
IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

Dynamically Controlled Kernel Estimation
for XVA Pricing and Options Replication

Author: Qingxin Geng (CID: 01205631)

A thesis submitted for the degree of

MSc in Mathematics and Finance, 2019-2020



Declaration

The work contained in this thesis is my own work unless otherwise stated.

Signature: Qingxin Geng
Date: Sep. 8th, 2020

2



Abstract

Control variates, kernel regression and Gaussian Process Regression are popular tools applied
in the field of mathematics. However, by drawing inspiration from Black-Scholes discrete-time
hedging and making a combination of these tools together, a powerful pricing and hedging frame-
work, Dynamically Controlled Kernel Estimation (DCKE), is developed. The new algorithm gives
robust estimates of the conditional expectation of option values in the future given the informa-
tion at the current time step, which outperforms the current industry standard Least Squares
Monte Carlo (LSM) approach, especially for the prediction of sensitivities and around the ‘tails’.
DCKE is further enhanced by using quasi-Monte Carlo method with a rate of convergence only
O(1/n) under n paths. The algorithm is independent of the model choice for underlying assets
and also valid for more complex path-dependent and multi-dimensional options, improving the
current state of the art of XVA computation.
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Introduction

In the financial industry, Credit Valuation Adjustment (CVA) is a change to the market value of
derivative instruments to account for counterparty credit risk. It is the most widely known of the
valuation adjustments, collectively known as X-Value Adjustment (XVA). The counterparty risk
is taken on by an entity that enters an OTC contract with one or more counterparties having rele-
vant default probabilities, and the counterparty credit exposure measures the maximum potential
loss of the entity if its counterparties default. Banks use to measure counterparty risk internally
with mainly two measures: Potential Future Exposure (PFE), as known as quantiles, which is
mainly used internally to monitor when the credit limits with the counterparties are breached,
and Expected Positive Exposure (EPE), which is used, when combined with other quantities, for
the calculation of Exposure at Default (EAD), i.e., the value an entity is exposed when the coun-
terparty defaults, and the capital requirements due to counterparty risk. This last calculation may
combine exposures with default probabilities and recovery estimates, and it produces an approx-
imation to Credit VaR, which is used as a capital requirement.

In terms of calculation, the main interest is to compute the conditional expectation of a deriva-
tives portfolio in the future Π

(
Sti+1 , ti+1

)
at time ti+1 given the information of the underlying

spots Sti under the current state at time ti, i.e.

EQ [Π (Sti+1 , ti+1
)
|Sti , ti

]
,

from which XVA, Potential Future Exposure (PFE), Expected Positive Exposure (EPE), and Expo-
sure at Default (EAD) are obtained. We try to replicate the portfolio value perfectly and obtain the
possibly accurate sensitivities at all the time steps. Also, a proper convergence to the true value
within a restricted number of simulation paths is desirable due to the highly-computationally
intensive feature of XVA.

For CVA as an example, it is given by the risk-neutral expectation of the discounted loss,
formulated as

CVA(tT) = LGD
∫ tT

0
EQ
[

Bt0

Bti

Π(ti) | ti = τ

]
dPD(0, ti),

where tT is the maturity of the longest transaction in the portfolio, Bti is the future value of one
unit of the base currency invested today at the prevailing interest rate for maturity ti, LGD is the
loss given default, τ is the time of default, Π(ti) is the exposure at time ti mentioned above, and
PD(ts, ti) with s ≤ i is the risk neutral probability of counterparty default between times ts and ti.
These probabilities can be obtained from the term structure of credit default swap (CDS) spreads.

However, the future values of a portfolio are actually tricky to be computed both precisely
and efficiently at the same time, and so does XVA. According to the Basel Committee on Bank-
ing Supervision (BCBS)’s July 2015 consultation document regarding CVA calculations, if CVA is
calculated using 100 timesteps with 10,000 scenarios per timestep, then 1 million simulations are
required. Calculating CVA risk would require 250 daily market risk scenarios over the 12-month
stress period. CVA has to be calculated for each market risk scenario, resulting in 250 million
simulations. These calculations have to be repeated across 6 risk types and 5 liquidity horizons,
and as a result, potentially 8.75 billion simulations (Lee (2015)).

The current industry standard for computing the conditional expectation is to use the Least
Squares Monte Carlo (LSM) approach. This prominent approximate dynamic programming (ADP)
for the evaluation of early and multiple exercise options, firstly American options, was pioneered
by Carriere et al. (1996), Longstaff and Schwartz (2001), and Tsitsiklis and Van Roy (2001). Cesari
et al. (2009) first introduced how this framework could be applied for pricing credit exposures, as
the intermediate valuations over time and scenarios are provided. Also in the literature, Potters
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et al. (2001) and Pochart and Bouchaud (2004) proposed Hedged Monte Carlo, which performed
regressions on both the optimal hedge and prices, which were however not accepted widely due
to their convergence properties: the difficulties in finding the right set of parameters that delivers
accurate option prices while computing the prices by regression directly. Instead, Grau (2008)
performed regressions to compute the optimal hedge only in order to preserve the convergence
of the estimated prices to the true option values and release its dependency on the choice of basis
functions.

In this paper, we propose a new algorithm for estimating the sensitivity and replicating port-
folios, Dynamically Controlled Kernel Estimation (DCKE), which is an enhanced and improved
discrete-time framework compared to all existing approaches in the literature. We concentrate
on modelling the conditional expectation of the portfolio value, which is the key throughout this
paper. Chapter 1 starts from the most straightforward Least Squares Monte Carlo approach, the
results of which highly depends on the chosen basis functions. Then in Chapter 2, we develop a
new way of estimating deltas utilising kernel regression to compute the solution to the variance
minimisation strategy. This solution is proved to converge to the continuous-time Black-Scholes-
Merton (BSM) model, and is in exactly the same form as the optimal control variate parameter.
This enables us to add control variates with either the kernel estimator or the pathwise delta as
the parameter. Combining these with non-parametric Gaussian process regressions, a power-
ful discrete-time pricing and hedging framework is built up. The newly proposed DCKE algo-
rithm is proved to outperform the traditional LSM particularly in the estimation of deltas and the
‘tails’ in examples of the Black-Scholes and the Heston model, and also provides more precise
intermediate-value predictions than both Grau’s and Potters’ methods. In addition, we adopt
quasi-Monte Carlo (QMC) method by replacing geometric Brownian motion with quasi-random
sequences, Sobol sequence as an example, for the simulation of underlying spots, in the con-
trast to pseudorandom sequences. Taking advantage of the faster rate of convergence of QMC
(O(1/n) rather than O(1/n0.5) for regular MC, with n the number of simulation paths), the com-
putational efficiency is significantly improved. Later in Chapter 3, we extend DCKE model to
a high-dimensional algorithm and price more complex products such as path-dependent barrier
options and multi-dimensional basket and rainbow option. The validity of the DCKE algorithm
is verified in all these exotic options. We further compare the high-dimensional DCKE algorithm
with a high-dimensional direct sampling approach as well as the one-dimensional DCKE algo-
rithm when we compress multiple assets into a single dimension, and reveal the potential curse
of dimensionality problems.
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Chapter 1

Least Squares Monte Carlo

In this chapter, we introduce the Least Squares Monte Carlo (LSM) approach, together with a
demonstration of the algorithm on a European option and its drawbacks. This basic technique for
mimicking option values is a cornerstone of our paper, from which we build on new estimation
methodologies and frameworks in later chapters to overcome its shortcomings.

1.1 Methodologies and setups

The Least Squares Monte Carlo approach, pioneered by Carriere et al. (1996), Longstaff and
Schwartz (2001), and Tsitsiklis and Van Roy (2001), is a prominent approximate dynamic pro-
gramming (ADP) methodology according to Powell (2011, pg 307), for the valuation and man-
agement of early and multiple exercise options. It is regarded as a key method in simplifying
the calculation of financial instruments that do not have closed form solutions, and enables the
computation of conditional expectations. Different from the standard option pricing problem, our
objective is to obtain the option value for each intermediate time steps other than just the starting
point. Mathematically, the price of an exercisable security is the discounted expected value of the
payoff at the optimal stopping time, which can be formulated as an optimal stopping problem

V (Sti , ti) = sup
τ∈T

EQ
[
e−r(τ−ti)P (Sτ , τ)

]
, (1.1.1)

with the option value V, the asset price Sti at time ti, the risk-free interest rate r and all set of
possible stopping times T in the risk-neural measure Q. For example, Equation (1.1.1) leads to
the idea of LSM for pricing American options, since one only has to estimate an early exercise
strategy within the Monte Carlo method for vanilla options.

We first focus onto the LSM for European vanilla options, the steps of which consists of path
generation and Least Squares regression with the chosen basis functions.

1.1.1 Path generation

We start with the simplest path generation technique in this section, i.e. assuming the stock price
follows the Black–Scholes model, and then the asset price process St follows a geometric Brownian
motion (GBM). However, GBM is just a model placeholder, and can be replaced with any other
path generators, which would be seen in Chapter 2 and 3. Following GBM, St evolves in the
risk-neutral fashion

dSt = rStdt + σStdWt, (1.1.2)

where Wt is a Wiener process or Brownian motion and the risk-free interest rate r and the percent-
age volatility σ are constants.

The easiest sampling technique for Equation (1.1.2) is the Euler method, which samples n
trajectories Sj

t, j = 1, . . . , n at several time steps ti, i = 1, . . . , T, starting at S1
t0
= S2

t0
= . . . = Sn

t0
=:

St0 as

Sj
ti+1

= Sj
ti
+ rSj

ti
(ti+1 − ti) + σSj

ti
θi,j
√

ti+1 − ti, (1.1.3)
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with θi,j drawn from a standard Normal distribution.
Then a better discretization is turned out given by

Sj
ti+1

= Sj
ti

exp
((

r− 1
2

σ2
)
(ti+1 − ti) + σ

√
(ti+1 − ti)θi,j

)
. (1.1.4)

This method is exact in the sense that the distribution of StT does not depend on intermediate
time steps as in Equation (1.1.3). Consequently, only one time step is required for the valuation of
a vanilla European option

Sj
tT

= St0 exp
((

r− 1
2

σ2
)
(tT − t0) + σ

√
(tT − t0)θj

)
,

with θj drawn from a standard Normal distribution.
The risk-neutral asset price trajectories can then be generated by Equation (1.1.4) from time 0

through time T starting at the current price St0 .

1.1.2 Least Squares regression

Regressions are applied in LSM since it enables us to work out the conditional expectations, and
hence an approximation for the option prices. Among different regression methods, we focus on
Least Squares regressions due to their desirable properties as described below. In the context of
option pricing, there are two main applications of the regression: one is the function approxima-
tion, and the other is a variance minimisation of a portfolio.

To introduce the function approximation, we first need to make the following assumptions:

1. A data set (X, y), X ∈ Rn,s, y ∈ Rn is provided.

2. The rows xi ∈ Rs of X :=
(

x1, . . . , xn)T are independent and identically distributed (i.i.d.)
realizations of a random vector with a probability density function p(x), which is non-zero
everywhere on the cube D := [xmin, xmax] =

([
xj,min, xj,max

])
j=1,...,s and zero outside.

3. y =
(
y1, . . . , yn)T are noisy known observations of

(
xi) , i = 1, . . . , n, with yi = f

(
xi) +

εi, i = 1 . . . , n, where εi is random with E
[
εi] = 0 and is independent of xi.

4. The function f : Rs → R, f ∈ B has a representation f (x) = ∑∞
j=1 ajbj(x), x ∈ Rs, where

bj ∈ B, j = 1, . . . , ∞ are bounded basis functions bj : Rs → R of a vector space B ⊂ C1 with∥∥bj(x)
∥∥

∞ = cj < ∞, ∃x ∈ D :
∣∣bj(x)

∣∣ > 0, j = 1, . . . , ∞.

And then we have the below definition and theorem that describe an approximation:

Definition 1.1.1. Let the four above assumptions be satisfied. A local basis approximation f̃ m of
the function f induced by the set of samples (X, y), X ∈ Rn,s, y ∈ Rn with function space Bm

spanned by the basis functions b1, . . . , bm ∈ B, is given by

f̃ m(x) =
m

∑
j=1

ãn
j bj(x), f̃ m ∈ Bm ⊂ B, ãn

j ∈ R, j = 1, . . . , m

with coefficient vector ãm = A(X, y), ãm =
(
ãn

1 , . . . , ãn
m
)T iff

∀ε ∃N(ε) :

∥∥∥∥∥∥∥
 a1

...
am

−
 ãn

1
...

ãn
m


∥∥∥∥∥∥∥

∞

< ε, ∀n ≥ N(ε).

Theorem 1.1.2. In the local basis approximation f̃ m(·) of function f (·) based on a set (X, y) of n noisy
observations in Definition 1.1.1, the coefficient vector ãm =

(
ãn

1 , . . . , ãn
m
)T satisfies

ãm = A(X, y)) = arg min
ãm
‖B(X)ãm − y‖2 (1.1.5)

=
(

B(X)T B(X)
)−1

B(X)Ty, (1.1.6)
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where B(X) :=

 b1
(

x1) · · · bm
(

x1)
...

. . .
...

b1 (xn) · · · bm (xn)

 , and bj(x) ∈ B , j = 1, . . . , m are the basis functions.

Longstaff and Schwartz (2001) first proposed LSM for pricing American options in order to
estimate the conditional expected payoff to the option holder from continuation, and we use the
method for European options here. With no allowance of early exercise, the expected option value
under the risk-neutral measure Q at each time step ti is denoted by EQ

[
V
(
Sti+1 , ti+1

)
|Sti , ti

]
. We

approximate this value by the LSM approach, written as

P (Sti , ti) ≈ EQ
[
V
(
Sti+1 , ti+1

)
|Sti , ti

]
.

The value P (Sti , ti) is computed using a Least Squares regression of multiple path-realizations
Sj on some basis functions bk, i.e. the local basis approximation of V(Sti+1 , ti+1) given Sti following
Theorem 1.1.2. The regressions start from one step before maturity, i.e. the time step tT1, while
the approximated values are

P (Sti , ti) = ∑
k

ai
kbk (Sti ) ,

with some basis functions bk and unknown coefficients ai
k minimizing∥∥∥∥∥∥

(
∑
k

ai
kbk

(
Sj

ti

)
− e−r(ti+1−ti)V j

ti+1

)
j=1,...,n

∥∥∥∥∥∥
2

,

where V j
tT

= P(Sj
tT

, tT) is the final option payoff at the maturity, given by
(

K− Sj
tT

)+
for Put

option and
(

Sj
tT
− K

)+
for Call option, with the strike price K. And a dynamic program solves

for all values V j
ti

, starting at time tT and iterating backwards to t0.

1.1.3 Basis functions

According to Longstaff and Schwartz (2001), in some cases the choice of the class of basis func-
tions seems to have little effect on the values computed by Least Squares Monte Carlo. And the
simplest basis functions to use are polynomials. In this paper, we try the following polynomial
interpolations and compare how they would affect our simulation results.

• Monomial basis

For the simplest polynomial basis, we use the full set Bfull
` of all s-dimensional monomials

up to a certain polynomial degree ` = (`1, . . . , `s) ∈Ns,

Bfull
` (x1, . . . , xs) :=

{
s

∏
i=1

xgi
i |gi ∈N0 ∧ gi ≤ `i

}
.

Longstaff and Schwartz suggested that increasing the number of basis functions leads to a
better approximation. In the 1-dimensional case in LSM, we choose monomials up to the
power of N in x := StT such that bk (Sti ) = Sk−1

ti
, where k = 1, . . . , N and i = 0, . . . , T.

Consequently, the matrix B := B (Sti ) for time step i in the regression problem is

B =

(
1 Sj

ti

(
Sj

ti

)2
. . .

)∣∣∣∣
j=1,...,n

.

However, Judd (1998) shows that orthogonal polynomials can solve the multicollinearity prob-
lem when dealing with multidimensional approximation problems and so that are better than
simple monomials.
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• Orthogonal polynomial basis

Four examples of orthogonal polynomials are listed in Table 1.3. For the implementation,
we focus on the first two orthogonal polynomials as basis functions.

Chebyshev (1853) was probably the first mathematician to recognise the general concept
of orthogonal polynomials. His work arose out of the theory of least squares approxima-
tion and probability, and he applied his results to interpolation, approximate quadrature
and other areas. Being defined via orthogonality with respect to the most obvious weight
function on a finite interval, it sets up the Legendre polynomials as one of the three classi-
cal orthogonal polynomial systems. The other two are Laguerre and Hermite, with weight
functions that are the most natural analytic functions that ensure convergence of all inte-
grals.

Polynomial Weight ω(x) Interval Definition

Chebychev
(
1− x2)−1/2

[−1, 1] bk(x) = cos(k cosh(x))

Legendre 1 [−1, 1] bk(x) = (−1)k

2kk!
dk

dxk

(
1− x2)k

Laguerre exp(−x) [0, ∞) bk(x) = exp(x)
k!

dk

dxk

(
xk exp(−x)

)
Hermite exp

(
−x2) (−∞, ∞) bk(x) = (−1)k exp

(
x2) dk

dxk exp
(
−x2)

Table 1.1: Sample orthogonal polynomials

1.1.4 Algorithm - Least Squares Monte Carlo

Algorithm 1 describes LSM approach in pseudo-code.

1.2 Demonstration of LSM on a European option

After the theoretical considerations, we now focus on a real example for the European Call option
under both the Black-Scholes model and the Heston Model.

1.2.1 Black-Scholes model

In the discrete-time setting, details of which will be given in Section 2.1, we expect the simulation
results to overlap Black-Scholes benchmark values when the number of paths tends to infinity
and the lag between time steps is as small as possible.

