
at(Xt)∆St(Xt, Xt+1)− λV ar

[
Πt(Xt)

]
+ γV πt+1(Xt+1)

∣∣∣∣∣ Ft
]

= Et

[
R(Xt, at, Xt+1) + γV πt+1(Xt+1)

∣∣∣∣∣ Ft
]

Where the random reward can be fully expressed as:

R(Xt, at, Xt+1) = at∆St − λV ar
[
Πt(Xt)

]
= at∆St − λγ2Et

[
Π̂2
t+1 − 2at∆ŜtΠ̂t+1 + (at∆Ŝt)

2

]
(2.6.4)
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From equation (2.6.4), one can infer that the expected reward is a quadratic function of the
variable at. This is a crucial result as it would allow for an analytical solution for the optimal
hedge. One should also note that in the limit of λ → 0, the expected reward is linear in at and
so a maximum expected reward does not exist which can cause problems in terms of finding an
optimal hedge.

The action-value function can be expressed in a similar way to the state value function, the
only difference is that the action-value function is conditioned on both the current state Xt = x
and action taken at = a just as usual.

Qπt (x, a) = Et

[
−Πt(Xt)− λ

T∑
t′=t

e−r(t
′−t)V ar[Πt′(Xt′)

∣∣∣∣∣ Xt = x, at = a

]
t = 0, . . . , T − 1

As usual, the optimal policy π∗, is the policy that maximises the value function for all states
Xt ∈ X . Hence, it can be expressed as an argmax:

π∗t (Xt) = argmax
at∈A

Q∗t (Xt, at)

Let us recall the Bellman Optimality equation, and express it in terms of state variable Xt:

Q∗t (x, a) = Et

[
Rt(Xt, at, Xt+1) + γ max

at+1∈A
Q∗t+1(Xt+1, at+1)

∣∣∣∣∣ Xt = x, at = a

]
(2.6.5)

The terminal condition for the action-value at time t = T with constraint aT = 0 is:

Q∗T (XT , aT = 0) = −ΠT (XT )− λV ar[ΠT (XT )]

Where ΠT (XT ) is the terminal payoff of the option and the variance is with respect to all MC
paths.

2.6.3 Optimal Trading Strategy

We mentioned earlier that the expected reward is a quadratic function in at, which leads to a simple
optimization problem that has an analytical solution under certain assumptions. Let us substitute
the equation for the reward (2.6.4) into the Bellman Optimality equation (2.6.5) to obtain:

Q∗t (Xt, at) = γEt
[
Q∗t+1(Xt+1, a

∗
t+1) + at∆St − λγ

(
Π̂2
t+1 − 2at∆ŜtΠ̂t+1 + (at∆Ŝt)

2
)]

(2.6.6)

The above expression can be quadratic in at under certain assumptions. This may not be
quadratic as the first term Q∗t+1(Xt+1, a

∗
t+1) could depend on the action at. However, this term

can only depend on the action at through the transition probability P(Xt+1 | Xt, at) but we know
from our assumptions in the Black-Scholes model that the seller’s actions do not affect future states
of the underlying asset of the option, i.e. no market impact. Under this assumption, the expression
is indeed a quadratic which we can maximize and so the optimal hedge at time t is :

argmax
at∈A

Qt(Xt, at) = a∗t (Xt) =
Et
[
∆ŜtΠ̂t+1 + 1

2γλ∆St

]
Et
[
∆
(
Ŝt
)2] (2.6.7)
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We can show using a Taylor expansion and under the right limits; that this term tends to the
continuous Black-Scholes Delta. Let us Taylor expand under the limit ∆t→ 0:

lim
∆t→0

a∗t =
∂Ct
∂St

+
µ− r

2λσ2St
(2.6.8)

Once we have taken the limit ∆t → 0, we can cause equation (2.6.8) to tend to the Black-
Scholes Delta in two different ways. The first way is to simply set µ = r, so we are working in
the risk-neutral measure rather than the physical measure and the drift of the stock price is the
same as the risk-free rate. The second method is to take the limit λ→∞. Once we execute either
of these two, we obtain the Black-Scholes Delta and the expression becomes identical to equation
(2.2.2). These two methods can be interpreted in a similar way.

In the previous chapter, we obtained the optimal hedge (2.2.2) by only considering the risk of
the hedge portfolio whilst in this chapter we now include a drift term Et[Πt] in the value function
(2.6.2) in a fashion similar to that of Markowitz risk-reward analysis [14]. The inclusion of this
drift term leads to the linear term γat∆St within the reward function. By taking the limit λ→∞
suggests a purely risk-centered hedging strategy that has the same effect as setting the drift of the
stock µ to the risk-free rate r.

Both optimal hedge and fair price of the previous chapter can be obtained from equations
(2.6.7) and (2.6.6) respectively, if we first set the drift of the underlying asset to the risk-free rate
(µ = r) in (2.6.7), substitute this into (2.6.6) and take the limit λ→ 0. Once this is achieved, we
can then take the limit ∆t → 0 to obtain the continuous Black-Scholes Hedge and Price for the
option. The order of setting µ = r and subsequently taking the limit λ → 0 is crucial to obtain
the correct expression and is consistent with the concept of hedging the option before pricing.

Let us now plug equation (2.6.7) into equation (2.6.6) which results in a compact and recursive
version of the Bellman Optimality equation:

Q∗t (Xt, a
∗
t ) = γEt

[
Q∗t+1(Xt+1, a

∗
t+1) +

(
λγΠ̂2

t+1 −
(
a∗t (Xt)∆Ŝt

)2)]
t = 0, . . . , T − 1

Where a∗t is the optimal hedge at time t as defined by (2.6.7). Taking the limit λ→ 0 will not
lead to a risk-free limit as the order of first setting µ = r is not obeyed.

To summarize, we can hedge and price in a backward recursive manner from t = T − 1 to t = 0
by maximizing the value function at each time step, which in the QLBS is simply a quadratic
optimization problem with the analytical solution (2.6.7). Note, however, if the problem is more
complex, then the optimization may no longer be simple enough to obtain an analytical solution and
numerical implementations such as a neural network may be required to achieve an optimal hedge.
Examples of introducing complexity are by relaxing assumptions such as introducing transaction
costs, initial margin cost, liquidity costs, etc. The final result of the backward recursion is the
action-value function at time 0, which by definition is the negative of the option price. Thus, the
risk-adjusted option price is:

C0(St) = −Q∗0(Xt, a
∗
t ) (2.6.9)

In the next few sections, we will discuss how we can use Monte Carlo sample paths of the stock
to estimate the optimal hedge and price under our Discrete Black-Scholes model. We will achieve
this in a variety of ways ranging from Kernel-Estimation to Q-learning in a discrete state setting.
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2.7 Discrete State Aggregation with Discrete Actions

We will now implement some of our discrete setting RL algorithms from chapter 1 in a Black-
Scholes framework to compute the optimal hedge from a finite discrete set of actions. We will
assume the agent is a seller of a European Call Option and has to hedge this option with a repli-
cating portfolio. The agent has to learn how to hedge using sampled data in a situation where the
agent has no knowledge of the transition probabilities and reward function. We will use a modified
version of (2.6.4) to accommodate for the fact that we are now working in a discrete state setting
rather than a continuous setting.

The way we achieve discrete states is to group intervals of the continuous stock price into bins
of fixed size h. Each bin represents the new version of a state which we will call Mt. For example,
for a bin size of 5, the interval [0, 5) is state 0 and the interval [5, 10) is state 1, and state n is
represented by the interval [nh, (n+1)h) where h = 5 in this case. As mentioned earlier, the reward
function is slightly amended to make sure that the reward is constant for a given state transition
and action. This is achieved by setting the first term of (2.6.4) to be ˜∆Mt = M̃t+1−er∆tM̃t, where
M̃t represents the midpoint of the bin of state Mt. The second term is a conditional expectation
which is computed using kernel estimation using Mt as the conditioned variable. As expected,
a smaller bin size and larger set of actions lead to better convergence but computation time is
increased.

