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1 Introduction

Return on an investment is usually split into two parts. One that is proportional to the market
return, is called beta and it carries a systematic risk of the market. Another one is alpha, or
excess return. It measures the performance of the investment compared with the whole market.
Alpha can take positive as well as negative values and in an efficient market the expected value of
alpha should be zero. Alpha shows how an investment has performed after taking into account the
risk it involves. For traders or market makers to make profit in a market it’s of great importance
to capture alpha, which is an extremely difficult task in an efficient market. If we can discover
alpha then we can easily develop an arbitrage strategy, i.e. make money without taking any risk.
However, the efficiency condition of the market rarely holds in practice. The lack of efficiency is
due to many factors, as an example it might be the delay when transferring information in a short
time period or huge events impacts in long term. This implies , that since we are dealing with
inefficient market, there might be a way to discover alpha.

The main goal of this project is to discover alpha in the fixed income products. More specifically,
we want to find out whether we can predict the movements of the bond prices or yields in EGB
(European Government Bond) market with only market data. We consider the problem in both
short and long term scenarios as for different time horizons the market shows quite different
patterns. For this project, apart from using traditional analysis techniques, we also use machine
learning techniques.

Machine learning is a powerful tool for modern data analysis. It shows strong compatibility
towards high-dimensional data since it can guickly identify a suitable model specification in large
functional space. Apart from that, it is a data driven method meaning that it can learn patterns
automatically from data and does not necessarily require any parametric form designed by a human
being. This property of high dimensional compatibility makes machine learning methods more
suitable to modern financial analysis compared to the traditional econometric analysis. However,
this enhanced flexibility may result in over-fitting and high variance of the models. The problem
with over-fitting can be easily avoided by using regularization methods that produce more stable
models. Therefore, machine learning techniques are very attractive especially when faced with
large amount of market data. The models that are used for this project include linear regression
with regularization and recurrent neural network.

Although there are many evident benefits in using machine learning techniques to identify
market signal, the traditional analysis is still widely used as it offers clear explanations of what is
happening with the market behaviors. Because of high comprehensibility, all the analysis is built in
an understandable way. Therefore, the results produced using the traditional analysis techniques
are more convineing and more stable.

Apart from identifying alpha using two different approaches described above, we also investigate
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both their prons and cons. From the empirical result it follows that the traditional analysis

outperforms the machine learning for the EGB market.

1.1 Literature Review

Note that in this project we forecast bonds price movements in short and long term. In short term
horizon we work in price space and in long term horizon in both price space and yield space. This
is due to the fact that in short term horizon the bond price movements show strong momentum
effect while in long term horizon mean reversion in yields is more likely to happen.

There is a huge number of paper covering the topic of asset price forecasting using machine
learning techniques. Our work is mainly the application in EGB market of all the findings we discuss
below. Gu and Kelly(2018) review all the common machine learning techniques and discuss their
feasibility of being applied in equity market. They show the machine learning algorithms bring
some promise for both economic modelling and for practical aspects of portfolio choice. In Rapach
et al.(2013), authors use Lasso regression for lagged U.S. stock returns to predict numerous non-
U.S. stocks and the results of their predictions are highly significant. Hutchinson et.al.(1994) and
Yao et al.(2000) is the first group of scholars who use shallow networks to forecast derivative prices.
Recently, Sirignano et al.(2016) apply a deep neural network to price mortgage prepayment and
foreclosure. Qing and Song(2017) develop a new LSTM model to predict NASDAQ 100 prices.

The prediction of return is a more complicated task compare to price prediction, since the
current price and lagged price are close to each other while the returns are not. The articles give
astounding results for returns prediction only when the modified linear regression models are used.
In case when neural networks are used, not that many focuses on predicting returns. The actual
performances of neural machine learning for return forecasting still remains unknown.

For yield space study, most of the literature is still restricted to the non-arbitrage framework.
They directly model the dynamics of short rate with affine models and after which yields can be
derived using bond prices. Vasicek(1977) first proposes an endogenous short rate model based
on the Ornstein-Uhlenbeck process. Later Cox et al.(1985) modifies the instantaneous volatility
term in Vasicek model to give a non-negative short rate model. Hull and White(1990) extend
the endogenous model to exogenous model by introducing the time-varying long term mean.With
the time depending term the modelled prices can perfectly fit the actual market prices. Brigo
et.al.(2003) simplifies the Hull White model by adding a shift term to the short rate and shows its
equivalence to the Hull White model. These models give great results for pricing purpose. However,
if we try to use these models for a forecasting purposes, they are usually of poor performance. Some
of them are based on the strong assumption that the underlying short rate is a Markovian diffusion
process.

There are some vield forecast work based on parametric models that does not take market
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efficiency into account. Diebold and Li(2006) modify the Nelson and Siegel (1987) model to
forecast the yield curve. And Rajiv et.al.(2017) use the dynamic Gaussian process to extend the
Diebold and Li model. The parametric models have very clear econometric interpretation, and
some of them indeed have some predictive power. The main drawback of these models is that
they do not consider market efficiency. To perfectly fit the shape of the vield curve these models
often need to make use of all the bonds with different tenors. However, if the market is inefficient,
some of the illiquid bonds may deviate from their arbitrage free level. These bonds deteriorate the

model performance thus the curve may not be reliable.

1.2 Structure of the project

This project is formed of four parts. In chapter two of this project, we briefly introduce the basic
concepts of bond pricing theory. In the third chapter we look into alpha in price space in short
term horizon and discuss the methods we use. The forth part focuses on long term prediction in
both price space and yield space. The final part reaches the conclusion based on the results of our

empirical analysis and experiments in previous two parts.

2 Basic Concepts
In this section we briefly introduce the concepts we use in this project. For more detailed infor-
mation, see Brigo and Mercurio (2006).

Definition 1. The price of a contract which pays 1 unit of currency at maturity time T at time
t < T is denoted by P(t,T):
P(T\T)=1 (2.1)

T
P(t,T) = E2[D(t,T)1) = EL[exp(— f reds)] (2.2)
t
where D(¢,T') is the stochastic discount factor from time t to time T, 7 is the instantaneous short

rate and @ is the so-called pricing measure (risk neutral measure). This price is called discount

factor or the zero coupon bond price.

Definition 2. The continnously compounded spot rates at time t for maturity T R(t,T) is the
constant rate spot at time t, starting from P(¢, T') units of currency at time t, when aceruing oceurs

continuous compounding with respect to the investment time (Brigo and Mercurio, 2006).

P(t,T)exp(R(t, T) (T —t)) =1 (2.3)

R(,T) = -ﬁznp(f.,:r) (2.4)




Moreover, if a bond payvs coupon C} at some time ¢ < T, then we can define the continuous
compounded yield to maturity R(0,7T) for this coupon bond to be:
T—1

P(0,T) =Y Creap{—t- R(0,T)} + exp{—T - R(0,T)} (2.5)

t=1

Slightly different from the definition in Brigo and Mercurio (2006), we define the yield curve to
be the graph of the function T' + R(0,T). This function is also called the term structure of the
interest rate at time t.

In terms of forward rate, we use the definition mentioned in Hagan and West (2008).

Definition 3. Suppose we can borrow a known rate at time 0 to maturity {1, and borrow from t;

to t> at a known rate fixed at 0, then the rate we borrow from 0 to maturity ¢, clearly is:
P(0,t1)P(0; t1,t3) = P(0, 3) (2.6)

This equation prevents arbitrage opportunity and P(0;#;,t2) is the forward discount factor from

t) to t2. The forward rate F'(0;t,,t2) can be defined through this equation:

exp(—F(0;t1,t2)(t2 — 1)) = P(0;t1,t2) (2.7)
Or equivalently,

InP(0,t3) — InP(0, ¢ R(0,to)ta — R(0, )t
F0:t,,t5) = — (0, :3_;;’ (0,41) _ R(0, 2);_;( )t (2.8)

Definition 4. If we let ¢; = ¢, the instantaneous forward rate, denoted as f(t), is
f(t) = limeoF (08,1 +€) (2.9)

We can easily deduce the relationship between instantancous forward rate and continuous com-

pound rate by using (2.8):

R(0, 1)t = fo " Hs)ds (2.10)

Arbitrage free condition for bond pricing. Now suppose we are at time t = 0. If the
market does not admit arbitrage, the price of the bond P should satisfy the following arbitrage
free condition:

n—1

P = Z C‘iP(O ts!.m‘t-.f-:') + (Cn + ]-)P(D:.f-st,m-r 3‘-:1) (211)

i=1

where:

® to,rt is the date on which the cash is delivered for the purchased bond
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e fy.t1, ..., ¢, are the dates on which the coupons are delivered.

By noticing P(0,1) = exp{— fUL f(s)ds}, we can express the bond price in terms of instantaneous

forwards easily:

n—1 £; tn
pP= Z C,;e;rp{—/ f(s)ds} + (Cn + l}e;rp{—] f(s)ds} (2.12)
i=1 tatart totart

3 Short Term Alpha Prediction

In this section, we focus on capturing short term alpha in the bond market. A well known fact
in short term fixed income market is that the prices of the bonds show strong momentum effect,
which means the prices would continue to increase or decrease in a small period of time, say in
just several ties. If we are able to capture the momentum effect, we could make precise prediction
of the bond prices then make arbitrage strategyv to generate alpha easily.

In order to do that, we need to introduce memory into the current models. Several techniques
have been successfully emploved to maintain memory across the time. The first technique to be
considered in this project is the exponential weighted moving average. Huge amount of works
have proven its capability in exploiting momentum effects in either equity market or fixed income
market. Another newly developed technique which is widely used in NLP is called the long short-
term memory recurrent neural network. One of the important advantages of LSTM is that LSTM
can automatically learn importance features during its training process without human involved.
In addition, it can fully make use of the power of GPU to parallel computation which could
tremendously improve the efficiency. The details of the model structure is in the following part of

this section.

3.1 Neural Machine Learning Methodology
3.1.1 Recurrent Neural Network

Recurrent neural network (RNN) is the very early time series modelling network. A simple recur-
rent unit only has two components. At each time step, the recurrent unit will receive two inputs:
the hidden state of RNN from the previous timestep hy_; and the new input at that timestamp

xy. The formulation of this process is:

hy = tanh(WE p,_ ) 4+ W) g,) (3.1)
ye = o(WSh) (3.2)

where W) is the weight matrix for the hidden state h, W' is the weight matrix for the new

input =, W) is the weight matrix for the hidden state, v is the prediction output and ¢ is a
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non-linear function to calculate hidden state and final output. The most often used function is the

sigmoid function:

- 1
T l4e

O‘(.‘Ir)

Since we are tryving to predict the bond return, which is a regression problem, the loss function

(3.3)

we use is the mean square error (MSE):

n

MSE = =i = (0)? (3.4

i=1

where # denotes the set of parameters in our model.

© ® ©
Figure 1: Unfolded structure of Simple RNN

RNN has many advantages. Firstly, the model can process input with arbitrary length while
the model size remains unchanged due to the shared weight matrix. Secondly, theoretically it
can make use of information from many steps ago thus it is suitable for modelling time series.
However, it also suffers from several disadvantages: RNN is hard to be paralleled since it is a
sequential model and it might not be able to access information from long time ago because of the
gradient vanishing or exploding problems.