Consider a European Call option with parameter settings in Table 1.5, we evaluate it with
10,000 asset paths and 4 time steps. We keep the same 9 basis functions as before, i.e. the highest
degree of the polynomials is 8.

General features
Initial stock price St0 100
Strike price K 100
Risk-free rate r 5% p.a.
Volatility σ 40% p.a.
Maturity time tT 1 year
Terminal value P(StT , tT) max(StT − K, 0)

Table 1.2: Example European Call option

As we are interested in the intermediate time steps of the estimation procedure, we plot the
three sets of intermediate results under monomial, chebychev and legrendre basis functions re-
spectively.

Note that the simulated underlying spots are far less denser around both ends at each time
step, and to ignore the influence of the extreme values at the ‘tails’ and effectively reduce the
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Algorithm 1 Least Squares Monte Carlo
Input: K: strike; r: risk-free rate; T: number of time steps; ∆t: lag between consecutive time steps;

n: number of simulated paths; S: spot prices sequences Sti with each length n for i = 0, . . . , T
Output: X: mesh points of spot price sequence Xti ; V̂: option prices sequences V̂ti ; Φ̂: deltas

sequences φ̂ti with each length n for i = 0, . . . , T
Set arrays: V j

tT
= P(Sj

tT
, tT): the payoff function, j = 1, . . . , n; V̂, Φ̂ (discounting payoff ap-

proach); V̂′, Φ̂′ (backward recursion approach)
for all time steps from i = T − 1 down to i = 0 do

X j
ti
= samples drawn between 1%− 99% percentiles of Sj

ti
if ti = T − 1 then

get αik and α′ik from ∑k αikbk

(
Sj

ti

)
= ∑k α′ikbk

(
Sj

ti

)
≈ e−r∆tV j

ti+1

V̂ j
ti
= V̂′ti

j = ∑k αikbk

(
X j

ti

)
= ∑k α′ikbk

(
X j

ti

)
else

!4discounting payoff approach
get αik from ∑k αikbk

(
Sj

ti

)
≈ e−r∆tV j

ti+1

V̂ j
ti
= ∑k αikbk

(
X j

ti

)
!4backward recursion approach

get α′ik from ∑k α′ikbk

(
Sj

ti

)
≈ e−r∆tV′jti+1

V̂′ti
j = ∑k α′ikbk

(
X j

ti

)
V′jti

= 1D-interpolation(X j
ti

, V̂′jti
; Sj

ti
)

end if
V j

ti
= e−r∆tV j

ti+1

φ̂
j
ti
=

∂∑k αikbk

(
X j

ti

)
∂X j

ti

φ̂
′j
ti
=

∂∑k α′ikbk

(
X j

ti

)
∂X j

ti
end for
return X, V̂, V̂′, Φ̂, Φ̂′

computational cost, we create a new set of 200 underlying spots lying evenly between the re-
stricted 1% to 99% percentiles of the original stock prices at each time step. We try two different
approaches here (see Algorithm 1 for pseudo-code) by regressing on either the discounted payoff
for each time step (discounting payoff approach; solid line) or the resulting option value we get
from the last time step (backward resursion apprach; dashed line) and compare the prediction
with the Black-Scholes benchmark as shown in Figure 1.1.

It could be observed that the three different basis functions give almost same results under a
same approach, so we can treat their prediction results as the outcomes for general polynomial
bases. The fitted price for each time step overlaps the Black-Scholes benchmark when the option
is near-the-money, but is far from Black-Scholes at the ‘tails’. Furthermore, the solid line and the
dashed line overlap when t = 0.75 because we just discount the payoff back for one step and
apply regression in both cases. For early time steps, the discounting payoff approach deviates
slightly more from the benchmark model under a range of underlying asset values, but obviously
outperforms the backward recursion technique at the ends because the error around the ‘tails’ in
backward recursion method accumulates by each time step back. These observations are verified
in Table 1.3, where errors under different metrics are provided after averaging for 100 repetitions.
Other than the overall mean squared errors, which is defined as the average of the squared errors
between the estimated option price and the true price, more realistic measures, expected expo-
sures (EE), i.e. the expectation of the maximum of the estimated values and zero, and potential
future exposures (PFE), i.e. the quantiles of the estimates, are also measured and compared with
the corresponding Black-Scholes values. To especially focus onto the ‘tails’, we include the errors
at both ends, i.e., the 1% and 99% quantiles.
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Figure 1.1: LSM for option prices under different basis functions versus Black-scholes pricess
(left); difference with Black-Scholes (right): discounting payoff approach (‘-’); backward recursion
approach (‘-·’)

Price Metric t = 0.25 t = 0.50 t = 0.75

Discounting payoff MSE 0.4721 0.4617 0.3527
mean 0.0118 0.0377 0.0280

1% 0.0585 0.0977 0.1688
50% 0.0404 0.0571 0.3063
99% 0.1380 0.2841 0.0965

Backward recursion MSE 0.2973 0.3793 0.3527
mean 0.0251 0.0409 0.0280

1% 0.0269 0.1653 0.1688
50% 0.0419 0.0565 0.3063
99% 0.4275 0.0296 0.0965

Table 1.3: Mean squared errors and absolute errors in EE and PFE of the estimated prices with
polynomial bases with 8 degrees compared to Black-Scholes prices (average of 100 repetitions)

We then calculate the fitted derivatives of these polynomial basis functions by
∂∑k αkbk

(
Sj

ti

)
∂Sj

ti

,

where bk is each term of the polynomial we choose as basis here and αk is the coefficient, in order
to estimate one of the ‘Greeks’ in option pricing, delta, since it represents the sensitivity of the
option relative to the underlying. As shown in Figure 1.2 and Table 1.4, the ‘tails’ discrepancies
are even more obvious for both approach while estimating deltas with LSM. Again, backward
recursion approach performs worse in catching the dynamics around the ‘tails’ because of the
error accumulation step by step back in those extreme cases, but this approach again associates
with slightly smaller MSE than discounting the payoff directly in the regression. We also note that
if we include all simulation points without restricting the range and taking quantiles, backward
recursion approach has significantly better performance on dealing with those extreme ‘tails’.

So far, we analysed the results based on a randomly chosen number of basis functions, 9.
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Figure 1.2: Fitted derivatives of the basis functions versus Black-scholes deltas (left); difference
with Black-Scholes (right): discounting payoff approach (‘-’); backward recursion approach (‘-·’)

Delta Metric t = 0.25 t = 0.50 t = 0.75

Discounting payoff MSE 0.0036 0.0017 0.0016
mean 0.0092 0.0069 0.0048

1% 0.0152 0.0214 0.0718
50% 0.0006 0.0069 0.0120
99% 0.0894 0.0540 0.0530

Backward recursion MSE 0.0018 0.0016 0.0016
mean 0.0087 0.0067 0.0048

1% 0.0155 0.0134 0.0718
50% 0.0079 0.0060 0.0120
99% 0.0744 0.0577 0.0530

Table 1.4: Mean squared errors and absolute errors in EE and PFE of the fitted derivatives with
polynomial bases with 5 degrees compared with Black-Scholes deltas (average of 100 repetitions)

However, how would the estimates generally look like? We now compare the average of mean
squared errors and absolute errors in quantiles among a variety of degrees of polynomials used
for the estimation, after repeating each for 100 times. We vary the number of bases from 3 until
20 in Figure 1.3 and 1.4. Note that we only plot for the general polynomial bases in Figure 1.4 as
we have shown the three polynomial bases we use give indistinguishable results.

First of all, it can be confirmed in Figure 1.3 and 1.4 that the outperformance of the discount-
ing payoff approach is not an occasion. This approach works better than the backward recursion
technique under most numbers of bases according to their MSE and absolute errors, especially for
small and large number of basis functions due to the better prediction around the ‘tails’. When
the number of bases is below 5 or greater than 12 for delta, the MSE and absolute errors blow
up remarkably. The reason is that when we use a tiny or large degree, either an underfitting or
overfittiing problem occurs in the regression and cause prominent errors. It can also be observed
that the absolute errors for 1% quantile and 99% quantile are far larger than the 50% quantiles
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Figure 1.3: Mean squared errors of estimated prices (left); of fitted derivatives (right) against
number of basis functions: discounting payoff approach (‘-’); backward recursion approach (‘-·’)
(average of 100 repetitions)

ones, which points out the ‘tail’ deviations in LSM. 7 to 12 bases would be sensible choices ac-
cording to Figure 1.3 and 1.4, which shows that the example we take, with 9 basis functions, is
representative.

In order to improve the fit at both ends, we now replace the regression method before with
the piecewise regression. We break the underlyings into three segments, namely the 0%-20%,
20%-80% and 80%-100% quantiles of the underlying at each time step, and perform regression
respectively in each case. As less points are used in less points are used in each segment, we
reduce the number of basis functions to 7 to avoid overfitting. We again compare the estimated
results against Black-Scholes prices and deltas, and the results are shown in Figure 1.5 and 1.6.

We can observe rather than the smooth curves in earlier regressions, the piecewisely-fitted
results are more jagged as less data points are used for each segment. In the price estimation,
the fit for the left tail, i.e. when the option is out-of-the-money, is significantly improved for
each time step than the previous cases observing from the difference with Black-Scholes, while
the right tails are slightly better predicted but deviations are still remained. Though the tails are
fitted much better for both approaches, the middle parts, especially the linkages between two
segments of regressions are far worse predicted than the single regression case. Same could be
observed for the resulting delta estimates.

Until this point, we keep the same number of simulation paths, 10,000. An interesting ques-
tion may be how would the estimates depend on the number of paths in this case. As these three
polynomial bases give extremely close results after the regressions, we simply compare the esti-
mates of monomial basis when the number of paths takes 1,000, 10,000, and 1,000,000 for simple
regression (Figure C.1 and C.2 in Appendix C.1) and piecewise regression (Figure 1.7 and C.3).

The figures indicate that overall, a larger number of paths do solve the problems of ‘tail’ devi-
ations to some extent, however only for earlier time steps. As time goes on further, the simulated
underlying spot takes a broader range of values since more points are involved so that the paths
are more diversified. Consequently, the underlying spots are less concentrated at the extreme
‘tails’, particularly the right ‘tail’, than in early time steps, and obvious estimation errors occur
compared to Black-Scholes benchmark. The piecewise regression partially solves the inconsis-
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Figure 1.4: Absolute errors in 1%, 50% and 99% quantiles of estimated prices (left); of fitted
derivatives (right) against number of polynomial basis functions: discounting payoff approach
(‘-’); backward recursion approach (‘-·’) (average of 100 repetitions)

tency between the estimates and Black-Scholes around the ‘tails’, especially for later time steps,
but still doesn’t capture the full dynamics of prices and deltas around the linkages of segments
even if 1,000,000 paths are generated.

Therefore, there is a trade-off between computation cost and accuracy, and we can find for
LSM, a huge number of paths 1,000,000 is needed in order to control the maximum estimation
error to be less than 0.5 for prices and 0.05 for deltas.

1.2.2 Heston model

The Black-Scholes model provides a convenient closed-form formula for option prices, but are
however unrealistic due partly to its inability to generate the volatility smile and the skewness
in the distribution of the return. To capture such properties, Heston (1993) proposed a stochastic
volatility model with a closed-form solution for the European call option prices when the under-
lying assets are correlated with a latent volatility stochastic process.

At time t, the spot asset obeys the following diffusion process under the risk neutral measure,
with volatility being treated as a latent stochastic process:

dSt = rStdt + Stσt

(
ρW(v)

t +
√

1− ρdW(S)
t

)
dσ2

t = κ
(

θ − σ2
t

)
dt + vσtW

(v)
t ,

where W(S)
t and W(v)

t are both standard Wiener processes with a correlation coefficient ρ > 0:

dW1(t)dW2(t) = ρdt.

The following parameters are extended from the initial Black-Scholes model, and we should
ensure 2κθ > ν2 for the origin, where the square-root function is not smooth, to be unattainable:
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Figure 1.5: LSM for option prices with piecewise polynomial regressions versus Black-Scholes
prices (left); difference with Black-Scholes (right): discounting payoff approach (‘-’); backward
recursion approach (‘-·’)

General features
Instantaneous interest rate r 5% p.a.
Mean-reverting rate κ 1
Long-term variance θ 6% p.a.
Volatility of volatility ν 0.1
Initial variance σ0

2 5% p.a.
Correlation coefficient ρ -0.5

Table 1.5: Example European Call option - Heston model

We now look at how LSM applies to the estimation of prices for the Heston model. The analyt-
ical solution to the Heston model is not easily implemented due to numerical issues. We therefore
resort to one of the most commonly used approximation formulae by Lewis (2009) (see Appendix
B.1) as the Heston benchmark call prices. We follow Piterbarg (2003)’s version for deltas, in which
the initial variance was replaced by the Black-Scholes volatility.

Figure 1.8 reflects the same problems of LSM for the Heston model as the previous Black-
Scholes model. We get terrible fits for deltas, especially at the ‘tails’ for both prices and deltas.

1.3 Conclusions of LSM

The results above fully expose the drawbacks of LSM:

Remark 1.3.1. The estimates fail to converge properly to true values even with large numbers
of paths, and the convergence is dependent on the degree of basis functions. The algorithm is
neither computationally-efficiently nor feasible to obtain a set of accurate estimates. Also, without
a sensible degree choice, the danger of underfitting or overfitting occurs.
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Figure 1.6: LSM for deltas with piecewise polynomial regressions versus Black-Scholes (left);
difference with Black-Scholes (right): discounting payoff approach (‘-’); backward recursion ap-
proach (‘-·’)

Remark 1.3.2. We are unable to rely on the polynomial bases to compute accurate deltas, which
is problematic for the computation of quantities like Margin Value Adjustments (MVA). The
fitted derivatives deviate significantly from the true values especially around the ‘tails’ due to
the restriction of the polynomial bases, which contributes to the lack of convergence mentioned
above.

Remark 1.3.3. Large discrepancies appear at both ends of the underlying. The results are poorly
fitted around the ‘tails’, even after the refinement via piecewise regression.

To tackle these problems, we introduce the detailed discrete-time pricing and hedging frame-
work in the next chapter, and estimate delta by a novel and far more accurate kernel regression
approach, which also contribute to the price estimation while combining with Gaussian process
regression and control variates.
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Figure 1.7: LSM for prices under different number of paths with piecewise polynomial regres-
sions versus Black-Scholes prices (left); difference with Black-Scholes (right): discounting payoff
approach (‘-’); backward recursion approach (‘-·’)
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Figure 1.8: LSM for option prices under different basis functions versus Heston prices - Lewis’
approximation (left); predicted deltas versus Heston deltas - Piterbarg’s approximation (right):
discounting payoff approach (‘-’); backward recursion approach (‘-·’)
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Chapter 2

Dynamically Controlled Kernel
Estimation

We propose a discrete-time pricing and hedging strategy, Dynamically Controlled Kernel Estima-
tion (DCKE), as an improvement of all similar methods in the literature, which is shown to deliver
significantly more accurate optimal hedge and option prices via comparisons. The uniqueness of
our developed algorithm are as follows:

1. Instead of computing the optimal hedge through direct regressions in both Grau’s and Pot-
ters’ approach (as introduced in next few paragraphs), we propose to work out the hedge
according to the variance minimisation solution via pointwise kernal estimation and path-
wise derivative estimation, which releases the restriction of basis functions in their algo-
rithms. This perfectly tackles the problem as mentioned as Remark 1.3.2 of LSM, and hence
Remark 1.3.1 and 1.3.3.

2. We apply Gaussian Process Regressions to option prices and use the computed optimal
hedge as a control variate parameter, which removes the challenges of parameters choosing
in Potters’ approach. This also improves LSM in terms of Remark 1.3.1 and 1.3.3.

3. We employ quasi-Monte Carlo (QMC) method by replacing geometric Brownian motion
with Sobol (quasi-random) sequence, which significantly reduce the number of paths needed
for generating reliable sets of solutions, and thus contributes to the computational efficiency
and tackles the problem around the edges in Remark 1.3.3 .

The core idea of the Black-Scholes-Merton (BSM) model is that options or other financial
derivatives can be priced using the relative value approach to asset pricing. Such approach for
options is known as dynamic option replication. It is based on the observation that an option
payoff depends only on the price of a stock at expiry of the option. Therefore, if we neglect other
sources of uncertainty such as stochastic volatility, the option values at arbitrary times before the
expiry should only depend on the stock price. This makes it possible to mimic the option using
a simple portfolio made of the underlying stock and cash, which is called the hedge portfolio,
dynamically managed by continuously rebalancing its wealth between the stock and cash in a
self-financing way. The objective of dynamic replication is to mimic the option using the hedge
portfolio as closely as possible, because the portfolio prices are the option prices we aim to get.

Grau (2008)’s Simulation-Based Hedging algorithm relies on these ideas and computes opti-
mal portfolios explicitly in order to obtain prices which have a foundation on a hedging strat-
egy in the physical or real-world measure. The framework can be seen as an extension to the
Least Squares Monte Carlo, and the underlying principles for the valuation of exotic options
can easily be adapted to this algorithm. It is similar to mean-variance option pricing in incom-
plete markets, which corresponds to the maximization of a quadratic utility function according
to Schweizer (1995), but here we adjust the prices to account for the remaining risk of the hedged
position which delivers prices a bank could directly trade on. A similar numerical method to
the Simulation-Based Hedging is the Hedged Monte Carlo, which was presented by Potters et al.
(2001) and its extension version by Pochart and Bouchaud (2004). However, such methods were
not accepted widely due to their convergence properties: the difficulties in finding the right set of
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parameters that delivers accurate option prices while computing the prices by regression directly.
Instead, Grau (2008) performed regressions to compute the optimal hedge only to preserve the
convergence of the estimated prices to the true option values and release its dependency on the
choice of basis functions.