2.7.1 Q-Learning

The first discrete RL algorithm we will analyze for our problem is the famous Q-learning algorithm.
We will work in a setting of only one discrete time step for brevity (t = 0, 1) and take the view of
an European Call option seller with strike K = 100, σ = 0.4, r = 0.05 and ∆t = 0.1. Our action
space will consist of m uniformly spaced hedges between 0 and 1. We will evaluate the optimal
hedge for different sized bins and number of actions. Moreover, we will analyze the efficiency of
learning by finding the mean square error between the BS Delta computed at the midpoint of
each state/bin and the optimal action of said state. In this particular case, the reward function is
constant for a given state transition and action, hence, we can store the rewards in a look-up table
and reuse the rewards when required, to save computation time.
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(b) Mean square error between BS Delta and Discrete Op-
timal Action

Figure 2.1: Bin size of 20 and Number of Actions of 2
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Figure 2.1 is a trivial example as there are only two actions {0, 1}, all the agent has to learn
is to hedge if the spot is above the strike and liquidate all shares if the spot is below the strike.
As the action space is small, we can use a large bin size of 20 which leads to quick computation
and one can see from figure 2.1b, that convergence is achieved in around 0.8 seconds and required
roughly 70 samples/episodes. Lastly, we work in a setting where µ = r with λ = 10000000 to make
sure we work in a Black-Scholes limit so we can make a comparison with the BS-Delta.
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(b) Mean square error of Discrete Action

Figure 2.2: Bin size of 10 and Number of Actions of 4

Figure 2.2a shows the optimal hedge with a bin size of 10 and four discrete actions available
{0.0, 0.3̇, 0.6̇, 1.0}. One can see that the discrete actions is slowly taking the shape of the BS-Delta
with convergence taking roughly 3 seconds requiring less than 400 samples/episodes.
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(b) Mean square error of Discrete Action

Figure 2.3: Bin size of 2.5 and Number of Actions of 11

In figure 2.3, we reduce the bin size and increase the action size significantly with a bin size
of 2.5 and action space consisting of 11 actions, equally spaced by 0.1 between 0 and 1. The
convergence takes roughly one minute with 2000 samples required. Even though the mean square
error is low (0.00154), one can note that for spots slightly below the strike, the convergence to the
BS-Delta is inefficient and the optimal action for these spots is far off the BS-Delta.
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Figure 2.4: Bin size of 1 and Number of Actions of 21

In figure 2.4a, the bin size is 1 and the action space has 21 different actions equally spaced by
0.05 from 0 to 1. In this particular case the convergence to the BS-delta is semi-efficient however
convergence requires 10,000 samples and takes 10 minutes.

2.7.2 Model-Based RL: Tabular Form

We will now implement a model-based RL method described in section 1.4.1, where we try to
approximate the MDP in a tabular form and then use value iteration to solve and find the optimal
hedge. In our problem, the transition probability only depends on the current state and the next
state and is independent of the action taken, whereas the reward function is dependent on all
three. We will use the same sized bins and action spaces as we did in Q-learning and compare the
efficiency of the two methods. Our set up is the same as the previous section with the agent taking
the view of a call option seller with K = 100, ∆t = 0.1, etc.
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Figure 2.5: Model-Based RL: Bin size of 1 and Number of Actions of 21

Figure 2.5 depicts the trivial case of only having two actions available 0, 1 with a bin size of
10. Convergence takes roughly 4 seconds and is considerably slower than convergence achieved in
a similar setting by Q-learning. We will look at a few more cases before discussing why this is the
case.
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(b) Bin size 10, action size 4 - MSE
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(c) Bin size 5, action size 8
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(d) Bin size 10, action size 4 - MSE

Figure 2.6: Discrete optimal hedge computed via Model-Based RL for the following parameters:
K = 100, σ = 0.4, r = 0.05, µ = 0.7 and ∆t = 0.01

From the plots in figure 2.6, it is clearly obvious that the convergence via the model-based RL
method is considerably less inefficient than by Q-learning. For a bin size of 5 with an action space
of 8, convergence took over 800 seconds which was still inefficient and the actions did not converge
well to the Black-Scholes delta. In actual fact, one can see from figure 2.6c, that around a spot
price of 175, the optimal hedge decreases from 1.0 to 0.86 when the spot is well above the strike
and should be 1.0.

The fact Q-learning is a more efficient method in our problem than Model-Based RL is sur-
prising. For our Frozen Gridworld example from section 1.4.1, this was certainly not the case with
Model-Based RL being much more efficient in terms of computation. The reason why Q-learning
fares much better in this problem rather than the Frozen Gridworld problem is because in the
Frozen Gridworld environment, rewards are infrequently awarded (only if the agent reaches the
goal state). Hence, in the Gridworld problem, the chance that the agent randomly reaches the
goal state is low and so with Q-learning, the agent takes time to learn. However, in this financial
setting, rewards are given out frequently (at every rebalancing step) and so the agent can learn
efficiently with an on-line learning method such as Q-learning. Moreover, as the bin sizes get
smaller, the number of states gets larger and for Model-Based RL, we require many more samples
than Q-learning just to first learn the MDP before we can even apply the iterative step. This just
shows that not one RL method is universally better than another and depends on the environment
and problem at hand.
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2.7.3 Kernel-Based Method

We will now implement and briefly discuss a Kernel-Based RL method as explained in section
1.4.2, in a similar setting in the previous two sections. We will analyse and compare this technique
to Q-learning and Model-Based RL. As usual, we will take the view of a seller of a European Call
Option with strike K = 100, ∆t = 0.1 and r = 0.05. Technically, this method is implemented
in a continuous state setting with discrete actions and does not fall in the same category as the
previous two methods. We will be using Gaussian kernels with 100 samples to save computation
time. As we are in a continuous setting, we will produce the optimal hedge for a discrete finite
number of spot prices which are equally spaced by a length h and compare this to the previous
two methods.
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(b) 4 actions with spacing h = 10

� �� �� 
� ��� ��� ��� �
� ���
�)%�!��' ��

���

���

���

��	

���

���

�
��

��
��

%(
 ) 

%$

� #����!�$�
��

�(
����
�������

�&) #�"����������'$�"���(�������) %$�� *��
�� �&�� $����
��

��'$�"���(�����
BSDelta

(c) 8 actions with spacing h = 5
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(d) 10 actions with spacing h = 2.5

Figure 2.7: Kernel-Based RL estimate of discrete optimal hedge for the following parameters:
K = 100, σ = 0.4, r = 0.05, and ∆t = 0.1

From the plots in Figure 2.7, one can see that the convergence to the BS-delta is mediocre and
takes considerably longer than the previous two methods. For example, 2.7d, shows the discrete
optimal hedge in a setting of 11 actions with a spacing of 2.5, which took 1088 seconds and a mean
square error of 0.0038. Whereas, a similar setting with the Q-learning method (Figure 2.3a) took
a minute to converge and had a MSE of 0.00154. Thus, with Q-learning we achieved convergence
much faster and with a smaller error. This suggests that Q-learning is a relatively efficient method
in a discretized state-setting with discrete actions for our sequential maximisation problem.
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2.8 Continuous States with Continuous Actions

We will now work in a continuous state-setting with continuous hedges just as in section 3.5 of
Halperin [4]. We assume the agent has knowledge of equations (2.6.6) and (2.6.7). These equations
can be solved in a backward recursive manner using N Monte-Carlo samples simultaneously. Yet
again, the agent will take the view of a European Call option seller who is trying to hedge with a
dynamic replicating portfolio consisting of the underlying stock and cash. In the first subsection, we
will represent the optimal hedge and Q-value function with basis functions with the state variable
Xt as the input. In the second subsection, we will use a neural network to represent the optimal
hedge as a function of the stock price St rather than Xt. In the last part of this chapter, we will
compute the optimal hedge using Kernel Estimation and compare this to the previous methods.