We demonstrate how gradient vanishing or exploding happens here. Most of the time, we apply
gradient descent to optimize the network parameters. For example, if we want to find the optimal
value of the weight matrix W, we update W in every step as:

dL
‘oW

where o is a designed learning rate, W can be anyone of the weight matrix mentioned above and

W W —c (3.5)

% is the gradient.
Suppose we want to calculate the gradient of the loss function L with respect to the weight
matrix W, that is:
, T
aL AL

oW = oW (3.6)
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For the gradient at time step t, using chain rule we get the differentiation equation:

B _ 5~ 8L o Ohe Sy (37)
AW = Ay dhy Oy, OW
Note that g—fﬁ- is the partial derivative of h; with respect to all the previous hidden state hy, :
dhy d Oh; : A(hh)T ) .
Py H oy = H W x diag[tanh; ;_,] (3.8)
J=k+1 J=k+1
where each ;‘%: is a Jacobian matrix due to h € R™:
dhja b
Ahj_1q 7 Ohj—1,n
(’)hj _ (’Jh.j 3hj ] _ . . . [3 l])
8}1j_1 - 81‘13'_]_‘1 T E)hj_l_n - ) ! ) o
Iy hjn
Oh; 1t Ohyaa

Apply some norm (for example L? norm) to the above equation and from elementary inequality

we have:

Uhj
Ohj_,

21| < W7 |[diagltanh ;_y)l| < Sw B (3.10)

where [y and 3, are some finite upper bounds of the norms. So for the term %;\L

ah ah; i
5=l =1l || < (Bw )N (3.11)
Ay, i Ohjy

j=k
If (Bw B) is smaller than 1 and ¢ — k is too large, then the gradient can be very small and vice

versa. So the information from many steps back may disappear or cause overflow.

3.1.2 Long Short-Term Memory Recurrent Neural Network

Long Short-Term Memory (LSTM) is a complex extension of the recurrent neural network. In
RNN, the way hidden state h;—y pass information to h; is based on an affine transform and a
pointwise non-linear function. LSTM modify this transition to allow the network capture more

information from longer term. The structure of the LSTM is as follow:

i® = (W, - [RE~Y 2B] £ b,) (input gate) (3.12)
O =a(Wy - [RED,2®] +bf) (forget gate) (3.13)
ol) = g(W, . [h=1) 2] 4+ b,) (output gate) (3.14)
&0 = tanh(W, - (A4, 2] +b,) (new memory cell) (3.15)
B = ) o (=1 4 58 6 alt) (final memory cell) (3.16)

'O = o™ o tanh (3.17)
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where ¢ is the sigmoid function, i*) is the input gate output, f*) is the forget gate output, o'* is
the output gate output, ¢(*) is the new memory cell state, ¢/*) is the final memory cell state, h'®)
is the hidden state at time ¢ and W and U are some weight matrices. The new input gate is able
to decide whether the new input is worth memorizing and the new forget gate can decide whether

the past memory is useful for current state.

@ ® ®
t t

WT; T A

|
3 © &)

Figure 2: Unfolded structure of LSTM RNN

This sophisticated architecture of LSTM solves the gradient vanishing or exploding problem.

To illustrate that, we still need to derive the differentiation equation as in RNN:

aLg _ E de C)hg d(.f dEA

ow 3!% e, Doy OW )
And £5 d‘ = H k41 d?r’ But this time d })('('0111(“-, more complicated:
de; a
af_'ji _f’(“”f'[f‘f-j—hﬂfj]}JrK(m’”h e [hj-1,25])) 0 o(Wi - [hj -1, 25])) (3.19)

The second term is of little importance since it is small compared to the first term. As long as
the first term (the forget gate output) does not cause vanishing or exploding. So we can see the

equation (3.16) becomes:

(JL, ~ OL; 31’15 (Jq
oW ~ 2 an, (H oWy - [hj-1.2,))) 5z (3.20)

As we mention in the beginning, thc forget ga.tc contlol whether the past memory is useful. It will
be activated if its output value is close to 1. Since the sigmoid function restrict the output between
[0,1], we only need to consider the gradient vanishing problem. If the forget gate is activated,
then we can approximate o(Wy - [hj_1.4,]) by 1 and see that _lL. - (), which leads to WL -+ 0.
Therefore, gradient vanishing won't happen so long as the memory is important.

3.1.3 Attention mechanism in LSTM RNN

In a simple RNN, the final output depends on the last hidden state hp to a large extent. This

requires the last hidden state carryving out all the information from the past. This causes an
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information bottleneck problem.

Attention solves the bottleneck problem by applying a weighted average mechanism. Note that
in every step, the RNN unit would output one hidden state h,. We collect all these hidden state
{Es’}f‘ﬂ and use a function called score to calculate their score value score(hs, hy) with the
current hidden state h;. We then take softmax function to get the attention distribution oy with

each element as: B
exp(score(hy, hy))

S5 s eap(score(he, hy)

Since ||ay|[; = 1, we can obtain a weighted average ¢, also called the context sate, of all the history

(3.21)

Qg =

hidden states using cy:

= ol (3.22)

Finally, we concatenate this weighted sum ¢;with the current hidden state and then we can produce
the final output o;:

o0 = flees he) = o(Welee; he)) (3.23)

One commonly used score function is called the Bahdanau attention:

score(hy, hs) = v1 tanh(Wihy + Wah,) (3.24)

where v, is a trainable vector learned by the network. This score or the according weight oy
reflects the importance of hidden state hs with respect to the latest hidden state h:, and it forces
the context state to pay more attention to the hidden state h,. Therefore, it can relieve final

hidden state from the burden of carrying all information in a fixed length tensor.

Context Vector

liter 2iter Jiter 4 iter Siter

Entire Source Input

Figure 3: Attention mechanism in neural network
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3.2 Classical Statistical Learning Methodology
3.2.1 Ordinary Least Square

Given a set of points (i, i)i=1....n, suppose we would like to determine a relation of the form
y; = f(7;) for some function f : R — K. Our ultimate goal is to minimize the euclidean distance

or mean square loss between Y and f(X). The general formulation is

minep|lY — F(X)I13 (3.25)

where F is the functional space.
The simplest way is to assume f is a linear function. That’s we assume a dependence of the

form:

yi=al+&F+¢ (3.26)

where {¢; }i=1,....n are centered independent random noise with constant variance a2,

Therefore, our purpose is to find @, # which minimize L, 3) = ||Y — (al + 8X)|]3. If we
consider X to become (1, X) , then we only need to minimize L(3) := ||Y — BX|[3. With some

simple matrix derivatives, we can easily deduce the optimal 3 should satisfy:

B=(XTX)"1XTy (3.27)

The method is called the Ordinary Least Square (OLS).

OLS has many advantages. Firstly, it is easy to implement and highly efficient. Secondly, it has
strong intelligibility since people can easily understand the relationship between (X,Y’) from the
sign and magnitude of 3. However, the strong assumptions of OLS restrict the regression power
of this model. Despite the linear form dependence, OLS assume the residuals ¢; are identically
independent distributed with mean 0 and variance ¢, which can hardly hold true in reality. Apart
from that, if elements in X are highly collinear, then the matrix XTX is not invertible and its
entries can become very large. Note the variance of 3 is given by Var(3) = o?(XTX)7!, so the
coeflicient is highly unstable if the elements of X are highly correlated. Apart from that, over-
fitting might happen if noise or errors are described. Nevertheless, OLS is still a quite powerful

regression method and it is widely used in reality.

3.2.2 Regularization Method

To overcome over-fitting and the col-linearity problem of X, we can apply L' penalty on 3 to

reduce the variance at the expanse of a small increase in the loss. Thus the penalized optimization




3.2 Classical Statistical Learning Methodology 16

problem becomes:

ming xL(8,A) = || — XB]|2 + MB|lx (3.28)

This simple modification of loss function leads to a sparse coefficients (few entries of 3 are non-
zero). The method is called Lasso Regression. Lasso can shrink some entries of 3 to 0, thus it can
perform features selection. Besides, with the L, penalty term on 7 it also helps reducing over-
fitting and leading to a more stable and simpler model as the L; norm of 3 is also the minimization
target.

The reason why Lasso can shrink some entries to zero can be found in the book Trevor and

Robert (2015). By Lagrangian duality, we can find the dual problem of (3.27) :

ming L(B) = ||Y — XB||3 (3.29)

subject to ||B|l; <t (3.30)

Note that the image of L(3) has elliptical contours, centered at the OLS estimates. The first point
in I'mg(L) which " touches” the domain of /3 is the optimal solution to (3.28). However, the domain
of 3 forms a rhomboid centered at the origin, which has many corners (corners have zero entries).
Therefore, there are more opportunities for optimal solution to lie on the corner of the rhomboid

and thus leads to a sparse solution.

__ Usual OLS Estimate = (f8,. £.)

B» pe 7
&R""- Contours of the OLS criterion
e
T Lasso regression estimate = (f}e*5, plasse)
B, 2
Bl -l Isl =
=

Figure 4: Geometry intrepetation for Lasso regression

Unlike OLS, Lasso does not have a closed form solution. However, since the (3.27) is a convex
optimization problem, if columns of X are in general position, then (3.27) admits a unique optimal
solution. {w;}?_, are in general position if any affine subspace L. ¢ RY of dimension k < N
contains at most k+1 elements of the set {+ay, +wy, ..., +x,}. If X are drawn form a continuous

probability distribution, then columns of X are in general position with probability one. This
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condition is easy to satisfy in reality. Hence it is reasonable to apply numerical algorithm to find
the unique solution.0

Since the objective function of (3.27) is convex in 3, thus it admits sub gradient. The optimal
solution of (3.27) must make the sub gradient of each element of 3 equal to zero. To derive the
numerical algorithm of Lasso regression, if we want to calculate the sub gradient with respect to

B, we rewrite (3.27) into:

L(B,A) = ||Y — X8R — X®)8 (2 + A|Be] + A8, (3.31)

where ,3(_"]T = [Brs s B 1,0, By 1, s Bp] and X ¥ is the k-th column of X. Note that the sub

gradient of |3| is s = sign(3), thus the sub gradient of 3y, is:

AL(B, )
9B

The optimal solution of (3.27) must make the sub gradient zero. Hence, [ should be :

= —2x®T(y _ X80 _ x®5,) 4 Agy (3.32)

B = S\(X®T (v = xR - x®) g,y (3.33)

where Sy(z) = sign(z)(|z| — A)4+. If we want to derive a "gradient” descent scheme, then f;, should
be updated as:
3T
B — Sa(Br + X®° (Y - XB)) (3.34)

We perform this updating for each element of 3 repeatedly until 5 converges. Since we do it in a

cyclical way, this algorithm is also called cyclical coordinate descent.

Algorithm 1 Cyclical coordinate descent for lasso
1: Initialize 3

2: while /3 not converges do
3:  fori=1,...p update do

B = Sx(Bi + XWT (¥ — XB))
4:  end for

5: end while

For the hyper parameter A, we need to perform parameter tuning through cross validation. The
exact way is to do K-Fold validation on A.

This algorithm is relatively fast since in each loop we have an exact updated formula for j.
Moreover, we don’t need to calculate the inverse of X7 X thus it provides us a solution even when
XT X is singular. Besides, as Trevor and Robert (2015) mentioned, for large A most coefficients
will be zero and will not be moved from zero. Thus it can help reducing over-fitting and performing

features selection.
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3.2.3 Exponential weighted moving average

Exponential weighted moving average is a common technique to preserve memory of a time series. It
is also a useful tool to measure momentum. Given a time series S¢, we can calculate its exponential

weighted moving average S; recursively:

S\'g_ = (1 — {.Y)S\'g__l + Sy (335)

If o is large, it assigns more memory to the recent value; if o is small, it keeps more memory
from the past. Here a = 1 — exp(log(0.5)/hal fli fe), the way we choose half life is again via cross
validation. By using exponential moving weighted average, we can reduce the jumps in the data
and see the trend of the time series more clearly. Therefore, exponential weighted moving average

can act as an indicator to detect momentum effect.