Different from these approaches above, we now introduce our unique pricing and hedging
framework step by step as follows.

2.1 Discrete-time Black-Scholes-Merton model

To improve LSM, we will revisit the discrete time BSM model to gain further insights into the
pricing and hedging framework.

We first restrict our setting to a derivative with a value V and a payoff function depending
on a single underlying in order to consider a pricing and hedging framework. The pricing model
should be discrete in time because a hedging party can only buy and sell the underlying at discrete
times in order to follow a hedging strategy.

2.1.1 Hedge portfolio evaluation

A portfolio at time ti can be expressed in the form

Πti = Bti + φti Sti , (2.1.1)

where Bti is a bank account value, φti represents a position in the option underlying Sti .
The exact amount of money in the bank account B and thus the portfolio value Π are unknown

at the initialisation time t0 of the derivatives trade, and their distributions will be computed.
These values are only known at maturity time tT , which makes the processes B and Π measurable
at tT . However, as the hedging strategy should be feasible in a real environment, the strategy itself
must be measurable at each time step ti.

The issuer has to pay the payoff of the derivative at maturity, i.e. the trader sells the hedge

φtT = 0,

and the bank account compensates for the payoff paid to the option holder,

BtT = VtT .

We can find at the maturity, Π is measurable with

ΠtT = BtT + φtT StT = VtT .

In order to obtain a hedging strategy for the whole life time of the option, we proceed by an
induction backward step by step. The bank account at time ti should be able to compensate for
the money required at time ti + 1, i.e.

er(ti+1−ti)Bti + φti Sti+1 = Bti+1 + φti+1 Sti+1 (2.1.2)

⇔ Bti = e−r(ti+1−ti)
(

Bti+1 +
(
φti+1 − φti

)
Sti+1

)
, (2.1.3)

where
(
φti+1 − φti

)
Sti+1 denotes the profit from the position in the underlying and r is the interest

rate the issuer receives on the bank account. We can therefore see that Bti is only measurable
at maturity time ti = tT . Equation (2.1.3) describes a self-financing hedging strategy, and we
substitute Equation (2.1.3) into Equation (2.1.1) to derive the value of the hedge portfolio

Πti = e−r(ti+1−ti)
(

Bti+1 +
(
φti+1 − φti

)
Sti+1

)
+ φti Sti (2.1.4)

= e−r(ti+1−ti)
(

Πti+1 − φti

(
Sti+1 − er(ti+1−ti)Sti

))
(2.1.5)

= e−r(ti+1−ti)
(
Πti+1 − φti ∆Sti

)
, (2.1.6)
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with ∆Sti = Sti+1 − er(ti+1−ti)Sti , which would be helpful in formulating the numerical evaluation.
Note that the hedge portfolio in Equation (2.1.3) is not deterministic at time t0 because the bank
account Bt0 denotes the money required to compensate for the hedging costs including the hedg-
ing error. Since the exact path of the underlying is not known at any time ti, i < T , the required
amount in the bank account is stochastic.

We then focus on which trading strategy φti , i ∈ {0, . . . , T} the issuer should follow. The objec-
tive of the hedging party of a derivatives trade is to minimize the risk incurred in the derivative,
and the risk can be measured in several different ways and hence lead to various strategies.

2.1.2 Hedging strategies

To determine a specific hedging strategy, there are several objectives of an issuer. The issuer is
usually a bank constituting of a derivatives trading department and an investment department.
The investment department actively takes risks and usually balances the mean and variance of
its returns while the objective of a derivatives hedge should be to minimize a symmetric risk
measure.

The key strategy we are going to introduce, in Section 2.1.3, is variance minimisation, which
has a property that the more often a hedge is conducted, the less should be the influence of the
drift on the option’s price, being proved in Proposition 2.1.1. This is the hedging strategy that
normally applied under the risk-neutral condition. Due to the difficulties in identifying the drift
of the underlying, given by

µ =
1

(ti+1 − ti)
· log

E
[

fti+1 (Sti )
]

Sti

,

with fti+1 the transition function such that Sti+1 = fti+1 (Sti ), i ∈ {0, . . . , T}, we try to minimise
the dependency of our strategy on it. And the pricing equations of the traditional Black-Scholes
model do not contain the drift term and hence is also a qualified candidate model.

Moreover, it is important to look at the optimisation procedure itself. For an issuer who have
already followed a risk-minimizing strategy and lost money due to hedging errors during that
period, should he change the hedging portfolio in order to compensate for the errors? The answer
is no, because the derivatives department should not invest in order to make gains on the position
in the underlying, but to minimize future risks. Consequently, only future risk should be hedged,
i.e., a hedge should be local in time rather than global.

2.1.3 Variance minimisation

Variance is a very simple risk measure, which corresponds to a quadratic utility of the issuer. We
should pursue a forward global risk minimisation rather than a purely global one according to our
discussion at the end of Section 2.1.2, since the purely global version correct errors from the past
by investing. The forward global risk minimisation only reduces future hedging errors, based
on the assumption that the future strategy does the same. In this approach, the minimisation
decomposes into a minimisation of the risky capital costs for each time step. By substituting in
Equation (2.1.6), the optimal fraction φti of the hedge instrument S is given by

{φti} = arg min
φti

(Var [Πti | Sti , ti]) (2.1.7)

= arg min
φti

(
Var

[
Πti+1 − φti ∆Sti | Sti , ti

])
, (2.1.8)

with i = 0, . . . , T − 1, which is similar to the quadratic hedging or local variance minimisation
in discrete time as described by Follmer and Schweizer[47] and Schweizer[104]. Here, basically
all future values of the stochastic variables S and V are reduced to one stochastic variable Πti+1 .

Then, Equation (2.1.8) can be solved by setting
∂ Var

[
Πti+1−φti ∆Sti |Sti ,ti

]
∂φti

= 0 and obtain the optimal

hedging strategy
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φ∗ti
=

cov
[
Πti+1 , ∆Sti | Sti , ti

]
Var [∆Sti | Sti , ti]

, (2.1.9)

=
cov

[
Πti+1 , Sti+1 | Sti , ti

]
Var

[
Sti+1 | Sti , ti

] , (2.1.10)

where the last equality follows in the risk-neutral world. The solution of the optimal hedging
strategy involves one-step expectations of quantities at time t + 1, conditional on time t, and we
are first going to show when the lag between two time steps is small enough, this estimator actu-
ally converges to the continuous-time BSM delta according to Halperin (2020), and then several
ways are provided in Section 2.2 to compute these conditional expectations.

Proposition 2.1.1. The newly proposed estimator for optimal hedge and hedge portfolio converges to Black-
Scholes deltas and option prices respectively when the lag between two time steps tends to zero.

Proof. We start with the notion of a fair option price Ĉti defined as the expected value of the hedge
portfolio Πt at time t:

Ĉti = E [Πti | Sti , ti] .

Substituting Equation (2.1.6) and by Tower Property, we have

Ĉti = E
[
e−r(ti+1−ti)Πti+1 | Sti , ti

]
− φti (Sti )E [∆St | Sti , ti] (2.1.11)

= E
[
e−r(ti+1−ti)E

[
Πti+1 | Sti+1 , ti+1

]
| Πti , ti

]
− φti (Sti )E [∆Sti | Sti , ti] (2.1.12)

= E
[
e−r(ti+1−ti)Ĉti+1 | Sti , ti

]
− φti (Sti )E [∆Sti | Sti , ti] , (2.1.13)

where t = 1, . . . , T − 1.
Note that we can similarly use the tower law of conditional expectations to express the optimal

hedge in terms of Ĉt+1 instead of Πt+1, i.e. Equation (2.1.9) is equivalent to

φ?
ti
(Sti ) =

Cov
(
Ĉti+1 , ∆Sti | Sti , ti

)
Var (∆Sti | Sti , ti)

. (2.1.14)

Recall that the BSM model dynamics under the physical measure P is described by a continuous-
time Geometric Brownian motion with a drift µ and volatility σ:

dSti

Sti

= µdt + σdWti ,

with Wti a standard Brownian motion.
By applying the first-order Taylor expansion

Ĉti+1 = Cti +
∂Cti

∂Sti

∆Sti +O(∆ti)

to Equation (2.1.14), we get

φBS
ti

(Sti ) = lim
∆ti→0

φ?
ti
(Sti ) =

∂Cti

∂Sti

,

which is the optimal hedge in the continuous-time BSM model.
To further verify the formula for hedge portfolio also converge to the continuous-time model,

we first take the limit of the second term in Equation (2.1.13):

lim
∆ti→0

φti (Sti )E [∆Sti | Sti , ti] = lim
dti→0

φBS
t Sti (µ− r)dt = lim

dt→0
(µ− r)Sti

∂Cti

∂Sti

dt.

We then apply the second-order Taylor expansion to Equation (2.1.13), and get
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Ĉti+1 = Cti +
∂Cti

∂ti
dti +

∂Cti

∂Sti

dSti +
1
2

∂2Cti

∂S2
ti

(dSti )
2 + . . . (2.1.15)

= Cti +
∂Cti

∂ti
dti +

∂Cti

∂Sti

St (µdti + σdWti ) +
1
2

∂2Cti

∂S2
ti

S2
ti

(
σ2dW2

ti
+ 2µσdWti dti

)
+O

(
dt2

i

)
(2.1.16)

We substitute the expansions of these two terms back to Equation (2.1.13), and based on the
fact that E [dWti ] = 0 and E

[
dW2

ti

]
= dti, we find Equation (2.1.13) finally becomes the celebrated

Black-Scholes-Merton equation in the limit dti → 0:

∂Cti

∂ti
+ rSti

∂Cti

∂Sti

+
1
2

σ2S2
ti

∂2Cti

∂S2
ti

− rCti = 0

2.2 Dynamically Controlled Kernel Estimation

Different from either Potters et al. (2001), who operated Least Squares regression as described
in Section 1 on the optimal hedge and the hedge portfolio right afterward, or Grau (2008), who
also regressed directly onto the optimal hedge and then obtained portfolio values by backward
recursion according to Equation (2.1.1), we adopt a new approach here.

First of all, we estimate the optimal hedge for each time step by two methods, namely pathwise
derivative estimation and variance minimisation solution as shown in Equation (2.1.9), both with
kernel estimation, which gives conditional expectations. Then, we discount the payoff back once
per time step and again smooth the price by the kernels. Additionally, we replace the parametric
models with polynomial bases in Potters and Grau’s approaches by the non-parametric Gaussian
process regression, which is still a form of supervised learning, but the training data are harnessed
in a subtler way. The key to the regression in our algorithm is the inclusion of control variates,
the optimal parameter of which could be shown identically to the optimal hedge in discrete-time
BSM model. Therefore, the two methods for estimating delta not only give the optimal hedge,
but are also vital to the price estimation.

2.2.1 Kernel regression

We apply a non-parametric technique, kernel regression, here because it gives pointwise estimates
of the conditional expectations. Its objective is to find a non-linear relation between each pair of
random variables. To compute the discrete version of the optimal hedge, Equation (2.1.9) could
be written as

φti =
cov

[
Πti+1 , Sti+1 | Sti , ti

]
Var

[
Sti+1 | Sti , ti

] (2.2.1)

=
E
[
(Πti+1 − E[Πti+1 ])(Sti+1 − E[Sti+1 ]) | Sti , ti

]
E
[
(Sti+1 − E[Sti+1 ])

2 | Sti , ti
] , (2.2.2)

which consists of several terms of conditional expectations. And the expectation in formula 2.2.10
can just be treated as being conditional on Sti and ti implicitly. The calculation of conditional
expectations as follows applies.

Definition 2.2.1. In any non-parametric regression, the conditional expectation of a variable Y
relative to a variable X could be written as:

E[Y | X] = m(X; Y),

where m is some function representing a kernel estimator as below.
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2.2.1.1 Nadaraya-Watson versus Locally Linear estimator

Two estimators, namely Nadaraya-Watson and Locally Linear estimator are commonly used ker-
nel estimators.

Nadaraya (1964) and Watson (1964) proposed to estimate the function m as a locally weighted
average, using a kernel as a weighting function. The Nadaraya-Watson estimator is given by:

m̂NW
h (x; y) =

∑n
j=1
{

Kh
(
x− xj

)}
yj

∑n
j=1
{

Kh
(
x− xj

)} , (2.2.3)

where Kh is the skewed kernel function depending on a smoothing parameter, bandwidth h with
Kh(x) = 1

hz K
( x

h
)

and d is the dimensionality of x. The kernel function K is normally chosen as

the radial basis function K (x) = e−
‖x‖2
2h2 , which is also known as Gaussian kernel.

The derivation of Equation (2.2.3) is shown in Appendix A.2, and more details regarding the
kernel function and the bandwidth parameter could be found in Section 2.2.1.3, where we for-
mally introduce kernel density estimation.

Hence, in an example of a single underlying, Equation (2.2.2) can be further written as

φ̂k
ti
=

∑n
j=1

{
Kh

(
xk−Sj

ti

)}
(Πj

ti+1
−E[Πj

ti+1
|Sti ,ti ])(S

j
ti+1
−E[Sj

ti+1
|Sti ,ti ])

∑n
j=1

{
Kh

(
xk−Sj

ti

)}
∑n

j=1

{
Kh

(
xk−Sj

ti

)}
(Πj

ti+1
−E[Πj

ti+1
|Sti ,ti ]))2

∑n
j=1

{
Kh

(
xk−Sj

ti

)}
(2.2.4)

=
m̂h(xk, Sti ; (Πti+1 − E[Πti+1 | Sti , ti])(Sti+1 − E[Sti+1 | Sti , ti]))

m̂h(xk, Sti ; (Πti+1 − E[Πti+1 | Sti , ti]))2)
(2.2.5)

=
m̂h(xk, Sti ; (Πti+1 − m̂h(xk, Sti ; Πti+1)(Sti+1 − m̂h(xk, Sti ; Sti+1)))

m̂h(xk, Sti ; (Πti+1 − m̂h(xk, Sti ; Πti+1)))
2)

, (2.2.6)

where j = 1, 2, . . . , n is each simulated path and k = 1, 2, . . . , u is each meshed point of underlying
at a certain time step ti.

Another popular estimator is the locally linear kernel weighted estimator (known as Locally
Linear estimator) proposed by Fan (1992) and Ruppert and Wand (1994), which simultaneously
corrects for both boundary-based and curvature-based finite-sample bias. This estimator is also a
kernel weighted sum, given by

m̂LL
h (x; y) =

1
n

ŝ2 (x; h)− ŝ1(x; h)
(
xj − x

)
yj

ŝ2 (x; h) ŝ0 (x; h)− ŝ1 (x; h)2 Kh
(
x− xj

)
, (2.2.7)

where ŝr(x; h) := 1
n ∑n

j=1
(

xj − x
)r Kh

(
x− xj

)
with r = 0, 1, 2. Similarly, Equation (2.2.2) can be

expressed in terms of m̂LL
h .

We note that given standard conditions regarding the kernel, bandwidth and data generating
process, both estimators are consistent according to Härdle (1990, pg 29) and Fan (1992). For the
approximate bias and variance of each estimator for second-order kernels, we refer to Table 2.1.

Estimator Bias Variance

Nadaraya-Watson h2
(

1
2 mh

′′(x) + mh
′x) f ′(x)
f (x)

) ∫
z2kh(z)dz σ2(x)

f (x)nh

∫
kh

2(z)dz

Locally Linear h2
(

1
2 mh

′′(x)
) ∫

z2kh(z)dz σ2(x)
f (x)nh

∫
k2

h(z)dz

Table 2.1: Pointwise bias up to O(h2) and variance of bivariate NW and LL estimators with
second-order kernels

We can observe both estimators are biased in finite samples. They both suffer from ‘curvature
effects’ reflecting by the term mh

′′(x). The additional bias term of Nadaraya-Watson estimator
leads to ‘tail’ problems because the denominator f (x) can vanish at the boundary of support for
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the regressor, and the whole term would blow up. Nevertheless, two estimators give the same
variance, and consequently, Nadaraya-Watson estimator associates with greater mean squared
errors compared to Locally Linear estimator.

2.2.1.2 Kernelised pathwise derivative estimation

Pathwise estimation is an alternative approach for the sensitivity analysis. To provide the deriva-
tive of the payoff, an automatic differentiating algorithm is required. And pathwise derivative
estimation generally gives less estimation errors in estimating deltas than the others such as likeli-
hood ratio estimation, and especially useful in multi-underlying settings as we will see in Chapter
3.

Assume Y(θ) is differentiable with respect to θ. An unbiased estimator of α′(θ) is given by

α′(θ) =
∂

∂θ
E[Y(θ)] = E

[
∂Y(θ)

∂θ

]
given the interchangeability of differentiation and expectation. We then approximate E [Y′(θ)] by
α′(θ), which is called the pathwise derivative estimation.