2.8.1 Basis Function Implementation

We will now use basis functions Φn(Xt) to represent both the optimal hedge at(Xt) and the optimal
Q-value function Q∗t (Xt, a

∗
t ). In this method, we only require numerical computation and some

linear algebra. We can express both these terms as a summation of M number of basis functions
with time-dependent coefficients φnt and ωnt [4, equation 43]:

a∗t (Xt) =

M∑
n=1

φntΦn(Xt), Q∗t (Xt, a
∗
t ) =

M∑
n=1

wntΦn(Xt) (2.8.1)

The time-dependent coefficients φnt and ωnt are computed in a backward recursive manner
from t = T − 1 to t = 0. We first find the coefficients for the optimal hedge φnt and then use the
optimal hedge to produce the Q-value function, Q∗t (Xt, a

∗
t ). Thus, just as we discussed earlier, we

hedge first and then price second.
The way we find the coefficients for the optimal hedge is by maximising the Bellman Optimality

equation (2.6.6) with the basis expansion from equation (2.8.1) substituted for the optimal hedge.
The expectation of this optimality equation can be replaced with a summation over Monte-Carlo
estimates. We will transform the minimisation into a maximisation by taking the negative of the
expression and drop any terms independent of at as we are optimizing with respect to at. This
leads to maximising the following with respect to the basis expansion of the optimal hedge [4, eqn
44]:

N∑
k=1

(
−

M∑
n=1

φntΦn(Xk
t )∆Skt + γλ

(
Π̂k
t+1 −

M∑
n=1

φntΦn(Xk
t )∆Ŝkt

)2
)

(2.8.2)

Where the superscript k is the kth Monte-Carlo sample. The minimization of equation (2.8.2)
with respect to the coefficients φnt leads to the following set of linear equations [4, eqn 45]:

M∑
m=1

A(t)
nmφmt = B(t)

n , n = 1, . . . ,M (2.8.3)

Where A
(t)
nm and B

(t)
n are:

A(t)
nm =

N∑
k=1

Φn(Xk
t )Φm(Xk

t )
(

∆Ŝkt

)2

(2.8.4)

B(t)
n = Φn(Xk

t )

[
Π̂k
t+1∆Ŝkt +

1

2γλ
∆Skt

]
(2.8.5)
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The above equations (2.8.4) and (2.8.5) are the element-wise expansions of matrix At and
vector Bt respectively. The coefficients of the basis expansion of the optimal hedge φt in a vector
form is [4, eqn 47]:

φ∗t = A−1
t Bt (2.8.6)

One can notice the similarity between equation (2.8.6) and the equation for the optimal hedge

(2.6.7), where the expression for B
(t)
n represents the numerator of equation (2.6.7) and the expres-

sion for A
(t)
nm depicts the denominator.

Now that we have the basis expansion for the optimal hedge a∗t (Xt), we can use this to help
us solve coefficients ωnt for the Q-value functions. This can be achieved by treating the Bellman
Optimality equation (2.6.5) as a regression problem [4, eqn 48]:

Rt(Xt, a
∗
t , Xt+1) + γ max

at+1∈A
Q∗t+1(Xt+1, at+1) = Q∗t (Xt, a

∗
t ) + εt (2.8.7)

Where εt is a random noise at time t with mean zero. Thus, under expectation, we indeed
obtain the Bellman Optimality equation (2.6.5).As this is a regression problem, the coefficients ωnt
are found by solivng the following least-square minimization problem of the Monte-Carlo samples
with the basis expansion of the Q-value function at time t:

N∑
k=1

(
Rt(X

k
t , a
∗
t , X

k
t+1) + γ max

at+1∈A
Q∗t+1(Xk

t+1, at+1)−
M∑
n=1

ωntΦn(Xk
t )

)2

(2.8.8)

The minimization of this expression leads again to a set of linear equations with matrix Ct and
vector Dt with elements:

C(t)
nm =

N∑
k=1

Φn(Xk
t )Φm(Xk

t ) (2.8.9)

D(t)
n =

N∑
k=1

Φn(Xk
t )

(
Rt(X

k
t , a
∗
t , X

k
t+1) + γ max

at+1∈A
Q∗t+1(Xk

t+1, at+1)

)
(2.8.10)

The optimal coefficients ω∗t for the Q-value function can be obtained in a vector form:

ω∗t = C−1
t Dt (2.8.11)

We can use equations (2.8.6) and 2.8.11 recursively from t = T − 1, . . . , 0 to obtain the optimal
hedge and subsequently, the price of an option. Note again, that in this scenario, we assume the
agent has knowledge of the MDP dynamics, mainly the reward function Rt(Xt, a

∗t,Xt+1). These
equations can be utilised in both a continuous and discrete state setting, but for now we will stick
to a continuous setting for the rest of the paper.

However, there are still many questions which have been unanswered. One major question is
the choice of basis functions and the number of functions required. For our continuous setting, a
smooth basis function would be desirable. One obvious that comes to mind is polynomial functions
which we will analyse and discuss later on. Another choice which may fare better than a polynomial
basis is using trigonometric functions.
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Polynomial Basis Function

We will now implement polynomial basis function expansion for the optimal hedge and Q-value
function. As usual, we will take the view of a European Call Option seller who has to hedge
the option with a dynamic replicating portfolio consisting of the underlying stock and cash. We
assume the stock price dynamics are under the discrete Black-Scholes model with parameters
σ = 0.4, ∆t = 0.1, µ = r = 0.05 K = 100 and λ = 10000. Note how we have set µ = r so that in
the limit ∆t→ 0, we tend to the continuous BS-limit and we work in a setting of one discrete time
step t = 0, 1 for brevity. We will assume we have access to N = 10, 000 Monte-Carlo sample paths.
We will analyse the convergence of our optimal hedge to the BS-delta under increasing degrees of
polynomial functions.

More formally, the optimal hedge and Q-value function with polynomial basis functions can be
expressed as:

a∗t (Xt) =

M∑
n=0

φnt(Xt)
n, Q∗t (Xt, a

∗
t ) =

M∑
n=0

wnt(Xt)
n (2.8.12)

Where M is the order of the polynomial. The first plot will represent the optimal hedge based
on a cubic expansion.
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(d) Order of 19

Figure 2.8: Optimal hedge computed via polynomial basis functions for the following parameters:
K = 100, σ = 0.4, r = 0.05, and ∆t = 0.1
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Figure 2.8 shows plot of the optimal hedge computed using polynomial basis functions of varying
orders. The plots are computed from coefficients which produced the smallest mean square error
over the 10,000 samples over 100 different runs. From the above plots, one can see the mean square
error does decrease as we increase the order from 3 to 11 but not much difference between an order
of 11 and 19. The mean square error we obtain for an order of 11 is 0.00846 which is relatively
small but not as good as Kernel Estimation. Thus, polynomial basis functions have a relatively
poor convergence to the Black-Scholes Delta. Let us look at the mean squared error over different
orders of polynomials.
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Figure 2.9: Mean square error between estimated hedge and BS Delta over 10,000 samples

Figure 2.9 depicts the smallest mean square error of the optimal hedge over 100 different runs
for varying orders of the polynomial. A polynomial of order 11 has the smallest mean square error
and the optimal hedge is represented in Figure 2.8c. It may seem surprising that a higher-ordered
polynomial does not lead to a smaller mean squared error loss. This is due to the fact that we are
minimizing the loss functional given by (2.8.2) rather than the mean squared error loss between
our optimal hedge and the BS-Delta.

Let us compare the Q-value functions for orders of 3, 5, and 8. Now we have already seen that
polynomial functions provide poor convergence for the optimal hedge. Let us assume we know the
optimal hedge which in this case is the BS-delta and set λ = 0 so the negative Q-value function
should be equal to the analytical BS-price.
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Figure 2.10: Negative Q-Value (price of option) at time t = 0 computed using polynomial basis
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Figure 2.10 shows the Q-value functions computed using polynomial bases with λ = 0. As we
increase the order of the polynomial, the mean-squared error between the BS-delta and the optimal
hedge slowly decreases. However, recall that this was computed when we assumed that we knew
the correct optimal hedge and not one produced using basis functions.

Trigonometric Basis Function

We will now implement a trigonometric function expansion for the optimal hedge in the same
setting as the previous section. We will compare the efficiency against polynomial basis functions.
As before, we take the view of a European Call Option seller with stock price dynamics following
a discrete BS-model with one discrete time step. We use the same parameters as we did with
polynomial basis functions and the same number of samples (10,000). We will now also check if
the portfolio value at time 0 improves as we include more trigonometric functions. More formally,
the basis expansion for the optimal hedge and Q-value function in a trigonometric setting can be
expressed as:

a∗t (Xt) =

M∑
n=1

φnt
(

sin(nXt)+cos(nXt)
)
, Q∗t (Xt, a

∗
t ) =

M∑
n=1

wnt
(

sin(nXt)+cos(nXt)
)

(2.8.13)
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(c) M = 15
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(d) M = 20

Figure 2.11: Optimal hedge computed via polynomial basis functions for the following parameters:
K = 100, σ = 0.4, µ = r = 0.05, and ∆t = 0.1
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Figure 2.11 is similar to figure 2.8 as it shows the optimal hedge computed using a trigonometric
basis from the set of coefficients φnt which produced the smallest mean square error from 100
different runs. As you can see from the plots, as we increase M , the number of trigonometric
functions, the mean square error between the optimal hedge and the BS-delta starts to decrease.
The mean square error using trigonometric functions is much smaller than using polynomial basis
functions. If we compare a polynomial of order 19 (Figure 2.8d) and trigonometric functions with
M = 20 (Figure 2.11d), the mean square error using polynomial basis functions over 10,000 samples
is 0.00846 whereas, with trigonometric functions, the mean square error is 0.000741, more than a
factor of 10 smaller. Let us see how the mean squared error changes as we increase M .
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Figure 2.12: Mean square error between estimated hedge and BS Delta over 10,000 samples