3.3 The main result for short term alpha

After discussing all the theoretical backgrounds, we test these models on the European Government
Bond data in a very short time horizon. The two models we are comparing are the LSTM with

Attention mechanism and the simple linear regression with exponential weighted moving average.

3.3.1 Data Description

Consider a universe consisting of 10 bonds. These bonds are issued by different European coun-
tries ranging from German to Italy and their maturities vary too. The bonds we test and their

information are listed in the following table.

ID description comment
ATO000A1PEFT RAGB 1 1/211/02/86 | Very illiquid
BE0000343526 BGB 2 1/4 06/22/57 Less liguid

DE0001135226 DBR 4 3/4 07/04/34 Less liquid
ES00000128E2 SPGB 3.45 07/30/66 less liquid

FI4000046545 RFGB 2 5/8 07/04/42 | Liquid
FRO010171975 FRTR 4 04/25/55 Liquid
[EQ0BVBCIBS3 IRISH 1.7 05/15/37 Liquid
IT0001174611 BTPS 6 1/2 11/01/27 | Very illiquid

PTOTEWOE0017 | PGB 2 1/4 04/18/34 Very illiquid

Table 1: European Government Bond Information
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Qur goal is to predict the forward return of the bonds, i.e. the absolute returns y;4-a: —y: where
1 is the bond price. The predictions are made using tick data. In current setting, the forward time
horizon are chosen to be 5 ticks. The predictors we use here are the historical 1 tick returns of 7
European futures and the target bond. Since the bond and futures are traded asynchronously, we
resample the futures prices to mateh the bond trading time. Here is the general description of the

data:
e Target bond list: government bonds from German to Ifaly
e Training period: 2019.03.15 - 2019.04.15
e Testing period: 2019.04.16 - 2019.04.16
e 1; : tick prices of the target government bonds
o At =05 ticks
e I tick price of the future i at time s
o As=1 ticks
o predictors @5 = (F} — F} y  F2—F2 o ..., F* — F" 5 ys — Ys—As)

We choose futures as the predictors because some of the futures are highly correlated to the
bonds and they are more liquid than bonds. Therefore, these futures carry more information than
the bonds and they can indicate the future movement of bond prices in a very short time horizon.

In the table below we categories futures by their liquidity level.

FBTP FBTS FGBL | FGBM FGBS FGBX FOAT

very liquid | less liquid | liguid | less liquid | very illiquid | very liquid | liquid

Table 2: liguidity level

We have enough of data for training and testing purposes even though it is one month period

since we use tick data for modelling.

3.3.2 Feature Selection:

Before applying our models to the data, we do feature selection first. If some inputs of the model
are highly correlated, as demonstrated in section 3.2.1, the variance of the model becomes high
and the performance of models is deteriorated.

To avoid this problem, we do feature selection first and the post selection inference, namely
we first apply Lasso regression to all the predictors using 10 minutes price changes over the time

period, where we use cross validation to find the optimal hyper parameter A. Then we rule out all
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the features with zero regression coefficients. By doing this, we can easily avoid high variance of
the model and select the most relevant features for each bond. The features selected are present

in the Appendix.

3.3.3 Empirical Results:

We use out of sample R? as the main measure to evaluate the models’ performance. R? is defined

in the following way:
N -~ T
R2—1_ iy — ii)*
i (s — 5

R? shows how much the variance of the dependent variable is explained by our predictors in the

(3.36)

regression model. The table below shows the out of sample R? for two different models. We can see
from the table that both two models have some predictive power since for all the bonds, we have
significant positive R?. What can be seen from the table is that the more sophisticated neural
network does not outperform the simple linear model with memory, i.e. exponential weighted

moving average, for most of the bonds.

ID R? Linear | R? LSTM
ATO000A1PEF7 0.165931 0.06808
BE0000343526 0.140655 0.041926

DE0001135226 0.133475 | 0.062618
ES00000128E2 0.101831 0.072593

14000046545 0.311653 | 0.132801
FRO010171975 0.170431 0.134507
IE00BV8CIB83 0.264899 | 0.180501
ITO001174611 0.519924 | 0.298846

PTOTEWOEO0017 | 0.088716 | 0.149245

Table 3: Comparison of out-of-sample R? for two models

Figure five to figure ten show the cumulative distribution of the predicted returns for two
models. Besides, we also plot the realized returns against the smoothed predicted return in the same
figure. Suppose the predicted values are {z;}? ; and the realized values are {y;}*_,. Originally
points {(z;, ;) }i, are scatters in the figure. For analysis purpose, we first perform a k-neighbour
regression to fit the realized returns against the predicted returns. From the plots you can see that

now these points form a smooth curve crossing the points{(zy, fix) }ii,, where m depends on the

cluster number. The blue line in fignre five represent the predicted returns { (g, x)}, and the
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green line represent the fitted curve {(zp, o)}, . After smoothing the scatters {(z;,u;)}i, we
can approximately realize how the realized value deviate from the corresponding predictions, as

we can directly observe how predicted return x; deviates from the clustered true return zjj,.

10. = prodiclion FEFT -0.03
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Figure 5: Linear model for ATO000A1PEFT7
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Figure 6: Linear model for DE0001135226
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Figure 7: Linear model for IT0001174611
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Remark: v-axis on the left denotes the cumulative distribution of predicted return x, y-axis on

the right denotes the value of return.

The cumulative distribution shows that the predictions for LSTM are relatively small, as the

ranges of x are smaller compared with the linear model for some bonds. Apart from that, the

predicted returns are surrounding around a certain values in some cases. In some of the figures the

slope of the cumulative distribution becomes quite large at some points. This phenomena implies,

in order to minimize the mean square error, LSTM is more likely to predict the returns by the

mean value of the historical observations. In the mean time, the magnitude of the simple model

predictions are larger and more evenly distributed. Hence the simpler model is more capable of

capturing different magnitude of price movements in the future.

Figure 8: LSTM for ATO000A1PEF7
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Figure 9: LSTM for DE0001135226

Figure 10: LSTM for IT0001174611

By looking at the difference between green and blue line, we notice the predicted value of LSTM
for some bonds are consistently larger than the realized value. The predicted values of LSTM are
also very unstable as the green line fluctuates around the blue line frequently. When we look into
the linear model, the green line in every figure is closer to the blue line. Besides, we can see the
predictions are also more stable in linear model as the green line deviate less frequently from the
blue line than in the case of LSTM. This result is caused by the complexity of the LSTM as more
parameters causes high variance. Hence these figures are consistent with the results we have in the
R? table.

To conclude, both models are capable of capturing alpha in short term horizon, though LSTM
performs worst than the simple linear model. The result shows that the momentum effect is strong
and the alpha indeed exists in short term EGB market . As we explain in the beginning of this

chapter, the momentum effect is due to the fact that the market cannot reflect quickly enough to
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eliminate the arbitrage opportunities. This market inefficiency in short term EGB market makes

generating alpha very easy.

4 Long Term Alpha Prediction

We have seen that machine learning techniques are capable of generating short term alpha. When
it comes to longer time horizon, it is much more difficult to do that as the market has enough time
to eliminate arbitrage opportunities. However, it is still worthwhile to check whether there is some
alpha in the long term EGB market because longer term alpha is easier for investors to arbitrage.

In this section, we split our study into two strands. For the first strand, we repeat the same
analysis in short term to see if momentum effect still exists. We try both statistical and neural
machine learning techniques to predict the bond price movements. For the second strand, we
switch from price space to yield space. We apply traditional analysis to yield curve and see if it

can provide mean reversion signal and help us predicting long term yield movements.
4.1 Price Space Study

4.1.1 Data Description:

Instead of looking at all the European bonds, we only focus on German bonds in this section. In
price space study we only choose 5 liquid bonds in total. In case some of the bonds may expire,
we only use data from the first half of 2019 to conduct the experiment.

The returns are calculated in terms of times and we consider the absolute returns in 1 hour.
We inherit the same list of futures in short term and use their 5 minutes’ returns as our predictors.
This time we do not perform Lasso Regression to select features but treat it as one of our testing

model. Here is a brief description of the data we use in long term:
e Target bond list: five German government bonds
e Training period: 2019.01.09 - 2019.06.09
e Testing period: 2019.06.09 - 2019.07.09
® 3, prices of target government bonds at time t
e Fi: prices of the future i at time s
e At : forward time horizon chosen to be 1 hour
e As =5 minutes

o predictors: &, = (F} = Flny, F2 = F2 ppy ooy FP = FI_p o Ys = Yootrs)
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4.1.2 Models Selected:
The models we compare for long term bond price movements prediction include:
e Long Short-Term Memory with Attention
e Linear Regression with Exponential Weighted Moving Average
e Lasso Regression with Exponential Weighted Moving Average
o Auto regressive model with order one (AR(1))

where the AR(1) model is defined as:

Xi=ec+BXi 1+ (4.1)

where ¢; is white noise and 3 is the auto-regressive coefficient. We use this model as we think in
long term the forward return may no longer depend on futures’ information but only depend on
the information from its historical return. In addition AR(1) can also be treated as a benchmark
model which only keeps a tiny part of old memory. Since the way to estimate the AR(1) coeffi-

cients is also through the ordinary least square, we do not spend extra effort to introduce the model.

4.1.3 The main result for long term alpha (price space):

The measure we use is still B? and the results for four listed models are as follow:

1D LSTM Linear with EWMA | Lasso with EWMA AR(1)
DE0001135325 | -0.16 / -0.11 -0.00 / 0.00 -0.01 / 0.00 -0.01 / 0.00
DE0001135226 | -0.33 / -0.37 -0.00 / 0.00 -0.01 / 0.00 -0.01 / 0.00
DE0001135044 | -0.36 / 0.10 0.00 / 0.00 -0.01 / 0.00 -0.01 / 0.00
DE0001134922 | -0.13 / -6.39 0.00 / 0.00 -0.01 / 0.00 -0.01 / 0.00
DE0001102382 | -0.31 / 0.15 0.00 / 0.00 -0.01 / 0.00 -0.01 / 0.00

Table 4: Comparison of R? for four models(left: out-of-sample, right: in-sample)

From the table , we can notice none of these model works as all the B? are close to zero or even
become negative, which means the features we chose are not able to predict the returns. It’s not
surprising that the linear model with memory perform poorly since in practice we seldom observe
any momentum effect in the long term bond market. For LSTM, it still cannot find any long term
pattern. This may be due to in long term we might not have enough data to train the network or

just the features do not contain any predictive information.
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Despite R? we also use another measure commonly seen in the industry. It is the return

weighted "win and lost” ratio R,;. This ratio is defined as:

T
_ 2= lret|lp =1
Rur] - T—
>ot=1 |rete|1p,=o

where ret; denote the return at time ¢t , Dy = 1 if the sign of the realized return equals our predicted

(4.2)

returns and D; = 0 if they are not equal. It basically measures the revenue of a simple strategy:
if the model predict the price would move up then we are going to long the bond with one unit of
currency, otherwise we are going to hold the short position. It is clear that if R, > 1 then our
total revenue based on this strategy is positive and if R,y < 1 then our total revenue is negative.

However, whenever we want to enact a strategy, we need to avoid a bias: the return could come
from 3 or the systematic return. If the realized returns are always positive, even a simple keep
long strategy can make a lot of profit. Therefore, we also consider the keep long and keep short

strategies, indicated as up and down in the table.