This technique is applicable for most types of options with continuous derivatives, and we
find out the Black-Scholes delta via pathwise estimation as an example. In the case of European

Call option, the Call price at time ti is given by Cti = E[Y j
ti
], where Y j

ti
= e−r(tT−ti)

(
Sj

tT
− K

)+
and

Sj
tT

= Sj
ti

e(r− 1
2 σ2)(tT−ti)+σ

√
tT−tiZ with j = 1, 2, . . . , n and Z ∼ N(0, 1). Black-Scholes Call option

delta is represented as
dCti
dSti

, and we obtain

dCti

dSti

= E

dY j
ti

dSti

 = E

 dY j
ti

dSj
tT

dSj
tT

dSti

 (2.2.8)

= E

e−r(tT−ti)
d

dSj
tT

(Sj
tT
− K)+

dSj
tT

dSti

 (2.2.9)

= E

e−r(tT−ti)11{
Sj

tT
>K
} Sj

tT

Sti

 . (2.2.10)

Applying kernel regression, we get the delta at each meshed point k with k = 1, 2, . . . , u of
underlying at time step ti:

φ̂k
ti
= m̂h

(
xk, Sti ; e−r(tT−ti)11{StT>K}

StT

Sti

)
, (2.2.11)

with m̂h defined in the same form as Equation (2.2.3) or (2.2.7).
From Proposition 2.1.1, we can get while the time lag is small enough, Equation (2.1.9) con-

verges to Black-Scholes-Merton deltas, which is what we just approximate using Equation (2.2.10).
Therefore, both Equation (2.2.10) and 2.1.9 give predictions to Black-Scholes deltas, and we have
estimated both of them via kernel regression, a way of computing the conditional expectations
we are mainly interested in.

2.2.1.3 Kernel density estimation

Kernel density estimation (KDE), as mentioned in the derivation of Equation (2.2.3) in Appendix
A.2, is a non-parametric estimation method which constructs an estimate, based on observed data,
of an unobservable underlying probability density function via a kernel. It refines the simplest
density estimation histogram by endowing with properties such as smoothness or continuity and
removing the dependency of density on the end points of the bins.

Let (x1, x2, . . . , xN) be a sequence of independent and identically distributed sample drawn
from some distribution with an unknown density f , the contribution of data point xi to the esti-
mate at some point xj depends on how apart these two points are. The extent of this contribution
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is dependent upon the shape of the kernel function adopted and the width (bandwidth) accorded
to it. Cacoullos (1966) and Epanechnikov (1969) proposed that in the multivariate case, the esti-
mated density at any point x is given by

f̂ (x) =
1
N

N

∑
i=1
{Kh (x− xi)} (2.2.12)

=
1

Nhd

N

∑
i=1

{
K
(

x− xi
h

)}
, (2.2.13)

where d is the dimensionality of x. For any point x in the variable space, each value in the training
sequence xi, i = 1, . . . , N contributes to the estimate, and the contribution is weighted by its
distance from x, given by x− xi.

• Kernel function

A kernel function is symmetric, i.e. satisfies K(x) = K(−x), and
∫

x K(x)dx = 1 (or ΣxK(x) =
1 if x is from a discrete space). Commonly used kernel functions are uniform, triangular,
biweight and Gaussian.

As mentioned in Section 2.2.1.1, we choose Gaussian kernel function, and we now derive the
kernel estimator Equation (2.2.12) in the multivariate setting.

In this case, the Gaussian kernel is written as K ∼ N(0, Σ), and the kernel estimator is in the
form

f̂ (x) =
1

N(2π)d/2|Σ|1/2

N

∑
i=1

exp
(
−1

2
(x− xi)

T Σ−1 (x− xi)

)
.

To separate the ‘size’ and the ‘orientation’ of Σ, we write Σ = h2 A, where |A| = 1. Thus, the
size of Σ is

∣∣h2 A
∣∣ = h2d, and the Gaussian kernel estimate becomes

f̂ (x) =
1

N(2π)d/2hd

N

∑
i=1

exp

(
−1

2

(
x− xi

h

)T
A−1

(
x− xi

h

))

=
1

N(2π)d/2hd

N

∑
i=1

exp

−1
2

(
A−1/2 (x− xi)

)T

h

(
A−1/2 (x− xi)

)
h

 .

The last step follows for the reason that since A is a symmetric and positive-definite matrix, the
symmetric and positive-definite square-root matrix A−1/2 exists. Now we find Equation 2.2.14
is equivalent to rotate the data by the transformation A−1/2 and apply the kernel that follows
N (0, Id). In this transformed space, the kernel estimate becomes

f̂ (x) =
1

N(2π)d/2hd

N

∑
i=1

exp

(
−1

2

(
x− xi

h

)T ( x− xi
h

))
(2.2.14)

=
1
N

N

∑
i=1

Kh (x− xi) , (2.2.15)

which is in the same form as Equation (2.2.12), with Kh(x) = 1
hd K(xh) = ∏d

k=1 φ
(

x(k) | 0, h
)

.

Hence, it is easier to with transformed data and using either the normal kernel or, more gen-
erally, a product kernel, possibly with different smoothing parameter, hk, in the kth direction:

f̂ (x) =
1
N

N

∑
i=1

(
d

∏
k=1

Khk

(
x(k) − x(k)i

))
. (2.2.16)
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• Bandwidth parameter

The bandwidth of the kernel exhibits a strong influence on the resulting estimate, and there
is always a variance-bias trade-off. In the limit h→ 0, the estimate is a sum of N delta
functions centered at the coordinates of analyzed samples with no smoothing (reduce the
bias but increase variance), while in the other extreme case h→ ∞, the estimate retains the
shape of the used kernel, centered on the mean of the samples and is smoothed completely
(decrease variance but introduces bias).

According to Silverman (1986), the optimal h for Gaussian distributed data by Silverman’s
rule of thumb in the univariate case is

h∗ = 0.9 ∗min
(

σ̂,
IQR
1.34

)
∗ n−

1
5 , (2.2.17)

where σ̂ is the standard deviation of the samples, IQR is the interquartile range and n is the
sample size.

The multivariate version of h is surprisingly simple. Assuming a normal product kernel

and a true normal density with Σ = Iz, then h∗ = n−
1

z+4 for the normal kernel or

h∗k = σ̂kn−
1

z+4

for the general normal product estimator in Equation (2.2.16). For other choices of kernel,
we can refer to Terrell and Scott (1992).

In practice, a single bandwidth may not be optimal for all regions of the domain. For instance,
it may over-smooth features in regions with high density and simultaneously under-smooth re-
gions in the ‘tails’ of the distribution. We therefore introduce the balloon estimator, which attempts
to address this issue by allowing the bandwidth to change across the domain of the PDF based
on the evaluation point x, and adopt it in later experiment. The balloon estimator was introduced
in the form of the kth nearest neighbor estimator, and can be expressed as Equation (2.2.12) by
setting h(x) = dk(x), where dk(x) returns the distance to the kth nearest data point to x.

2.2.1.4 Practical experiments

We keep the same general features as in Table 1.5, and we use the same meshed points among 1%
to 99% percentiles of the original underlying at each time step as in Chapter 1. Referring to the
last Chapter, we first focus on the outperformed discounting payoff approach in the experiment,
and will later compare it with the backward recursion approach in Section 2.2.5.

We employ kernel estimation and firstly investigate whether the raw weighted average price
in Equation (2.2.3) or Equation (2.2.7) could be used to estimate the true option prices directly.

Under both kernel estimators m̂NW
h and m̂LL

h , we adopt both a fixed bandwidth and variable
bandwidths inspired by the balloon estimator. We skew the bandwidth at each meshed under-
lying by a ratio of the maximal kernel size to the local kernel size under the fixed kernel, with
pseudo-code in Algorithm 2. Note that such ratios are capped from below by a constant, which
controls the extent of smoothing at the ‘tails’, and the choice of such cap depends on the number
of paths used for simulation, where large numbers of paths are associated with smaller caps. Usu-
ally, due to the variance-bias trade-off, a small cap, which makes a variable kernel more similar
to a fixed kernel, would give accurate estimates at the ‘tails’, but are highly biased with violent
fluctuations, while a large cap smooths the estimates at the ‘tails’ perfectly but introduces more
biases. Therefore, we select different caps according to different number of paths and the trade-
off between variance and biased. As a result, we end up with different form of kernel in each
scenario, even for pricing and hedging at the same time step.

We notice that different from utilising polynomial bases, we get results converging to exact
Black-Scholes solutions when the number of paths is adjusted to be greater. Figure 2.1 shows
when 50,000 paths are simulated, the raw kernel estimates under both kernels, either fixed or
variable, all show promising convergence. NW and LL with fixed kernel give indistinguishable
results, but LL with variable kernel clearly outperforms the others, especially NW estimator with
variable kernel, and shows particular great performance at the ‘tails’.

Compared to fixed bandwidths, variable bandwidths shows greater flexibility in capturing
the curvatures in low-density regions. It is worth noted that due to variance-bias trade-off, when
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we select a higher order bandwidth, the estimates around the ‘tails’ tend to be smoother but
with more deviations. However, LL does not suffer from this problem. As in Figure 2.1, even
if the large enough bandwidth leads to significant estimation errors, even exceed the error by
fixed kernels, around the ends of underlying spots using NW variable kernel, LL variable kernel
successfully controls the risk of blowing up at the ‘tails’ and are hence preferred.

Figure 2.1: Raw kernel estimates of option prices without control variates using different variable
and fixed kernel estimators versus Black-Scholes prices (left); difference with Black-Scholes (right)

We now focus onto Figure 2.2 and 2.3, the estimates of deltas by kernel regression on two
different approaches, the variance minimisation strategy in Equation (2.1.9) and pathwise esti-
mation, respectively. First of all, we obtain exactly the same conclusions as the raw kernel esti-
mates above, LL estimator deals with estimations around the ‘tails’ excellently, especially combin-
ing with balloon estimators with the allowance of varying bandwidths. Additionally, pathwise
deltas estimates tend to associate with less errors than the deltas obtained by variance minimisa-
tion solution compared with Black-Scholes deltas. And we can also find Local Linear estimator is
particularly robust in estimating the pathwise delta, with smaller errors than any NW estimator
throughout almost the whole range of underlying spots in all time steps.

2.2.2 Control variates

We now apply the control variate (CV) technique to our algorithm because it provides a effective
variance reduction in a simple theoretical framework, and we benefit from CV since the optimal
hedge in Equation (2.1.9) is in the same form as the optimal CV parameter. The method, first
introduced to option pricing by Boyle (1977), takes advantage of random variables with known
expected value that are positively correlated with the variable under consideration.

Let Y be a random variable whose mean is to be determined through simulation and X a
random variable with known mean E[X]. For each trial the outcome of Xi is calculated along
with the output of Yi, and we further suppose the pairs (Xi, Yi), i = 1, . . . , n are i.i.d.. Then for a
fixed parameter β, the control variate estimator ȲCV of E[Y] is defined by

ȲCV(β) = Ȳ− β (X̄− E[X]) =
1
n

n

∑
i=1

(Yi − β(Xi − E[X])), (2.2.18)
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Figure 2.2: Variance minimisation delta using different variable and fixed kernel estimators versus
Black-Scholes prices (left); difference with Black-Scholes (right)

where the observed error X̄− E[X] serves as a control in estimating Y.

Lemma 2.2.2. The control variate estimator is unbiased and consistent.

Proof. The unbiasedness and consistency are given as follows:

E [ȲCV ] = E[Ȳ− β (X̄− E[X])] = E

[
1
n

n

∑
i=1

Yi

]
= E[Y],

and with probability 1,

lim
n→∞

1
n

n

∑
i=1

YCV(i) = lim
n→∞

1
n

n

∑
i=1

(Yi − β (Xi − E[X])) = E [Y− β(X− E[X])] =E[Y].

The resulting variance for the control variate estimator is

Var (ȲCV(β)) =
1
n

Var(Ȳ) + β2 Var (X̄− E[X])− 2β cov(Ȳ, X̄− E[X]) (2.2.19)

=
1
n

(
σ2

Y + β2σ2
X − 2βρXYσXσY

)
, (2.2.20)

which indicates that the control variate estimator ȲCV has a lower variance than Ȳ if β2σX <
2ρXYσY.

Minimizing the variance with respect to β yields

β∗ =
σY
σX

ρXY =
Cov(X, Y)

Var(X)
, (2.2.21)
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Figure 2.3: Pathwise delta using different variable and fixed kernel estimators versus Black-
Scholes prices (left); difference with Black-Scholes (right)

which is exactly the optimal hedge we obtain in Equation (2.1.9) while considering the underlying
as the control variate and the portfolio value as estimated variable. Substitute Equation (2.2.21)
into Equation (2.2.20), we get the minimum variance of the control variate

Var (ȲCV (β∗)) =
(

1− ρ2
XY

) σ2
Y
n

. (2.2.22)

It is obvious that the variance reduction depends heavily on the correlation coefficient between
the two variables. ρXY approaching to 1 associates with a sharp reduction in the variance of the
estimated random variable.

However, Equation (2.2.22) only applies if β∗ is known. In practice, if E[Y] is unknown, it
is unlikely that ρY or ρXY would be known. However, we may still get most of the benefit of
a control variate using an estimate of β∗. For example, replacing the population parameters in
Equation (2.2.21) with their sample counterparts yields the estimate

β̂∗ =
∑n

i=1 (Xi − X̄) (Yi − Ȳ)

∑n
i=1 (Xi − X̄)

2 , (2.2.23)

same as how we apply kernel regression to estimate the optimal hedge on the underlying with n
meshed points as Equaition (2.2.6). Dividing numerator and denominator by n and applying the
strong law of large numbers shows that β̂∗ converges to β∗ with probability 1. However, a bias
exists in the estimation EY arises.

While β is no longer fixed, the control variate estimator Ȳ(β∗) need not to be unbiased, since
β∗ and X̄ are dependent. A way to remove such dependency is to use n1 replications to compute
an estimate β∗1, and then apply this coefficient with the remaining n− n1 replications of (Xi, Yi).
However, the bias produced by estimating β∗ by β̂∗ is small as shown below, so the cost of sepa-
rating replications is unattractive.

Proposition 2.2.3. The estimation error in β̂∗ is only O(1/
√

n).

We give a detailed proof of this proposition in Appendix A.1.
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2.2.2.1 Multiple Controls

We now generalize the method of control variates to the case of multiple controls as it will help
when we deal with more complex payoffs like basket options and rainbow options.

Suppose each replication i of a simulation produces outputs Yi and Xi =
(

X(1)
i , . . . , X(z)

i

)>
,

and suppose the expectation E[X] is known. We assume that the pairs (Xi, Yi), i = 1, . . . , n, are
i.i.d. with covariance matrix (

ΣX ΣXY
Σ>XY σ2

Y

)
,

where ΣX is z× z and assumed to be non-singular, ΣXY is z× 1, and scalar σ2
Y is the variance

of the Yi.
Let X̄ denote the vector of sample means of the controls. For fixed β ∈ Rz,

ȲCV(β) = Ȳ− b>(X̄− E[X]).

Then the variance per replication is

Var
[
Yi − β> (Xi − E[X])

]
= σ2

Y − 2β>ΣXY + β>ΣXX β, (2.2.24)

which is minimised at

β∗ = Σ−1
X ΣXY. (2.2.25)

Similar to the single control variate case, this is the vector of coefficients in a regression of Y
against X.

In statistics, the squared correlation coefficient between scalar X and Y is defined as

R2 = Σ>XYΣ−1
X ΣXY/σ2

Y.

We substitute Equation (2.2.25) into (2.2.24) per replication, and find the minimal variance of
Yi(β∗) is given by

σ2
Y − Σ>XYΣ−1

X ΣXY =
(

1− R2
)

σ2
Y.

Thus, R2 measures the fraction of the variance of Y that is removed in optimally using X as a
control.

In practice, the optimal vector of coefficients β is unknown but may be estimated. The stan-
dard estimator replaces ΣX and ΣXY in Equation (2.2.24) with their sample counterparts to get

β̂n = S−1
X SXY,

where SX is the z× z matrix with entry j, k, given as

1
n− 1

(
n

∑
i=1

X(j)
i X(k)

i − nX̄(j)X̄(k)

)
,

and SXY is a z-dimensinal vector with entry j:

1
n− 1

(
n

∑
i=1

X(j)
i Yi − nX̄(j)Ȳ

)
.

2.2.3 Connections between control variates and option pricing

To put the ideas into action in derivative pricing, underlying assets provide a virtually universal
source of control variates. We know that the absence of arbitrage is essentially equivalent to the
requirement that appropriately discounted asset prices be martingales. To be concrete, suppose
we are working in the risk-neutral measure and suppose the interest rate is a constant r. If Sti is
an asset price, then e−r(ti+1−ti)Sti+1 is a martingale and EQ[e−r(ti+1−ti)Sti+1 ] = Sti .

We can therefore form the control variate estimator for the portfolio value at each time step ti:
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Πti = e−r(ti+1−ti)
(

Πti+1 − β̂∗ti

(
Sti+1 − er(ti+1−ti)Sti

))
, (2.2.26)

with Πti+1 the option value at time ti+1, and this estimator has exactly the same form as Equation
(2.1.6). This enables us to estimate the optimal control variate parameters using the same ways
that we predict deltas, i.e. by applying kernel regression onto both the pathwise estimator and
the variance minimisation solution.

For a standard call option, the correlation between the discounted payoff and the underlying
are thus the effectiveness of the control variate depends on the strike K. At K = 0 we would have
perfect correlation; for an option that is deep out-of-the-money, i.e., with large K, the correlation
could be quite low, where β̂∗ti

would tend to zero.

Remark 2.2.4. In the risk-neutral world, the stock price always equals to the expectation of the
discounted forward price, so that E[Sti+1 − er(ti+1−ti)Sti ] = 0 always holds, which leads the control
variate estimator to be unbiased all the time. Hence, the control variate would work well even if
β̂ does not equal to β̂∗ exactly.

Remark 2.2.5. For the non risk-neutral cases where the conditional expectation is no longer zero,
it could still be calculated via kernel estimation

m̂h

(
xk, Sti ; Sti+1 − er(ti+1−ti)Sti

)
, (2.2.27)

where m̂h is defined in Equation (2.2.3) and (2.2.7), and and k = 1, 2, . . . , u is each meshed point
of underlying at time ti.