Figure 2.12 is the trigonometric basis function version of Figure 2.9. The figure shows the
smallest mean squared error achieved over 100 different runs for the optimal hedge computed
using a trigonometric basis expansion. This figure is more promising than figure 2.9 as the mean
square error is decreasing after M passes 15. Whereas for Figure 2.9, the MSE starts to increase
after an order of 11. However, the mean-square error for the trigonometric basis expansion is
not monotonically decreasing with M . This is due to the fact that we are minimizing the loss
functional described by equation equation (2.8.2) and not the mean-square error loss between the
optimal hedge and the BS-delta. Let us see how the actual loss functional changes as we increase
M for the trigonometric basis expansion.
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Figure 2.13: Actual Loss (2.8.2) using trigonometric basis functions
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Figure 2.13 shows the actual loss function computed using equation (2.8.2) with trigonometric
basis functions over different values of M using the same set of coefficients φnt as used in Figure
2.12. We use the sample paths for all values of M when computing the loss. Unlike the previous
figure for the mean-squared error (Figure 2.12), the actual loss does indeed decrease as we increase
the number of functions and the loss does not fluctuate. This is intuitive and expected as a larger
value of M encompasses all possible combinations of functions of a smaller value of M . Hence,
the loss should either stay the same or decrease as we increase the number of functions. Let us
see how the Q-value function looks like with trigonometric basis functions in a setting where we
assume we know the actual optimal hedge and set λ = 0 so we should obtain the BS-price.
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Figure 2.14: Negative Q-Value (price of option) at time t = 0 computed using trigonometric basis

Figure 2.14 shows the negative Q-value function as a basis expansion of trigonometric func-
tions. We can see as we increase M , the negative Q-value slowly converges to the BS-price. The
trigonometric basis functions provides a better fit to the price than polynomial basis functions.
The trigonometric basis functions provide a quick and simple way to obtain the optimal hedge and
price with decent convergence to the true hedge and price. We will look at how we can implement
a neural network for both hedging and Q-value functions to try and create a system of efficient
hedging and pricing.

2.8.2 Neural Network Implementation

Let us first define a feedforward neural network which we will employ to produce the optimal hedge
and optimal Q-value function.

Definition 2.8.1 (Feedforward Neural Network). [15] [16, definition: 2.1] Let L ∈ N and also
N0 . . . NL ∈ N. For any i = 1 . . . L, let σi : R → R and let Ai : RNi−1 → RNi be affine functions
such that:

Ai(x) = W ix + bi x ∈ RNi−1 , W i ∈ RNi×Ni−1 , bi ∈ RNi

Where W i is a matrix of weight parameters and bi is a bias vector of parameters.

A function f : RN0 → RNL defined as:

f(x) = gL(x) ◦ . . . g1(x) where gi = σi ◦Ai

is called a feedforward neural network.
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We will denote the class of such functions f by:

NL(N0, . . . , NL;σ1, . . . , σL)

The value L denotes the number of layers of the neural network and Ni is the number of units
in the ith layer. These are the hyperparameters of the neural network whereas the elements of
the matrices W i and the bias vectors bi are the actual parameters. N1, . . . , NL−1 represent the
dimensions of the hidden layers whilst N0 and NL are the dimensions of the input and output layer,
respectively. One should also note that the activation functions σi are applied in a component-wise
manner.

Figure 2.15: Graphical representation of feedforward neural network with L = 3, N0 = 4, N1 = 5,
N2 = 7 and N3 = 3

[17]

Activation Functions

Let us briefly discuss some popular activation functions which we will use to solve for the optimal
hedge and Q-value function.

Rectified Linear Unit (ReLU)

This is one of the most popular activation functions for the hidden layers. This is due to the
simplicity of the function as the function is: ReLU(x) = max(x, 0). The simplicity of the function
means the derivative is simple to compute but it is undefined at zero, so we just set the derivative
at zero to be 1. ReLu is numerically efficient and can still capture non-linear features of a function.
Although, one of the major problems in using this activation function is that it does not allow
any negative values to go through the units. This leads to zero gradients which is a problem for
gradient-based learning algorithms and eventually leads to ”dead” units that are never activated.
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Exponential Linear Unit (ELU)

ELU(x) =

{
x if x ≥ 0

α(ex − 1) if x < 0

The ELU function is similar to the ReLU function and has the same positive features but also
deals with the dying ReLU problem by allowing negative values and the gradients are non-zero.
Generally, we use a value between 0.1 and 0.3 for α. Using an exponential function introduces more
complexity; this could lead to slower computation time, especially for large datasets. Moreover,
the ELU function does not deal with exploding gradients, where the gradients are large and cause
unstable updates to the weights.

Scaled Exponential Linear Unit (SELU)

SELU(x) =

{
λx if x ≥ 0

λα(ex − 1) if x < 0

SELU is a relatively new activation function. The difference between ELU and SELU is the
additional scaling parameter λ. SELU avoids both the exploding and vanishing gradient problem.
The SELU activation function has an interesting property in that it is self-normalizing. In the paper
by Klambauer - 2017 [18], it suggests to use an α and λ value of 1.673 and 1.0507, respectively.

Sigmoid and Tanh

The Sigmoid and Tanh functions use to be one of the most popular activation functions for the
hidden layers before being surpassed by ReLu. This is because both of these functions are bounded
and saturating. The boundedness is a problem for the hidden layers and negatively affects gradient-
based learning. Nevertheless, they can serve well for the output layer, especially if we require a
bounded result such as binary classification. In our case of hedging, we require our hedge to be
bounded by 1, so the sigmoid function proves to be a good fit to achieve this result.

Sigmoid(x) =
1

1 + e−x

Tanh(x) =
ex − e−x

ex + e−x

Let us now discuss the architecture of the neural network that we will employ to estimate the
optimal hedge and how we are going to train this neural network. We will also revert to using the
stock price St as the input rather than Xt. There is no significant difference in using either St and
Xt, as the network should be able to learn the relationship between the two. Hence, we stick to
using the stock price for the sake of ease. The purpose of our neural network is to minimize the
loss depicted by equation 2.8.2, where we now substitute u∗t (St) = f(St) for the basis expansion∑M
n=0 φnt(Xt)

n and dropping any terms independent of the optimal hedge.
We will implement the neural network using TensorFlow v2.0.0 and Keras v2.3.1. The neural

network is implemented unconventionally, as we have a custom loss function with many different
terms. Our network initially consists of 3 hidden layers with one input and four outputs, with
16 units at each hidden layer. We use either ReLU, ELU, or SELU as the activation functions
for the hidden layers, while using Sigmoid as the output activation function. Our problem can be
interpreted as a semi-supervised learning problem with our sampled data acting as labels and the
stock price St is our input. Our labelled data consists of ∆St, Π̂t, ∆Ŝt and an empty dummy array
of zeros. The reason why we have 4 outputs rather than one is because the shape of the output
must be the same as the labelled data which in our case is 4. The predicted output counterpart of
the empty dummy array is our desired optimal hedge u∗t (St). Trivially, our input data is simply
the stock price St.
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Let us now look at an example in which we utilize our neural network. In this particular
example, we will produce stock price paths with µ 6= r and explore how the optimal hedge changes
as we alter λ. As usual, we take the view of a European Call Option seller with strike K = 100,
µ = 0.7, r = 0.05 and σ = 0.4 with different values of λ and ∆t = 0.01. We will compare our
optimal hedge with the Taylor expanded hedge represented by equation (2.6.8). Our hedge should
tend to the BS-delta as λ → ∞. Let us see how well our neural network trains with 100,000
different samples with batch sizes of 100 using SELU as the hidden layer activation functions.
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(b) λ = 1
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(c) λ = 10
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2λσ2St

ut(St) = ft(St)

(d) λ = 1000

Figure 2.16: Optimal hedge over different risk-aversion factors for the following parameters: K =
100, σ = 0.4, r = 0.05, µ = 0.7 and ∆t = 0.01

Figure 2.16 shows four different plots of the optimal hedge over increasing levels of risk aversion
λ. The red-dotted line depicts the optimal hedge computed by the neural network and the solid
blue line is the Taylor expanded Black-Scholes delta eqn (2.6.8). The blue line represents the actual
BS-delta and one can see that as the risk-aversion increases, our optimal hedge evaluated by the
neural network tends to the BS-delta.