D LSTM Linear | lassoEMA | AR(1) Up Down
DE0001135325 | 1.298659 | 1.390792 | 1.530646 | 1.449354 | 1.530646 | 0.698321
DE0001135226 | 1.181375 | 1.404509 | 1.532165 | 1.472585 | 1.532165 | 0.634002
DE0001135044 | 1.23938 | 1.356132 | 1.380524 | 1.297519 | 1.380524 | 0.594366
DE0001134922 | 1.169271 | 1.318425 | 1.222634 | 1.178746 | 1.222634 | 0.645423
DE0001102382 | 1.250352 | 1.416823 | 1.32533 | 1.254504 | 1.325338 | 0.674329

Table 5: Comparison of return weighted "win and loss” ratios

Nearly all the models gains ratios larger than one and it seems to be contradict with the R2.
However, when we look into the very naive keep long strategy, we clearly understand that the
profits comes from the market returns instead of alpha as the ratio of this strategy is greater than
any other models’. The result in Lasso regression is the same as the keep long strategy since the
coefficients of Lasso are all shrinked to zero except for a positive intercept. Therefore, in price

space we cannot generate any alpha base on these models and features.

4.2 Yield Space Study

Since we could not find anything informative in price space, now we switch to yield space to see
if there is any potential signal we might be able to exploit. The basic idea could be expressed as
follows. Suppose we have a relatively good curve model for the theoretical yields. Whenever we
observe there are deviations between the market yvields and model yields, we claim the market is

mispricing the bonds (although it is also possible that the model is mispricing the bonds). Then
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we might expect the market yields mean revert to the model. That is:

w;:aarfet _ y;[:—fgf;’” < m;nm-ket o yznnd’eil (43)
where y;““’""“ is the market vield at time ft, y{“""’” is the model yield at time t and Af is the

forward time horizon. More intuitively, what we want to observe is:

i f g market Lmodel
market market _ >0 tf Yt <W (4 4)
Yerar W o = market model '
<0 if yrerhet = yrete
The reason why we consider such an idea explained later. The ways we obtain theoretical yield

curve are described in the next two sections.

4.2.1 Bootstrapping for yield curve model

Bootstrapping is a commonly used way to calibrate a theoretical vield curve in order to match the

market data. Basically, fitting a yield curve through bootstrapping consists of three steps:

o Define the functional form of the discount factors P(0,¢;). The form of discount factor can

be decided through instantaneous forward rate, libor-rate or annually compounded yield.

e Select the valid market data for calibrations and specify its price and static description, such

as maturity, coupon payment date.

e Matching the market price and the price given by the functional form to calculate the implied

In Hagan and West (2008), they collect many interpolation methods for construction of the yield
curve, including simple linear interpolation, piece-wise constant forward rate and spline method.
We study the piece-wise constant forward rate method in detail and use it to produce the theoret-

ical arbitrage free level of yield curve.

Piece-wise constant forward rate:
For simplicity, people in the industry assume the instantaneous forward rate is piece-wise constant,
which means f(t) is constant on every intervals [tj_1,%;]. This method is very stable, easy to
implement and still widely used.

Recall in section 2, we introduce the definition of the instantaneous forward rate and its rela-

tionship between the bond price:

n—1

P = Ciexpl— ’ f(s)ds} + (Cy + Vexp{— " fis)ds 4.5
> p{[ (8)ds} + (Ca + 1)ezp / (s)ds} (4.5)

atart
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If we restrict the forward rate f(f) to be piece-wise constant, and assume fgq¢ = tp = 0, then

the above formula becomes:

n—1 e My

P=3" Cieap{— Y f(t;)(tj — t;-1)} + (Cn + Deap{— D _ f(t;)(t; — tj-1)} (4.6)
i=1 i=1 i=1

for some m; such that t,,, | <t; <t, . i=1, ... n The way we decide f(#) is as follow: suppose
we have a list of bonds {Py, Pa, ..., P, } with ascending maturities 77 < T» < ... < T}, we force the

forward rate to be constant on each time interval [i’"_.,-_l,_ TJ-],_ i=2,..,n., ie,

i, 0<i<T
fa, Ti<t<Ts

fru Tu—l <t S Tu
Then the discount factor at time t* such that T),_; < t* < T), for some k is:

k—1

P(0,*) = exp{— Y _ f§(T} — Tj-1) — fu(t" — Tr1)} (4.8)

=1
Therefore, we can solve f; from j =1 to n recursively by equating
n—1

P= Zcip(n-.tf) + (Cn F I)P(n-.tn) (49)

i=1
Equation (4.9) needs to be solved numerically via the Newton-Raphson method. With the bond
prices we can easily get the vields to maturity. Then the vield curve is built. This method is called
the bootstrapping of the bond.
From equation (2.10) we can easily deduce that f(t) = %R(O, t)t. Since we restrict f(t) to be

piecewise constant, thus we can see the yield curve is actually:
C
R(t)=K + " (4.10)

If we have two rates R;, Riy1, then we can solve f(t) by:

f) =K = Ripitiny — Riti (4.11)
tiv1 — 1
= (Ri — Rig1)titisa (4.12)
tiy1 —t
Theretore, substitute C' and K into (4.10) we get:
R(t) = (t—t)tisa Ris (tig1 — O)E; R, (4.13)

(i1 —ti)t (i1 —ta)t
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Thus the zero price for the bond mature at time £ can be easily calculated as:

] = )‘;r:l!—.'- )’r-r:ll_’r- A 14
P(t) =PI P, (1.14)

From this expression, we know the piece-wise constant forward method can be also called the
exponential interpolation of the discount factors.

Before we formally describe the way to build the curve, we need to make one important as-
sumption: if the market is efficient enough and the traded asset is ligquid, then the price of the

traded asset is arbitrage free.

const forward rate
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Figure 11: Constant forward rate using five Italian Bonds (x-axis: maturity, y-axis: forward level)
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Figure 12: Bootstrapping curve using five Italian Bonds (x-axis: maturity, y-axis: vield level)

With this assumption, what we do first is selecting several very liquid bond from the market

and treat them as the benchmarks, then we use the bootstrap method to calculate the piece-wise
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constant forward rate and the discount factors. For the bonds missing from the curve, we use
equation (4.6) to calcnlate their prices and finally transform the prices into yields. By doing this,
we construct a model curve which can exactly fit the liquid benchmarks in the market and we
believe this curve is approximately close to the arbitrage free curve.

Though this curve may not be perfect and it lacks economic meaning, it is a very intuitive
model which considers the market efficiency. It makes use of the liquid bond prices in the market
(which under our assumption should be at arbitrage free level) and their mutual dependence in
a clever way. Also, we can see that this method has weak localization. Weak localization means
even if there is a big change in one of the input benchmarks, the impact will only have a minimal
effect other forward rates beyond the adjacent points. From the way we build the constant forward
curve, we can see that if the benchmark with maturity 7). changes, it does not affect the constant
forward rate f;, j = 1,..,k — 1 and it only has limited effects on the forward rate after T}, since
those rate are decided by all the rates f;, j =1,...,k together.

The reason why we do not use all of the bonds as benchmarks is based on the fact that some
bonds are very illiquid. They are not traded often and are more likely to be mispriced by the
market. Treating them as the input only damages the model performance. Therefore, the boot-
strapping curve should give more reasonable prices for those illiquid bonds compared to the market

prices.

Algorithm 2 Bootstrapping of the yield curve

1: select liquid bonds Py, Ps, ..., Ppwith maturity Ty, T, ..., T} from the market
2: set forward rates fi, fo..., fi

3: for each n € [1,k] do

4 solve P, = 0 CiP(0,8) + (Cn + 1)P(0,,,) for fy

5: end for

6: for each bond P; in the universe {Py, P, ..., P} do

7:  get coupon payment dates ty,ta,.... %

8 for each p € [1,1] do

9 P(0.ty) = exp{- X2} fi(T — Tj1) — fulty — Ti-1)}
10:  end for

1. set Py =Y\ CiP(0,4) + (C) + 1)P(0, 1)

12 solve Pj = Y1\ Creap{—~t - R;} + eap{~T - R;} for R;

13: end for
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4.2.2 Parametric Model: Dynamic Nelson and Siegel Model

In order to make comparison with the arbitrage free bootstrapping model, we also consider a
widely used parametric model for the yield curve proposed by Diebold and Li (2005). Unlike
bootstrapping, this parametric model is not used for calibration but for approximating the shape
of the curve. It is a directly human designed model with each parameter having clear econometric
interpretation and it does not require any arbitrage free assumption.

The Diebold and Li modelis a variations of the Nelson-Siegel (NS) model. NS model gives a

parsimonious form of the instantaneous forward rate

f(T) = [+ 1‘91(:_/\1- -+ ,32/\T{?_AT (4.15)

where 7 is the time to maturity. The according yield curve formula is:

17 ’
— [U f(s)ds (4.16)

1 By Y T

= —(By7 + T{l —e )= By | sde™) (4.17)
T Jo

o l[{)’{,r + J%{1 —e M) = Bore™ M 4 B, / e Mds) (4.18)
T Jo

1—e?7 1— e A7

..'./)’|] + 3]_( ) =t 62( = (.)—Xr) (*—119)

AT AT

Diebold and Li extend this model by allowing the coefficients 5y, 31, f3 and A to be time
varying. Moreover, they tried to forecast the yield curve based on a uni-variate AR(1) regression

on each coefficient. That is,

p o L= 1= hr
9(7) = Bot + Pra(———) + Bos(———¢") (4.20)
t ]
Bisanse = 6 +%iBie, i=1,2,3 (4.21)
Aeinje = E4+Aahas, (4.22)

¢; and 4; are obtained by regressing 3;;, As on an intercept and 5; ;5 , M_p
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Figure 13: Parametric curve using five Italian Bonds (x-axis: maturity, y-axis: vield level)

Since we have closed form expression for the zero compounded yield, we can get the discount
factors P; at maturity 7; through equation (2.3). By equation (2.11) we can caleulate the theoretical
bond prices and transform them into the theoretical vields we need easily throngh Newton method.

Behind this model setting, each coefficient has some econometric interpretation. If we let
T — 00 , then we can see lim; oo (T) = Pt . Hence o can represent the long term yield level.
On the other hand, if we let 7 — 0%, we can see lim,_o+ 4:(7) = Bo.¢ + 51+ Therefore, 51 ; may
be viewed as the short term adjustment to the model. According to Diebold and Li (2005), the

—AgT
. T | e 1=g™"t = AT
loading on f2; is =S¢

, which starts at 0, increases, and then decays to 0. So 2 can
be viewed as a medium factor. The parameter A; decides the speed of decay: large A; produce fast
decay of the yield while small Ay produce slow decay.

We can also interpret these three parameters as the approximate level, slope and curvature of
the vield curve. For 3y, if we increase it then all vields increase equally since 3 is a constant term
in the model. Therefore it reflect the level of the yield curve. For £, we can approximate the
slope of the curve by y(oc) — y(0). From our derivation above, we can see —(y(co) — y(0)) equals
exactly 81. Finally for o, if we increase it then both short term yields and long term vields don’t
change dramatically, but the mid term yields increase a lot since they have heavier loading on 3,
thereby the curvature of the vield curve changed.

The way we use this model is the same as in the bootstrapping case. We first select some
liquid benchmarks in the market, then we run an non-linear regression to get the coefficients as
well as the modelled curve. The non-linear regression method we used is the Nelder-Mead simplex

method. In our cases, we don’t have to fit an AR(1) to the coefficients since we are not trying to

directly predict the yield curve but we want to find some potential signals from it.

Nelder-Mead Simplex Method
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Note that we are trying to find the optimal parameter 5;, A for the NS model to fit the market data
in each timestep. This is not straightforward since the factor loading of each 3;,7 = 1,2 contain
the decay parameter A. It becomes a non-linear optimization problem. To solve the optimization
problem, we use the Nelder-Mead simplex method.