2.2.3.1 Practical experiments

By including a control variate with pathwise delta and the variance minimisation solution (Equa-
tion (2.1.9)) as a CV parameter respectively, we get the left plot in Figure 2.4. Comparing with
the raw kernel estimates as shown in Figure 2.1, the inclusion of control variates significantly re-
duces the variance of the estimator, and in all the four cases, the estimates overlap Black-Scholes
benchmark with tiny errors. Furthermore, same as what we observed above, LL variable ker-
nel estimators give outperforming fits than keeping the same bandwidth, especially around the
‘tails’.

An important notice is that though we find the estimated deltas are not exactly lying on the
true values from Figure 2.2 and 2.3, substituting them into the price estimates as control variate
parameters gives nearly perfect results. The reason is that, again as we mentioned in Section
2.2.3, in the risk-neutral case as long as the control variate estimator is unbiased as in Lemma
2.2.2, even if the control variate parameter is not chosen perfectly same as Equation (2.2.23), the
variance reduction still works well.

To explicitly compare these four models in Figure 2.4, we refer to Table 2.2. Variable kernel
associates with smaller overall mean squared errors in each step under comparisons, no matter
which control variate parameter is chosen. And more importantly, variable kernel estimator does
improve the fit around the ‘tails’, since less absolute errors occur in 1% and 99% quantiles. An-
other interesting finding is that although according to Figure 2.2 and 2.3, pathwise delta estimates
are closer to Black-Scholes deltas, when we include them as control variate parameters in order to
estimate option prices, they gives slightly less precise outcomes than the variance minimisation
deltas except the estimated expected exposure, which suggests selecting the variance minimisa-
tion deltas seems to be a recommended choice.

2.2.4 Gaussian process regression

We mentioned in Section 1 that regression enables us to calculate the conditional expectations
to approximate the option prices. Due to the restrictions of the parametric models with basis
functions using in LSM, we now replace it with the non-parametric Gaussian process regression
(GPR), since it gives a more generalised kernel based regression instead of relying on a specific
choice of basis. GPR brings plenty of benefits. Firstly, GP directly gives a distribution for the
prediction value rather than a single value in the regression so that is good at identifying model
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Figure 2.4: Raw kernel estimates of option prices with control variates using Local Linear kernel
estimator with variable kernel versus Black-Scholes prices (left); difference with Black-Scholes
(right)

Variance minimisation CV Pathwise delta CV
Kernel Metric t = 0.25 t = 0.50 t = 0.75 t = 0.25 t = 0.50 t = 0.75

Variable LL MSE 0.0863 0.1173 0.0074 0.0888 0.1189 0.0078
mean 0.1871 0.0416 0.1151 0.1907 0.0455 0.1158

1% 0.0398 0.1040 0.0006 0.0289 0.1051 0.0006
50% 0.3824 0.0663 0.1490 0.3914 0.0674 0.1485
99% 0.4985 2.6760 0.0005 0.5021 2.6802 0.0181

Fixed LL MSE 0.1507 0.1530 0.0065 0.1525 0.1606 0.0070
mean 0.1802 0.0178 0.0999 0.1856 0.0243 0.0976

1% 0.1393 0.0755 0.0008 0.0903 0.0909 0.0010
50% 0.3902 0.0735 0.1480 0.3952 0.0735 0.1417
99% 1.3051 2.9289 0.0017 1.3156 2.9392 0.0059

Table 2.2: Mean squared errors and absolute errors in mean, 1%, 50% and 99% quantile of esti-
mated prices with control variates compared to Black-Scholes results

uncertainties. Also, prior knowledge and specifications about the shape of the model are able to
be added by selecting different kernel functions, which further enhances its robustness. Rather
than claiming the value function relates to some specific models, a Gaussian process can represent
the objective function obliquely, but rigorously.

For detailed descriptions of Gaussian process regression, please refer to Appendix B.2.

2.2.4.1 Practical experiments

When we replace the previous polynomial basis functions with GPR, we choose RBF (Radial-basis
function) as introduced in Appendix B.2 as the kernel function. Making use of sklearn.gaussian process
in Python, we display the results in Figure 2.5 for six different GPR models, regressing purely on
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the raw variable kernel estimates, adding a control variate with either pathwise deltas or variance
minimisation deltas as the parameter with NW or LL kernel estimator, respectively.

Figure 2.5: Price estimates by Gaussian Process Regression with(out) control variates using dif-
ferent variable kernel estimators versus Black-Scholes prices (left); difference with Black-Scholes
(right)

We can observe that if no control variate is added for GPR, the deviations at the ‘tails’ com-
pared to Black-Scholes cannot be eliminated even if 50,000 paths are already simulated using NW
estimator, due to the high estimation variance. And similar to the comparisons from Figure 2.1
and 2.4, we again verify that in order to get a reliable estimation result, control variates need to
do far less work for LL estimator than NW, i.e. we still get excellent enough estimates without the
need of estimating covariance and variance in Equation (2.2.1) by kernel regression or estimating
Equation (2.2.9) by differentiating the payoff. Since it is difficult to differentiate the payoff for a
generic framework, LL estimator effectively reduces the computational cost.

All four models with control variates under GPR overlap the Black-Scholes benchmark, and
the model using LL estimator with variance minimisation solutions as control variate parameter
seems to make slightly more robust predictions around the ‘tails’.

So far, we find out several outperformed models in estimating deltas as well as the option
prices. Now, we gather all these models and aim to evaluate their performance with the follow-
ing robustness check, and compare the model that gives the best performance under our new
approach with the algorithms in the literature.

2.2.5 Robustness check

There are mainly three parts in this robustness check section. To begin with, we select the best-
performed model among those we discuss above under the newly proposed DCKE algorithm
through comparisons, taking into account both discounting payoff and backward recursion ap-
proach. Next, we compare the error statistics of the outperformed model with that obtained from
the traditional LSM algorithm. Finally, we compare the new algorithm with those famous ones
in the literature by plotting the resulting estimates. These procedures all verify the robustness of
our new algorithm.
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2.2.5.1 Model selection

We now reduce the number of simulation paths and compare the four outperformed model for
price estimation throughout the experiments above, namely ‘raw kernel estimates with control
variates’ and ‘GPR on raw kernel estimates with control variates’ with either pathwise estimation
or the variance minimisation solution as the control parameter using LL kernel estimator, which
are also the estimates of deltas. We use 10,000 simulated paths to make our improved approach
comparable with the LSM in Chapter 1.

Figure 2.6: Discounting payoff approach: pathwise estimates and variance minimisation solution
of delta against Black-Scholes deltas (left); difference with Black-Scholes (right)

From Figure 2.6, the reduction of number of paths indeed gives worse estimates of deltas in
discounting payoff approach compared with the results in Figure 2.2 and 2.3, especially as time
goes backward. However, we have similar observations. Compared with the covariance-variance
form estimator, pathwise deltas are closer to Black-Scholes benchmarks particularly around the
‘tails’ at earlier time steps and along with less estimation variance.

Then, we estimate deltas using backward recursion approach as shown in Figure 2.7. Accord-
ing to Algorithm 2, we still have the same pathwise deltas as in discounting payoff approach,
since pathwise deltas do not depend on the intermediate option prices. However, the deltas ob-
taining from variance minimisation solution are different. We get two different sets of deltas in
this form while applying recursion on the prices interpolated from GPR with pathwise deltas and
variance minimisation deltas as control variates respectively. It is evident that the pathwise deltas
are more precise than any other form of the estimates, particularly around the ‘tails’, which in-
dicates pathwise estimators are indeed more robust and backward recursion approach does not
help with the prediction of deltas.

As for the price estimates, we come back to the original discounting payoff approach first.
According to Figure 2.8, it is still difficult to directly distinguish which model for price estimation
stands out even if the number of simulation paths is reduced to 10,000, which verifies the robust-
ness of our DCKE algorithm when control variates apply. To compare these models, we finally
reduce the number of paths to 3,000 and plot the difference with Black-Scholes. The right plot in
Figure 2.8 indicates the inclusion of Gaussian Process Regression smooths extreme prediction er-
rors especially at later time steps, and choosing pathwise deltas as the control variates parameters
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Figure 2.7: Backward recursion approach: pathwise estimates and variance minimisation solution
of delta against Black-Scholes deltas (left); difference with Black-Scholes (right)

effectively improves the precision in the middle and at the ends of the underlying spots.
Hence, among these models, pathwise estimation gives the best estimates of deltas, and kernel

regression with pathwise delta as the control variate parameter along with GPR outperform all
other models in estimating option prices. We further compare the price estimates obtained from
the best model using discounting payoff approach and backward recursion approach (see Algo-
rithm 2 for pseudo-code). Figure 2.9 shows that similar to the conclusion in Chapter 1, backward
recursion approach performs terribly while estimating the ‘tails’, and the error accumulates as
time goes backwards. The error statistics from Table C.1 in Appendix C.3 verifies that neither the
overall MSE nor absolute errors in PFE for backward recursion approach outperforms discount-
ing payoff approach, and therefore we pursue discounting payoff approach in later experiment.

After repeating the process for 100 times, we report the error statistics of the best-performed
DCKE model and compute the error ratios of LSM in Table 1.3 and 1.4 to our preferred model,
and put them into the brackets side by side to the error statistics of the new model in Table 2.3.

We observe that errors under almost all metrics have been reduced with our new algorithm,
and the most significant improvements happen in MSE and the absolute errors around the ‘tails’
of underlying spots. The proposed DCKE model associates with only seventh of the MSE and
even fiftieth of the absolute error in LSM at 1% quantile while approaching the maturity. Such
sharp contrasts verifies the success of our improved algorithm.

2.2.5.2 Validity under Heston model

Similarly, by applying our selected model to the Heston framework, remarkably improvements
are also observed in Figure 2.10 compared to the results in Figure 1.8 while using LSM. The DCKE
algorithm enables a perfect fit for both prices and deltas.

2.2.5.3 Improvements on LSM

Table 2.3 proves that the DCKE algorithm successfully tackles the shortcomings of LSM we list in
Section 1.3:
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Figure 2.8: Models comparison for price estimates against Black-Scholes prices (left); difference
with Black-Scholes (right)

Option price Delta
Metric t = 0.25 t = 0.50 t = 0.75 t = 0.25 t = 0.50 t = 0.75

MSE 0.3967 0.4081 0.0560 0.0003 0.0003 0.0002
(1.19) (1.13) (6.30) (12.31) (5.62) (8.11)

mean 0.1808 0.1989 0.1857 0.0073 0.0069 0.0070
(0.07) (0.17) (0.15) (1.26) (0.99) (0.69)

1% 0.2010 0.0895 0.0252 0.0060 0.0020 0.0002
(0.29) (1.14) (6.70) (2.54) (10.68) (377.89)

50% 0.2485 0.2670 0.3208 0.0064 0.0114 0.0153
(0.16) (0.21) (0.95) (0.09) (0.61) (0.78)

99% 0.1750 0.2809 0.0473 0.0032 0.0015 0.0061
(0.79) (1.01) (2.04) (27.94) (36.22) (8.69)

Table 2.3: Mean squared errors and absolute errors in mean and 1%, 50% and 99% quantile of op-
tion price and delta of DCKE model compared to Black-Scholes results (average of 100 repetitions;
in backets: error ratios of LSM model to DCKE model reported in brackets)

Remark 2.2.6. The estimates for both prices and deltas converge properly to true results with
less overall MSE, and the convergence is independent of the choice of basis functions.

Remark 2.2.7. The fit of deltas is improved remarkably, especially around the edges of the
underlying spots, which also enables accurate estimations of quantities like Margin Value
Adjustments (MVA).

Remark 2.2.8. Even the ‘tails’ are now perfectly predicted with the new algorithm.
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Figure 2.9: DCKE algorithm for discounting payoff approach and backward recursion approach
(left); difference with Black-Scholes (right)

2.2.5.4 Comparisons with literature

Now we compare our proposed DCKE approach with both of the approaches from Potters et al.
(2001) and Grau (2008, pg 126) as introduced at the beginning of the chapter. They both performed
least-squares regressions to determine delta at each time step, after which Grau obtained portfolio
values with the backward recursion formula we have shown in Equation (2.1.6). Instead, Potters
continued applying regression to predict portfolio values by setting the response according to the
same equation.

We first choose the same degree of basis functions as the example in Grau (2008, pg 126) and
obtain the left plot in Figure 2.11. It is obvious that the deltas obtained by the DCKE algorithm
through kernel regression outperform Grau and Potters’ regression method throughout the whole
range of underlying spots. To be more precise, we loop through different number of basis func-
tions from 3 to 10 and take the average MSE over 100 repetitions. According to the right plot
in Figure 2.11, no matter which polynomial degree we choose in Potters’ and Grau’s regression
method for delta, our DCKE approach consistently gives a better performance. As the DCKE
algorithm is independent of the polynomial degree, it improves the delta estimation universally.

Given that we obtain more accurate deltas than Potters and Grau, we now look into the price
estimation. As Potters’ approach also employ regressions to estimate prices with the inclusion of
estimated deltas as in our algorithm, there is no need to check his result, since we already get bet-
ter deltas at each time step. Grau used backward recursion to estimate prices, in which estimated
deltas are also plugged in. We plot his predictions and also the results when we substitute our
own predicted meshed delas into the recursion. These predictions along with DCKE prices, and
the average MSE are shown in Figure 2.12.

It is evident that our DCKE algorithm again outperforms Grau’s model by involving far fewer
fluctuations. Grau’s method might be feasible to obtain a reliable option price at time zero, since
all the predicted prices fluctuate around the actual values. However, for computing XVA, i.e.,
when we need predictions for intermediate time steps, DCKE is a better algorithm to pursue.
For backward recursion with DCKE deltas, we get jagged predictions while only including the
meshed underlying values. Furthermore, when we interpolate the estimated deltas to the full
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Figure 2.10: DCKE for option prices versus Heston prices - Lewis’approximation (left); delta esti-
mates versus Heston deltas - Piterbarg’s approximation (right)

dimension and do the recursion again, the predicted prices are still far from lying on the Black-
Scholes benchmark. Therefore, we further verify the robustness of the DCKE framework.

2.2.5.5 Neural network-based DCKE

Given that our best performed model, the DCKE algorithm works robustly in all cases above
through comparisons, we are interested to investigate how would the model work if we replace
GPR with a neural network (NN) in the algorithm.

Neural network provides an alternative possibility of replacing the necessity of choosing a
specific form of basis functions through pricing and hedging, which is rich in the sense that it
encompasses almost arbitrary reasonable functional relationship between the outputs and inputs.

In neural networks, functions constructed by composing alternatingly affine and activation
functions. Mathematically, a neural network f : RI → RO can be expressed as

f = ϕr ◦ Lr ◦ · · · ◦ϕ1 ◦ L1,

where Li : Rdi−1 → Rdi with Li(x) = ωix + bi, x ∈ Rdi−1 , ωi ∈ Rdi×di−1 and bi ∈ Rdi , for any
i = 1, . . . , r, is an affine function, such that d0 = I and dr = O. ϕi : Rdi → Rdi is component-wise
application of a function ϕi : R→ R, which is called an activation function, i.e.,

ϕi(x1, . . . , xdi
) :=

(
ϕi (x1) , . . . , ϕi

(
xdi

))
.

For more details and the concepts of hidden layers in a feedforward neural network can be
found in the graph illustrations Figure C.4 in Appendix C.2.

The only difference in NN-based DCKE compared to the original DCKE approach is that after
predicting deltas using either pathwise estimation or variance minimisation solution, we interpo-
late the deltas to full dimension as control variates adding onto the kernel fitted prices, and apply
a neural network to make predictions with the underlying spot sequence as input variable.

In our experiment, we find it is especially tricky to obtain a great set of price estimates through
NN-based DCKE. We end up with a model with ‘SELU’ activation function for the first four layer,
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Figure 2.11: Delta estimates by DCKE and Potters & Grau against Black-Scholes prices (left); mean
squared errors of estimated deltas against number of basis functions (average of 100 repetitions)

and ‘linear’ activation for the last. We restrict the minimum learning rate to be 10−8 and set
batchsize to be 500. It is surprising that even under Sobol sequence (which will be shown to
be more efficient than GBM in Section 2.3), 100,000 paths are required to get a set of predictions
with MSE comparable to GPR-based DCKE method with 10,000. Table 2.4 directly reflects how
computationally-costly this approach is, which indicates we should pursue the original GPR-
based DCKE instead.

As we mentioned in Section 2.2.4, GP directly captures the model uncertainty by giving a
distribution for the prediction value rather than just a single value in the regression. However,
this uncertainty is not directly captured by neural networks according to Gal and Ghahramani
(2016), and therefore destroys the model performance.

2.2.6 Algorithm - Dynamically Controlled Kernel Estimation

Algorithm 2 describes the newly proposed algorithm DCKE in pseudo-code.

2.3 Sobol sequence

We introduce Sobol sequence as a new generator of underlying spots in order to remarkably
improve the computational efficiency.

2.3.1 Generalisation

A Sobol sequence is a low discrepancy quasi-random sequence used in quasi-Monte Carlo (QMC)
method. The discrepancy of a sequence is a measure of its uniformity and is defined as follows:

Definition 2.3.1. Given a set of points x1, x2, · · · , xN ∈ IS and a subset G ⊂ IS. Define the
counting function as the number of points xi ∈ G. For each x = (x1, x2, . . . , xs) ∈ IS, let Gx be the
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Figure 2.12: Price estimates by DCKE and Grau against Black-Scholes prices (left); mean squared
errors of estimated prices against number of basis functions (average of 100 repetitions)

rectangular s-dimensional region Gx = [0, x1)× [0, x2)× · · · × [0, xS) with volume x1, x2, . . . , xN .
Then the discrepancy of the points x1, x2, . . . , xN is given by:

D∗N
(

x1, x2, . . . , xN
)
= sup

x∈I
|SN (Gx)− Nx1x2, · · · , xS| .