We will now compare the efficiency of using different activation functions for the hidden layers.
We will now work in a setting where µ = r and so our neural network should converge to the
BS-delta for an arbitrary value of λ which for our case, will be 1000. We will have access to 10,000
different sample paths and utilize 8000 for training and the other 2000 to compute the validation
loss. We will train the neural network for each different type of activation using the same samples
to make sure this is a fair test and compare the validation loss over 15 epochs. The activation
functions to compare are ReLu, ELU, and SELU.
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(b) Validation loss

Figure 2.17: Loss of network over different hidden layer activation functions - Optimal Hedge
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Figure 2.18: Optimal hedge with different activation functions

From Figure 2.17, we can see that having ReLU as the hidden layer activation function leads
to a significantly larger training and validation loss compared to ELU or SELU. The use of ReLU
can lead to ”dead” units since negative values cannot pass through. This can be rectified by using
ELU or SELU and consequently, the training is more efficient. We can see from Figure 2.17a, that
the training loss of SELU is slightly lower than ELU over 15 epochs. The difference between these
two activation functions is considerably small over a large number of epochs, however, SELU does
learn quicker over a small number of epochs. The self-normalizing property of SELU can lead to
better convergence.

Figure 2.18 shows the optimal hedge using the different hidden layer activation functions with
the coloured dotted lines. The solid black line depicts the actual BS-delta. As we are working in
a setting where µ = r, we expect the optimal hedge to converge to the BS-delta. However, we are
only working with 10,000 samples and our neural network needs more than 10x times more samples
to obtain sufficient convergence to the BS-delta. Nonetheless, it is obvious to see from this figure
that ReLU provides a much poorer convergence than either ELU or SELU, and the MSE between
the hedge obtained by ReLU and the BS-delta is considerably larger than the counterparts of
ELU and SELU. The mean-square error between the hedge obtained by SeLU and the BS-delta is
smaller than the analogous error obtained by using ELU. It seems as if by solving the ”dead” unit
problem leads to a significant improvement in convergence as depicted by ELU, and thereafter, the
self-normalizing property of SELU improves the convergence further.
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We can also compute the Q-value function with a neural network rather than the basis expan-
sion. This is achieved by minimizing the loss depicted by equation (2.8.8). This is essentially a
regression problem with a mean-square error loss function and is also semi-supervised. One can
think of Rt(St, a

∗
t , St+1) + γmaxat+1∈AQ

∗
t+1(St+1, at+1) as our labels and our input is the stock

price St. As before, we could use the variable Xt as our input but we use St instead for clarity. We
will work in a setting where µ = r with varying λ ranging from 0 to 1000 and with access to 12,000
different samples. As we have already computed the optimal hedge in this setting, we will assume
we know the hedge which in this setting is the BS-delta, and use this to help compute the Q-value
function. We will compute the Q-value function using the three previous activation functions for
the hidden layers and compare how the loss evolves over time. We will split the data set with
2,000 samples for validation and 10,000 for training. The architecture of our neural network will
be similar to before with 3 hidden layers and the same hidden layer activation functions as before,
with 16 units in each layer with one input and one output. However, the output activation function
will simply be the identity function as a sigmoid would bound the output which is undesirable for
the Q-value function.
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(d) λ = 1000

Figure 2.19: Negative Q-value function computed using neural network with different activation
functions

In the bottom right-hand corner of figures 2.19b to 2.19d we have the mean-square distance
between Q-values computed using the 10,000 samples between the neural networks implemented
with each respective activation function. Generally, for the smaller values of λ, the neural networks
powered by the different activation functions converge roughly to the same result, when λ = 1,
the mean squared distance between SELU and ReLU is 7.13 while between SELU and ELU it
is 6.83 so they are on the same order of magnitude. However, when λ = 1000, it is clear to see
from Figure 2.19d that there is a discrepancy between ReLU and SeLU/ELU, the mean-squared
distance between SeLU and ELU is 3288820, which is more than 10 times smaller than the distance
between SELU and ReLU. So for large values of λ, ReLU struggles to train to what we perceive
as the correct result set by SELU/ELU.
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Figure 2.19a shows the negative Q-value function when λ = 0. This is a special case in which
the negative Q-value should converge to the analytical Black-Scholes price for a Call Option. The
solid black line depicts the Black-Scholes Call Price. The bottom-right hand corner of this figure
shows the mean-square error between the Black-Scholes price and the negative Q-value computed
using each respective activation function over the 12,000 samples. One can see clearly, that the
neural network powered by ReLU provides the worst convergence with an MSE of 2847. By using
ELU and thus eliminating the dead ”unit” problem, this MSE improves by 2.85% to 2766. SELU
then improves this further to a relatively lower value of 2759. Let us solidify this idea of ReLU
providing poorer efficiency by looking at the training and validation loss for the case in figure 2.19d
in which ReLU provides a significantly different result to SELU and ELU.
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(b) Validation loss

Figure 2.20: Loss of network over different hidden layer activation functions: Q-Value Function

Figure 2.20 shows the training and validation loss for training the network to obtain the Q-
value function over 15 epochs with λ = 1000. This is the training and validation loss from figure
2.19d where ReLU provided a very different solution to SeLU/ELU. We can see that SELU and
ELU train more efficiently than ReLU which seems to plateau. The validation loss of ReLU is
considerably larger than either SeLU or ELU over the 15 epochs with SELU generally having a
lower validation loss than ELU. So it seems as if the solution obtained using ReLU is incorrect as
the loss is considerably greater than the solution achieved by both SELU and ELU.

2.9 QLBS: Kernel Estimation

2.9.1 Nadaraya-Watson Estimator

In 1964, Nadaraya and Watson devised a non-parametric regression method to estimate a condi-
tional expectation of a random variable Y given a random variable X using Kernel functions using
a finite sample of data. Let us assume we have access to sampled data (xi)

n
i=1 and (yi)

n
i=1 of the

dependent variable X and independent variable Y respectively. The Nadaraya-Watson estimator
is:

Ê
[
Y | X = x

]
=

∑n
i=1Kh(x− xi)yi∑n
i=1Kh(x− xi)

(2.9.1)

Where Kh is a non-negative kernel function with smoothing parameter h.[19] [20]

We can utilize this estimator to compute the optimal hedge u∗t (St) using sampled data. The
expression for the optimal hedge at time t consists of expectations of variables ∆St and Πt+1

conditioned on information Ft. In our scenario, the only useful information available to us at time
t is the stock price St so, we will condition on the underlying stock price St. Consequently, the
optimal hedge is composed of conditional expectations with St as the dependent variable; this
allows us to compute the optimal hedge using the Nadaraya-Watson estimator using our cross-
sectional MC samples,(Skt )Nk=0, (∆S

k
t )Nk=0, and (Πk

t+1)Nk=0. We will be using Gaussian Kernels
using Silverman’s rule of thumb for the smoothing parameter h.[21]
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Kh(x− xi) ∝ exp
((x− xi

h

)2)
(2.9.2)

h = 0.9 ∗min

(
σ̂,
IQR

1.34

)
n−0.2 (2.9.3)

Where σ̂ is the sample standard deviation of the sampled data (xi)
n
i=1, IQR is the is the

interquartile range of (xi)
n
i=1 and n is the size of the sampled data.

2.9.2 Hedging and Pricing using Kernel Estimation

We will now utilise the Nadaraya-Watson estimator to estimate the optimal hedge (2.6.7) in a
QLBS setting. For this particular example, we will produce stock price paths in which µ 6= r and
explore how the optimal hedge changes as we alter λ. From theory, we should see that as λ→∞,
that for a small enough ∆t, we should see convergence to the classical Black-Scholes Delta. We
will also compare the efficiency of convergence of either setting µ = r or taking the limit λ→∞.