Nelder-Mead simplex method is a search method therefore it is capable of solving unconstrained
optimization problem when the target function are unknown or not easy to calculate. Suppose we

want to minimize the Lo distance between the benchmarks price and the model price:

K
1 )
L[ﬂ) = 'm.z"n.g % § :[I):\‘bw} _ I‘T,Narh"t]Q.. fcR" [423)
k=1

where @ is the set of parameters. To find the optimal solution, Nelder-Mead simplex method
first determine n + 1 vertices in R™ and their values of the loss function. Then the simplex method

do the following in the k-th iteration:

1. Sort the n + 1 vertices by their loss value such that L(#;) < L(f:) < ... < L(6,,)

T

2. Compute the reflection point #, = @ + p(f — 0,,41), where = L3 0; and p is a scalar
parameter greater than 0. If L(#,) < L(#,) < L(#,), set 0,41 = 0, and terminate the

iteration;
3. If L(#,) < L(#) , compute the expansion point 8, = & + x(#, — ) where y is a scalar

parameter greater than 1. If L(6.) < L(#,) set &,4+1 = @, and terminate the iteration;

4. If L(0,) < L(6,) < L(#, + 1) , compute 8, = § + (8, — ), v again is a scalar parameter
between 0 and 1. If L(0.) < L(0,), set 2,,, = x, and terminate the iteration; otherwise go

to step six;

o

CIEL(B,) = L(Bpyy), compute 8, = 0 — (0 — 0,4,). If L(0.) < L(0,4,), sct 0, = 0, and

terminate the iteration; otherwise go to step six;

6. Compute n new vertices #; = 6 +a(0; —6,), i=2,...,n+1 where 0 < ¢ < 1 then terminate

the iteration.

However, there is no standard criteria to stop Nelder-Mead method. Normally we set the

iteration epoch to be n x 200 that is 800 epochs in this case.

4.2.3 Mean Reversion Signal

We now have the theoretical yields stripped from the modelled yield curve and the observed vields
from the market. If the difference between the model yields and the market yields is a mean

reverting process, then there are possibilities that we can exploit this signal to generate alpha. In
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order to provide evidence of mean reversion, we study the hurst exponent and other statistical way
to estimate a mean reverting process.

Hurst Exponent:

A simple way to see whether a process is mean reverting is to check its hurst exponent. Hurst
exponent measures whether the time series has the tendency reverting to a mean or clustering in

a direction. It is defined as the H such that for the time series S;:

< |Se4r — Se| >~ 72 (4.24)

where < - > denotes the quadratic variation and 7 is a small time horizon. And a time series can

be characterized by hurst exponent if:
e [ < (.5, then the time series is mean reverting.
e H = 0.5, then the time series is a Geometric Brownian Motion
e H > (.5, then the time series is trending.

By caleulating the hurst exponent of the deviation series, we could have an initial intuition of
how this series behaves. [t is necessary for all the series to have hurst exponent smaller 0.5 to be

mean reverting. Otherwise this series is not a meaningful signal.

Maximum likelihood estimation of the OU process:

Another way to check mean reversion is to use an Ornstein-Uhlenbeck process, which is a mean re-
verting process, to estimate the deviation process. If the coefficients are all statistically significant,
then we can conclude the deviation is actually mean reverting.

We know the Ornstein-Uhlenbeck process satisfy the following stochastic differential equation:

S, = My — Sy)dt + cdW, (4.25)

This SDE admits a closed form solution, which is:

it

S, =8, e+ p(l—e™) o / e M=)l gy (4.26)

i

where § = t; — t;_;. By Ito isometry, one can easily find out the last term of (4.8) actually is a
; : . et - -
normal random variable with mean 0 and variance 0?1=4"— . Therefore, the conditional density

function of S, given S, | is:

(Se, — Sp,_ e — p(1 — e=M))2
252

f(St

St i AG) = erp |— (4.27)

1
vV 2ra
21-e"?

with o TM And the log-likelihood function given a set of observation {Sy,, S, ..., S, } is:
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L(p, 7 6) = In [ | £(Se, Stiri p, X.6) =D inf(St,, Sticaip, A, &) (4.28)
i=1 i=1
n N 1 «— _ =
= —Ein(ﬁ’ﬂ') — nin(s) — 322 ;[S;__ — S, e — (1 — e M)? (4.29)

The log-likelihood function is well-defined if and only if A > 0, which is also the domain of .
Calculating the derivatives with respect to p, A, o and set them to zero, gives the maximum

likelihood estimators:

ﬁ. o :‘:]_ St.' Z:‘:l S?.-. - Z:‘:l Sti—l Z?:l StJ'Sti—l [4 .30)
'”(Z:J:l Sf?,-,l - Z?:J St 54,_,) — ((Z:LJ St ) - Z:L:J St ZLL St._y)

11?122;1 StStoy — iy Sty — iy St +np?

A=— . 4.31
5 o1 SE, ~ 2 s Sty .
And
1 L mn n
&* =— [Z S} —2a z 8,8, +a? Z S (4.32)
n i=1 i=1 i=1
n mn
—2u(1 — (.t}{z Sy, —a Z Se_,) + (1 — ) (4.33)
=1 i=l1

A 2_2A

where o = ¢ and 02 = & =
For the level of significance, we check it via an econometric way. We first use Euler scheme to
find a discrete version of the OU, where we get:

Sy, — Sti = —A8S,, 4+ A\ud + o\/e (4.34)

i+1

Then we apply a standard linear regression to {S;,,, — Sy, } against {S;,} and check the p-value
and the sign of the coefficient A. If A is significantly positive, we say the process is actually mean

reverting. This should provide us stronger and more convincing evidence.

4.2.4 An econometric way to use the signal

Assume we have already proved the market yields mean reverts to the model. The most important
problems lie in how we use this signal to generate alpha. A very intuitive idea is to consider the
extended version of the OU process. We modify the constant long term mean term € in the OU
process and allow it to be stochastic and time dependent.

Since we assume the market yield mean revert to the model yield, if we suppose the market

yield g™ ¢t for each bond (except the benchmarks) satisfy an extended OU process, it is natural
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to choose the model yield ™9 as the long term stochastic mean. Therefore, we obtain the

dynamics of the market yield for each bond:

dyinm‘kﬁf = k(y;nodnf _ y;nm‘kef)dt % D‘dﬂf}_ (4‘35)

This explains our idea in (4.6) if k is positive. To fit this model, we also apply Euler scheme to

discretize the dynamics:

y;:_tgfct _ ygrmr'ket = k(y;rr.udczi _ y;rr.ar'kei.)At + O'V/E:_/ag (436)

where Z; is a standard normal random variable. To further simplify the model, we can choose At

market

qymodel instead of y;'node!' -y

to be constant. Considering the signaly;’"f“""“ — Uy , we obtain a

simple linear model:

y;irgimf _ y;mm-kef = k' (ymm-kef _ y;nodef) + 6 (437)
with k' = —kAt and ¢, = ovAtZ,. By fitting a simple linear model, we get a rough approximation

of the market yield dynamics. Though this form of model is very simple, we can easily check

whether the signal has predictive power via the p-value of the coefficient.

4.2.,5 The main result for long term alpha (yield space):

Data Description:

Fitting a curve model is much faster and this time we consider 53 German bonds with different
tenors in total. To obtain yield we first need to solve the yield R(0,7") from equation (2.6)
using numerical method given the instruments information and the market prices. To select the
benchmarks bonds, we again check the trading frequency of those bonds. Their trading frequency

can be known from the following picture:
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Figure 14: liguidity of German bonds

Note that we cannot simply choose the bonds traded most often as the benchmarks. If we
only choose the most liquid bonds and if these bonds have similar tenors, then the results for the
bonds with tenors greatly different from them can be very inaccurate. Apart from that, we need
to choose the bond with longest tenor to make sure the yield is defined for all tenors. After taking

the time to maturity into account, we decide to choose these six bonds as our benchmarks:

1D maturity comiment
DE0001104743 | 2020-12-11 | less liquid
DE0001141752 | 2022-04-08 | less liquid
DE0001141752 | 2024-02-15 | less liquid
DE0001102465 | 2029-02-15 liquid
DE0001135481 | 2044-07-04 | very liquid
DE0001102432 | 2048-08-15 | very liquid

Table 6: Benchmarks chosen to build the curve

The figures below show the bootstrap result of the constant forward rate model. The x-axis
stands for the maturities for each bond and the y-axis stands for the vields level. The red points
stand for the benchmarks we choose to build the curve, the blue scatters denote the market yield
and the orange curve denotes the model curve.

From the graph, we observe there are some irregular points (the broken line of the curve)
for the mid-term mature bonds. This is caused by the piece-wise constant nature of the forward

rate. Even though the forward curve is constant between each benchmarks’ maturities, after we
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transform the forward rate into the contimiously compounded rate, the curve can no longer be

smooth.
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Figure 15: Bootstrapping vield curve using liguid benchmarks(January)

model

*  morkat . *
g @ benchmark ®
22
z -,
% a0 4
0z .
04 o
i -
08 .
o 5 w 3 E £ =)

yoar

Figure 16: Bootstrapping yield curve using liquid benchmarks(April)
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Figure 17: Bootstrapping yield curve using liquid benchmarks(July)

After fitting the NS model, we also plot the evolution of the coefficients. As can be seen from
the plots, all curves look quite smooth. To some extent, this means the coefficients gradually
change as time goes by, thus the model does fit the market data well.

From figure 20 to figure 22, we clearly see that the yield curve level shows a decreasing trend
which correspond to the evolution of the coefficient Jy. For 31, we can see y(30) — y(0) gradually
decrease during the period, thus the curve is becoming flattened and »(0) — y(oo) should show a
trend to increase which correspond to the evolution of 3;. For the rest of the coefficients, we can
hardly tell whether the fitting results satisfy the truth, however we still assume the model should

fit the market data well in order to proceed to the next experiment.
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Figure 18: Evolution of coefficient 3,
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The plots below show the fitting result for the parametric curve. All axis have the same
meanings as in the constant forward curve figures. From the figure below, we can see that, unlike
the bootstrapping method, all the yield curves for the parametric model look smoother, as the

instantancous forward rate can change continuously with different maturities. Apart from that,
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the market yield are closer to the parametric model even though we do not treat them as the

benchmarks. Since the mid-term bonds with maturity from 5 to 10 years are relatively liquid,

their price should be close to the arbitrage free level. Therefore, we can assume these curves can

represent the theoretical arbitrage free curves to some extent.
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Figure 22: NS yield curve using liquid benchmarks(January)
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Figure 23: NS yield curve using liguid benchmarks(April)
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Figure 24: NS vield curve using liguid benchmarks

Evidence of mean reversion(July)

As mentioned before, we need to show the difference of the market yields and model yields is a
mean reverting series first. Figure 23 and 24 show the relationship between the lagged deviation
and the current deviation. We observe for the bootstrapping model, when the current absolute
deviation is large, then the lagged deviation tend to become smaller. This indicates that the

deviation process might be mean reverting.

3 . a0
RS
an 2 0043
= ‘i ~ - N ot
e g
g e ¥ e
] 3 H
§ 006 f £ %
8 . § -0ss .
oo
o
H a0
- N
a0 0063
o oos 31 [-31] [k 0000 =0 085 =0 060 =0 055 =0 050 =0 045 =0 80 -0 035
difference Affererca

2000
3
0008
§ ﬂ :
§ oo L 1Y
g«:)'s Tws
L]
om0
2028
-0830
am  om o a0 oo
aference

Figure 25: x-axis: current deviation, y-axis: lagged deviation (Bootstrap Curve)
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To solidify the truth, we conduct the analysis in section 4.2.3 for each bond’s deviation series.
The estimated coefficients of the OU process, hurst exponent and the level of significance are shown
in the Appendix B.