The discrepancy is therefore computed by comparing the actual number of sample points in a
given volume of multidimensional space with the number of sample points that should be there
assuming a uniform distribution. The discrepancy of the first N terms of quasi-random sequence
has the form:

D∗N
(

x1, x2, . . . , xN
)
≤ CS(log N)S + O

(
(log N)S−1

)
,

for all N ≥ 2.
The principal aim in the construction of low-discrepancy sequences is thus to find sequences

in which the constant CS is as small as possible. Various sequences have been constructed to
achieve this goal, and we focus on one of the quasi-random sequences introduced by Sobol’ (1967),
Sobol. Sobol sequence was designed to cover the unit hypercube with lower discrepancy than
completely random sampling (e.g. Random Search), shown as Figure 2.13.

2.3.2 Practical experiment

In our experiment, we find that after replacing Geometric Brownian Motion with Sobol sequence
in DCKE with pathwise delta as the control variate parameter, the estimation efficiency soars
evidently, which is demonstrated through Figure 2.14 and Figure 2.15.

In terms of mean squared errors, Figure 2.14 indicate that for the same number of paths rang-
ing from 1,000 until 10,000, Sobol outperforms GEM consistently while estimating both opyion
prices and deltas. Especially at earlier time steps, Sobol already gives much smaller MSE with
1,000 paths than GBM with 10,000 paths. The increase of simulation paths only has tiny reduction
in MSE for Sobol compared to GBM. On average, only 2,000 paths are needed for Sobol sequence
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Figure 2.13: 200 points sampled in 2D with Sobol sequence (left); uniformly at random (right)

Figure 2.14: Mean squared errors of estimated prices (left); of estimated deltas (right) against
number of simulation paths for GBM and Sobol (average of 100 repetitions)

to obtain similar estimation accuracy to GBM with 10,000 paths, and when it is further from the
expiration date, even fewer paths are needed.

For the PFE comparison in Figure 2.15, Sobol again associates with smaller absolute errors
in each quantile than GBM on average, and the error plots for Sobol are far smoother with the
increasing number of simulation paths than the ones for GBM, particularly for deltas, which also
supports the feasibility of pursuing Sobol with far fewer simulation paths for the estimation.

This is an amazing breakthrough since we remarkably accelerate the computaion of prices and
sensitivities, which is hence beneficial to the computation of XVA.

We report the precise error statistics in Table C.2 in Appendix C.4. Table 2.4 reflects the im-
provement of Sobol in computational efficiency more directly by giving the exact average calcu-
lation times. In a conclusion, similar results are obtained with Sobol by saving nearly 60% of the
computational cost while using GBM.
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Figure 2.15: Absolute errors in 1%, 50% and 99% quantiles of estimated prices (left); of estimated
deltas (right) against number of simulation paths for GBM and Sobol (average of 100 repetitions)

Sequence Method Paths Time (s)

GBM GPR-based DCKE 10,000 7.1289
Sobol GPR-based DCKE 2,000 3.0491

GPR-based DCKE 1,000 2.7203
NN-based DCKE 100,000 276.6336

Table 2.4: Computational time of GBM and Sobol with different number of paths under methods
DCKE and Neural Networks for 3 intermediate time steps (average of 100 repetitions)
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Algorithm 2 Dynamically Controlled Kernel Estimation
Input: K: strike; r: risk-free rate; T: number of time steps; ∆t: lag between consecutive time steps;

n: number of simulated paths; u: number of meshed samples; S: spot prices sequences Sti with
each length n for i = 0, . . . , T; C: cap of variable kernel ratio (usually 1-30)

Output: X: mesh points of spot price sequence Xti ; V̂: option prices sequences V̂ti ; Φ̂: deltas
sequences φ̂ti with each length n for i = 0, . . . , T
Set arrays: V j

tT
= P(·): the payoff function, j = 1, . . . , n; V̂∗, V̂′∗, Φ̂, Φ̂′ (discounting payoff

approach); V̂◦, Φ̂◦ (backward recursion approach)

h = 0.9 ∗min
(√

Var(StT ),
IQR(StT )

1.34

)
∗ n−

1
5 (fixed kernel)

for all time steps from i = T − 1 down to i = 0 do
Xti = samples drawn between 1%− 99% percentiles of Sti
for each mesh point k = 1 up to k = u do

Kk
ti
= ∑n

j=1 e−
1

2h2 (S
j
ti
−Xk

ti
)2

end for
K∗ = max(Kk

ti
) for k = 1, 2, . . . , u

for each mesh point k = 1 up to k = u do
Kk

ratio = min( K∗

Kk
ti

, C)

hnew = hKk
ratio(variable kernel)

V̂k
ti+1

= m̂LL
hnew

(xk, Sti ; Vti+1)(m̂
LL
h defined as Equation (2.2.7))

Ŝk
ti+1

= m̂LL
hnew

(xk, Sti ; Sti+1)(m̂
LL
h defined as Equation (2.2.7))

φ̂k
ti

=
m̂LL

hnew
(xk ,Sti ;(Πti+1−m̂LL

hnew
(xk ,Sti ;Πti+1 )(Sti+1−m̂LL

hnew
(xk ,Sti ;Sti+1 )))

m̂LL
hnew

(xk ,Sti ;(Πti+1−m̂LL
hnew

(xk ,Sti ;Πti+1 )))
2)

(m̂LL
h defined as Equation

(2.2.7))
φ̂′kti

= m̂LL
hnew

(
xk, Sti ; e−r(tT−ti) dP(·)

dSti

)
(m̂LL

h defined as Equation (2.2.7))

end for
!4discounting payoff approach

V̂∗ti
=e−r∆tGPR(RBF, Xti , V̂ti+1 − φ̂ti (Ŝti+1 − er∆tXti ))

(CV parameter: variance minimisation solution)
V̂′∗ti

=e−r∆tGPR(RBF, Xti , V̂ti+1 − φ̂′ti
(Ŝti+1 − er∆tXti ))

(CV parameter: kernelised pathwise delta)
V j

ti
= e−r∆tV j

ti+1

!4backward recursion approach: V◦ti
, V̂◦ti

, φ̂◦ti
replace Vti , V̂ti , φ̂′ti

in the loop above
V̂◦ti

=e−r∆tGPR(RBF, Xti , V̂◦ti+1
− φ̂◦ti

(Ŝti+1 − er∆tXti )
(CV parameter: kernelised pathwise delta)
V◦ti

= 1D-interpolate (Xti , V̂◦ti
; Sti )

end for
return V̂∗, V̂′∗, V̂◦, Φ̂, Φ̂′, Φ̂◦
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Chapter 3

Extension to Exotic Options

In the previous sections, we tested the validity of our new algorithm by applying it to the Euro-
pean vanilla option. The reason is that the Black-Scholes formula gives closed-form solutions so
that we can compare how well our estimation algorithm works. After demonstrating the break-
through we make in predicting vanilla option prices and deltas both theoretically and numeri-
cally, we extend the DCKE algorithm to more complex products in this section, even including
those high-dimensional exotic options without closed-form solutions, in which case nested Monte
Carlo are used as the comparison benchmark.

3.1 Barrier option

Barrier option is a derivative product which payoff is contingent on whether the stock price path
has reached a barrier level B during the product lifetime.

Denote the running minimum and maximum of a stock price process as

Lti := inf
t0≤ui≤ti

Sui , Hti := sup
t0≤ui≤ti

Sui ,

where ti = t0, . . . , tT . The payoffs of different types of barrier call option are then given by

Type Down-and-out Down-and-in Up-and-out Up-and-in

Payoff (StT − K)+ 11{LtT>B} (StT − K)+ 11{LtT≤B} (StT − K)+ 11{HtT<B} (StT − K)+ 11{HtT≥B}

Table 3.1: Payoffs of different types of barrier Call options

For barrier put options, (StT − K)+ is replaced by (K− StT )
+. This product is a cheaper alter-

native to the simple European option since the payoff is only activated when the barrier level has
(not) been hit.

We focus on Down-and-out Call option and apply the DCKE algorithm. Note that for such
kind of path-dependent options, we simulate the paths on a finer mesh in order to determine
whether the option has knocked out, and then extract and plot a couple of representative time
steps to compare with the closed-form solution.

3.1.1 Continuity correction

As we are modelling discretely in time, in general, there are no easily computed closed-form ex-
pressions for the prices of these discrete barrier options. A consequence of our analysis is the
obvious conclusion that the discrete price converges to the continuous price as the monitoring
frequency increases, suggesting that the continuous price may be used as a naive approxima-
tion. The following theorem according to Broadie et al. (1997, pg 327) shows how to adjust the
continuous formula to obtain a greater approximation to the discrete price.
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Theorem 3.1.1. Let V∗(B) be the price of a discretely monitored knock-in or knockout down call or up put
with barrier B. Let V(B) be the price of the corresponding continuously monitored barrier options. Then

V∗(B) =

V
(

Be+βσ
√

T/m
)
+ o

(
1√
m

)
if B > St0

V
(

Be−βσ
√

T/m
)
+ o

(
1√
m

)
if B < St0 ,

(3.1.1)

where β = −ζ
(

1
2

)
/
√

2π ≈ 0.5826, with ζ the Riemann zeta function, and m is the number of simulated
time steps.

The theorem indicates that to use the continuous price as an approximation to the discrete
price, we should first shift the barrier away from St0 by a factor of eβσ

√
∆t. Compared with us-

ing the unadjusted continuous price, this correction reduces the pricing error from O(1/
√

m) to
o(1/
√

m) as the number of time steps m increases.
Numerical results in Section 3.1.3 suggests a significant improvement in approximation accu-

racy after we take the barrier adjustment into account.

3.1.2 Brownian bridge

Since we are dealing with path-dependent options, we no longer utilize the exact simulations for
underlying spots. In this case, we apply Brownian bridge discretisation (BBD) scheme that out-
performs the standard discretisation (SD) scheme of Black-Scholes model for quasi-Monte Carlo
(QMC) methods, as described below.

Recall that the discretisation of the Black-Scholes solution leads to

Sj
ti+1

= Sj
ti

exp
((

r− 1
2

σ2
)
(ti+1 − ti) + σ

(
Wti+1 −Wti

))
,

with Sj
ti

, j = 1, . . . , n and i = 1, . . . , n starting at Sj
t0

. Equation (1.1.4) is the SD scheme of the
solution. Different from SD which generates the Brownian motion sequentially across time steps,
in the alternative BBD scheme we use different orderings. The first value of the Brownian motion
is initialised to zero and the terminal value is generated from the first variate, while subsequent
variates are used to generate intermediate points, conditioned on the points that are already sim-
ulated. We apply bisected recursion on each path to determine the values at each intermediate
steps according to the following formula:

W j
t0
= 0 (3.1.2)

W j
tT

=
√

tT − t0θ1,j (3.1.3)

W j
ti
=

ti+k − ti
ti+k − ti−k

Wi−k +
ti − ti−k

ti+k − ti−k
Wi+k +

√
(ti+k − ti)(ti − ti−k)

ti+k − ti−k
θl,j, (3.1.4)

where i = 1, . . . , T, l = 2, . . . , T, k = T
2n and n = 1, . . . , log2 T.

Due to different orderings of Brownian motion generation, the stochastic part of Equation
(3.1.2) associated with smaller variance than the discretisation of Brownian motion in SD scheme
under the same number of time steps, and the first few points in BBD scheme contain most of the
variance. Both schemes have the same total variance under Geometric Brownian Motion, which
leads to the same Monte Carlo convergence rates. Nevertheless, as proved by Bianchetti et al.
(2015), QMC sampling gives outperforming efficiencies for BBD than SD, which shows faster
and more stable convergence to exact or almost exact results including the highest-dimensional
simulations and Greeks calculations.

3.1.3 Practical experiment

Note that since the terminal payoff of barrier options consists of a non-differentiable indicator
function, the Dominated Convergence Theorem (DCT) which enables us to interchange the order
of differentiation and expectation in Equation (2.2.8) no longer applies. As a consequence, the
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kernelised pathwise derivative exists with probability one but is entirely uninformative. Hence,
we use the variance minimisation solution as Equation (2.1.9) to estimate deltas, and then plug
into the estimation of prices.

We follow the general features listed in Table 3.2 in our numerical experiment and compare
our estimates with the closed form solution according to Fei (n.d.). We first set the barrier level to
be 95, which is close to but not coincides with the initial stock price 100. Additionally, we set the
number of time steps m = 128 to control the error term in Equation (3.1.1).

General features
Initial stock price St0 100
Strike price K 100
Barrier level B 95
Risk-free rate r 5% p.a.
Volatility σ 40% p.a.
Maturity time tT 1 year
Terminal value P 11{(inft0≤ui≤ti Sui )>B}max (StT − K, 0)

Table 3.2: Example barrier Call option

From Figure 3.1, after the adjustment of barrier level, the price estimates under all of GBM,
Sobol sequence, and Sobol with Brownian bridge discretisation almost perfectly lie on the closed-
form solutions to down-and-in barrier options. As we already set up a finer mesh and use small
enough lags between time steps, only tiny discrepancies happen when the underlying spot ap-
proaches the barrier level after the continuity correction. However, when we zoom in the plot of
results without barrier level adjustments, obvious biases occur around the barrier level and all
estimates tend to overpredict the option prices.

Figure 3.1 demonstrates the necessity of the adjustment made for the closed-form solution.
However, through this adjustment, the closed-form prices around the barrier level move upwards
to coincide the estimates, and hence the prices with underlying spots that are just below the
barrier increases as well. As a result, the closed-form price is adjusted to be greater than zero in
the cases that the options are already knocked out. To avoid such biases occur when the options
are already knocked out and to compare the results obtain using GBM, Sobol and Sobol with
BBD, as introduced in Section 3.1.2, respectively, we compute the mean squared errors between
our estimates and the adjusted closed-form solution only for Sti > B at each time step in each
case, repeat for 100 times and take the average. The barrier level ranges from 81 till 99, and we
also investigate how the amount of MSE reduction due to the continuity adjustment in each case
changes with the increase of barrier level in Figure 3.2.

As shown in Figure 3.2, Sobol sequence with BBD indeed outperforms Sobol and GBM with
standard discretisation as expected, especially in earlier time steps, due to the faster Monte Carlo
convergence rate. We again verify that Sobol is a better choice than GBM. As the barrier level
approaches the initial stock price 100, the estimation errors increase as well, because although
we already applied the continuity correction and kept a large number of time steps, the true
gap between discrete and continuous monitoring is difficult to be recovered. In other words, the
approximation is accurate enough to correctly price barrier options in all but the most extreme
circumstance, i.e., except when the price of the underlying asset nearly coincides with the barrier.
We also observe that as the barrier level increases, the barrier adjustment is more effective in
reducing the total MSE, except when the barrier and spot price nearly accord with each other.
The reason is, when the barrier level is small enough, in almost no cases will the option knock
out and the apparent deviations between the estimation and the closed-form solution around the
barrier level no longer exist. Moreover, similar to above, the barrier adjustment becomes slightly
less effective at the extreme cases while Sti ≈ B.

Similarly, we plot the estimated deltas with Sti > B at each time step together with the deltas
we get by applying the central difference to the adjusted closed-form prices in Figure 3.3. We get
a better estimate when the option approaches its maturity date. As the adjusted closed-form price
is not well-continuously differentiable, the central difference deltas we get are not representative
when Sti ≈ B, but we could still refer to the values when the spot price is large. Also, we find the
evident reduction in MSE after we adjust the true barrier level. With the increase of barrier level,
the total MSE both before and after the correction increases, and so does the effect of correction.
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Figure 3.1: Price estimates for barrier options with continuity correction against closed form prices
(left); zoomed-in without continuity correction (right)

Table 3.3 reports the improvements in MSE when we apply Sobol sequence with Brownian
bridge discretisation instead of GBM, and before versus after continuity with Sobol sequence with
Brownian bridge discretisation at each time step. Sobol with BBD does help with the reduction
of Monte Carlo error accumulation, especially for earlier time steps and lower barrier levels. We
can also find that more importantly, the continuity adjustment for barrier options increases the
estimation precision universally.

Sobol-BBD vs GBM Adjusted vs Unadjusted
Barrier t = 0.25 t = 0.50 t = 0.75 t = 0.25 t = 0.50 t = 0.75

81 68.50% 52.28% 26.68% 53.15% 28.65% 42.61%
83 60.00% 53.92% 19.39% 59.32% 33.43% 50.02%
85 54.37% 47.54% 16.09% 63.79% 34.01% 52.62%
87 55.48% 39.82% 8.86% 66.33% 36.29% 57.69%
89 49.71% 41.14% 6.92% 65.36% 42.69% 57.13%
91 45.05% 38.94% 14.64% 65.42% 43.18% 59.50%
93 39.17% 22.79% 3.21% 62.36% 36.66% 54.49%
95 22.00% -2.07% -19.74% 61.85% 33.50% 52.63%
97 17.13% 4.37% 4.72% 52.36% 24.88% 45.98%
99 23.06% -2.97% 2.59% 33.65% 23.26% 27.08%

Table 3.3: Reductions in MSE of estimated priced against closed form solutions under Sobol se-
quence with Bownian bridge discretisation vs GBM; before vs after continuity correction at dif-
ferent barrier levels with St0 = 100
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Figure 3.2: MSE comparison for GBM, Sobol, and Sobol with Brownian bridge discretisation
for barrier options after continuity correction (left); reduction in MSE after continuity correction
(right) (average of 100 repetitions)

3.2 Basket option

We now extend the new algorithm to higher dimensional products.
Basket options are popular multivariate derivatives in financial markets, the payoff of which

depends on the weighted average of the underlying asset prices. We suppose the price of the
basket option depends on the weighted arithmetic average of the prices of d assets with weights
ω1, ω2, . . . , ωd, where ωu > 0, u = 1, . . . , d and ∑d

u=1 ωu = 1. Then, the payoff of the Call option
is represented by

VtT =

(
d

∑
u=1

ωuSutT − K

)+

, (3.2.1)

where SutT denotes the price of the asset u at time T. For Put options, we just interchange the two
terms in the bracket.