We will have a similar setting as the previous chapter and take the view of a European Call
Option seller with two discrete time steps t = 0, 1, 2 and strike K = 100 with a ∆t = 0.01 with
100, 000 sample paths. However, we will only consider the optimal hedge and Q-value at time 1 as
the results are similar to time 0.
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(d) λ = 1000

Figure 2.21: Optimal hedge over different risk-aversion factors for the following parameters: K =
100, σ = 0.4, r = 0.05, µ = 0.7 and ∆t = 0.01
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Figure 2.21 shows four different plots of the optimal hedge over increasing values for the risk-
aversion. The red-dotted line represents our Kernel estimation while the blue line is the Taylor
expanded hedge depicted by equation (2.6.8) . The solid black line is the classical Black-Scholes
Delta. One can see that as the risk-aversion factor increases, the optimal hedge tends to the
Black-Scholes Delta. Recall that we used the same number of samples to train the neural network.
Computing the optimal hedge using Kernel Estimation is much faster and more efficient than
training a neural network, however, from Figure 2.21 and Figure 2.16, we can see that there is not
much considerable difference when we use 100,000 samples, we will investigate this further later.
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Figure 2.22: Mean square error between estimated hedge and BS Delta over 200 spot prices

Figure 2.22 shows the mean square error between the estimated hedge and the BS Delta over
200 different spot prices. As we mentioned earlier, theoretically, there is two methods to obtain
convergence to the BS Delta. The red solid line depicts the method in which we set the drift of
the stock equal to the risk-free rate with an arbitrary non-zero λ and the blue line represents the
method which takes the limit λ → ∞, which was achieved by setting λ = 1 × 1011. The conver-
gence is a lot more efficient with the first method of setting µ = r as this completely eliminates
the second term in the Taylor expansion (2.6.8).

Let us now compare the total loss and mean-square error of computing the optimal hedge using
either the neural network or kernel estimation in the Black-Scholes limit as we increase the number
of samples from 10,000 to 100,000. We will use the same set of sample paths for both methods
to make this a fair test. Furthermore, we will take the average loss and mean-square error over
10 different sets of sample paths for each sample size. We will work in a setting where µ = r and
with λ = 1000 so we are working in the BS-limit. We will use SELU as our hidden layer activation
function for the neural network with the same architecture as in the previous section 2.8.2.
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Figure 2.23: Loss and MSE over different sample sizes: BS-Model
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Figure 2.23a shows the loss function computed using equation (2.8.2) averaged over 10 different
sets of sample paths for each sample size. Note, that we use the same sample paths for both Kernel
estimation and the neural network so we can directly compare the two. The loss function is depen-
dent on the sample paths and so it is not an issue that the loss does not decrease as we increase the
sample size. From this figure, we can see that for small sample sizes, the loss value by kernel esti-
mation is significantly smaller than the loss produced by the neural network. This makes sense as
neural networks require large amounts of data to train. As we increase the sample size to >20,000,
the loss of the network improves rapidly and is now smaller than the loss generated via kernel es-
timation. Figure 2.23b shows the average mean-squared error between the optimal hedge and the
BS-delta by both kernel estimation and the neural network. As expected, the neural network has
a large value for the MSE, while kernel estimation has a much smaller value for small sample sizes
(<10000). As we increase the sample size from 20,000 to 80,000, the MSE for kernel estimation
improves slowly, whereas, for the neural network, the improvement is major but not enough to
surpass kernel estimation. Once we have passed 80,000 samples, the network has a slightly smaller
MSE than kernel estimation. From this result, we can imply that kernel estimation provides a
relatively efficient convergence to the optimal hedge for small sample sizes. On the other hand,
the neural network requires a much larger sample size (by a factor of 10) to obtain a sufficient result.

If we reduce the sample space to have stock prices in the range of [70,130] rather than [1,200],
then kernel estimation converges much more efficiently than the neural network for large sample
sizes as well as small sizes. Let us now investigate this further by computing statistics over 20
different runs with each run having a sample size of 100,000 and compare the statistics of both
kernel estimation and the neural network to see which converges more efficiently.

RMSE MAE MAPE R2

Mean STD Mean STD Mean STD Mean STD

Kernel Estimation 0.00729 8.25× 10−4 0.00552 4.11× 10−4 5.21% 0.728% 0.9997 6.57× 10−5

Neural Network 0.0342 0.0276 0.0221 0.0166 16.8% 14.5% 0.9894 0.162

Table 2.1: Statistics of convergence to BS-Delta over 20 different runs with sample size of 100,000
per run

Table 2.1 shows the mean and standard deviation of the error statistics over 20 different runs
for 100,000 samples per run. (Note that the MAPE was calculated with all hedges above 0.01
as small hedges of zero cause division by zero). It is clear to see that errors produced by kernel
estimation are significantly smaller and less noisy than the errors generated by the network.

Let us now conduct a paired t-test to compare the absolute errors of kernel estimation and
the neural network (i.e. test to check if |Network error| − |Kernel error| is significantly different
to zero). Figure 2.24 shows a box plot of the 20 paired t-values of the absolute error over the 20
different runs. The blue dotted line is the 5% critical value for a two-tailed test. 19/20 of the
t-values are far greater than this value which suggests that the absolute error of the network is
greater than the error produced by kernel estimation.

Kernel estimation does not require the time-consuming training of a neural network and requires
fewer data. A further downfall of the network is that the training stability is highly dependent on
the initialization of the parameters. Poor initialization could potentially lead to a network that
does not learn at all. The purpose of our neural network is to minimize the loss function with
respect to the optimal hedge. For our QLBS setting, we can minimize this loss analytically and
thereafter employ kernel estimation. Although, if we relax assumptions such as transaction costs,
then a closed-form solution may no longer exist and we would require the use of a network to
minimize this loss function.
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Figure 2.24: Boxplot of 20 paired test t-values of absolute error of hedge obtained via neural
network and kernel estimation: Black-Scholes Setting
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Chapter 3

Extensions

3.1 Heston Model

The purpose of working in a Black-Scholes setting is the fact we can easily use the Black-Scholes
model as a benchmark for our different methods of hedging and pricing. The Black-Scholes model
provides simple stock price generation with closed-form analytical solutions which are not compu-
tationally taxing to evaluate and simple to reproduce results. We will now no longer assume that
the volatility of the underlying asset is constant and work under the stochastic volatility model of
Heston [22]. The Heston model is slightly more complex than the Black-Scholes model but still has
closed-form solutions to pricing and hedging and does not require much more computation power
to evaluate. Note, the formulae for the closed-form solution can be found in the appendix B.2.The
stock price St and volatility process νt under the Heston is given below: [23, pg 861]

dSt = µStdt+
√
νtStdW

S
t (3.1.1)

dνt = κ(θ − νt)dt+ σν
√
νtdW

ν
t (3.1.2)

Where µ is the drift of the stock price, κ is the mean-reversion rate of the volatility, θ is the long-
term mean of the volatility, σν is the volatility of the volatility and WS

t ,W
ν
t are standard Brownian

motions with correlation ρ. We can simulate a stock price process (St)
T
t=0 in a discrete-time setting

under the Heston model in the following way:

St+1 = St exp

[(
r − νt

2

)
∆t+ Z1

t

√
νt∆t

]
νt+1 = νt + κ(θ − νt)∆t+

(
ρZ1

t + Z2
t

√
1− ρ2

)√
νt∆t

Where Z1
t , Z2

t are standard independent normal variables. Once we have simulated the stock
price paths, we can then produce the optimal hedge using either Kernel Estimation or the neural
network. We can use (2.6.7) to compute the optimal hedge with kernel estimates. We can create a
neural network and thereafter, minimize the loss given by equation (2.8.2), we obtain the optimal
hedge. This is the same as the previous chapter, the only difference is the dynamics of the stock
price process. We will compare the efficiency of both kernel estimation and the neural network in
learning the optimal hedge within the Heston model. As before, we will work in a setting where
we take the view of a European Call option seller with strike K = 100 and µ = r = 0.05 with
λ = 1000. For the parameters of the Heston model, we use parameters given in Kwon (2018) [24,
Section 3] which is consistent with empirical results for a single stock give in Johannes et al.(2009)
and Bakshi et al.(2010). [25] [26]. We will work in a discrete-time setting with one discrete time
step t = 0, 1 with the following parameters:

∆t = 0.01, µ = r = 0.05 κ = 3.17, θ = 3.17, σν = 0.3, ν0 = 0.2, ρ = −0.5 (3.1.3)
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Figure 3.1: Optimal hedge under Heston Model
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(a) Average loss over 10 different runs
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(b) Average Mean-Squared Error

Figure 3.2: Loss and MSE over different sample sizes: Heston-Model

Figure 3.1 shows the optimal hedge at time t = 0 under the Heston model with parameters
defined in (3.1.3) with 3 different methods including access to 100,000 different sample paths. The
solid black line is the hedge computed using the closed-form solution for the delta in the Heston
model. The red-dotted line is the hedge produced by a 3 layer neural network with 16 units in
each layer using SELU in the hidden layers and sigmoid as the output activation function. From
this figure, we can see that both Kernel Estimation and the Neural Network provide a reasonable
convergence to the Heston-Delta.