From the table in Appendix B, we can clearly see that the deviation process seems to be mean
reverting for the constant forward curve model. As in the table, the Hurst exponents for all the
bonds are smaller than 0.5, ranging from 0.21429 to 0.47430. Most of the p-value of the regression
coefficients are also less than 0.05 which indicates the coefficients are significantly different from
zero. Finally since the coefficients are all positive, we claim that the deviation process are mean

reverting. This supports us to treat the bootstrapping curve as the theoretical curve.
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Figure 26: x-axis: current deviation, y-axis: lagged deviation (Parametric Curve)

For the parametric model, the evidence of mean reverting is also strong . As in the table,
all the Hurst exponents are still less than 0.5 (range from 0.205510 to 0.478987) and under 95%
the p-value are small enough meaning that the coefficients are significantly different from zero.

Therefore, we can treat the parametric model as the theoretical yield curve as well.

Empirical Analysis:
Before we test the simple linear model, we estimate the level of market mispricing. If the level
of mispricing is severe, then the deviation should strongly prompt the market mean revert to the

arbitrage free level.




4.2 Yield Space Study 44

We consider the first indicator of mispricing to be the ratio of spread. To some extent, we can
treat the difference between market and model as an "arbitrage free spread” similar to bid-ask
spread. Then we intend to compare this spread with the bid-ask spread. If compared with the
bid-ask spread, the arbitrage free spread is large then the signal should be strong. Recall the
assumption is that the model should represent the arbitrage free level. However, this might not
hold true since we can notice that the long term means g of the deviation series are not 0 for all
the bonds. This is due to the model yield is only a rough approximation for the arbitrage free
yield thus they can be apart for some constant. We need to eliminate that when we consider the

ratio. Hence we consider such an indicator:

ynmr'kef. _ ,ym.odei — 1t

Indmis;n-ir‘iug =K [

] (4.38)

Table in the Appendix C shows the the mean of the bid-ask spread and this indicator. We notice

Yoid — Yask

that the indicators are all larger than 20 meaning that the arbitrage free spread approximately
larger than 20 bid-ask spread on average. Thus the mean reversion signal should be fairly strong.
However, when we study the speed of mean reversion we find out in fact the signal mean reverts

slow. With simple algebra, we can transform the solution of OU process into an AR(1) process:

Yirar = @y +c+ €& (4.39)

where ¢ = ¢, ¢ = p(l — e 2" and ¢, = 6_f;”me"“[”m_*‘]dil”s. If we want to derive the
half-life of the deviation process, by definition of half-life, we want to estimate the time t+h where

the process is expected to halve its distance to the stationary mean, i.e. h such that:

1
Eilyesn —pl = 5(v —p) (4.40)

where p = ﬁ From equation 4.39 it is easy to deduct that

Eilyesn — pl = ¢"(y: — p) (4.41)
Hence,
In2 In2
=— =—= 4.42
Inlé] ~ MAt (4.42)

Here At is chosen to be 5 minutes. The half-lives for the deviations are shown in the table in
Appendix D.

In fact, it takes a lot of time for the deviation revert to the halve level, approximately 2 weeks.
Thus although the mispricing level is high, the force of mean reverting is still not very strong. We
should not use it as a short term alpha signal.

Besides, we also compare the volatility between the movements of market yields and the devia-

market model

and 4l —" ") against different At separately in the following figures.

tions. We plot prTE)

a
sd(Aye)

When At = bmin, instantaneous volatility is really close to volatility of the yield and slowly decay
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to zero as At increase, but the realized volatility is much larger and decay to a constant as Af

increase. This shows that the signal is more likely a longer term alpha indicator.
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Figure 27: x-axis: number of 5 minutes, y-axis: volatility ratio (Bootstrap Model)
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Figure 28: x-axis: number of 5 minutes, y-axis: volatility ratio (Parametric Model)

Empirical results: We proceed to fit the simple linear model mentioned in section (4.2.4). In

table in appendix D we compute the half life for each deviation series for both curve models. Note

that the half lives vary a lot for each bond’s deviations thus we cannot fix the forward horizon

when we predict the vield movements. The intuitive choices of forward time horizon for each bond

are the half lives of the corresponding deviation series.
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Figure 29: average yield move (y-axis) against the signal (x-axis) (Bootstrap Model)
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Figure 30: average yield move (y-axis) against the signal (x-axis) (Parametric Model)

In figures 27 and 28, we select two bonds with short and long term maturity separately and plot
their average yield movements in Aty (k = 1,2, 3 the corresponding half lives) against their current
deviations for both curve models. From the figure, however, we do not recognize a clear relationship
between the deviation and the yield movements for either bootstrap model or parametric model.
We can see almost all the curves in the figures show random pattern, except for the short term
bond for parametric model approximately show some decreasing trend as the deviations increase.

Table in the Appendix C shows the the regression coefficients along with their p -value and the
in-sample and out-of-sample R? produced by the linear model for two different theoretical curves.

We first study the regression coefficients for two curves. For all the bonds, small p-values
indicate that the regression coefficients are significant. The main problem of these coefficients
is that they are not all negative. In Hull White model, we should constrain the speed of mean
reversion to be positive so that the market yields can mean revert to the model yields(note that the
regression coefficient has the opposite sign of reversion rate). If this condition does not preserve,
then we cannot guarantee the deviation signal function in the way we expect. We then study the
R? . For in-sample case , all the R? produced by two different curves are significantly positive.
However, when we test the model out of training sample, we only get negative R? value for most
of the bonds. Apart from that, the positive R? values are of small magnitudes. This means the

linear model cannot use the signal properly and thus we fail to generate alpha in this way.
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The potential reasons why these models fail can be the following reasons: firstly, it is likely
that the theoretical models cannot well represent the true arbitrage free curve. The mispricing
level is unreasonably high. In real market such a mispricing level cannot happen otherwise it
would provide lots of arbitrage opportunities. Then even if we notice the deviation series is mean
reverting, we do not know whether the market yields revert to the model yields or model yields
revert to the market yields given these two models. Secondly, the discretized Hull White model is
not aceurate when At is high. Besides, the Gaussian assumption behind Hull White model is too

strong to hold in reality.

5 Conclusion

In this project we investigate the possibility to generate alpha in EGB market. Section Three
focuses on capturing alpha in short term horizon and section four focuses on capturing alpha in
long term horizon.

In short term horizon alpha prediction, we mainly apply neural machine learning techniques and
statistical learning techniques to bonds return prediction. We find out there are some possibilities
to generate alpha for European bonds using historical futures and bonds price movements. These
alpha are closely related to the short term momentum effect since the linear model with exponential
weighted average can produce predictions with high R2. In addition, we notice the neural network
does not outperform the simple model even though it has more parameters than the simple model.
The LSTM is less capable of capturing returns of large magnitudes and the model performance is
less stable than the linear model.

In long term horizon, we first explore the possibility to generate alpha in price space. We
repeat the similar analysis in the short term prediction. However, all models fail to produce good
predictions and the well refined models are less comparable to the very naive model. Apart from
that, we switch to the yield space and develop a new mean reversion signal. We select liquid bonds
to construct a theoretical arbitrage free vield curve using two methods and discover mean reversion
in the difference between market and model yields. We also propose a linear model which takes the
signal as the predictor to predict yvield movements. However, we still do not manage to generate
alpha from this signal and the model. Some empirical analysis show that the proposed curve may
not be able to represent the true arbitrage free yield curve.

To conclude, generating alpha in long term EGB market is more difficult than in short term as
market is more efficient in the long term. We believe this project can better help us understand
the level of market efficiency in different time horizon and the potentials of the machine learning

and transitional analysis techniques in financial industry.
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A Appendix: maximum likelihood estimator of OU process

OL(p, A, 6) 1

T
o = g[l — e M) Z[S}_, - S;___Irf_m — (1 — tf_m)] =0
i=1

_ Z:;l[ 15.' _Sti—le_/\é]
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Substitute (A.4) into (A.2) gives:

Z:l:l Si, —b Z:;J St,
1-b

np =
where

b= Z?:L St St — !‘ZLL Sty —p 2:1:1 S, +np?
Z?:]_ SE._. - 2p Z;;l S!'i—l # 7‘}'.”"2

Removing denominators and collecting terms gives:

np = (Zsl,- ZS?,_| - Zst-i—l Zsii—lsii +”((ZSL='—|}2_
i=1 i=1 i=1 i=1 i=1
Zsf.—| ZS:.) +#2”(Z S, — Zst._.))
i=1 i=1 i=1 i=1
/(Z Sf,_, - Zsz._.sz. +ﬂv(z S, — Zsz._.))
i=1 i=1 i=1 i=1

Therefore we can directly solve p from above and it gives:

. Z:‘:L S!'i Z:‘:L S;‘-!.q - Z:;J Sﬁ;—l ZLJ Sﬁ;S\";—l

p= 5
'”(Z:‘:l St.?,-_l - ZLJ 54, St 1) - ((Z;Ll Sty )2 - Z;LJ S, ELL 'St-.--n)

The rests are straightforward.

(A1)

(A.2)

(A.3)

(A.4)

(A.9)
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B Appendix: Evidence of Mean Reversion