Each entry of the d-dimensional pathwise derivative of the basket option φtT−1 is given by

φutT−1 = ωu
SutT

St0

11{∑d
u=1 ωuSutT>K}.

For Put options, we just replace ‘>’ with ‘<’.

3.2.1 Sequences of multiple assets

We now introduce how to generate the sequences of multiple assets. The asset price sequences in
Equation (3.2.1) has the expression

Sj
uti+1

= Sj
uti

exp
((

r− 1
2

σu
2
)
(ti+1 − ti) + σu

(
Wuti+1 −Wuti

))
,
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Figure 3.3: Delta estimates for barrier options with continuity correction against central difference
deltas (left); MSE comparison for GBM, Sobol, and Sobol with Brownian bridge discretisation for
barrier options with and without continuity correction (right): before continuity correction (‘-·’);
after continuity correction (‘-’) (average of 100 repetitions)

where Wuti+1 −Wuti = Wu∆t ∼ N(0, ∆t) are correlated standard Brownian motions with cor-
relations ρuv, where v = 1, . . . , d. We define R as the correlation matrix for the d assets with
entries ρuv, and suppose L is the solution of LLT = R obtained by Cholesky factorisation. As
(W1∆t, . . . , Wd∆t)

T follows a multivariate normal distribution N(0, Σ), where

Σ =


√

∆t √
∆t

. . . √
∆t




ρ11 · · · · · · ρ1d
...

. . .
...

...
. . .

...
ρd1 · · · · · · ρdd



√

∆t √
∆t

. . . √
∆t

 = ∆tR

Note that if ξ = [ξ1, ξ2, . . . , ξd]
T ∼ N(0, I), where ξ1, . . . , ξd are identically and independent

standard normal distributions, then Lξ ∼ N
(
0, LLT) and moreover,

√
∆tLξ ∼ N

(
0, ∆tLLT

)
= N(0, ∆tR) = N(0, Σ),

which indicates
√

∆tLξ can be used to replace (W1(T), . . . , Wd(T)) in the simulation procedure.
The uth element of the vector Lξ can be written as ∑u

v=1 Luvξv because the correlation matrix R is
symmetric and hence, L is lower triangular. Consequently, the stock price for asset u at time ti+1
can be written as the form

Sj
uti+1

= Sj
uti

exp

((
r− 1

2
σ2

u

)
∆t + σu

√
∆t

u

∑
v=1

Luvξv

)
.
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3.2.2 Algorithm - Multi-dimensional Dynamically Controlled Kernel Estima-
tion

Algorithm 3 describes the multi-dimensional version of the DCKE algorithm in pseudo-code as
an extension to Algorithm 2. Algorithm 4 shows three different approaches for the estimation
of basket options and rainbow options, which will be introduced in Section 3.3, making use of
Algorithm 2 and 3.

Section 3.2.3 gives further explanations about how the algorithms are applied in the practical
experiment.

Algorithm 3 Multi-dimensional Dynamically Controlled Kernel Estimation
Input: d: dimension of assets; r: risk-free rate; ∆t: lag between current time step and maturity;

n: number of simulated paths; u: number of meshed samples; S: d-dimensional asset price
sequences Sti with each length n for i = 0, . . . , 2; S∗: validation asset price sequences S∗ti

; hp:
hyperparameter input for bandwidth adjustment of price; hd: hyperparameter input for band-
width adjustment of delta; C: cap of variable kernel ratio (usually 1-30)

Output: X: mesh points of spot price sequence Xti ; V̂∗t1
: option prices sequence with length n

Set arrays: Vt2 = P(·): payoff function; φt1 : payoff derivative (from Equation (3.3.1)); V̂∗t1
Xt1 = samples between 1%− 99% percentiles of St1via SobolEngine
X∗t1

= samples between 1%− 99% percentiles of S∗t1
via SobolEngine

Σ = cov(St2 − St1)

L◦ = Ln−
1

d+4 s.t. LLT = Σ−1 (according to Section 2.2.1.3)
L◦p = L◦ ∗ hp
L◦d = L◦ ∗ hd
for each sample point k = 1 up to k = u do

Kk
pt1

= ∑n
j=1 e−∑d

v=1(S
j
vt2
−tile(Xk

vt2
))L◦p2

(tile: convert Xk
vt2

into the same dimension as Sj
vt2

by
repeating each entry for n

u times)
end for
K∗ = max(Kk

pt1
) for k = 1, 2, . . . , u

for each mesh point k = 1 up to k = u do
Kk

ratio = min( K∗

Kk
t1

, C)

Kk
pt1

= e−∑d
v=1(S

j
vt2
−tile(Xk

vt2
))L◦p2

∗ Kk
ratio

Kk
dt1

= e−∑d
v=1(S

j
vt2
−tile(Xk

vt2
))L◦d

2
∗ Kk

ratio

V̂k
t2
=

∑n
j=1 Kk

pt1
Vt2

∑n
j=1 Kk

pt1

Ŝk
t2
=

∑n
j=1 tile(Kk

pt1
)St2

∑n
j=1 Kk

pt1

φ̂k
t1
=

∑n
j=1 tile(Kk

dt1
)φt1

∑n
j=1 Kk

dt1
end for
V̂∗t1

=e−r∆tGPR(RBF, Xt1 , V̂t2 − φ̂t1(Ŝt2 − er∆tXt1); X∗t1
)

return V̂∗t1

3.2.3 Practical experiment

We use high-dimensional Sobol low discrepancy sequences in our simulation due to its higher
efficiency compared to geometric Brownian motion as shown in Section 2.3.2.

Since there is no closed form solution for the price of basket options, we use nested Monte
Carlo as the evaluation benchmark. We start with the simplest case when there are two assets
in total. In order to make a more robust bandwidth choice for the kernel estimation, we create a
validation set and employ the dedicated hyperparameter optimization Python library Hyperopt to
obtain an optimal bandwidth among uniformly distributed samples on a constrained two-sided
interval for the price and delta estimates, respectively by minimising the validation error. We
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General features
Initial stock price St0 100
Strike price K 100
Number of assets d 2
Asset weight ωu 0.5
Risk-free rate r 0% p.a.
Volatility σu 20% p.a.
Correlation ρuv 0.2
Maturity time tT 1 year
Terminal value P max

(
∑d

u=1 ωuSutT − K, 0
)

Table 3.4: Example basket Call option

keep 20,000 simulation paths, use 2,000 paths for nested MC and 2,000 validation observations
to test the model performance. Similar to before, we extract the 1% to 99% quantiles of each
underlying asset for both the training and validation portion, and obtain 100 sample points in
each dimension by drawing random quantiles from SobolEngine, since the dimensionality of the
assets is too high to apply the simple meshed method as before.

Figure 3.4 displays the difference between option prices obtained from nested MC and the
results of the raw kernel estimates with and without the inclusion of control variates when we
apply multi-dimensional kernel regression. Firstly, it can be observed that we get more robust
estimates for the price when the option is closer to maturity no matter if control variates are
switched on. Also, it is obvious that by adding control variates, the estimation errors have been
significantly reduced compared with nested MC results. It is worth noted that when two assets
prices differ a lot and when the option is around-the-money, consistent deviations exist especially
for earlier time steps. Similar results are obtained when we fit the price surface using multi-
dimensional GPR, applying onto the raw kernel estimates, as shown in the left plot in Figure 3.5.
However, such problem is partially solved when we reduce the strike price to 70 according to the
right plot, but in this case, the ‘tails’ are not well-estimated.

So far, we applied the multi-dimensional DCKE algorithm, which consists of the application
of high-dimensional kernels, control variates and GPR. Another way to deal with the pricing
problem of basket options could be concatenating multiple assets into a single dimension by com-
puting the weighted average, and repeat the basic DCKE approach. Figure 3.6 shows that when
the strike is 100, the predicted price has even greater errors when there is a huge gap between
two asset prices and when the option is around the money. However, when the option is more
in-the-money (K = 70), this approach gives perfect fits except the extreme ‘tails’.

We finally use multi-dimensional GPR directly onto nested MC results. Not surprisingly, we
get tiny difference compared to nested MC benchmarks, as plotted in Figure 3.7. However, it is
worth investigating how will this method perform for higher-dimensional options.

We create Figure 3.8 and 3.9 to observe how each model performs with the change of number
of assets. First of all, the multi-dimensional raw kernel fit gives similar MSE to the model in
which we further include GPR. With the increase of the number of assets, the inclusion of GPR
makes the model more robust, especially around the ‘tails’. When time approaches maturity, the
compressed 1D model outperforms the high-dimensional models, even the pure GPR model on
nested MC, in terms of MSE when the number of asset is greater than 10, and in terms of smaller
absolute errors around both two ‘tails’ with almost the whole set of asset numbers. Nevertheless,
such remarkable performance is not consistent across time steps. As time comes to t = 0.3,
i.e., far from maturity, the 1D model has largest overall prediction errors and ‘tails’ deviations
against nested MC among the four models under comparison, whereas the multi-dimensional
GPR applied to nested MC gives most precise estimates.
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Figure 3.4: Raw kernel estimates of prices for 2D basket option without control variates (left);
with control variates (right) minus nested MC results

3.3 Rainbow option

3.3.1 Generalisation

Like the basket option we introduce above, which is written on a group of assets and pays out
on a weighted-average gain on the basket as a whole, a rainbow option also considers a group
of assets, but usually pays out on the level of one of them depending on their performance at
maturity. Rainbow options are usually calls or puts on the best or worst of d underlying assets of
the basket. When the rainbow only pays the best (worst) performing asset, it is also called best-of
(worst-of). Other popular options that can be reformulated as a rainbow option are spread and
exchange options.

Type Best-of Worst-of

Payoff (%)
(

max(
S1tT
S1t0

, . . . ,
SdtT
Sdt0

)− K
)+ (

min(
S1tT
S1t0

, . . . ,
SdtT
Sdt0

)− K
)+

Table 3.5: Payoffs (%) of different types of rainbow Call options

Table 3.5 shows that a worst-of call option is exercised only if all underlying instruments have
performed better than the strike price, whereas a best-of call option is exercised if at least one
underlying instruments have performed better than the strike. For Put options, we just exchange
the order of the two terms in the bracket. Note that the strike here is defined as a percentage. It
must be a positive number and can be over 100%. The strike is compared with the best (worst)
performed asset’s yield (percentage ITM), and the payout is then the notional multiplied by the
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Figure 3.5: Price estimates with 2D kernel and GPR for 2D basket option with control variates:
K = 100 (left); K = 70 (right)

payoff percentage.

Type Best-of Worst-of

Pathwise derivative max(
S1tT
S1t0

, . . . ,
SdtT
Sdt0

) min(
S1tT
S1t0

, . . . ,
SdtT
Sdt0

)

Table 3.6: Pathwise derivative of different types of 1D rainbow options

We define both d-dimensional and 1-dimensional pathwise derivatives, which is helpful for
the later experiment, in which we compare models of different dimensions. Each entry of the
d-dimensional pathwise derivative of the rainbow option φtT−1 is given by

φutT−1 =


1

Kv
(max(

S1tT
S1t0

, . . . ,
SdtT
Sdt0

)− K)11
{max(

S1tT
S1t0

,...,
SdtT
Sdt0

)>K}
if v = argmax

u∈{1,...,d}
(

SutT
Sut0

)

0 otherwise
(3.3.1)

For worst-of options, we replace ‘max’ with ‘min’, and for Put options, replace ‘>’ with ‘<’.
The 1-dimensional pathwise derivative of the rainbow option is listed in Table 3.6.

3.3.2 Practical experiment

Following the general features in Table 3.4, we specify some additional settings in Table 3.7.
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Figure 3.6: Price estimates with 1D kernel and GPR for weighted 1D basket option with control
variates: K = 100 (left); K = 70 (right)

General features
Initial stock price Sut0 100
Strike price Ku 100
Basket strike price K 90% p.a.

Terminal value P (%) max
(

max(
S1tT
S1t0

, . . . ,
SdtT
Sdt0

)− K, 0
)

Table 3.7: Example best-of Call option

Same as when we investigate basket options, we try d-dimensional DCKE approach, 1-dimensional
DCKE algorithm that only includes the best (worst) performed asset as input, and direct d-
dimensional GPR to fit the nested MC results. Figure 3.10 shows the predicted payout for best-
of-two and worst-of-two options against the ratio of each asset price to its initial price when we
use the outperformed model with time close to maturity in the estimation of the basket option
above. The best-performed asset of two can achieve effectively 30% in the money, whilst the
worst-performed asset only has a maximum payoff proportion of around 10%.

From now on, we only focus on best-of option by convention. We plot the difference between
the predicted payout against nested MC results for the 1-dimensional model and the direct GPR
model, respectively in Figure 3.11. We can find when M = 2, both models give promising esti-
mates, and by applying GPR directly onto nested MC prices, smaller errors are associated and
hence becomes more robust.

To get a better understanding of the performance of each model with different numbers of as-
sets in a basket, we refer to Figure 3.12 where the predictions are plotted against nested MC. There
might be some less-than-zero predictions, and will be floored to zeros in the real application. We
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Figure 3.7: Price estimates with direct GPR on nested MC (left); predicted results minus nested
MC results (right)

can obtain the following key conclusions:

Remark 3.3.1. When the number of asset is small, 5 in our case, three models show indistinguish-
able performance.

Remark 3.3.2. Unlike the nearly perfect performance of the direct GPR approach according to
Figure 3.11 when d = 2, the predictions starts to get far away from the benchmark when 5 assets
are considered, and becomes even worse when the number of assets further increases.

Remark 3.3.3. High-dimensional models, even the one applying GPR directly on nested MC re-
sults gives terrible price estimates for the high-dimensional options, while the predictions of the
1-dimensional DCKE keep staying around the line that represents ‘prediction = nestedMC’. It
follows that the high-dimensional kernel and GPR approach performs even worse due to the
multi-dimensional bandwidth selection problems. This fully reveals the curse of dimensionality
problems.

Therefore, it is evident that the 1-dimensional model works effectively when time is close to
maturity for rainbow options. It is actually not too surprising since the payoff depends on the
best-performed asset at the maturity, and by applying 1-dimensional DCKE model, we substitute
in the best-performed asset for the prediction whereas the high-dimensional models contain less
informative inputs.

To be more precise, we repeat 100 times and plot the MSE and PFE for the 1-dimensional
model and direct GPR approach with the change of number of assets in Figure 3.13 and 3.14. The
1-dimensional DCKE estimate gives smaller MSE and 1% quantile absolute errors than the direct
GPR approach when the asset number is large and when time is close enough to maturity. How-
ever, for earlier time steps, the direct sampling model is more reliable. A possible improvement
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Figure 3.8: Mean squared errors of estimated basket option prices against nested MC under dif-
ferent models with 2, 5, 7, 10, 15, 20 assets (average of 100 repetitions)

could be made for the 1-dimensional DCKE model might be applying backward recursion on the
predicted price and keep the time step size to be small enough.
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Figure 3.9: Absolute errors in 1% (left) and 99% (right) quantiles of estimated basket option prices
against nested MC under different models with 2, 5, 7, 10, 15, 20 assets (average of 100 repetitions)
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Algorithm 4 Dynamically Controlled Kernel Estimation on Multi-dimensional Assets
Input: d: dimension of assets; W: sequence of basket option weights of d assets; K: sequence

of strikes of d assets; Kr: rainbow option strike (%); r: risk-free rate; ∆t: lag between current
time step and maturity; n: number of simulated paths; u: number of meshed samples; S: d-
dimensional asset price sequences Sti with each length n for i = 0, . . . , 2; S∗: validation asset
price sequences S∗ti

; C: cap of variable kernel ratio (usually 1-30)
Output: X: mesh points of spot price sequence Xti ; V̂∗t1

Set arrays: V∗t2
: validation payoff; φt1 : payoff derivative (from Equation (3.3.1)); V̂∗t1

Xt1 = samples between 1%− 99% percentiles of St1via SobolEngine
X∗t1

= samples between 1%− 99% percentiles of S∗t1
via SobolEngine

!41-dim kernel & GPR approach
if basket option then

SW
t1

= [Σd
v=1S1

vt1
Wv, . . . , Σd

v=1Sn
vt1

Wv]

SW
t2

= [Σd
v=1S1

vt2
Wv, . . . , Σd

v=1Sn
vt2

Wv]

φW
t1

= [Σd
v=1φ1

vt1
Wv, . . . , Σd

v=1φn
vt1

Wv]
end if
if rainbow (best-of) option then

SW
t1

= [max(
S1

1t1
K1

, . . . ,
S1

dt1
K1

), . . . , max(
Sn

dt1
Kd

, . . . ,
Sn

dt1
Kd

)]

SW
t2

= [max(
S1

1t2
K1

, . . . ,
S1

dt2
K1

), . . . , max(
Sn

dt2
Kd

, . . . ,
Sn

dt2
Kd

)]

φW
t1

from Tabel 3.6
end if
do Algorithm 2 with StT = SW

t2
; StT−1 = SW

t1
; φ̂t1 = φW

t1
; K = Kr (rainbow option)

h∗p, h∗d = argmin
hp ,hd∼U(0.01,10)

‖V̂′∗t1
− e−r∆tV∗t2

‖ via hyperopt (minimise validation error)

do Algorithm 2 with hp =
hp√

h∗p
(bandwidth for price), hd = hd√

h∗d
(bandwidth for delta)

if rainbow option then
for each mesh point k = 1 up to k = u do

if V̂′∗kt1
< 0 then

V̂′∗kt1
= 0

end if
end for

end if
return V̂′∗t1

!4d-dim kernel & GPR approach
do Algorithm 3
h∗p, h∗d = argmin

hp ,hd∼U(0.01,10)
‖V̂∗t1
− e−r∆tV∗t2

‖ via hyperopt (minimise validation error)

do Algorithm 3 with hp, hd = h∗p, h∗d
if rainbow option then

for each mesh point k = 1 up to k = u do
if V̂∗kt1

< 0 then
V̂∗kt1

= 0
end if

end for
end if
return V̂∗t1

!4direct GPR approach
V̂∗t1

=e−r∆tGPR(RBF, Xt1 , nestedMCprice(Xt1 ); X∗t1
)

return V̂∗t1
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Figure 3.10: Price estimates with 1D kernel and GPR for best-of-two option (left); worst-of-two
option (right)
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Figure 3.11: Price estimates for best-of-two option minus nested MC results: with 1D kernel and
GPR (left); with direct GPR on nested MC (right)
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Figure 3.12: Predicted payout proportion against nested MC results for best-of option under dif-
ferent models at t = 0.9 with 5 assets (left); 10 assets (middle); 15 assets (right)

Figure 3.13: Mean squared errors of estimated best-of option prices against nested MC under
different models with 2, 5, 7, 10, 15, 20 assets (average of 100 repetitions)
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Figure 3.14: Absolute errors in 1% (left) and 99% (right) quantiles of estimated best-of option
prices against nested MC under different models with 2, 5, 7, 10, 15, 20 assets (average of 100
repetitions)
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Conclusion & Further Work

In this paper, we propose a new algorithm, Dynamically Controlled Kernel Estimation by draw-
ing inspiration from Black-Scholes discrete-time hedging, which computes the conditional ex-
pectation of the option values in the future given the information at the current time step more
precisely and efficiently, which directly improves the current state of the art for XVA computation.