Figure 3.2 compares the efficiency of Kernel estimation and the Neural Network just like we
did in the previous chapter with Figure 2.23. In this case, we evaluate the hedges for initial stock
prices in the domain [1,200]. Just like the Black-Scholes case, the neural network starts with an
average loss much greater than that of kernel estimation. This is when the sample size is less than
20,000. For sample sizes greater than 40,000, the network has a smaller average loss than kernel
estimation. As we increase the sample size, the average mean-squared error for kernel estimation
is consistently improving but very slowly. For the network, the improvement is quicker but the
error does fluctuate as we increase the sample size.

Let us now investigate this further as we did in the Black-Scholes case with a stock price domain
of [70,130] and a sample size of 100,000 which we run 10 times. Let us see if kernel estimation
provides better convergence than the network in this smaller domain.
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RMSE MAE MAPE R2

Mean STD Mean STD Mean STD Mean STD

Kernel Estimation 0.00847 0.00104 0.00639 7.43× 10−4 6.58% 1.31% 0.9996 9.84× 10−4

Neural Network 0.0423 0.0184 0.0283 0.0111 16.5% 8.09% 0.988 0.00921

Table 3.1: Statistics of convergence to Heston Delta over 10 runs with sample size 100,000

The statistics in table 3.1 are very similar to those from 2.1. We can see here that the error
produced by kernel estimation is far smaller than the errors generated by the neural network. Let
us perform one last paired t-test of the absolute errors of the neural network and kernel estimation
to see if there is any significant difference.
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Figure 3.3: Boxplot of 10 paired test t-values of absolute error of hedge obtained via neural network
and kernel estimation: Heston Setting

Figure 3.3 shows 10 t-values from the paired t-tests between the absolute error of the network
and of kernel estimation. All 10 t-values are much greater than the 5% two-tailed critical value of
1.96. Just as in the Black-Scholes case, we can infer that hedge obtained by kernel estimation has
a lower absolute error than the hedge obtained by the network in a Heston model setting.

3.2 GJR-GARCH: S&P500

We will now fit a GARCH(1,1,1) model to S&P 500 daily returns from 01/01/2018 to 30/08/2020
which corresponds to 669 return values. Let us first recall the volatility dynamics of a GARCH(1,1,1)
which was originally introduced by Glosten et al.(1993) [27]:

rt = µ+ εt (3.2.1)

σ2
t = ω + αε2t−1 + γε2t−1 + 1εt−1<0 + βσ2

t−1 (3.2.2)

εt = σtZt Zt ∼ N (0, 1) (3.2.3)

Where rt is the returns, µ is the constant mean, and σ is the volatility of the stock. ω, α, β and
γ are parameters of the model. After fitting our model to S&P500 returns, we obtain the following
parameters:

µ = 0.518, ω = 0.0299, α = 0.0201 γ = 0.2664 , β = 0.8252
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We then simulate 1000 stock price paths using our GARCH model and we use Kernel Estimation
with λ = 100000 on equation (2.6.7) to hedge daily. Like before, we take the view of a European
Call option seller now with 25 differing strikes, ranging from 94 to 106. Using our simulations and
our hedge, we can obtain the portfolio value at time t using the backward-recursive formula (2.1.5).
We can then use this as the ”price” of the option and then feed this into the inverse equation for
the BS-price to obtain the implied volatility. Below are the surfaces for maturities of 1 month, 3
months, 6 months and 1 year.

(a) 1 Month Maturity (b) 3 Month Maturity

(c) 6 Month Maturity (d) 1 Year Maturity

Figure 3.4: Implied volatility surfaces generated using GJR-GARCH and Kernel Estimation

Figure 3.4, is 4 surface plots of the implied volatility over, strike, and time to maturity. One
can see the implied volatility skew/smile taking shape [23, Sec 49.5]. Note this was not computed
using market prices of options. This used a GJR-GARCH model to produce samples of data in
which we hedged using Kernel Estimation to generate the portfolio value at each time step. As
stated in the Halperin paper on page 24, the volatility smile problem does not exist in Q-learning
as it is data-driven and does not depend on a model. This could be an area of further interest and
research. This could be an area of further interest and research
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Chapter 4

Conclusion

In this paper, we applied theory set out in the paper by Igor Halperin[4]. This paper set out a
model for discrete-hedging and pricing derivatives using Reinforcement Learning, in particular the
famous and efficient Q-learning algorithm. In our paper, we focus on European Call options. This
algorithm allows us to hedge in both a discrete-action and continuous-action space setting using
only trading data. In the original paper by Halperin; one of the goals of the QLBS model was
to provide a simple environment to test various Reinforcement Learning algorithms in discrete-
time and discrete-space settings. We tested 3 different discrete-RL algorithms in this environment;
Model-Based RL, Kernel-Based RL, and of course Q-learning. For this particular environment we
found that Q-learning provided a relatively fast and efficient solution compared to the other algo-
rithms. As we discussed earlier, the efficiency of the algorithm is dependent on the environment;
for our Gridworld environment, Model-Based RL required much less computation time compared
to Q-learning yet for our QLBS environment, Q-learning comes out on top. The major attractive
feature of utilizing Q-learning in a financial setting is the capability of going model-free and being
able to hedge without information on the model dynamics and requiring only data. The bench-
mark model used in this paper is the classical Black-Scholes model due to tractability and ease of
computation of closed-form solutions.

In the Halperin paper, the optimal hedge was found through the optimization of the Bellman
equations. The paper proposed to use a basis function expansion for the optimal hedge and Q-value
functions. The optimization of the Bellman equations using basis functions led to the minimizing
of equation (2.8.2), which is highly tractable and only requires linear algebra and Monte Carlo
samples. However, one major problem is choosing an appropriate basis function and also the
mathematical intuition behind adopting a particular function, especially if the model dynamics
are unknown. This could potentially be an area of further research.

Nevertheless, one workaround to using conventional basis functions is to train a neural network
to learn the optimal hedge by minimizing equation (2.8.2). This again, requires no information
about the model dynamics, only requires market data to learn. However, the issue of choice still
arises with neural networks, the ability to set up the architecture of a neural network is somewhat
of a dark art. There is limited intuition as to why some functions are more proficient than others
and how much data is required for the network to learn sufficiently.

Due to the quadratic nature of our Bellman Optimality equation (2.6.5), there exists an ana-
lytical solution in the form of conditional expectations, (2.6.7) which can be estimated using the
Nadaraya-Watson estimator. We found that this estimator requires not many samples to provide
a succinct result. We also found it to be far more efficient than the hedges predicted by our neural
network. In the last section of our paper, we move away from a Black-Scholes model and test these
methods within the Heston model to find that Kernel Estimation provides the most proficient
solution yet again.

Further areas of interest include applying different algorithms such as the Deep Deterministic
Policy Gradient (DDPG) algorithm [28] which utilizes both actor-critic and policy-gradient meth-
ods in a continuous-action space and is a model-free off-policy method. One could also look into
including market externalities such as transaction costs, liquidity costs, funding costs, etc. As this
model is data-driven, one could look into working in a multi-dimensional case and could use this
environment to test many other models using only data.
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Appendix A

Dynamic Programming (DP)

We will now evaluate a few algorithms which allow one to solve for the optimal policy when the
model dynamics are known, i.e., probability transition matrix, and reward function are known.
These algorithms utilize the Bellman equations.

A.1 Policy Evaluation Algorithm

We will first discuss what is known as the prediction problem. This algorithm allows one to compute
the value function Vπ for a given policy π. Recall that the value function can be expressed as:

Vπ(s) = Eπt [Gt|St = s] =
∑
a

π(a|s)
∑
s′,r

P(s′, r|s, a)[r + γVπ(s′)]

The iterative algorithm is going to create a sequence of approximate value functions V 0
π , V

1
π , V

2
π . . .

until convergence. We arbitrarily initialize the approximate value function V 0
π (s) for all s. The

algorithm essentially uses the Bellman Expectation Equation (1.2.1) as an update rule for the
k + 1th iteration:

V k+1
π (s) =

∑
a

π(a|s)
∑
s′,r

P(s′, r|s, a)[r + γV kπ (s′)] (A.1.1)

At each iteration, we update the value function for all states s ∈ S. Technically, the value
function only converges in the limit which is not possible computationally and must be cut short.
One way to achieve this is to use a threshold and stop updating once the maximum of the difference
between the value functions between iterations is sufficiently small, i.e. maxs |V k+1

π (s)−V kπ (s)| < θ
where θ is a small threshold.