Table 7: Evidence of mean reversion for Bootstrap model

1D n A o Hurst | p value

DE0001104693 | 0.03971 | 0.00388 | 0.00237 | 0.31785 | 0.00347

DE0001141703 | 0.04030 | 0.00207 | 0.00161 | 0.36477 | 0.02525

DE0001104701 | 0.03306 | 0.00122 | 0.00117 | 0.39922 | 0.06017

DE0001135390 | -0.02275 | 0.00095 | 0.00124 | 0.46669 | 0.06261

DE0001104719 | 0.02646 | 0.00120 | 0.00101 | 0.44028 | 0.09569

DE0001141711 | 0.02028 | 0.00102 | 0.00103 | 0.39525 | 0.13973

DE0001104727 | 0.01301 | 0.00130 | 0.00083 | 0.39081 | 0.03376

DE0001135408 | 0.01275 | 0.00229 | 0.00082 | 0.38521 | 0.01589

DE0001135416 | 0.00584 | 0.00254 | 0.00066 | 0.43377 | 0.00014

DE0001104735 | 0.00612 | 0.00218 | 0.00067 | 0.38212 | 0.00610

DE0001141729 | 0.00324 | 0.00305 | 0.00065 | 0.38546 | 0.00108

DE0001135424 | -0.05391 | 0.00303 | 0.00056 | 0.40160 | 0.00022

DE0001141737 | -0.01223 | 0.00317 | 0.00051 | 0.46638 | 0.00012

DE0001135440 | 0.00070 | 0.00357 | 0.00045 | 0.41551 | 0.00002

DE0001135457 | -0.00420 | 0.00348 | 0.00042 | 0.37598 | 0.00172

DE0001141745 | -0.00802 | 0.00442 | 0.00040 | 0.47430 | 0.00027

DE0001135465 | -0.00843 | 0.00742 | 0.00037 | 0.40039 | 0.00000

DE0001135473 | -0.01567 | 0.00765 | 0.00035 | 0.39268 | 0.00000

DE0001135499 | -0.02223 | 0.00614 | 0.00034 | 0.36798 | 0.00000

DE0001141760 | -0.02026 | 0.00481 | 0.00038 | 0.32507 | 0.00000

DE0001102309 | -0.02418 | 0.00478 | 0.00035 | 0.33691 | 0.00001

DE0001141778 | -0.02095 | 0.00427 | 0.00037 | 0.33057 | 0.00000

DE0001102317 | -0.02365 | 0.01158 | 0.00049 | 0.25779 | 0.00000

DE0001102325 | -0.01901 | 0.02888 | 0.00069 | 0.02330 | 0.00000

DE0001141786 | -0.00798 | 0.01473 | 0.00042 | 0.33858 | 0.00000

DE0001134922 | 0.02042 | 0.01033 | 0.00050 | 0.26886 | 0.02509

DE0001102358 | -0.02013 | 0.01271 | 0.00035 | 0.36929 | 0.00000

DE0001102366 | -0.03999 | 0.00595 | 0.00033 | 0.37564 | 0.00000

DE0001102374 | -0.07402 | 0.00457 | 0.00029 | 0.41788 | 0.00140

DE0001102382 | -0.09061 | 0.00346 | 0.00028 | 0.40985 | 0.00270

DE0001102390 | -0.09820 | 0.00392 | 0.00025 | 0.38576 | 0.00023
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DE0001102408 | -0.10140 | 0.00250 | 0.00023 | 0.38909 | 0.00963
DE0001102416 | -0.09303 | 0.00270 | 0.00022 | 0.35909 | 0.01155
DE0001135044 | -0.06031 | 0.00558 | 0.00031 | 0.37329 | 0.00706
DE0001102424 | -0.07747 | 0.00719 | 0.00020 | 0.34500 | 0.00000
DE0001135069 | -0.05598 | 0.00423 | 0.00027 | 0.39686 | 0.00017
DE0001102440 | -0.05547 | 0.00669 | 0.00023 | 0.38554 | 0.00001
DE0001135085 | -0.03486 | 0.00271 | 0.00028 | 0.38922 | 0.01084
DE0001102457 | -0.02833 | 0.01120 | 0.00019 | 0.32022 | 0.00000
DE0001135143 | -0.04324 | 0.00145 | 0.00029 | 0.37931 | 0.11450
DE0001135176 | -0.05272 | 0.00119 | 0.00027 | 0.38529 | 0.09274
DE0001135226 | -0.04281 | 0.00109 | 0.00029 | 0.39803 | 0.21991
DE0001135275 | -0.02821 | 0.00101 | 0.00024 | 0.40315 | 0.40197
DE0001135325 | -0.01369 | 0.00197 | 0.00020 | 0.36013 | 0.09687
DE0001135366 | -0.01669 | 0.00249 | 0.00019 | 0.32733 | 0.06404
DE0001135432 | -0.01887 | 0.00429 | 0.00018 | 0.25525 | 0.00001
DE0001102341 | 0.01297 | 0.01111 | 0.00011 | 0.21429 | 0.00000

Table 8: Evidence of mean reversion for parametric model

1D I A a Hurst p value
DE0001104693 | -0.03176 | 0.00641 | 0.00146 | 0.346042 | 0.00000
DE0001141703 | -0.01993 | 0.00599 | 0.00106 | 0.344803 | 0.00000
DE0001104701 | -0.00610 | 0.00859 | 0.00019 | 0.327879 | 0.00000
DE0001135390 | -0.06275 | 0.00255 | 0.00099 | 0.380706 | 0.00187
DE0001104719 | 0.00581 | 0.00221 | 0.00082 | 0.347446 | 0.00437
DE0001141711 | 0.00802 | 0.00340 | 0.00084 | 0.334728 | 0.00068
DE0001104727 | 0.00912 | 0.00611 | 0.00097 | 0.367374 | 0.00008
DE0001135408 | 0.00932 | 0.00684 | 0.00091 | 0.364731 | 0.00000
DE0001135416 | 0.01209 | 0.00250 | 0.00057 | 0.438032 | 0.00117
DE0001104735 | 0.01423 | 0.00245 | 0.00058 | 0.378333 | 0.00069
DE0001141729 | 0.01313 | 0.00411 | 0.00061 | 0.407883 | 0.00035
DE0001135424 | -0.03897 | 0.00386 | 0.00067 | 0.383029 | 0.00087
DE0001141737 | 0.00800 | 0.00375 | 0.00048 | 0.469125 | 0.00000
DE0001135440 | 0.02066 | 0.00560 | 0.00042 | 0.406346 | 0.00000
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DE0001135457 | 0.01395 | 0.00486 | 0.00041 | 0.386615 | 0.00009
DE0001141745 | 0.00961 | 0.00528 | 0.00040 | 0.478987 | 0.00000
DEO0001135465 | 0.00209 | 0.00575 | 0.00038 | 0.437407 | 0.00000
DE0001135473 | -0.00494 | 0.00810 | 0.00038 | 0.400730 | 0.00000
DE0001135499 | -0.00706 | 0.01283 | 0.00038 | 0.359533 | 0.00000
DE0001141760 | -0.00222 | 0.00579 | 0.00040 | 0.406340 | 0.00000
DE0001102309 | -0.00692 | 0.00495 | 0.00036 | 0.344104 | 0.00000
DE0001141778 | -0.00340 | 0.00388 | 0.00039 | 0.333162 | 0.00000
DE0001102317 | -0.00969 | 0.00534 | 0.00039 | 0.396622 | 0.00007
DE0001102325 | -0.01250 | 0.00558 | 0.00037 | 0.308075 | 0.00000
DE0001141786 | -0.00408 | 0.00536 | 0.00039 | 0.382135 | 0.00273
DE0001134922 | 0.00497 | 0.00316 | 0.00047 | 0.306490 | 0.00143
DE0001102358 | -0.01316 | 0.00461 | 0.00036 | 0.392535 | 0.00275
DE0001102366 | -0.01571 | 0.00364 | 0.00034 | 0.368491 | 0.02728
DE0001102374 | -0.02518 | 0.00467 | 0.00028 | 0.406287 | 0.06090
DE0001102382 | -0.03325 | 0.00261 | 0.00029 | 0.414386 | 0.00088
DE0001102390 | -0.03450 | 0.00482 | 0.00032 | 0.391480 | 0.00133
DE0001102408 | -0.03499 | 0.00303 | 0.00028 | 0.404955 | 0.00099
DE0001102416 | -0.03540 | 0.00306 | 0.00025 | 0.396721 | 0.01717
DE0001135044 | -0.05729 | 0.00871 | 0.00063 | 0.285240 | 0.00000
DIE0001102424 | -0.03145 | 0.00688 | 0.00024 | 0.399964 | 0.04706
DE0001135069 | -0.06167 | 0.00363 | 0.00031 | 0.364847 | 0.00000
DE0001102440 | -0.02153 | 0.00847 | 0.00028 | 0.407194 | 0.00000
DE0001135085 | -0.04921 | 0.01051 | 0.00030 | 0.361013 | 0.00002
DE0001102457 | -0.00458 | 0.00796 | 0.00026 | 0.382948 | 0.00048
DE0001135143 | -0.07765 | 0.00206 | 0.00029 | 0.375551 | 0.00614
DE0001135176 | -0.07519 | 0.00184 | 0.00050 | 0.411134 | 0.00097
DE0001135226 | -0.06002 | 0.00165 | 0.00030 | 0.443242 | 0.02570
DE0001135275 | -0.04252 | 0.00116 | 0.00025 | 0.448898 | 0.01279
DE0001135325 | -0.04028 | 0.00134 | 0.00021 | 0.447774 | 0.02541
DE0001135366 | -0.05345 | 0.00157 | 0.00020 | 0.447451 | 0.00758
DE0001135432 | -0.03640 | 0.00210 | 0.00017 | 0.411428 | 0.00000
DE0001102341 | -0.00483 | 0.03637 | 0.00012 | 0.205510 | 0.00006
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C Appendix: Level of Mispricing

Table 9: Mispricing level with respect to the bid-ask spread

ID base_spread | Ind (Bootstrap) | Ind (parametric) | Maturity
DE0001135069 0.00017 18.98785 33.19713 2028-01-04
DE0001135044 0.00020 21.27156 30.01386 2027-07-04
DE0001102341 0.00004 24.56185 33.41861 2046-08-15
DE0001134922 0.00030 25.68386 63.88855 2024-01-04
DE0001104693 0.00124 26.04512 4.01749 2019-09-13
DE000113505 0.00012 27.05370 7.20151 2022-01-04
DE0001135473 0.00009 28.73450 15.98079 2022-07-04
DE0001141703 0.00093 33.43014 5.32186 2019-10-11
DE0001135499 0.00009 33.74900 25.15390 2022-09-04
DE0001135085 0.00014 34.24474 25.08435 2028-07-04
DE0001102358 0.00005 35.92082 39.40449 2024-05-15
DE0001135424 0.00020 35.95355 25.88360 2021-01-04
DE0001141745 0.00014 37.25417 7.20834 2021-10-08
DE0001141760 0.00009 39.23626 23.18425 2022-10-07
DE00011 417M 0.00008 41.86746 27.57503 2023-04-14
DE0001104701 0.00067 43.40222 34.36982 2019-12-13
DE0001141737 0.00017 43.47019 35.48336 2021-04-09
DE0001135440 0.00014 44.29723 44.59025 2021-07-04
DE0001135416 0.00024 46.29612 45.89797 2020-09-04
DE0001135432 0.00004 46.78051 45.55549 2042-07-04
DE0001141786 0.00006 47.17324 16.01934 2023-10-13
DE0001141729 0.00021 48.69868 42.14138 2020-10-16
DE0001135457 0.00013 48.94492 48.69180 2021-09-04
DE0001102309 0.00007 50.52793 33.99260 2023-02-15
DE0001102325 0.00005 52.10566 36.65010 2023-08-15
DE0001135390 0.00067 53.00207 58.50483 2020-01-04
DE0001135408 0.00031 56.42010 37.64656 2020-07-04
DE0001104735 0.00023 59.38235 42.90927 2020-09-11
DE0001102366 0.00004 63.69155 52.77006 2024-08-15
DE0001102457 0.00002 64.23931 119.89050 2028-08-15
DE0001104727 0.00034 65.59581 7.38731 2020-06-12
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DE0001102317 0.00006 66.20060 43.48088 2023-05-15
DE0001135325 0.00005 G7.47992 27.70538 2039-07-04
DE0001102424 0.00003 68.23037 27.39010 2027-08-15
DEO0001135366 0.00005 68.37194 37.37908 2040-07-04
DEO0001135176 0.00010 71.26833 53.31164 2031-01-04
DEO0001104719 0.00038 73.85204 79.45259 2020-03-13
0E0001141711 0.00038 74.64292 63.75811 2020-04-17
DE0001135143 0.00010 81.94399 41.28963 2030-01-04
DE0001102390 0.00004 84.80457 79.70220 2026-02-15
0E0001102440 0.00002 89.79741 75.30680 2028-02-15
DE0001102382 0.00004 90.25557 76.17320 2025-08-15
DE0001102374 0.00004 90.91478 89.44940 2025-02-15
DEO0001102416 0.00004 98.22514 56.06280 2027-02-15
DEO0001135275 0.00006 105.87757 45.05300 2037-01-04
DE0001102408 0.00003 108.82500 30.84080 2026-08-15
DEO0001135226 0.00007 130.67828 63.55989 2034-07-04
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D Appendix: Results for the linear model

Table 10: Regression result of the linear model (Bootstrap model)