The key of the algorithm is that we compute the conditional steps in the optimal solution
of the variance-minimisation hedging strategy by kernel regression, which gives more precise
predictions than Grau’s and Potters’ regression approach that heavily relies on the choice of ba-
sis functions, and also outperforms the current industry standard, Least Square Monte Carlo.
Similarly, the idea of kernel regression can be applied to pathwise derivative estimation and any-
where else in our algorithm to work out the conditional expectations. Although the kernelised
variance-minimisation solution is shown to be less robust than the kernelised pathwise derivative
in all time steps, it provides an alternative to certain products, such as digital options and barrier
options, in which the Dominated Convergence Theorem does not apply because of their payoff
structures, and we can no longer interchange the order of differentiation and expectation while
taking the derivative of such option prices. As the variance-minimisation solution has exactly
the same form as the optimal control variate parameter, we include the prediction of deltas as
control variate parameters. Through comparisons, the balloon estimator takes advantage of the
varying bandwidth across the domain of the PDF based on the evaluation point and associates
with smaller errors than the kernel with fixed bandwidth, especially around the edges. To obtain
equally reliable estimates, far less work is needed for control variates under the Locally Linear
kernel estimator than the Nadaraya-Watson kernel estimator. Also, the Locally Linear estimator
outperforms Nadaraya-Watson due to fewer prediction biases at the ‘tails’, and is even more for-
giving in bandwidth choice. With the further inclusion of Gaussian Process Regression, which
helps capture the model uncertainty and makes more stable predictions, we finalise the DCKE
algorithm. The discounting payoff approach is preferred to the backward recursion approach,
since the latter suffers from severe error accumulation problems around the ‘tails’ as time goes
backward step by step.

Under the Black-Scholes model for European options, the DCKE algorithm successfully re-
duces up to 84% MSE in predicting prices and up to 92% MSE in the estimation of deltas compared
to the traditional Least Squares Monte Carlo approach. DCKE also improves the ‘tails’ estimates
remarkably, especially for deltas, with up to hundreds of times smaller absolute errors in the 1%
quantile. Evident improvements are also observed under the Heston model, which proves the
algorithm is independent of the choice of model for underlying spots.

Another success of the paper is that we significantly reduce the number of simulation paths
from 10,000 to less than 2,000 after employing quasi-Monte Carlo (QMC) method by replacing
geometric Brownian motion with low-discrepancy Sobol sequence, which further saves the total
computational time by over 50% under DCKE.

For more complex products, including path-dependent options and options with multiple
underlying assets, the validity of DCKE is also proved. Making continuity adjustment in barrier
options enables us to decrease the total estimation MSE by 66%. Also, we verify the faster rate
of convergence to exact or almost exact result under the Brownian bridge discretisation scheme
rather than the standard discretisation scheme for quasi-Monte Carlo sampling, by reducing up
to 69% of the total MSE. Moreover, we extend DCKE to multiple dimensional to price basket and
rainbow options. Under comparison, the one-dimensional DCKE approach with the compressed
multiple asset sequence as input outperforms the high-dimensional DCKE when the time is close
enough to maturity. An important finding is that for rainbow options, even if we apply direct
GPR to nested MC results when the asset dimension is over 5, we obtain terrible predictions due
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to the curse of dimensionality, and it is therefore not surprising to see the bad-performed multi-
dimensional DCKE with a large number of assets. However, when the time is far from maturity,
the one-dimensional DCKE no longer works well possibly due to the ‘gamma effect’, and hence,
efforts are still needed to be put in finding out better solutions.

Following these observations, the high-dimensional models in our experiment suffering the
curse of dimensionality. However, this is not just a challenge for GPR, but a problem that occurs in
multiple domains including sampling, optimisation and machine learning, and still requires ac-
tive research. Being inspired by our 1-dimensional model, which solves high-dimensional prob-
lems, attempts could still be made to reduce the dimensionality of the multiple asset sequence.
For best-of options as an example, a potential future work could be selecting the first two best-
performed assets to apply a 2-dimensional DCKE rather than just the single best-performed one
as we do, and work out the gamma between them to get rid of the ‘gamma effect’, which will be
helpful for the predictions in earlier times steps. Additionally, the backward recursion approach
could also be applied to the current 1-dimensional model for multiple assets, given its outstand-
ing performance when time is close to maturity. It is worth investigating how would it solve our
problem when we take a small time step back each time.

Also, the validity of the DCKE algorithm under the Heston model inspires us to move towards
pricing and replicating in the non-risk-neutral world, improving upon Grau’s and Halperin’s
ideas. By combining our algorithm with a non-risk neutral market data generator, a promisingly
powerful framework is expected to be obtained.
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Appendix A

Technical Proofs

A.1 Proof of Proposition 2.4

Proof. Denote the estimation error for quantity x as εx, we have

Ȳ = E[Y] + εY (A.1.1)
X̄ = E[X] + εX (A.1.2)

σ̂2
X = (X− X̄)2 = σ2

X + εXX (A.1.3)

σ̂Y,X = (Y− Ȳ)(X− X̄) = σY,X + εYX (A.1.4)

β̂∗ =
σ̂Y,X

σ̂2
X

=
σY,X + εYX

σ2
X + εXX

= β∗ + εβ∗ (A.1.5)

With β̂∗ in Equation (2.2.18), the overall estimation error is found by

Ȳ− β̂∗X̄ + β̂∗E[X] = E[Y] + εY −
(

β∗ + εβ∗
)
(E[X] + εX) +

(
β∗ + εβ∗

)
E[X]

= E[Y] + εY − β∗εX − εβ∗ εX ,

while for the exact β∗,

Ȳ− β∗X̄ + β∗E[X] = E[Y] + εY − β∗ (E[X] + εX) + β∗E[X]

= E[Y] + εY − β∗εX ,

and therefore, the statistical error differ by εβ∗ εX .
Follow from Equation (A.1.2), we have that

(X− X̄)2 = X2 − (X̄)2

= E
[
ε2

X

]
+ εX2 − (E[X] + εX)

2

= E
[
ε2

X

]
− E[X]2 + εX2 − 2E[X]εX + (εX)

2

= σ2
X + εX2 − 2E[X]εX + (εX)

2 ,

and by comparing with Equation (A.1.3), εXX = εX2 − 2E[X]εX + (εX)
2 .

From Central Limit Theorem, the first two terms on the right are O(1/
√

n) and the last term
is O(1/n). This is how we put statistical approximations into nonlinear formulas, and here the
non-linearity is just a square.

And for β∗, from Equation (A.1.2), assuming ε� σXX and using Taylor series,
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β̂∗ = (σYX + εYX)

(
1

σ2
X
− εXX

σ4
X

)
+O

(
ε2

XX

)
=

σYW

σ2
X

+
1

σ2
X

εYX −
σYX

σ4
X

εXX +O
(

ε2
XX

)
= β∗ +

1
σ2

X
εYX −

σYX

σ4
X

εXX +O
(

ε2
XX

)
.

Therefore, εβ∗ is only O(1/
√

n).

A.2 Derivation of Equation (2.2.3)

Derivation 1.

E[Y | X = x] =
∫

y f (y | x)dy =
∫

y
f (x, y)
f (x)

dy

Using kernel density estimation, which is introduced as Equation (2.2.12), for the joint distribution
f (x, y) and f (x) with a kernel K, we have

f̂ (x, y) =
1
N

N

∑
i=1
{Kh (x− xi)Kh (y− yi)}

f̂ (x) =
1
N

N

∑
i=1
{Kh (x− xi)} .

Then, we get

Ê[Y | X = x] =
∫ y ∑N

i=1 Kh (x− xi)Kh (y− yi)

∑N
j=1 Kh

(
x− xj

) dy

=
∑N

i=1 Kh (x− xi)
∫

yKh (y− yi) dy

∑N
j=1 Kh

(
x− xj

)
=

∑N
i=1 {Kh (x− xi)} yi

∑N
j=1 {Kh (x− xi)}

.
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Appendix B

Detailed descriptions

B.1 Lewis’ Approximation Formula (Section 1.2.2)

According to Lewis (2009), the price of the European call can be computed as

V(S, v, τ) = S− Ke−rτ 1
π

∫ ∞+ i
2

i
2

e−iKX Ĥ(κ, v, τ)

κ − iκ
dκ,

where i is the imaginary part, and
τ = T − t

X = ln
(

S
K

)
+ rτ

Ĥ(κ, v, τ) = exp
(

2κθ

σ2

[
qg− ln

(
1− he−ξq

1− h

)
+ νg

(
1− e−ξq

1− he−ξq

)])
g =

b− ξ

2

h =
b− ξ

b + ξ

q =
σ2τ

2

ξ =

√
b2 +

4 (κ2 − iκ)
σ2

b =
2
σ2 (iκρσ + κ).

Mrázek and Pospı́šil (2017) point out the great advantage of Lewis’ formula is that it is well
behaved and only one numeric integration is required.

B.2 Gaussian Process Regression (Section 2.2.4)

• Prior distribution

Gaussian processes (GPs) extend multivariate Gaussian distributions to infinite dimension-
ality. Formally, a Gaussian process is a random process where any point x ∈ Rd is assigned
a random variable f (x) and where the joint distribution of a finite number of these variables
p( f (x1), . . . , f (xN)) is itself Gaussian:

p( f | X) = N ( f | µ, K),

where f = ( f (x1) , . . . , f (xN)), µ = (m (x1) , . . . , m (xN)) and the kernel matrix Kij =

k
(

xi, xj
)
. The mean function m(x) is assumed to take zero everywhere as GPs are flexible

enough to model the mean arbitrarily well.
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• Kernel function

What relates an observation xi to another xj is just the positive definite kernel function or
covariance function K(xi, xj). A popular choice is the ‘squared exponential’ kernel, which is
stationary and also known as RBF (Radial-basis function) kernel:

K
(

xi, xj
)
= σ2

f exp
(
− 1

2l2

(
xi − xj

)T (xi − xj
))

, (B.2.1)

where σ2
f represents the vertical variation of the function, and l is the length scale of the ker-

nel, which controls the shape (smoothness). For simplicity, we keep l the same for all input
dimensions (isotropic kernel). When xj is close to xi, K

(
xi, xj

)
approaches its maximum,

which means f (xj) is nearly perfectly correlated with f (xi), and vice versa.

• Posterior distribution

A GP prior p( f | X) can be converted into a GP posterior p( f | X, y) after having observed
some data y. The posterior can then be used to make predictions f∗ given new input X∗:

p ( f ∗ | X∗, X, y) =
∫

p ( f ∗ | X∗, f ) p( f | X, y)d f

= N ( f ∗ | µ∗, Σ∗) ,

which is the posterior predictive distribution which is also a Gaussian with mean µ∗ and
covariance matrix Σ∗. Since the key assumption in GP modelling is that our data can be
represented as a sample from a multivariate Gaussian distribution, the joint distribution of
observed data y and predictions f∗ is(

y
f ∗

)
∼ N

(
0,
(

Ky K∗
KT
∗ K∗∗

))
,

where Ky = κ(X, X) + σ2
y I = K + σ2

y I, K∗ = κ (X, X∗) and K∗∗ = κ (X∗, X∗), and σ2
y is the

noise term in the diagonal of Ky to take into account the noise in the observations. The mean
is set to zero for notational simplicity, and the sufficient statistics of the posterior predictive
distribution µ∗ and Σ∗ can be computed with

µ∗ = KT
∗K−1

y y,

Σ∗ = K∗∗ − KT
∗K−1

y K∗.
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Appendix C

Figures and tables

C.1 Chapter 1 Figures

Figure C.1: LSM for option prices under different number of paths versus Black-scholes prices
(left); difference with Black-Scholes (right): discounting payoff approach (‘-’); backward recursion
approach (‘-·’)

C.2 Chapter 2 Figures

C.3 Discounting payoff approach versus backward recursion ap-
proach error statistics comparison (Section 2.2.5)

C.4 GBM versus Sobol error statistics comparison (Section 2.3.2)
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Figure C.2: LSM for deltas under different number of paths versus Black-scholes prices (left);
difference with Black-Scholes (right): discounting payoff approach (‘-’); backward recursion ap-
proach (‘-·’)

Price Metric t = 0.25 t = 0.50 t = 0.75

Discounting payoff MSE 0.3588 0.3078 0.0541
mean 0.1194 0.1779 0.1808

1% 0.4271 0.2275 0.0606
50% 0.1458 0.2321 0.3184
99% 0.5716 0.2053 0.0562

Backward recursion MSE 0.3811 0.2054 0.0540
mean 0.3564 0.3215 0.1815

1% 0.5597 0.3098 0.0616
50% 0.5501 0.4555 0.3283
99% 1.5281 0.6300 0.0546

Table C.1: Mean squared errors and absolute errors in EE and PFE of the estimated prices with
discounting payoff and backward recursion approach compared to Black-Scholes prices (average
of 100 repetitions)
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Figure C.3: LSM for deltas under different number of paths with piecewise polynomial regres-
sions versus Black-Scholes deltas (left); difference with Black-Scholes (right): discounting payoff
approach (‘-’); backward recursion approach (‘-·’)

Figure C.4: Demonstration of basic concepts of a feedforward neural network (Sodhi (2018))
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Option price Delta
Spots Metric Paths t = 0.25 t = 0.50 t = 0.75 t = 0.25 t = 0.50 t = 0.75

GBM MSE 10,000 0.3658 0.3057 0.0799 0.0003 0.0003 0.0002
mean 0.1550 0.1998 0.2191 0.0073 0.0069 0.0070

1% 0.2338 0.3347 0.1059 0.0060 0.0020 0.0002
50% 0.2185 0.2377 0.4063 0.0064 0.0114 0.0153
99% 0.2905 0.2508 0.0921 0.0032 0.0015 0.0061

Sobol MSE 10,000 0.0396 0.0715 0.0514 0.0000 0.0000 0.0002
mean 0.0161 0.0120 0.0030 0.0075 0.0073 0.0069

1% 0.0142 0.1057 0.0053 0.0020 0.0013 0.0002
50% 0.0209 0.0601 0.0849 0.0088 0.0112 0.0132
99% 0.0807 0.0176 0.0571 0.0033 0.0034 0.0040
MSE 2,000 0.1510 0.3119 0.1670 0.0002 0.0003 0.0004
mean 0.2089 0.2871 0.3204 0.0068 0.0064 0.0059

1% 0.7241 0.6302 0.1701 0.0005 0.0002 0.0014
50% 0.2890 0.3887 0.5869 0.0082 0.0115 0.0117
99% 0.3037 0.0568 0.0593 0.0018 0.0022 0.0128
MSE 1,000 0.2689 0.8007 0.2841 0.0004 0.0007 0.0009
mean 0.2479 0.3516 0.3992 0.0090 0.0087 0.0077

1% 0.9362 0.6999 0.3190 0.0017 0.0007 0.0027
50% 0.3602 0.4646 0.7278 0.0114 0.0172 0.0148
99% 0.0311 0.0291 0.1795 0.0023 0.0009 0.0190

Table C.2: Mean squared errors and absolute errors in mean and 1%, 50% and 99% quantile of
option price and delta compared to Black-Scholes results for GBM and Sobol under DCKE model
(average of 100 repetitions)
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