Algorithm 2: Policy Evaluation Algorithm

Input: Policy π to be evaluated
Initialize Vπ(S) arbitrarily for all s ∈ S
θ is a small threshold parameter for accuracy of approximation

while ∆ < θ do
∆← 0
for each s ∈ S do

v ← Vπ(S)

Vπ(s)←
∑
a π(a|s)

∑
s′,r P(s′, r|s, a)[r + γVπ(s′)]

∆← max
(
∆, |v − Vπ(s)|

)
end

end
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We could amend amend this algorithm slightly to loop through every s ∈ S and every a ∈ A
to evaluate the action-value function Qπ. The update rule would be based on equation (1.2.2) and
works similarly to equation (A.1.1). This may be a better choice as it would allow one to perform
policy improvement much more easily than using the state-value function.

A.2 Policy Improvement

The previous algorithm allowed us to compute the value functions for a given policy. However, it
did not allow us to discover the optimal policy, which is the main goal of dynamic programming.
We can use the previous technique of determining the value function to help us improve the policy.
This is achieved by policy iteration in which we evaluate the policy and subsequently improve the
policy, we repeat this process until we reach the optimal policy.

Theorem A.2.1 (Policy Improvement). Let π and π′ be deterministic policies such that Qπ′(s, π
′(s)) ≥

Vπ(s), then Vπ′(s) ≥ Vπ(s).

Proof.

Vπ(s) ≤ Qπ (s, π′(s))

= E [Rt+1 + γVπ (St+1) | St = s,At = π′(s)]

= Eπ′ [Rt+1 + γVπ (St+1) | St = s]

≤ Eπ′ [Rt+1 + γQπ (St+1, π
′ (St+1)) | St = s]

= Eπ′ [Rt+1 + γE [Rt+2 + γVπ (St+2) | St+1, At+1 = π′ (St+1)] | St = s]

= Eπ′
[
Rt+1 + γRt+2 + γ2Vπ (St+2) | St = s

]
≤ Eπ′

[
Rt+1 + γRt+2 + γ2Rt+3 + γ3Vπ (St+3) | St = s

]
...

≤ Eπ′
[
Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + γ4Rt+5 + · · · | St = s

]
= Vπ′(s)

[10][Section 4.2, pg 78]

One way to select a new action is to act greedily, that is to select the action that produces the
largest Q-value. The new greedily policy can be expressed as:

π′(s) = argmax
a

Qπ(s, a) (A.2.1)

= argmax
a

Et[Rt+1 + Vπ(St+1) | St = s,At = a] (A.2.2)

= argmax
a

∑
s′

P(s′, a | s, a)[r + Vπ(s′)] (A.2.3)

The policy iteration algorithm works by first evaluating an arbitrary deterministic policy and
then improving the policy greedily, and we repeat this process until the policy is no longer changing
thus has converged to the optimal policy. If π(s)k+1 = π(s)k (where the superscript represents the
iteration) for all s ∈ S, then the policy is no longer changing and has converged to the optimal
policy π∗.
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A.2.1 Value Iteration

One major downside of using policy iteration to obtain the optimal policy is the fact that policy
evaluation has to be performed every iteration which can be computationally inefficient. Policy
evaluation is an iterative process so exact convergence occurs only in the limit. In many cases, one
does not need to wait for exact convergence to achieve the optimal policy. Value iteration improves
the policy after each update of the value function. The update of the value iteration algorithm is
based on the Bellman Optimality equation (1.2.6) in the following way with the superscript k as
the iteration value:

V k+1
∗ (s) = max

a∈A

∑
s′,r

P(s′, r|s, a)[r + γV k∗ (s′)] (A.2.4)

π(s) = argmax
a∈A

∑
s′,r

P(s′, r|s, a)[r + γV∗(s
′)] (A.2.5)

Algorithm 3: Value Iteration Algorithm

Initialize V∗(S) arbitrarily for all s ∈ S
θ is a small threshold parameter for accuracy of approximation

while ∆ < θ do
∆← 0
for each s ∈ S do

v ← V∗(S)

V∗(s)← maxa∈A
∑
s′,r P(s′, r|s, a)[r + γV∗(s

′)]

∆← max
(
∆, |v − V∗(s)|

)
end

end
Output Policy: π(s) = argmaxa∈A

∑
s′,r P(s′, r|s, a)[r + γV∗(s

′)]
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Appendix B

Closed form solutions: Pricing and
Hedging

B.1 Black-Scholes Model

We will now express the price and delta of a European Call option with strike K, spot St, volatility
σ and risk-free rate r in the Black-Scholes model.

B.1.1 Pricing

The price of a European call option can be expressed as:

C = StN(d1)−Ke−r(T−t)N(d2)

Where N(·) is the standard normal cdf and d1, d2 are:

d1 =
1

σ
√
T − t

[
ln

(
St
K

)
+

(
r +

σ2

2

)(
T − t

)]

d2 = d1 − σ
√
T − t

B.1.2 Delta

The delta of a European Call Option in the Black-Scholes model can be expressed as:

∆ =
∂C

∂St
= N(d1)

B.2 Heston Model

We will now present the closed-form solutions to pricing and hedging in the Heston model as
presented in Yang (2013) and Heston (1993) [29] [22]

B.2.1 Pricing

In 1993, Heston assumed that the price of a call option under the Heston model should be of the
form:

C(S, ν, t, T ) = SP1 −Ke−r(T−t)P2 (B.2.1)
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With spot price S at time t, strike K, constant risk-free rate r, initial volatility v and maturity
T . P1 and P2 can be defined as a fourier inverse transform using characteristic functions f1 and
f2 in the following way:

Pj =
1

2
+

1

π

∫ ∞
0

Re

[
e−iϕ lnKfj(x, v, τ ;ϕ)

iϕ

]
dϕ, j = 1, 2 (B.2.2)

Where τ = T − t and x = log(St)
Heston assumed the solutions to the charcteristic functions as:

fj (x, v, τ ;ϕj) = exp {Cj (τ ;ϕj) +Dj (τ ;ϕj) v + iϕjx}

Where

Cj (τ ;ϕj) = µϕjτ +
a

σ2

{
(bj − ρσϕji+ dj) τ − 2 ln

[
1− gjed,τ

1− gj

]}

Dj (τ ;ϕj) =
bj − ρσϕji+ dj
bj − ρσϕji− dj

[
1− edjτ

1− gjedjτ

]
gj =

bj − ρσϕji+ dj
bj − ρσϕji− dj

dj =
√

(ρσϕji− bj)2 − σ2
(
2ujϕj − ϕ2

j

)
u1 = 0.5, u2 = −0.5, a = κθ

b1 = κ+ λ− ρσ, b2 = κ+ λ

where κ is the mean-reversion rate and θ is the long-term mean.

B.2.2 Heston Delta

The Heston Delta can be expressed as:

∆ =
∂C(S, v, t, T )

∂S
= P1 + S

∂P1

∂S
−K∂P2

∂S
(B.2.3)

Where

∂Pj
∂S

=
1

π

∫ ∞
0

Re

∂
[
e−iϕ lnKfj(x,v,τ ;ϕ)

iϕ

]
∂S

 dϕ j = 1, 2

We can use the chain rule to express the above derivative as:

∂Pj
∂S

=
1

π

∫ ∞
0

Re

∂
[
e−iϕ lnKfj(x,v,τ ;ϕ)

iϕ

]
∂fj(x, v, τ ;ϕ)

· ∂fj(x, v, τ ;ϕ)

∂S

 dϕ

Where

∂fj(x, v, τ ;ϕ)

∂S
=
iϕ

S
· fj(x, v, τ ;ϕ)

Therefore,

∂Pj
∂S

=
1

π

∫ ∞
0

Re

{
e−iϕ lnKfj(x, v, τ ;ϕ)

iϕ
· iϕ · 1

S

}
dϕ
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=
1

π

∫ ∞
0

Re

{
e−iϕ lnKfj(x, v, τ ;ϕ)

S

}
dϕ (B.2.4)

We can then substitute these derivatives from eqn (B.2.4) into eqn (B.2.3) to obtain the closed-
form solution to the Heston Delta:

∆H = P1 +
S

π

∫ ∞
0

Re

{
e−iϕ lnKf1(x, v, τ ;ϕ)

S

}
dϕ− S

π

∫ ∞
0

Re

{
e−iϕ lnKf2(x, v, τ ;ϕ)

)
S

}
dϕ

(B.2.5)
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