D const p of const beta p of beta | R2in R2 out | Half life
DE0001104693 | 0.00101 | 0.00000 | -0.02042 | 0.00000 | 0.00257 | 0.00349 178
DE0001141703 | 0.00202 | 0.00000 | -0.03477 | 0.00000 | 0.00246 | 0.01629 334
DE0001104701 | 0.00288 | 0.00000 | -0.05729 | 0.00000 | 0.00342 | -0.15039 568
DE0001135390 | -0.00983 | 6.71E-127 | -0.29177 | 5.791E-279 | 0.13419 | -0.06889 27
DE0001104719 | 0.00365 | 0.00000 | -0.18153 | 1.37E-151 | 0.07402 | -0.07509 579
DE0001141711 | 0.00310 | 0.00000 | -0.23192 | 4.93E-132 | 0.06516 | -0.02983 680
DE0001104727 | 0.00091 | 0.00000 | -0.23213 | 3.18E-128 | 0.06261 | 0.01071 533
DE0001135408 | 0.00037 | 0.02067 | -0.18791 | 0.00000 | 0.04322 | 0.04453 302
DE0001135416 | -0.00082 | 0.00000 | -0.15139 | 0.00000 | 0.01924 | 0.01361 272
DEO0001104735 | -0.00077 | 0.00000 | -0.15324 | 0.00000 | 0.02056 | 0.01990 318
DE0001141729 | -0.00077 | 0.00000 | -0.03983 | 0.00070 | 0.00125 | -0.02740 227
DE0001135424 | 0.01428 | 0.00000 0.32653 | 0.00000 | 0.03029 | -0.08131 229
DE0001141737 | -0.00821 | 0.00000 | -0.40388 | 0.00000 | 0.03585 | 0.01327 218
DEO0001135440 | -0.00272 | 0.00000 | -0.33899 | 0.00000 | 0.04237 | 0.00553 193
DE0001135457 | -0.00389 | 0.00000 | -0.24418 | 0.00000 | 0.01884 | -0.05200 198
DE0001141745 | -0.00331 | 0.00000 | -0.12779 | 0.00000 | 0.00341 | -0.01164 156
DE0001135465 | -0.00513 | 0.00000 | -0.39633 | 0.00000 | 0.01318 | -0.02302 93
DE0001135473 | -0.00822 | 0.00000 | -0.41656 | 0.00000 | 0.00802 | -0.03778 90
DE0001135499 | -0.01879 | 0.00000 | -0.71633 | 0.00000 | 0.02746 | -0.06896 112
DE0001141760 | -0.01359 | 0.00000 | -0.50794 | 0.00000 | 0.01663 | 0.00027 144
DE0001102309 | -0.01607 | 0.00000 | -0.50099 | 0.00000 | 0.01549 | -0.01906 144
DEO0001141778 | -0.01027 | 0.00000 | -0.30823 | 0.00000 | 0.00351 | -0.02266 162
DE0001102317 | -0.00431 | 0.00000 | -0.11413 | 0.00008 | 0.00167 | -0.00956 59
DE0001102325 | -0.00151 | 0.00688 | -0.04480 | 0.10458 | 0.00028 | 0.02891 24
DE0001141786 | -0.00129 | 0.00290 0.00135 | 0.97902 | 0.00000 | -0.00041 47
DE0001134922 | 0.00915 | 0.00000 | -0.48216 | 0.00000 | 0.00750 | -0.54117 67
DE0001102358 | -0.00779 | 0.00000 | -0.29817 | 0.00003 | 0.00184 | -0.01203 54
DE0001102366 | 0.02270 | 0.00000 0.64908 | 0.00000 | 0.00743 | -0.00445 116
DE0001102374 | 0.03754 | 0.00000 0.57531 0.00000 | 0.00449 | -0.01013 151
DE0001102382 | 0.04399 | 0.00000 0.55437 | 0.00000 | 0.00358 | -0.03847 200
DE0001102390 | 0.14336 | 0.00000 1.52046 | 0.00000 | 0.02106 | -0.10986 176
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DE0001102408 | 0.24861 0.00000 2.53630 0.00000 | 0.04527 | -0.50683 277
DE0001102416 | 0.12207 0.00000 1.40797 0.00000 0.01212 | -0.21728 256
DE0001135044 | 0.02391 0.00001 0.46549 0.00000 | 0.00293 | -0.06511 124
DE0001102424 | 0.13728 | 0.00000 1.82806 0.00000 | 0.02142 | -0.06336 96
DE0001135069 | -0.02517 | 0.00000 | -0.34785 | 0.00023 | 0.00147 | -0.03917 163
DE0001102440 | 0.02699 | 0.00000 0.57280 0.00000 | 0.00386 | 0.01398 103
DE0001135085 | -0.01834 | 0.00000 | -0.27316 | 0.00056 | 0.00130 | -0.10123 255
DE0001102457 | 0.01582 | 0.00000 0.66381 0.00000 | 0.00562 | 0.00412 61
DE0001135143 | -0.03931 | 0.00000 | -0.59555 | 0.00000 | 0.01342 | -0.61528 478
DE0001135176 | -0.06175 | 0.00000 | -0.85529 | 0.00000 | 0.02067 | -0.92112 581
DE0001135226 | -0.07444 | 3.02E-169 | -1.41181 | 0.00000 | 0.04570 | -1.80747 634
DE0001135275 | -0.09204 | 3.87E-219 | -2.77609 | 2.35E-135 | 0.06679 | -2.93735 684
DE0001135325 | -0.05396 | 4.50E-140 | -3.23182 | 0.00000 | 0.04436 | -0.83221 352
DE0001135366 | -0.06621 | 7.64E-115 | -3.30178 | 0.00000 | 0.04191 | -0.47000 278
DE0001135432 | -0.01975 | 0.00000 | -0.70182 | 0.00007 | 0.00171 | 0.00111 161
DE0001102341 | 0.00224 | 0.36252 | -0.35836 | 0.06009 | 0.00038 | -0.00743 62
Table 11: Regression result of the linear model (parametric model)

D const p of const beta p of beta R2 in R2 out | Halflife
DE0001104693 | -0.00254 | 0.00000 | -0.09467 | 0.00000 | 0.03334 | 0.03608 108
DE0001141703 | -0.00243 | 0.00000 | -0.14026 | 0.00000 | 0.03749 | 0.06593 115
DE0001104701 | -0.00010 | 0.55028 | -0.05853 | 0.01671 | 0.00062 | -0.02533 80
DE0001135390 | -0.01887 | 0.00000 | -0.28975 | 0.00000 | 0.18051 | -0.08639 272
DE0001104719 | 0.00106 0.00000 | -0.18554 | 4.98E-157 | 0.07568 | -0.14687 313
DE0001141711 | 0.00077 0.00000 -0.18072 | 6.31E-119 | 0.05716 | 0.00784 204
DE0001104727 | 0.00058 0.00000 -0.11373 0.00000 0.03400 | 0.02282 113
DE0001135408 | 0.00088 0.00000 -0.14474 0.00000 0.03700 | 0.03359 101
DE0001135416 | 0.00240 0.00000 | -0.32346 | 2.92E-111 | 0.05381 | -0.04572 277
DE0001104735 | 0.00216 0.00000 | -0.26265 | 0.00000 | 0.04428 | 0.01861 283
DE0001141729 | 0.00085 0.00000 | -0.13299 | 0.00000 | 0.01545 | -0.00724 168
DE0001135424 | 0.00491 0.00000 | 0.18913 | 0.00000 | 0.01914 | -0.02907 179
DE0001141737 | 0.00113 0.00000 | -0.36926 | 0.00000 | 0.01946 | 0.02562 184
DE0001135440 | 0.00585 0.00000 | -0.34975 | 0.00000 | 0.02778 | -0.01907 123
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DE0001135457 | 0.00048 0.13791 | -0.14781 | 0.00000 | 0.00464 | -0.03876 142
DE0001141745 | -0.00316 | 0.00000 0.18324 | 0.00000 | 0.00395 | -0.00186 131
DE0001135465 | -0.00184 | 0.00000 0.13835 | 0.00049 | 0.00132 | -0.01012 120
DE0001135473 | -0.00106 | 0.00000 0.06565 | 0.08265 | 0.00033 | -0.00030 85

DE0001135499 | -0.00343 | 0.00000 | -0.33662 | 0.00000 | 0.00976 | -0.02998 54

DE0001141760 | -0.00285 | 0.00000 | -0.36772 | 0.00000 | 0.01042 | -0.01303 119
DE0001102309 | -0.00873 | 2.20E-111 | -0.75893 | 0.00000 | 0.03360 | -0.06468 140
DE0001141778 | -0.00571 | 4.80E-102 | -0.69592 | 0.00000 | 0.01916 | -0.16209 178
DE0001102317 | -0.00848 | 0.00000 | -0.51405 | 0.00000 | 0.01954 | -0.07845 129
DE0001102325 | -0.01201 | 0.00000 | -0.66237 | 0.00000 | 0.02552 | 0.06893 124
DE0001141786 | -0.00756 | 1.72E-134 | -1.22024 | 0.00000 | 0.04278 | -0.31082 129
DE0001134922 | -0.00080 | 0.04241 | -0.84696 | 0.00000 | 0.02969 | -0.62735 219
DE0001102358 | -0.01429 | 0.00000 | -0.67929 | 0.00000 | 0.01865 | -0.06714 150
DE0001102366 | -0.00885 | 0.00000 | -0.21290 | 0.00028 | 0.00144 | -0.02939 190
DE0001102374 | -0.00824 | 0.00008 | -0.14701 | 0.06807 | 0.00036 | -0.01699 148
DE0001102382 | 0.00105 0.70290 0.25178 | 0.00101 | 0.00119 | -0.05806 265
DE0001102390 | 0.02314 0.00000 0.78635 | 0.00000 | 0.01093 | -0.06894 143
DE0001102408 | 0.05603 0.00000 1.76582 | 0.00000 | 0.03350 | -0.39054 228
DE0001102416 | 0.06133 0.00000 1.90148 | 0.00000 | 0.02488 | -0.48208 226
DE0001135044 | 0.00758 0.00000 0.16230 | 0.00000 | 0.00422 | -0.07036 79

DE0001102424 | 0.05201 0.00000 1.75064 | 0.00000 | 0.03413 | -0.11208 100
DE0001135069 | 0.04534 0.00000 0.80924 | 0.00000 | 0.01266 | -0.29586 190
DE0001102440 | 0.01045 0.00000 0.65056 | 0.00000 | 0.01157 | -0.00811 81

DE0001135085 | 0.06014 0.00000 1.27718 | 0.00000 | 0.03574 | -0.12987 65

DE0001102457 | -0.00158 | 0.00000 0.50475 | 0.00000 | 0.00817 | -0.01533 87

DE0001135143 | 0.02434 0.00110 0.47426 | 0.00000 | 0.00266 | -0.19226 337
DE0001135176 | 0.03914 0.00004 0.68647 | 0.00000 | 0.00337 | -0.45506 377
DE0001135226 | -0.07475 | 0.00000 | -0.99942 | 0.00000 | 0.01037 | -0.20605 420
DE0001135275 | -0.09071 | 0.00000 | -1.62692 | 0.00000 | 0.02357 | -0.66407 597
DE0001135325 | -0.07210 | 0.00000 | -1.29682 | 0.00000 | 0.01158 | -0.29194 515
DE0001135366 | -0.04695 | 0.00000 | -0.57484 | 0.00000 | 0.00377 | -0.24645 441
DE0001135432 | -0.02246 | 0.00003 | -0.30185 | 0.03100 | 0.00051 | -0.11940 330
DE0001102341 | -0.00041 | 0.40855 0.04985 | 0.57672 | 0.00003 | -0.00271 19
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FBTP | FBTS | FGBL | FGBM | FGBS | FGBX | FOAT
ATO000AIPEFT | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE
BE0000343526 FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | TRUE
DE0001135226 FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE
ES00000128E2 FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | TRUE
FI4000046545 FALSE | FALSE | TRUE | FALSE | FALSE | TRUE | FALSE
FRO010171975 FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | TRUE
IEOOBVSCYBS83 | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | TRUE
IT0001174611 TRUE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE
PTOTEWOE0017 | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE

Table 12: Futures selected by Lasso regression for each bond
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